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Hardy-Littlewood-Pólya theorem of majorization in the
framework of generalized convexity

CONSTANTIN P. NICULESCU 1,2 and IONEL ROVENŢA 1

ABSTRACT. Based on a new concept of generalized relative convexity, a large extension of Hardy-Littlewood-
Pólya theorem of majorization is obtained. Several applications escaping the classical framework of convexity
are included.

1. INTRODUCTION

The important role played by the classical inequality of Jensen in mathematics, prob-
ability theory, economics, statistical physics, information theory etc. is well described in
many books, including those by Niculescu and Persson [13], Pečarić, Proschan and Tong
[19] and Simon [21]. The aim of this paper is to discuss the phenomenon of existence of
points of convexity within the framework of convexity with respect to a pair of means.
This makes inequality of Jensen available in a framework that includes a large variety of
generalized convex functions. See Section 3. Based on this fact we prove in Section 4 the
corresponding generalization of the Hardy-Littlewood-Pólya theorem of majorization. Its
usefulness is illustrated by a number of examples.

The possibility to extend the inequality of Jensen outside the framework of convex
functions was first noticed twenty years ago by Dragomirescu and Ivan [5]. Later, Pearce
and Pečarić [18] and Czinder and Páles [4] have considered the special case of mixed
convexity, assuming the symmetry of the graph with respect to the inflection point. Their
work was extended by the results obtained by Niculescu and his collaborators [6], [10],
[14], [16] and [17], leading to the present paper.

2. GENERALITIES ON MEANS

In this paper, the concepts of generalized convexity are associated to means. A mean on
an interval I is an averaging processM which associates to each discrete random variable
X : Ω→ I having the distribution(

x1 x2 · · · xn
λ1 λ2 · · · λn

)
,

a number M(X) = M(x1, ..., xn;λ1, ..., λn) such that

inf {x1, ..., xn} ≤M(X) ≤ sup {x1, ..., xn} .

Notice that λ1, ..., λn ∈ [0, 1] and
∑n
k=1 λk = 1.

We make the convention to denote M(x1, ..., xn;λ1, ..., λn) by M(x1, ..., xn) when λ1 =
· · · = λn = 1/n.
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The most usual means are the quasi-arithmetic means Mϕ; Mϕ is associated to a strictly
monotonic function ϕ defined on an interval I via the formula

Mϕ(x1, ..., xn;λ1, ..., λn) = ϕ−1

(
n∑
k=1

λkϕ(xk)

)
,

The quasi-arithmetic means include the power means, which are defined by the formulas

Mp(x1, ..., xn;λ1, ..., λn) =

{
(
∑n
k=1 λkx

p
k)

1/p if p ∈ R\{0}∏n
k=1 x

λk

k if p = 0;

the power mean Mp corresponds to the choice ϕ(x) = xp, if p 6= 0, and to ϕ(x) = log x, if
p = 0. The most used in applications are the power means of order 1, 0 and -1, usually
known as the arithmetic mean, the geometric mean and the harmonic mean. They are denoted
respectively A, G and H.

Two examples of non quasi-arithmetic means are the logarithmic mean,

L (x1, x2) =

{ x1−x2

ln x1−ln x2
if x1 6= x2

x1 if x1 = x2

and the identric mean,

I (x1, x2) =

 1
e

(
x
x2
2

x
x1
1

) 1
x2−x1 if x1 6= x2

x1 if x1 = x2.

Their extension to the case of arbitrary discrete random variables is by far nontrivial
and the interested reader may found details in [11], [12] and [20].

Certain means admit analogues in higher dimensional spaces. The most notable case
is that of arithmetic mean. Less known is the fact that the power means make sense in the
framework of Banach lattices. See [7], Theorem 1.d.1, p. 42. For example, in the case of
the Banach lattice RN (endowed with the coordinatewise order),

Mp(x1, ...,xn;λ1, ..., λn)

= (Mp(x11, ..., xn1;λ1, ..., λn), ...,Mp(x1N , ..., xnN ;λ1, ..., λn)) .

3. CONVEXITY ACCORDING TO A PAIR OF MEANS

n what follows I and J are closed order intervals (in suitable Banach lattices) on which
there are defined the means M and N respectively. According to Aumann [2], a function
f : I → J is said to be (M,N)-convex if it verifies the following analogue of Jensen’s
inequality:

(M,N ) f (M (x1, . . . , xn;λ1, . . . , λn)) ≤ N (f(x1), . . . , f(xn);λ1, . . . , λn)

for all x1, . . . , xn ∈ I and λ1, ..., λn ∈ [0, 1] with
∑n
k=1 λk = 1.

If the inequality (M,N) works in the opposite way, the function f is called (M,N)-
concave.

The concept of mid-(M,N)-convexity verifies only the weaker condition

f (M (x1, x2)) ≤ N (f(x1), f(x2)) ;

its usefulness is explained by the fact that in many cases mid-(M,N)-convexity plus conti-
nuity imply (M,N)-convexity. For example, this happens whenM andN are power means.
See [13], Ch. 2.

A moment’s reflection shows that a function f : I → J is (Mr,Ms)-convex for r, s 6= 0
if and only if the function F defined by F (y) = f1/s(yr) is convex in the usual sense
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on Ir = {y > 0 : yr ∈ I} ; for r = s = 0, this correspondence works between f and the
function F defined by F (y) = log f(ey) on log I = {y ∈ R : ey ∈ I} . The other cases can
be also described via a change of variable and a change of function.

The (Mr,Ms)-convex functions cover a very large variety of functions playing an im-
portant role in mathematics. The (A,A)-convex functions are precisely the usual convex
functions, while the (A,G)-convex functions are the same with log-convex functions. The
(G,G)-convex functions (also called multiplicatively convex functions) are those functions
f : I → J acting on subintervals of (0,∞) such that

f(x1−λyλ) ≤ f(x)1−λf(y)λ for all x, y ∈ I, λ ∈ [0, 1];

equivalently, the functions f such that log f(exp) is convex. Many special functions such
as the Gamma function, the integral sinus, the logarithmic integral, the hyperbolic sinus
and the hyperbolic cosine are multiplicatively convex (on appropriate intervals). See [13],
Sections 2.3 and 2.4.

Notice that the Gamma function is (M2,M2)-convex on (0,∞), while the sine function
is (M2,M2)-concave on [0,

√
π]. Other interesting examples of (Mr,Ms)-convex functions

are available in the paper of Anderson, Vamanamurthy and Vuorinen [1].
The concept of convexity at a point (first considered in our paper [15] in the case of

usual convex functions) makes available suitable Jensen type inequalities even in certain
nonconvex environments. Its analogue in the case of (M,N)-convexity is formulated in
Definition 3.1 below.

As above, I and J are two order intervals on which there are defined the means M and
N respectively and f : I → J is a function.

Definition 3.1. A point a ∈ I is a point of (M,N)-convexity for the function f if

(J) f(a) ≤ N(f(x1), . . . , f(xn);λ1, . . . , λn),

for every family of points x1, ..., xn ∈ I and every family of positive weights λ1, . . . , λn
such that

∑n
k=1 λk = 1 and M(x1, . . . , xn;λ1, . . . , λn) = a.

The point a is a point of concavity if it is a point of convexity for −f (equivalently, if
the inequality (J) works in the reversed way).

We make the convention to name a point of (A,A)-convexity simply a point of convexity.
When M and N are power means acting on real intervals one can indicate very simple

geometric conditions under which a point a is a point of (M,N)-convexity. The basic
observation is as follows:

Lemma 3.1. If f admits a support line at the point point a, then a is a point of convexity of f.
In other words, every point a at which the subdifferential of f is nonempty is a point of convex-

ity.

Proof. Indeed, the existence of a support line at a is equivalent to the existence of an affine
function h(x) = αx+ β such that

f(a) = h(a) and f(x) ≥ h(x) for all x ∈ I.
If a = A(x1, . . . , xn;λ1, . . . , λn) =

∑n
k=1 λkxk,

f(a) = h(a) = h

(
n∑
k=1

λkxk

)
=

n∑
k=1

λkh (xk) ≤
n∑
k=1

λkf (xk)

= A(f(x1), . . . , f(xn);λ1, . . . , λn).

�
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Lemma 1 applies to a large variety of nonconvex functions such as xex, x2e−x, log2 x,
log x
x etc.
For example, the function log2 x is convex on (0, e] and concave on [e,∞) (and attains

a global minimum at x = 1). See Figure 1. All points a ∈ (0, 1] are points of convexity for
this function.

The graph of the function log2 x.

The other points of [1, e] are point of convexity for log2 xwhen restricted to appropriate
intervals. For example, a = 1.5 is a point of convexity for log2 x|(0,x∗] (where x∗ = 14.
256 248... is the largest solution of the equation

log2 x = log2 1.5 +
2 log 1.5

1.5
(x− 1.5)),

while a = e is a point of convexity for log2 x|(0,e].
The above discussion allows us to solve in an elementary way certain constrained non-

convex optimization problems. For example,

min
x,y,z∈(0,14]
x+2y+3z=9

log2 x+ 2 log2 y + 3 log2 z

6
= log2 1.5 = 0.164 401 . . . .

This remark can be extended to the context of generalized convexity as follows:

Corollary 3.1. (i) Suppose that r, s ∈ R\{0}. The point a ∈ I is a point of (Mr,Ms)-convexity
for the function f : I → J if the function f1/s(xr) admits a support line at a1/r.

(ii) Suppose that r ∈ R\{0}. The point a ∈ I is a point of (Mr, G)-convexity for the function
f : I → J if the function log f(xr) admits a support line at a1/r.

(iii) The point a ∈ I is a point of (G,G)-convexity of a function f : I → J if the function
log f(ex) admits a support line at log a.

According to Corollary 3.1 (ii), applied for r = 1, the functions xlog x = exp
(
log2 x

)
and log2 x have the same points of convexity/concavity. Therefore

min
x,y,z∈(0,14]
x+2y+3z=9

xlog x + 2ylog y + 3zlog z

6
= (1.5)

log2 1.5
= 1. 068 931 . . . .

4. THE EXTENSION OF THE HARDY-LITTLEWOOD-PÓLYA THEOREM OF MAJORIZATION

The notion of point of generalized convexity leads to a very large generalization of the
Hardy-Littlewood-Pólya theorem of majorization. For convenience, we next recall this
classical result. More details may be found in the monograph of Marshall, Olkin and
Arnold [9].
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Given a vector x = (x1, ..., xN ) in RN ,we denote by x↓ the vector with the same entries
as x but rearranged in decreasing order,

x↓1 ≥ · · · ≥ x
↓
N .

The vector x is said to be majorized by y (abbreviated, x ≺ y) if

k∑
i=1

x↓i ≤
k∑

i=1

y↓i for k = 1, ..., N − 1

and
N∑
i=1

x↓i =

N∑
i=1

y↓i .

The concept of majorization admits an order-free characterization based on the notion
of doubly stochastic matrix. Recall that a matrix A ∈ Mn(R) is doubly stochastic if it has
nonnegative entries and each row and each column sums to unity.

Theorem 4.1. (Hardy, Littlewood and Pólya [9]). Let x and y be two vectors in RN , whose
entries belong to an interval I. Then the following statements are equivalent:
a) x ≺ y;
b) there is a doubly stochastic matrix A = (aij)1≤i,j≤N such that x = Ay;

c) the inequality
∑N
i=1 f(xi) ≤

∑N
i=1 f(yi) holds for every continuous convex function f :

I → R.

The notion of majorization is generalized by weighted majorization, that refers to prob-
ability measures rather than vectors. This is done by identifying each vector x = (x1, ..., xN )

in RN with the discrete probability measure 1
N

∑N
i=1 δxi

,where δxi
denotes the Dirac mea-

sure concentrated at xi. Precisely, the relation of majorization

(4.1)
m∑
i=1

λiδxi
≺

n∑
j=1

µjδyj
,

between two discrete probability measures supported at points in RN , is defined by ask-
ing the existence of a m× n-dimensional matrix A = (aij)i,j such that

aij ≥ 0, for all i, j(3)
n∑
j=1

aij = 1, i = 1, ...,m(4)

µj =

m∑
i=1

aijλi, j = 1, ..., n(5)

and

(6) xi =

n∑
j=1

aijyj , i = 1, ...,m

This leads to the following generalization of the Hardy-Littlewood-Pólya theorem of
majorization.

Theorem 4.2. (Niculescu and Rovenţa [15]) Suppose that f is a real-valued function defined
on a compact convex subset K of RN and

∑m
i=1 λiδxi

and
∑n
j=1 µjδyj

are two positive discrete
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measures concentrated at points in K. such that
m∑
i=1

λiδxi
≺

n∑
j=1

µjδyj
,

If x1, ...,xm are points of convexity of f, then

(7)
m∑
i=1

λif(xi) ≤
n∑
j=1

µjf(yj).

In order to extend this result to the context of means we have to notice that condition
(5) is equivalent to

xi = A(y1, ...,yn; ai1, ..., ain) for i = 1, ...,m,

while the conclusion (7) is equivalent to

A (f(x1), ..., f(xm);λ1, ..., λm) ≤ A (f(y1), ..., f(yn);µ1, ..., µn) .

These remarks suggest the following concept of majorization attached to an arbitrary
mean M (defined on an order subinterval of a Banach lattice):

Definition 4.2. The relation
m∑
i=1

λiδxi
≺M

n∑
j=1

µjδyj
,

between two discrete probability measures supported at points in I , means the existence
of am×n-dimensional matrixA = (aij)i,j that verifies the conditions (3), (4) and (5) above
and also the following condition whose significance is that the support of

∑m
i=1 λiδxi

is
“less spread out” than the support of

∑n
j=1 µjδyj

:

(8) xi = M(y1, ...,yn; ai1, ..., ain) for i = 1, ...,m.

The simplest case of majorization covered by Definition 4.2 is

δM(x1,...,xn;1/n,...,1/n) ≺M
1

n

n∑
i=1

δxi
,

where x1, ...,xn is an arbitrary finite family of points; for this, consider the matrixAwhose
all entries equal 1/n.

We next discuss the case of power means on real intervals. For p ∈ R\{0},

1

n

n∑
i=1

δxi ≺Mp

1

n

n∑
i=1

δyi ⇔ (xp1, ..., x
p
n) ≺ (yp1 , ..., y

p
n),

while for p = 0, Mp coincides with G and (x1, ..., xn) ≺G (y1, ..., yn) is equivalent to

(log x1, ..., log xn) ≺ (log y1, ..., log yn),

and also to the concurrence of the relations
k∏

i=1

x↓i ≤
k∏

i=1

y↓i for k = 1, ..., n− 1

and
n∏

i=1

x↓i =

n∏
i=1

y↓i .

Simple examples show that the relations ≺Mp
are distinct from ≺when p 6= 1.

The extension of Hardy-Littlewood-Pólya theorem of majorization to the context of
means is as follows:
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Theorem 4.3. Suppose that M is a mean defined on an order interval I of a Banach lattice and∑m
i=1 λiδxi

and
∑n
j=1 µjδyj

are two discrete probability measures concentrated at points in I

such that
m∑
i=1

λiδxi ≺M
n∑
j=1

µjδyj .

If f is a real-valued function defined on I and ϕ is a strictly increasing function defined on an
interval including the range of f, then

Mϕ (f(x1), ..., f(xm);λ1, ..., λm) ≤Mϕ (f(y1), ..., f(yn);µ1, ..., µn) ,

provided that x1, ...,xm are points of (M,Mϕ)-convexity of f.
The inequality works in the reversed way when x1, ...,xm are points of (M,Mϕ)-concavity of

f.

Proof. By our hypotheses,

f(xi) ≤Mϕ (f(y1), ..., f(yn); ai1, ..., ain) for i = 1, ...,m.

which yields

Mϕ (f(x1), ..., f(xm);λ1, ..., λm)

≤Mϕ (Mϕ (f(y1), ..., f(yn); a11, ..., a1n) , ...,

Mϕ (f(y1), ..., f(yn); am1, ..., amn) ;λ1, ..., λm) .

The proof ends by taking into account the formula

Mϕ (Mϕ (f(y1), ..., f(yn); a11, ..., a1n) , ...,

Mϕ (f(y1), ..., f(yn); am1, ..., amn) ;λ1, ..., λm)

= Mϕ

(
f(y1), ..., f(yn);

m∑
i=1

λiai1, ...,

m∑
i=1

λiain

)
= Mϕ (f(y1), ..., f(yn);µ1, ..., µn) .

�

As was noticed above,

δM(x1,...,xn;1/n,...,1/n) ≺M
1

n

n∑
i=1

δxi

for every mean M . In this case Theorem 4.3 yields the following extension of Jensen’s
Inequality: If f is (M,Mϕ)-convex, then

f(M(x1, ...,xn; 1/n, ..., 1/n)) ≤Mϕ(f(x1), ..., f(xn); 1/n, ..., 1/n).

Other illustrations of Theorem 4.3 make the object of the next three examples.

Example 4.1. According to a remark made at the end of Section 2, the functions xlog x =

exp
(
log2 x

)
and log2 x have the same points of convexity/concavity. Thus all points be-

longing to the interval (0, 1.5] are points of convexity for the restriction of xlog x to (0, 14].
As a consequence, from Theorem 4.3 and Corollary 3.1 (ii) we infer that

n∏
i=1

xlog xi

i ≤
n∏

i=1

ylog yii

for all x1, ..., xn ∈ (0, 1.5], y1, ..., yn ∈ (0, 14] and (x1, ..., xn) ≺ (y1, ..., yn).
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Example 4.2. The exponential function is (L,L)-convex. See [13], Exercise 6, p. 91. Since
L ≤ Mp for any p ≥ 1/3 (see [8]), the exponential function is also (L,Mp)-convex. As a
consequence, from Theorem 4.3 it follows that(

m∑
i=1

λie
pxi

)1/p

≤

 n∑
j=1

µje
pyj

1/p

for all p ≥ 1/3,

whenever
∑m
i=1 λiδxi

≺L
∑n
j=1 µjδyj .

Example 4.3. As was noticed by D. Borwein, J. Borwein, G. Fee and R. Girgensohn [3] the
function

Vα(p) = 2α
Γα(1 + 1/p)

Γ (1 + α/p)
, p > 0,

is (H,G)-concave for each value α > 1 of the parameter α. In other words,

V 1−λ
α (p)V λα (q) ≤ Vα

(
1

1−λ
p + λ

q

)
for all p, q > 0 and λ ∈ [0, 1]. According to Theorem 4.3, if 1

n

∑n
i=1 δxi ≺H 1

n

∑n
i=1 δyi

(equivalently, (1/x1, ..., 1/xn) ≺ (1/y1, ..., 1/yn)), then
n∏

i=1

Vα(xi) ≥
n∏

i=1

Vα(yi) for all α > 1.
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