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To the memory of Joseph-Louis Lagrange,

one of the greatest mathematicians of all time.



1. Scienti�c Contribution of Lagrange

The interplanetary transport network

Lagrange served as president of
the comission who adopted the
base 10 of the metric system.



Lagrangian Mechanics

1st Ed. 1788, 2nd Ed. 1811

He showed that the subject of mechanics is implicitly
included in a single principle, the law of virtual work,
from which one can obtain (by the aid of the calculus
of variations) general formulae from which the whole of
mechanics, both of solids and �uids.



Di¤erential Calculus and Calculus of Variations

Théorie des fonctions analytiques 1797.

Leçons sur le calcul des fonctions (1804, 2nd ed. in
1806). It is in this book that Lagrange formulated his cel-
ebrated method of Lagrange multipliers, in the context of
problems of variational calculus with integral constraints.
These works devoted to di¤erential calculus and calculus
of variations may be considered as the starting point for
the researches of Cauchy, Jacobi, and Weierstrass.



2. Prizes and Distinctions

Member of the Berlin Academy, elected on 2 September
1756.

Fellow of the Royal Society of Edinburgh in 1790.

Fellow of the Royal Society and a foreign member of the
Royal Swedish Academy of Sciences in 1806.

In 1808, Napoleon made Lagrange a Grand O¢ cer of
the Legion of Honour and a Comte of the Empire. He
was awarded the Grand Croix of the Ordre Impérial de la
Réunion in 1813, a week before his death in Paris.

Lagrange was awarded the 1764 prize of the French Acad-
emy of Sciences for his memoir on the libration of the
Moon. In 1766 the Academy proposed a problem of the
motion of the satellites of Jupiter, and the prize again
was awarded to Lagrange. He also shared or won the
prizes of 1772, 1774, and 1778.



3. A Gallery of Fame

E. Halley L. Euler D �Alembert

G. Monge S. D. Poisson J. B. J. Fourier



4. Lagrange�s Algebraic Identity

1773, Quelques problémes sur les pyramides triangulaires,
p. 663, lines 6-8:0@ 3X

i=1

a2i

1A0@ 3X
i=1

b2i

1A
=

0@ 3X
i=1

aibi

1A2 + X
1�i<j�3

(aibj � ajbi)2.

In other words

kuk2 kvk2 = jhu; vij2 + ku� vk2 for all u; v 2 R3:

Fibonacci�s Book of Squares (Liber Quadratorum, in the
original Latin):�
a21 + a

2
2

� �
b21 + b

2
2

�
= (a1b1 + a2b2)

2+(a1b2 � a2b1)2 :

Complex number multiplication,

ja1 + ia2j2 jb1 + ib2j2 = j(a1 + ia2) (b1 + ib2)j2 :



5. Lagrange�s Barycentric Identity

1783, Sur une nouvelle proprieté du centre de gravité:
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For z = 0; mk = pka
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k=1

pka
2
k

1A0@ nX
k=1

pkkykk2
1A

=








nX
k=1

pkakyk








2

+
X

1�i<j�n
pipjkajyi � aiyjk2:

Consequence:
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6. Augustin-Louis Cauchy, 1821

0@ nX
i=1

a2i

1A0@ nX
i=1

b2i

1A
=

0@ nX
i=1

aibi

1A2 + X
1�i<j�n

(aibj � ajbi)2.

(page 456, formula (31))



Poincaré�s Inequality (1890): If � is a probability mea-
sure on a space 
 and f and g are two real random
variables belonging to the space L2(�) :�Z



f2d�

��Z


g2d�

�
�
�Z


fgd�

�2
=
1

2

Z



Z


(f(x)g(y)� f(y)g(x))2 d�(x)d�(y):

Now consider smooth functions f : [0; 1]! R that verify
the condition

R 1
0 fdx = 0: ThenZ 1

0
f2dx =

1

2

Z 1
0

Z 1
0
(f(x)� f(y))2 dxdy:

By taking into account Lagrange�s mean value theorem
(with integral remainder) we infer that

f(x) = f(y) + (x� y)
Z 1
0
f 0(tx+ (1� t)y)dt;

whence so one can easily conclude the existence of a po-
sitive constant k (that does not depend on f) such thatZ 1

0
f2dx � 1

2

Z 1
0
f 02(s)ds:



The uncertainty principle shows that one can not jointly

localize a signal in time and frequency arbitrarily well;

either one has poor frequency localization or poor time

localization.

Suppose that f(t) is a �nite energy signal with Fourier

transform F (!): Let

E =
Z
R
jf(t)j2 dt = 1

2�

Z
R
jF (!)j2 d!;

d2 =
1

E

Z
R
t2 jf(t)j2 dt and D2 = 1

2�E

Z
R
!2 jF (!)j2 dt:

If
q
jtjf(t)! 0 as jtj ! 1; then

Dd � 1

2
;

and equality holds only if f(t) has the form

f(t) = Ce��t
2
:

(From Hermann Weyl, Theory of groups and Quantum

Mechanics, Dover, 1950)



Proof. Suppose that f is real. Notice that����Z 1�1 tf(t)f 0(t)dt
����2 � Z 1

�1
t2f2(t)dt

Z 1
�1

f 02(t)dt

andZ 1
�1

tf(t)f 0(t)dt = t
f2(t)

2

�����
1

�1
�
Z 1
�1

1

2
f2(t)dt = �1

2
E:

By Parseval�s Theorem,Z 1
�1

f 02(t)dt =
1

2�

Z 1
�1

!2 jF (!)j2 d!:

Therefore
1

4
E2 � d2E �D2E;

that is,
1

2
� dD:



7. Mechanical Interpretation

1673 Christiaan Huygens: the parallel axis theorem,

(PAT) Id = Icom +Md2:

1765 Leonhard Euler, Theoria motus corporum solidorum
sev rigidorum

Figure 1. The Huygens-Steiner theorem

The identity provided by (PAT ) is equivalent to (L):
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8. Weighted Least Squares

Given a family of points x1; :::; xn in RN and real weights
m1; :::;mn 2 R with M =

Pn
k=1 mk > 0; then

min
x2RN

nX
k=1

mk kx�xkk2 =
1

M
�
X
i<j

mimj kxi�xjk2:

The minimum is attained at one point,

xG =
1

M

nX
k=1

mkxk:

Giulio Carlo Fagnano: the existence of a point P in
the plane of a triangle ABC that minimizes the sum
PA2 + PB2 + PC2.

Carl Friedrich Gauss: the foundations of the least-squares
analysis in 1795.

1809 Theory of motion of the celestial bodies moving in
conic sections around the Sun.



Applications to Metric Geometry

a; b; c the side lengths of a triangle �ABC

G the centroid

O the center of the circumscribed circle (radius R)

I the center of the inscribed circle (radius r).

Leibniz: formula for the radius of circumscribed circle,

R2 = OG2 +
1

9
(a2 + b2 + c2):

W. Chapple (1746) and L. Euler (1765):

R2 = OI2 + 2Rr:

If R is the radius of the smallest ball containing a �nite
family of points x1; : : : ; xn 2 RN ; then

1

n

0@ X
1�i<j�n

kxi � xjk2
1A1=2 � R:



A GREAT discovery solves a great problem, but there
is a grain of discovery in the solution of any problem.
Your problem may be modest, but if it challenges your
curiosity and brings into play your inventive faculties, and
if you solve it by your own means, you may experience
the tension and enjoy the triumph of discovery.

Look around when you have got your �rst mushroom or
made your �rst discovery: they grow in clusters.

George Pólya



9. Understanding, Learning and Teaching
Problem Solving

A set of heuristics from How to Solve It, Princeton, 1945:

1. Understand the Problem (What is the unknown?
What are the data?)

2. Devise a Plan (Do you know a related problem?
Did you use all the data?)

3. Carry out the Plan (Can you see/prove that each
step is correct?)

4. Look Back at the Solution (Can you check the re-
sult? Can you use the result for some other pro-
blem?)



10. Positive Polynomials and SoS

Every nonnegative polynomial of a single variable can be
expressed as a sum of squares (sos) of polynomials.

Basic idea:

c2
rY
j=1

(t�tj)2mj
sY
k=1

(t� (�k + i�k)) (t� (�k � i�k))

= Q2(t)
sY
k=1

((t� �k)2 + �2k) = R
2(t) + S2(t);

via Fibonacci�s identity.

The several variables case

Special cases when nonnegative polynomials are sums of
squares

Hilbert (1888): quadratic polynomials in any number of
variables; quartic polynomial in 2 variables.



A. Hurwitz (1891):

x2n1 + x2n2 + � � �+ x2nn
n

�x21x22 � � �x22n = sum of squares.

Concrete examples:

x21 + x
2
2

2
� x1x2 =

(x1 � x2)2

2

x31 + x
3
2 + x

3
3

3
� x1x2x3

=
(x1 + x2 + x3)

6

h
(x1 � x2)2 + (x1 � x3)2 + (x2 � x3)2

i

x41 + x
4
2 + x

4
3 + x

4
4

4
� x1x2x3x4

=

�
x21 � x22

�2
+ (x23 � x24)2

4
+
(x1x2 � x3x4)2

2
:

Other inequalities from identities:

P. E. Frenkel and P. Horvath, Minkowski�s inequality and
sums of squares, ArXiv 1206.5783v2 /4 January 2013



11. A Surprise

The positive polynomial

P (x; y) = 1 + x4y2 + x2y4 � 3x2y2

is not a sum of squares. Proof by reductio ad absurdum.

(1) P (x; y) = Q21(x; y) +Q
2
2(x; y) + � � �+Q2n(x; y)

For y = 0 :

1 = P (x; 0) = Q21(x; 0) +Q
2
2(x; 0) + � � �+Q2n(x; 0)

For x = 0 :

1 = P (0; y) = Q21(0; y) +Q
2
2(0; y) + � � �+Q2n(0; y)

Conclusion: Every Qk(x; y) has the form

Qk(x; y) = ak + bkxy + ckx
2y + dkxy

2;

so by equating the coe¢ cients of x2y2 in (1) we getP
b2k = �3; a contradiction.



12. Hilbert�s Seventeenth Problem

Given a multivariate polynomial that takes only nonnega-
tive values over the reals, can it be represented as a sum
of squares of rational functions?

Yes, Emil Artin (1927)

Motzkin (1966) :

1 + x4y2 + x2y4 � 3x2y2

=

 
x2y(x2 + y2 � 2)

x2 + y2

!2
+

 
xy2(x2 + y2 � 2)

x2 + y2

!2

+

 
xy(x2 + y2 � 2)

x2 + y2

!2
+

 
x2 � y2

x2 + y2

!2
:



13. Two Open Problems

Is every inequality the consequence of
an identity?

Find new identities and their
associated inequalities.



14. A Math. Olympiad Problem

Let a; b; c; d � 0 and a+ b+ c+ d = 4: ShowX a

a3 + 8
� 4

9
:

Partial solution. The function f(x) = x
x3+8

is con-
cave for x 2 [0; 2]: According to Jensen�s inequality,
for a; b; c; d 2 [0; 2] and a+ b+ c+ d = 4 , we have

1

4

�X a

a3 + 8

�
�

a+b+c+d
4�

a+b+c+d
4

�3
+ 8

=
1

9
:

­5 ­4 ­3 ­2 ­1 1 2 3 4 5

­0.2

0.2

0.4

x

y



15. A First Generalization of Lagrange�s Identity

I an interval of R endowed with a discrete measure

� =
nX
i=1

pi�xi

whose weights pi are all nonzero and sum up to 1. The
barycenter of �;

b� =
nX
i=1

pixi;

is supposed to be in In fx1; :::; xng :

Theorem 1. (N&Stephan [12], [13]) Under the above as-
sumptions on I and �; every function f : I ! R veri�es
the following extension of Lagrange�s identity,

nX
i=1

pif(xi) = f (b�)+
X

1�i<j�n
pipj

�
s(xi)� s(xj)

� �
xi � xj

�
;

where

s(x) =
f(x)� f(b�)
x� b�

for x 2 In fb�g :



Corollary 1. If all pi are nonnegative and s(x) is decreas-
ing, then

nX
i=1

pif(xi) � f (b�) :

Solution to the Math. Olympiad Problem: Apply
Corollary for n = 4; and

x1 = a < x2 = b < x3 = c < x4 = d:

The barycenter of � = 1
4

P4
i=1 �xi is b� = 1:The slope

function

s(x) =
f(x)� f(1)
x� 1

=
8� x� x2

9(8 + x3)

is decreasing, so by (SGL),

1

4

4X
i=1

f(xi)� f(1) =
1

16

X
i<j

s(xi)� s(xj)
xi � xj

� 0:



Polya�s Fourth Principle:
Review/extend

To gain more insight, extend you
results to several variables!



16. The Several Variables Case

First Step: Adapt to several variables what we did in R:

C a subset of the Euclidean space RN endowed with a
real measure � =

Pn
i=1 pi�xi whose weights pi are all

nonzero and sum up to 1. The barycenter of �;

b� =
nX
i=1

pixi;

is supposed to be in Cn fx1; :::; xng :

Theorem 2. (N&Stephan [12], [13]) Under the above as-
sumptions on C and �; every function f : C ! R veri�es
the following extension of Lagrange�s identity:
(GL)
nX
i=1

pif(xi) = f (b�)+
X
i<j

pipj
D
s(xi)� s(xj); xi � xj

E
;

where

s(x) =
f(x)� f(b�)
kx� b�k

� x� b�
kx� b�k

for x 2 Cn fb�g :



When f is a continuously di¤erentiable function de�ned
on a convex subset C of RN , one can state the identity
(GL) in terms of gradients:

(SGL)
nX
i=1

pif(xi) = f (b�)

+
X
i<j

pipj

Z 1
0
hrf(Pi(t))�rf(Pj(t)); xi � xjidt;

where Pi(t) = txi + (1� t)b�:

Note: (L) is the particular case where f(x) = 1
2 kxk

2 ;

x 2 RN : Indeed,

rf(x) = x and r2f(x) = In:

Corollary 2. If f is continuously di¤erentiable, then

jE(f ;�)� f (b�)j � krfkLip �
2
�;

where E(f ;�) is the expectation of f;

krfkLip = sup
(
krf(x)�rf(y)k

kx� yk
: x; y 2 C; x 6= y

)
is the Lipschitz constant of rf; and �2� is the variance
of �:



17. Two Examples

Example 1. Consider f(x) = 1=x on an interval [m;M ]

(m > 0); and positive weights p1; :::; pn that sum to
unity. Theorem 1 relates the (weighted) arithmetic mean
A =

Pn
i=1 pixi to the (weighted) harmonic mean H =�Pn

i=1
pi
xi

��1
as follows:

A

H
� 1 =

X
1�i<j�n

pipj
(xi � xj)2

xixj
:

Bounds for the variance �2� =
P
1�i<j�n pipj(xi�xj)2

of � =
Pn
i=1 pi�xi

m2
�
A

H
� 1

�
� �2� �M2

�
A

H
� 1

�
:

Our theory also covers the upper bound of Bhatia and
Davis [2],

�2� � (M �A) (A�m) :

Discrepancy between the harmonic mean and the arith-
metic mean

1 +
�2�

M2
� A

H
� 1 +

�2�

m2
:



Example 2. In the Euclidean space:

6
�
kx1k2 + kx2k2 + kx3k2

�
+ 2 kx1 + x2 + x3k2

= 3
�
kx1 + x2k2 + kx2 + x3k2 + kx3 + x1k2

�
+

X
1�i<j�3




xi � xj


2 :

Apply twice (GL) as follows:

kx1k2 + kx2k2 + kx3k2

3
+





x1 + x2 + x33





2
� 2
3

 



x1 + x22





2 + 



x2 + x32





2 + 



x3 + x12





2
!

=
kx1k2 + kx2k2 + kx3k2

3
�




x1 + x2 + x33





2
� 2
3

 



x1 + x22





2 + 



x2 + x32





2 + 



x3 + x12





2
!

+





x1 + x2 + x33





2
=
1

18

X
1�i<j�3




xi � xj


2 :



A consequence is the inequality

kx1k2 + kx2k2 + kx3k2

3
+





x1 + x2 + x33





2
� 2

3

 



x1 + x22





2 + 



x2 + x32





2 + 



x3 + x12





2
!
;

which illustrates the phenomenon of (2D)-convexity as
developed by M. Bencze, C. P. Niculescu and Florin Popovici
[1].



18. A Second Generalization

Embedding Jensen�s Inequality into an identity:

Theorem 3. (N&Stephan [13]). Suppose that K is a
Borel measurable convex subset of RN (or more gen-
erally of a real Hilbert space), endowed with a real Borel
measure � such that �(K) = 1 and b� 2 K: Then for
every function f : K ! R of class C2 we have the
identity

f(b�)+
1

2

Z
K

Z
K
hrf(x)�rf(y); x� yid�(x)d�(y)

=
Z
K
f(x)d�(x)

+
Z
K

Z 1
0
(1�t)hr2f(x+t(b��x)) (b� � x) ; b��xidtd�(x);

provided that all integrals are legitimate.

In the particular case where f(x) = 1
2 kxk

2 ; x 2 RN ;
we recover the identity (L).



Theorem 4. (N&Stephan [13]). Suppose thatK is a com-
pact convex subset of the Euclidean space RN , endowed
with a Borel probability measure �; and f is a convex
function of class C1, de�ned on a neighborhood of K:
Then

1

2

Z
K

Z
K
hrf(x)�rf(y); x� yid�(x)d�(y)

�
Z
U
f(x)d�(x)� f(b�) � 0:

This provides a converse for each instance of Jensen�s
inequality.
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