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1. Introduction

Many important results in real analysis of one variable are related to the so called divided differences. 
Given a function f defined on an interval I and a family x1, x2, ..., xn+1 of distinct points of I, the divided 
differences of order 0, 1, . . . , n are respectively defined by the formulas

[x1; f ] = f(x1)

[x1, x2; f ] = f(x1) − f(x2)
x1 − x2

...

[x1, x2, ..., xn+1; f ] = [x1, x2, ..., xn; f ] − [x2, x3, ..., xn+1; f ]
x1 − xn+1

.

Notice that all these divided differences are invariant under the permutation of points x1, x2, ..., xn+1.
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A function f is respectively nonnegative, nondecreasing or convex when all divided differences of order 
0, 1 or 2 are nonnegative, for all increasingly ordered system of points. Indeed, in the later case we have to 
remark that due to the property of invariance the inequality

[x1, x2, x3; f ] =
f(x1)−f(x2)

x1−x2
− f(x2)−f(x3)

x2−x3

x1 − x3
≥ 0 (1.1)

holds for all triplets x1, x2, x3 of distinct points in I if and only if it holds for all triplets x1 < x3 < x2. 
Since every intermediate point x3 can be uniquely represented as a convex combination of the extremities 
x1 and x2, this translates into the usual condition of convexity,

f((1 − λ)x1 + λx2) ≤ (1 − λ)f(x1) + λf(x2)

for all x1 < x2 in I and all λ ∈ (0, 1). When f ∈ C2(I), a repeated application of Lagrange’s mean value 
theorem yields the existence of a point ξ ∈ (mink xk,maxk xk) such that

[x1, x2, x3; f ] = f ′′(ξ)
2 . (1.2)

This formula together with the fact that

lim
x1→x

(
lim

x2→x1
[x1, x2, x; f ]

)
= f ′′(x)/2

show that a function f ∈ C2(I) is convex if and only if its second derivative is nonnegative.
The above considerations led H. Hopf [14] and T. Popoviciu [21] to initiate the study of higher order 

convexity on intervals, by calling a function f of one real variable n-convex (respectively n-concave) if 
[x1, x2, . . . , xn+1; f ] ≥ 0 (≤ 0) for any n +1 distinct points x1, x2, . . . , xn+1. There are plenty of examples of 
such functions. For example, a function of class Cn is n-convex if and only if its nth derivative is nonnegative.

T. Popoviciu went a step further by sketching a higher dimensional analog. His main motivation was 
interpolation theory and not the study of a specific counterpart to usual convexity. Probably this explains 
why neither Popoviciu nor his followers made no attempt to see at what extent his new concept of convexity 
parallels the classical one (referring to convexity along linear segments). It is the aim of the present paper 
to fill out the gap.

In order to emphasize the main idea rather than technical details, we will restrict ourselves to the two 
dimensional case but the results obtained can be extended to all dimensions.

In N dimensions, the analog of real intervals are the boxes with edges parallel to the coordinate axes. 
They can be equally described as products of 1-dimensional intervals or as order intervals in RN , associated 
to the coordinatewise ordering. In two dimensions, the boxes are usually called rectangles, so we will work 
mostly with functions defined on nondegenerate rectangles, supposed to be either open or closed.

However, the theory exposed in this paper works for any function whose domain D play the following 
property (verified by every open set): if x ∈ D, then there is a nondegenerate compact rectangle R such 
that x ∈ R ⊂ D.

In this framework two rather exotic concepts, of monotonicity and convexity, reflecting the geometry of 
rectangles, will be discussed.

If f = f(x, y) is a function defined on a rectangle I × J , and x1, x2, . . . , xm are distinct points in I and 
y1, y2, . . . , yn are distinct points in J , one defines the divided double difference of order two by the formula
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[
x1, x2, . . . xm

y1, y2, . . . yn
; f

]
= [x1, x2, . . . , xm; [y1, y2, . . . , yn; f(x, ·)]] (1.3)

= [y1, y2, . . . , yn; [x1, x2, . . . , xm; f(·, y)]].

It is worth noticing that this formula is invariant under the permutation of variables xk (and also under the 
permutation of variables yk). This property also works when the function f takes values in a Banach space.

Drawing a parallel to the one dimensional case, T. Popoviciu [21], p. 78, has called a function f : I×J → R

convex of order (m, n) (box-convex of order (m, n) in our terminology) if all divided differences

[
x1, x2, . . . xm

y1, y2, . . . yn
; f

]

are nonnegative, for all distinct points x1, x2, ..., xm and y1, y2, ..., yn. In this paper we are interested in 
two particular cases, when m = n = 1 and m = n = 2, the hypothesis of continuity being added. Thus, a 
continuous function f : I × J → R verifying the condition

[
x1, x2
y1, y2

; f
]

= 1
(x1 − x2)(y1 − y2)

· [f(x1, y1) − f(x1, y2) − f(x2, y1) + f(x2, y2)] ≥ 0 (1.4)

for all distinct points x1, x2 ∈ I and y1, y2 ∈ J , will be referred to as box-monotone (or box-convex of order
(1, 1)). Among the first who noticed the usefulness of this class of functions in mathematical analysis we 
cite here G. H. Hardy [12], [13] and W. H. Young [24]. A brief account on some recent applications makes 
the objective of Section 3.

Many interesting monotone function are box-monotone nondecreasing (respectively box-monotone non-
increasing), meaning that also their coordinate restrictions are nondecreasing (respective nonincreasing). 
Unlike the case of functions of a single variable, a box-monotone function can be neither box-monotone 
nondecreasing nor box-monotone nonincreasing. An example is provided by the function

f(x, y) = (2x− 1) (2y − 1) , (x, y) ∈ [0, 1] × [0, 1].

The functions for which the inequalities (1.4) work in the opposite direction are the alternating ones.
As we shall show in Section 4, the box-monotone functions are related to the following box-analog of the 

class of convex functions of one real variable.

Definition 1. (T. Popoviciu [21], p. 78) A function f : I × J → R is called box-convex (or box-convex of 
order (2, 2)) if it is continuous and all its divided double differences

[
x1, x2, x3
y1, y2, y3

; f
]

associated to triplets of distinct elements xj ∈ I and yk ∈ J are nonnegative.

The related notions of box-concave function and box-affine function can be introduced in the standard 
way (the condition of continuity being included).

The following remark collects some simple examples and properties of box-convex functions.

Remark 1. a) The set C2d(I × J) of all box-convex functions defined on a rectangle I × J constitutes a 
convex cone in the space C(I × J) (of all continuous functions defined on I × J). This cone contains all 
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products f(x)g(y) between two continuous functions f : I → R and g : J → R which are both convex or 
both concave.

Moreover, the cone C2d(I × J) is closed under pointwise limits (provided that the limits are continuous).
b) The restriction of every box-convex function f ∈ C2d(I × J) to a rectangle K ×L included in I × J , is 

also a box-convex function.
c) C2d(R2) includes also all continuous functions of the form h(x, y) = c1f(x) + c2g(y) with c1, c2 ≥ 0; for 

these functions the inequality (1.3) becomes an equality, so that they are actually examples of box-affine 
functions. The product of an arbitrary continuous function of x and a function of y of the form my + n

(with m, n ∈ R) is also a box-affine function. In particular, the polynomial function xy is box-affine. See 
Corollary 2 for the general form of box-affine functions of class C4.

d) If (Ω, Σ, μ) is a probability space and f : Ω × I × J → R, f = f(ω, x, y), is a function integrable with 
respect to ω and box-convex with respect to the pair of variables (x, y), then the integral

F (x, y) =
∫
Ω

f(ω, x, y) dμ(ω)

defines a box-convex function on I × J .

According to Remark 1 a), the function ex+y is box-convex on R2.

Remark 2. Of a special interest are the fully box-convex functions, that is, the functions that combines 
box-convexity with separate convexity. Some simple examples are the functions

xm exp(λx + μy) and yn exp(λx + μy) on R2
+ (for all λ, μ ∈ R+ and m,n ∈ N)

and

Π(x, y) = xpyq on R2
+ (for all p, q ∈ [1,∞)).

As noticed in [19], the cosine coefficients (either simple or double) of any fully box convex function defined 
on [0, 2π] × [0, 2π] are nonnegative.

A simple (but tedious) computation shows that the condition

[
x1, x2, x3
y1, y2, y3

; f
]

=
[
x1, x3, x2
y1, y3, y2

; f
]
≥ 0 (1.5)

is equivalent to the following one,

f(x1, y1)(x2 − x3) (y2 − y3) + f(x1, y3)(x2 − x3) (y1 − y2)

+ f(x1, y2)(x2 − x3) (y3 − y1) + f(x3, y1)(x1 − x2) (y2 − y3)

+ f(x3, y3)(x1 − x2) (y1 − y2) + f(x3, y2)(x1 − x2) (y3 − y1)

+ f(x2, y1)(x3 − x1) (y2 − y3) + f(x2, y3)(x3 − x1) (y1 − y2)

+ f(x2, y2)(x3 − x1) (y3 − y1) ≥ 0 (1.6)

whenever x1 < x3 < x2 and y1 < y3 < y2.
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Noticing that

x3 = (1 − λ)x1 + λx2 and y3 = (1 − μ)y1 + μy2

for suitable λ, μ ∈ (0, 1) one arrives at the following formulation of the notion of box convexity: continuity 
plus the fulfillment of the inequality

(1 − λ)(1 − μ)f(x1, y1) + (1 − λ)μf(x1, y2) + λ(1 − μ)f(x2, y1)

+ λμf(x2, y2) + f((1 − λ)x1 + λx2, (1 − μ)y1 + μy2)

≥ (1 − λ)f(x1, (1 − μ)y1 + μy2) + (1 − μ)f((1 − λ)x1 + λx2, y1)

+ μf((1 − λ)x1 + λx2, y2) + λf(x2, (1 − μ)y1 + μy2), (1.7)

whenever x1 < x2 are points in I, y1 < y2 are points in J and λ, μ ∈ (0, 1). Under this form, the concept of 
box-convexity can be extended verbatim to the case of functions taking values in R ∪ {∞}.

From a probabilistic point of view, the above inequality describes the barycentric behavior of a box-convex 
function f on a rectangle [x1, x2] × [y1, y2], in the presence of a discrete probability measure

m = (1 − λ)(1 − μ)δ(x1,y1) + λ(1 − μ)δ(x2,y1) + λμδ(x2,y2) + (1 − λ)μδ(x1,y2).

More precise, this relates the values taken by f at the four corners of the rectangle [x1, x2] × [y1, y2],

A = (x1, y1), B = (x2, y1), C = (x2, y2) and D = (x1, y2),

with the value taken at the barycenter of m,

bar(m) =

⎛
⎜⎝ ∫∫

[x1,x2]×[y1,y2]

xdm(x, y),
∫∫

[x1,x2]×[y1,y2]

ydm(x, y)

⎞
⎟⎠

= ((1 − λ)x1 + λx2, (1 − μ)y1 + μy2) ,

and the values at the barycenters of the restriction of m at the sides AB, BC, CD and DA. See [6], Vol. II, 
p. 143, for the general concept of barycenter. In terms of barycenters, the inequality (1.7) can be rewritten 
as

∫∫
ABCD

f dm + f (bar(m)) ≥ m(AB)f
(

bar
m|AB

m(AB)

)
+ m(BC)f

(
bar

m|BC

m(BC)

)

+ m(CD)f
(

bar
m|CD

m(CD)

)
+ m(DA)f

(
bar

m|DA

m(DA)

)
.

The box-convex functions differ considerably from the usual convex functions. Indeed, if f(x) is an arbitrary 
function defined on I and g(y) is an arbitrary function defined on J , then the function

h(x, y) = f(x) + g(y)

verifies the inequality (1.7)! In particular, the fulfillment of this inequality is not able to assure the property 
of continuity at any point. That’s why in order to avoid the presence of pathological functions, in this paper 
the notion of box-convex function includes continuity as a precondition.
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This paper is organized as follows. In Section 2 we present several characterizations of box-convexity 
including analogs of Jensen’s classical results. The differential test of box-convexity (Theorem 3) shows that 
the class of box-convex functions is strictly larger than the class of completely positive functions, while 
examples of nondifferentiable such functions are exhibited via Theorem 4 (which offers a characterization 
of box-convexity by the positivity of Schwarz’s upper differential of second order. A brief review on box-
monotonicity makes the objective of Section 3. The main result of the next section is Theorem 6, that asserts 
the duality of the notions of box-convexity and box-monotonicity with respect to the operations of double 
integration and mixed derivation. As a consequence, many new examples (such as the double logarithmic 
integral function, the double Clausen function etc.) can be added to the gallery of box-convex functions.

Section 5 focuses on the box-analog of the subdifferential inequality (see Theorem 9). As an immediate 
consequence we infer the fact that every box-convex function is the pointwise supremum of the family of 
its box-affine minorants. Also a consequence of this inequality is the integral form of Jensen’s inequality for 
box-convex functions proved in Section 6.

The paper ends with a short list of open problems.

2. Characterizations of box-convexity

The following characterization of the property of box-convexity asserts that under the presence of conti-
nuity the basic inequality (1.7) is equivalent to its particular case where λ = μ = 1/2.

Theorem 1. A continuous function f : I × J → R is box-convex if and only if

1
2

[
f(x1, y1) + f(x1, y2) + f(x2, y1) + f(x2, y2)

4 + f(x1 + x2

2 ,
y1 + y2

2 )
]

≥
f(x1,

y1+y2
2 ) + f(x1+x2

2 , y1) + f(x1+x2
2 , y2) + f(x2,

y1+y2
2 )

4

for all x1 < x2 in I and y1 < y2 in J .

Corollary 1. A continuous function f : I × J → R is box-convex if and only if

1
2

[
f(x− h, y − k) + f(x− h, y + k) + f(x + h, y − k) + f(x + h, y + k)

4 + f(x, y)
]

≥ f(x− h, y) + f(x, y − k) + f(x, y + k) + f(x + h, y)
4

for all points (x, y) ∈ I × J and all h, k > 0 such that x ± h ∈ I and y ± k ∈ J .

The nontrivial part of Theorem 1 is the sufficiency, which can be easily deduced from the following 
lemma.

Lemma 1 (The connection of box-convexity with convexity on line segments). Given a function f : I×J → R, 
one can attach to each subrectangle [u1, u2] × [v1, v2] two new functions, the horizontal function, defined by

Hv1,v2(x) = f(x, v1) − 2f(x, (v1 + v2)/2) + f(x, v2) for x ∈ [u1, u2]

and the vertical function, by

Vu1,u2(y) = f(u1, y) − 2f((u1 + u2)/2, y) + f(u2, y) for y ∈ [v1, v2].
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Then

1
2

[
f(u1, v1) + f(u1, v2) + f(u2, v1) + f(u2, v2)

4 + f(u1 + u2

2 ,
v1 + v2

2 )
]

−
f(u1,

v1+v2
2 ) + f(u1+u2

2 , v1) + 2f(u1+u2
2 , v2) + f(u2,

v1+v2
2 )

4

= 1
8 [Hv1,v2(u1) − 2Hv1,v2((u1 + u2)/2) + Hv1,v2(u2)]

= 1
8 [Vu1,u2(v1) − 2Vu1,u2((v1 + v2)/2) + Vu1,u2(v2)] .

As a consequence, under the presence of continuity, f is box-convex if and only if the horizontal and/or the 
vertical functions are convex.

The proof of Lemma 1 reduces to a straightforward computation and will be omitted.

Remark 3. A property of convexity related to the box-convexity is that of 2D-convexity (inspired by a 
beautiful inequality due to T. Popoviciu [22]). According to [5], a real-valued function f defined on a convex 
subset U of R2 is called 2D-convex if

1
2

[
f(x1, y1) + f(x2, y2) + f(x3, y3)

3 + f

(
x1 + x2 + x3

3 ,
y1 + y2 + y3

3

)]

≥ 1
3

[
f

(
x1 + x2

2 ,
y1 + y2

2

)
+ f

(
x2 + x3

2 ,
y2 + y3

2

)
+ f

(
x3 + x1

2 ,
y3 + y1

2

)]

for all triplets (x1, y1), (x2, y2), f(x3, y3) of points in U . Every 2D-convex continuous function is convex 
in the usual sense. See [5], Theorem 2. However, one can indicate simple examples (like max {|x| , |y|}) of 
2D-convex functions that are not box-convex.

Lemma 1 offers an easy way to transfer the inequalities of convexity from one variable to two variables. 
Indeed, assuming for a moment that the box-convex function f : I × J → R is of class C2, we infer that 
∂2f
∂x2 (x, y) is convex in the variable y, which yields, according to Jensen’s classical inequality, that

1
N

N∑
k=1

∂2f

∂x2 (x, vk) −
∂2f

∂x2 (x, 1
N

N∑
k=1

vk) ≥ 0

whenever x ∈ I and v1, ..., vN ∈ J . In turn, this implies the convexity of all the functions

1
N

N∑
k=1

f(x, vk) − f(x, 1
N

N∑
k=1

vk)

and a new appeal to Jensen’s inequality allows us to conclude that

1
MN

M∑
j=1

N∑
k=1

f(uj , vk) + f( 1
M

M∑
j=1

uj ,
1
N

N∑
k=1

vk) ≥
1
M

M∑
j=1

f(uj ,
1
N

N∑
k=1

vk) + 1
N

N∑
k=1

f( 1
M

M∑
j=1

uj , vk), (2.1)

whenever u1, ..., uM ∈ I and v1, ..., vN ∈ J . The inequality (2.1) represents the box-analog of Jensen’s 
inequality for functions of two variables. The differentiability requirement on f can be replaced by continuity 
due to the following result:
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Theorem 2. (S. Gal [10], Theorem 2.2.2, p. 116) If a continuous function f : [0, 1] × [0, 1] → R is box-convex 
of order (r, s), then so are the bivariate Bernstein polynomials

Bn,m(f)(x, y) =
n∑

i=0

m∑
j=0

(
n

i

)(
m

j

)
xi(1 − x)n−iyj(1 − y)n−jf

(
i

n
,
j

m

)

associated to it. Moreover, by the well-known property of simultaneously uniform approximation of a uni-
variate function and its derivatives by the univariate Bernstein polynomials and its derivatives, it follows 
that Bn,m(f) and any partial derivative (of any order) of it, converge uniformly to f (and to its partial 
derivatives), correspondingly.

The following consequence of Lemma 1 offers a practical way to detect the box-convexity.

Theorem 3 (The differential test of box-convexity). Suppose that f : I × J → R is a function continuous on 
the compact rectangle I × J and of class C2 on the interior of I × J . Then f is box-convex if and only if 
∂2f
∂x2 is convex in the second variable (if and only if ∂

2f
∂y2 is convex in the first variable).

If f of class C4 on the interior of I × J , then f is box-convex if and only if ∂4f
∂x2∂y2 ≥ 0.

The last part of Theorem 3 was known to T. Popoviciu [21]. The necessity of the condition ∂4f
∂x2∂y2 ≥ 0

for the box-convexity of f was derived by him via the formula

[
x1, x2, x3
y1, y2, y3

; f
]

= 1
4 · ∂4f

∂x2∂y2 (ξ, η)

for a suitable (ξ, η) ∈]x1, x3[× ]y1, y3[; here x1 < x2 < x3 and y1 < y2 < y3. The sufficiency part admits a 
similar argument. Indeed, at every interior point (x, y),

lim
h→0

[
x− h, x, x + h

y − h, y, y + h
; f

]
= 1

4 · ∂4f

∂x2∂y2 (x, y).

The differential test of box-convexity yields the general form of box-affine functions of class C4:

Corollary 2. A function f ∈ C4(I × J) is box-affine if and only if ∂4f
∂x2∂y2 = 0. The general form of the 

box-affine functions is

f(x, y) = u(x) (py + q) + v(y) (rx + s) + t

where u ∈ C2(I), v ∈ C2(J) and p, q, r, s, t ∈ R.

The differential test of box-convexity is the source of numerous important examples. For example, if ϕ is 
a function of class C4 defined on (0, ∞), and ϕ(4) ≥ 0, then the function

f(x, y) = ϕ(λx + μy + γ)

is box-convex on (0, ∞) × (0, ∞), whenever λ, μ, γ > 0. In particular, this is the case of the functions

Γ(λx + μy + γ) and (λx + μy + γ) log(λx + μy + γ).
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With appropriate changes, this remark also works for functions defined on other intervals. For example, the 
function sin(x + y) is box-convex on [0, π/2] × [0, π/2] and the function

log (x + y)
x + y

is box-convex on [ 12e
25/12, ∞) × [ 12e

25/12, ∞) (though not on (0, ∞) × (0, ∞)).
Other interesting examples are provided by the class of completely monotone functions of two variables. 

Recall that an infinitely differentiable function f : (0, ∞) × (0, ∞) → R is completely monotone if it verifies 
the inequalities

(−1)i+j ∂i+jf

∂xi∂yj
≥ 0 for all i, j = 0, 1, 2, ... .

Every such function is nonnegative, box-increasing and box-convex (as well as decreasing and convex in 
each variable). So is the case of the function

1
1 + x + y + αxy

,

where α ∈ [0, 1] is a parameter. Notice that if ϕ : (0, ∞) → R is a completely monotone functions of one 
variable (that is, (−1)kϕ(k) ≥ 0 for k = 0, 1, 2, ...), then f(x, y) = ϕ(x + y) is nonnegative, box-monotone 
and box-convex. The class of completely monotone functions of one variable includes the functions

e−x, e−1/x,
1

(1 + x)2
,

log(x + 1)
x

and exΓ(x + 1)
xx+1/2 ,

and is closed under linear combinations with positive coefficients, products, derivation of even order etc. 
See Miller and Samko [15] for full details.

Also a consequence of the differential test of box-convexity is the case of perspective functions. The 
perspective function associated to a function ϕ : (0, ∞) → R is defined by the formula

f(x, y) = yϕ (x/y) , for x, y > 0.

The function f is box-convex provided that ϕ is of class C4 and 
(
x2ϕ”(x)

)
” ≥ 0.

In particular, the function x2/y (the perspective companion of x2) is box-convex on R × (0, ∞) while the 
Kullback–Leibler divergence function x logx − x log y (the perspective companion of x log x) is box-convex 
on (0, ∞) × (0, ∞).

The box-convex functions can be suitably characterized outside differentiability, by using the Schwarz 
derivative of second order for functions of two variables:

SD2f(x, y) = lim
h, k → 0
hk 	= 0

f(x− h, y + k) − 2f(x, y + k) + f(x + h, y + k)
−2f(x− h, y) + 4f(x, y) − 2f(x + h, y)

+f(x− h, y − k) − 2f(x, y − k) + f(x + h, y − k)
h2k2 .

By replacing lim by lim sup and lim inf one obtains respectively the notions of upper and lower Schwarz 
derivative of second order (denoted SD2

f(x, y) and SD2f(x, y)).
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It is not difficult to prove that if f is of class C4, then

SD2f(x, y) = ∂4f

∂x2∂y2 (x, y).

Theorem 4. A continuous function f : I × J → R is box-convex if and only if SD2
f(x, y) ≥ 0 at all points 

(x, y) interior to I × J .

Before to detail the proof of Theorem 4 we will comment some of its consequences.

Corollary 3 (The local character of box-convexity). Suppose that f is a continuous function defined on an 
open rectangle R such that every point x in R is interior to an open subrectangle S on which f is box-convex. 
Then f is box-convex on the entire rectangle R.

As was noticed by C. Freiling and D. Rinne (see [2]) the nondifferentiable continuous function f(x, y) =
(x +y) |x + y| verifies the condition SD2f(x, y) = 0 at all points of R2. According to Theorem 4, this function 
is box-convex. Other functions, like |x + y| and max {x, y}, are neither box convex nor box-concave.

The proof of Theorem 4 needs some preparation.

Lemma 2. If f : [c, d] → R is a function such that f(c) − 2f((c + d)/2) + f(d) < 0, then there exist points 
α < β in [c, d] such that

f(α) − 2f((α + β)/2) + f(β) < 0 and β − α = 1
2(d− c).

Proof. By considering the auxiliary function g : [c, (d + c)/2] → R defined by

g(x) = f(x) − 2f(x + (d− c)/4) + f(x + (d− c)/2),

it suffices to prove the existence of a point α ∈ [c, (d + c)/2] such that g(α) = f(α) − 2f(α + (d − c)/4) +
f(α + (d − c)/2) < 0. Indeed, in this case the statement of Lemma 2 works for β = α + (d − c)/2).

If no such α would exist, it follows that

g(x) = f(x) − 2f(x + (d− c)/4) + f(x + (d− c)/2) ≥ 0 for all x ∈ [c, (d + c)/2].

For x = c and x = (d + c)/2 this gives

f(c) − 2f((d + c)/2 − (d− c)/4) + f((d + c)/2) ≥ 0,

and

f((d + c)/2) − f((d + c)/2 + (d− c)/4)) + f(d) ≥ 0

whence, by adding term by term these two inequalities, we obtain

f(c) − 2f((d + c)/2) + f(d) − 2 [f((d + c)/2 + (d− c)/4) − 2f((d + c)/2) + f((d + c)/2 − (d− c)/4)] ≥ 0.

By our hypothesis, f(c) − 2f((c + d)/2) + f(d) < 0, which yields

f((d + c)/2 + (d− c)/4) − 2f((d + c)/2) + f((d + c)/2 − (d− c)/4) < 0
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in contradiction with the fact that

g((d + c)/2 − (d− c)/4) ≥ 0.

The proof is done. �
Proof of Theorem 4. The necessity part follows from the fact that

SD2
f(x, y) ≥ SD2f(x, y) ≥ 0

for every box-convex function.
For the sufficiency, suppose first that SD2

f > 0 but f were not box-convex. This yields points a(1)
1 < a

(1)
2

in I and b(1)1 < b
(1)
2 in J such that

1
2

[
f(a(1)

1 , b
(1)
1 ) + f(a(1)

1 , b
(1)
2 ) + f(a(1)

2 , b
(1)
1 ) + f(a(1)

2 , b
(1)
2 )

4

+f(a
(1)
1 + a

(1)
2

2 ,
b
(1)
1 + b

(1)
2

2 )
]

<
f(a(1)

1 , b
(1)
1 +b

(1)
2

2 ) + f(a
(1)
1 +a

(1)
2

2 , b
(1)
1 ) + f(a

(1)
1 +a

(1)
2

2 , b
(1)
2 ) + f(a(1)

2 , b
(1)
1 +b

(1)
2

2 )
4 .

According to Lemma 2 (when applied to H
b
(1)
1 ,b

(1)
2

(x)) there exist points a(2)
1 < a

(2)
2 in 

[
a
(1)
1 , a

(1)
2

]
such that 

a
(2)
2 − a

(2)
1 = a

(1)
2 −a

(1)
1

2 and

H
b
(1)
1 ,b

(1)
2

(a(2)
1 ) − 2H((a(2)

1 + a
(2)
2 )/2) + H(a(2)

2 ) < 0.

A similar argument yields the existence of points b(2)1 < b
(2)
2 in 

[
b
(1)
1 , b

(1)
2

]
such that b(2)2 − b

(2)
1 = b

(1)
2 −b

(1)
1

2
and

V
b
(2)
1 ,b

(2)
2

(a(2)
1 ) − 2V ((a(2)

1 + a
(2)
2 )/2) + V (a(2)

2 ) < 0.

Continuing this way, we obtain the existence of a sequence of nested rectangles [a(n)
1 , a(n)

2 ] ×[b(n)
1 , b(n)

2 ] (whose 
diameters converge to 0) such that

1
2

[
f(a(n)

1 , b
(n)
1 ) + f(a(n)

1 , b
(n)
2 ) + f(a(n)

2 , b
(n)
1 ) + f(a(n)

2 , b
(n)
2 )

4

+f(a
(n)
1 + a

(n)
2

2 ,
b
(n)
1 + b

(n)
2

2 )
]

<
f(a(n)

1 , b
(n)
1 +b

(n)
2

2 ) + f(a
(n)
1 +a

(n)
2

2 , b
(n)
1 ) + f(a

(n)
1 +a

(n)
2

2 , b
(n)
2 ) + f(a(n)

2 , b
(n)
1 +b

(n)
2

2 )
4 ,

for all indices n ≥ 1. See Lemma 1. According to a well known results due Cantor, there is a point (a, b)
at which both sequences (a(n)

1 , b(n)
1 )n and (a(n)

2 , b(n)
2 )n converge. Taking into account that f is a continuous 

function, we infer from the last inequality that SD2
f(a, b) ≤ 0, a contradiction.
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If SD2
f ≥ 0, we apply the above reasoning to the sequence of functions fn(x, y) = f(x, y) + x2y2/4n. 

Since SD2
fn ≥ 1/n for every n, the functions fn are box-convex and thus the function f verifies the 

inequality stated in Theorem 1 (being a pointwise limit of such functions). According to this theorem, f is 
box convex. �
3. Generalities on the box-monotone functions

The box-monotonicity of a real-valued function f defined on the rectangle R = I × J can be discusses in 
terms of box-increments.

The box-increment of f over a compact subrectangle S = [a1, a2] × [b1, b2] of R is defined by the formula

Δ(f ;S) = f(a1, b1) − f(a1, b2) − f(a2, b1) + f(a2, b2).

Accordingly, the function f is box-monotone if and only if

Δ(f ;S) ≥ 0 (3.1)

for all compact subrectangles S of R, equivalently,

Δ(f ;S) ≤ Δ(f ; S̃)

whenever S ⊂ S̃ are two compact rectangles.
When f is a product function of the form f(x, y) = g(x)h(y), then the property of box-monotonicity 

means the comonotonicity of g and h, that is,

(g(x2) − g (x1)) (h(y2) − h(y1)) ≥ 0

whenever x1 ≤ x2 in I and y1 ≤ y2 in J . As a consequence, the concept of box-monotonicity differs from 
the usual one, associated to the coordinatewise ordering of R2.

The box-monotonicity can be characterized in a convenient manner via the Schwarz derivative of first 
order for functions of two variables:

SDf(x, y) = lim
h,k→0

Δ(f ; [x, x + h] × [y, y + k])
hk

= lim
h,k→0

f(x + h, y + k) − f(x + h, y) − f(x, y + k) + f(x, y)
hk

;

by replacing lim by lim sup and lim inf one obtains respectively the notions of upper and lower Schwarz 
derivative of first order (denoted SDf(x, y) and SDf(x, y)).

Remark 4. The Schwarz derivative of first order SDf is also known as the hyperbolic derivative because 
in the case of functions f of class C1 which admit a continuous mixed derivative ∂2f

∂y∂x , the other mixed 

derivative ∂2f
∂x∂y also exists and

SDf(x, y) = ∂2f

∂y∂x
= ∂2f

∂x∂y

See J. M. Ash, J. Cohen, C. Freiling, D. Rinne [3], Proposition 2, and A. G. Aksoy and M. Martelli [1], 
Theorem 3.
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Theorem 5. A continuous function f : I×J → R is box-monotone if and only if SDf(x, y) ≥ 0 at all points.

The proof is similar to that of Theorem 4, so we omit the details.

Corollary 4 (The differential criterion of box-monotonicity). If f ∈ C1(I×J) and the mixed derivative ∂2f
∂y∂x

exists and is continuous, then:
(i) f is box-monotone if and only if

∂2f

∂x∂y
≥ 0; (3.2)

(ii) f is box-monotone nondecreasing if and only if

∂f

∂x
≥ 0, ∂f

∂y
≥ 0 and ∂2f

∂x∂y
≥ 0.

An immediate consequence of Corollary 4 is the box-monotonicity of a series of functions like xy and 
− log(ex + ey) on R2 and − log(x + y) on (0, ∞) × (0, ∞). Two more exotic examples are the incomplete 
gamma function

γ(a, x) =
x∫

0

e−tta−1dt for a > 0 and x ≥ 1,

and the elliptic integral of the first kind,

F (ϕ, k) =
ϕ∫

0

(
1 − k2 sin2 θ

)−1/2
dθ for ϕ ∈ [0, π/2], k ∈ [0, 1).

As was noticed in [17], if ϕ : R → R and ψ : [0, ∞) → [0, ∞) are continuous convex functions, then the 
formulas

f(x, y) = −ϕ(x− y) and g(x, y) = ψ(x + y)

define box-monotone functions, respectively on R×R and [0, ∞) × [0, ∞).

Remark 5 (From local to global). Corollary 4 easily yields the following gluing principle for box-monotone 
functions: If f is a real-valued function of class C2 defined on a compact rectangle R and the restriction of 
f to each compact subrectangle of a division of R is box-monotone, then f is box-monotone on the entire 
rectangle R.

Probability and statistics constitute a major source of box-monotone functions: the functions (known as 
copulas, with a prominent role in risk management) that couple multivariate distribution functions to their 
one-dimensional marginal distribution functions. Some relevant papers in this respect are P. Embrechts [7]
and C. Genest and J. Nešlehová [11]. Also, a thorough introduction to the theory of copulas is offered by 
the book of R. B. Nelsen [16].

The most popular examples of copulas are the Archimedean copulas. They are constructed through a 
continuous, strictly decreasing and convex generator ϕ via the formula

Aϕ(x, y) = ϕ−1 (ϕ(x) + ϕ(y)) ,
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where ϕ−1 is the inverse of ϕ. Several concrete examples of one-parameter families of Archimedean copulas 
are presented in the book of R. B. Nelsen [16]. Notice that all Archimedean copulas are box-monotone 
increasing functions.

It is also worthwhile to mention that two important mathematical concepts, namely those of doubly 
stochastic measure and of Markov operator, are intimately related to copulas (see, e.g., E. T. Olsen, W. F. 
Darsow and B. Nguyen [20]).

Remark 6. Comparative statistics and combinatorial optimization provide yet another valuable source of 
box-monotone/box-alternating functions defined on Cartesian products I × I, where I = R or I = R+. A 
function L : I × I → R is called supermodular if for each pair of vectors (x, y) and (x′, y′) in I × I we have 
the inequality

L(x, y) + L(x′, y′) ≤ L(min {x, x′} ,min {y, y′}) + L(max {x, x′} ,max {y, y′}).

The function L is called submodular if −L is supermodular. Since supermodularity can be characterized by 
the condition

L(x, y + v) + L(x + u, y) ≤ L(x, y) + L(x + u, y + v)

for all x, y ∈ I and u, v ∈ [0, ∞), the supermodular/submodular functions are nothing but box-
monotone/box-alternating functions defined on I × I.

The function L(x, y) = |x − y|p is submodular on R × R for p ∈ [1, ∞); the case p = 1 follows from the 
definition of submodularity, while for p > 1 we have to notice that ∂2L

∂y∂x ≤ 0.
Applications of submodular functions are available from many sources. For example, see F. Bach [4] and 

B. M. Topkis [23]. There is also a large literature devoted to the submodular set functions with important 
applications to economics, game theory, machine learning and computer vision. See the book of S. Fujishige 
[9] for a gentle introduction and the connection with submodular functions.

4. The connection between box-convexity and box-monotonicity

Many results concerning the functions of one real variable can be extended to the context of functions 
defined on rectangles, by replacing the usual derivative with the mixed derivative.

For example, the derivative of a differentiable convex function of one real variable is a nondecreasing 
function and the primitive of a nondecreasing function is a convex function. The analog of this relationship 
for functions defined on rectangles is as follows:

Theorem 6. (i) If f ∈ C(I × J) is a box-monotone function and (a, b) ∈ I × J , then the function

F (x, y) =
x∫

a

y∫
b

f(u, v) dudv

is box-convex.
(ii) Conversely, if f ∈ C2(I×J) is a box-convex function, then its mixed derivative ∂2f

∂x∂y is box-monotone.

Proof. (i) If f is of class C2, then ∂2f
∂x∂y (x, y) ≥ 0 according to Corollary 4. Therefore

∂4F
2 2 (x, y) = ∂2 (

∂2F (x, y)
)

= ∂2f (x, y) ≥ 0

∂x ∂y ∂x∂y ∂x∂y ∂x∂y
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and from Theorem 3 we infer that F is box-convex. The case where f is not differentiable reduces to the 
preceding one via Theorem 2.

(ii) If f is of class C4, then ∂2

∂x∂y

(
∂2f
∂x∂y (x, y)

)
= ∂4f

∂x2∂y2 (x, y) ≥ 0, which shows that the mixed derivative 
∂2f
∂x∂y is box-monotone.

The case where f is only of class C2 is now a consequence of Theorem 2. �
Corollary 5 (From local to global). If f is a real-valued function of class C2 defined on a compact rectangle R
and the restriction of f to each compact subrectangle of a division of R, is box-convex, then f is box-convex 
on the entire rectangle R.

Two examples illustrating Theorem 6 are provided by the double logarithmic integral function,

Li(x, y) =
x∫

0

y∫
0

1
log(u + v) dudv, x, y > 0,

and the double Clausen function,

Cl(x, y) = −
x∫

0

y∫
0

log
(

2 sin u + v

2

)
dudv, x, y ∈ [0, π].

Notice that according to Theorem 3, the function 1
log(x+y) is box-convex on (1/4, ∞) × (1/4, ∞) (but not 

on (0,∞) × (0,∞)).
The equivalence between convexity and increasing monotonicity of the slope function (as known for 

functions defined on intervals) also admits a box-analog:

Theorem 7. A continuous function f : [a1, a2] × [b1, b2] → R is box-convex if and only if for every pair of 
points a ∈ [a1, a2] and b ∈ [b1, b2] the associated function

F (x, y) =
[
a, x

b, y
; f

]

is box-monotone on each subrectangle S = [u1, u2] × [v1, v2] of [a1, a2] × [b1, b2].

Proof. Indeed,

[
u1, a, u2
v1, b, v2

; f
]

= [u1, a, u2; [v1, b, v2; f((x, ·)]]

=
[
u1, a, u2;

[b, v2; f(x, ·)] − [v1, b; f(x, ·)]
v2 − v1

]

= 1
u2 − u1

([
a, u2;

[b, v2; f ] − [v1, b; f ]
v2 − v1

]
−
[
u1, a;

[b, v2; f ] − [v1, b; f ]
v2 − v1

])

= 1
(u2 − u1)(v2 − v1)

([
a, u2
b, v2

; f
]
−

[
a, u2
v1, b

; f
]

−
[
u1, a

b, v2
; f

]
+

[
u1, a

v1, b
; f

])
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= 1
(u2 − u1)(v2 − v1)

(F (u2, v2) − F (u2, v1) − F (u1, v2) + F (u1, v1))

= 1
(u2 − u1)(v2 − v1)

· Δ(F ;S),

and the assertion of the theorem is now obvious. �
5. The analog of the subgradient inequality

We start this section with the following box-analog of the Leibniz-Newton formula:

Theorem 8. Assume that f : I × J → R is a continuously differentiable function which admits a continuous 
second order partial derivative ∂2f

∂x∂y . Then for every pair of points (a, b) and (x, y) in I × J we have

f(x, y) = −f(a, b) + f(x, b) + f(a, y) +
x∫

a

y∫
b

∂2f

∂u∂v
(u, v) dvdu.

Proof. Indeed, taking into account Remark 4, we have

x∫
a

y∫
b

∂2f

∂u∂v
(u, v) dvdu =

x∫
a

y∫
b

∂

∂v

(
∂f

∂u

)
(u, v) dvdu

=
x∫

a

[
∂f

∂u
(u, y) − ∂f

∂u
(u, b)

]
du

= f(x, y) − f(a, y) − f(x, b) + f(a, b). �
For functions of class C4, the box-analog of the Leibniz-Newton formula can be iterated by replacing 

f(x, y) by ∂2f
∂u∂v (x, y). As a consequence,

f(x, y) = −f(a, b) + f(x, b) + f(a, y) +
x∫

a

y∫
b

∂2f

∂u∂v
(u, v) dudv

= −f(a, b) + f(x, b) + f(a, y)

+
x∫

a

y∫
b

⎡
⎣− ∂2f

∂u∂v
(a, b) + ∂2f

∂u∂v
(u, b) + ∂2f

∂u∂v
(a, v) +

u∫
a

v∫
b

∂4f

∂s2∂t2
(s, t) dsdt

⎤
⎦ dudv

= −f(a, b) + f(x, b) + f(a, y) + (x− a)
[
∂f

∂u
(a, y) − ∂f

∂u
(a, b)

]

+ (y − b)
[
∂f

∂v
(x, b) − ∂f

∂v
(a, b)

]
− ∂2f

∂u∂v
(a, b)(x− a)(y − b)

+
x∫

a

y∫
b

⎡
⎣ u∫

a

v∫
b

∂4f

∂s2∂t2
(s, t) dsdt

⎤
⎦ dudv.

This yields the following box-analog of the subdifferential inequality:
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Theorem 9. A function f ∈ C2(I × J) is box-convex if and only if

f(x, y) ≥ −f(a, b) + f(x, b) + f(a, y) + (x− a)∂f
∂u

(a, y) + (y − b)∂f
∂v

(x, b)

− (x− a)∂f
∂u

(a, b) − (y − b)∂f
∂v

(a, b) − ∂2f

∂u∂v
(a, b)(x− a)(y − b)

for all points (x, y) and (a, b) in I × J .

Proof. The case of functions of class C4 is clear. The case of functions of class C2 can be reduced to the 
precedent one via an approximation argument. Indeed, according to Theorem 2, every box-convex function 
can be uniformly approximated by the bivariate tensor product Bernstein polynomials, Bn,m, which are 
box-convex polynomials, and any partial derivative (of any order) of f can be uniformly approximated by 
the corresponding partial derivatives of Bn,m. �
Corollary 6. If f ∈ C2(I×J) is box-convex, then f is the pointwise supremum of the family of its box-affine 
minorants.

For f(x, y) = ex+y (x, y ∈ R) and a = b = 0, the inequality stated by Theorem 9 is equivalent to

ex ≥ 1 + x for all x ∈ R,

while in the case f(x, y) = log(1 + x + y) (x, y ≥ 0) and a = b = 0, one obtains a consequence of this later 
inequality. In the same time, Theorem 9 is the source of many intriguing inequalities, a fact illustrated even 
by some simple functions such as f(x, y) = 1

1+x+y+αxy (x, y ≥ 0), with α ∈ [0, 1].

Remark 7. It is worth mentioning that Theorem 9 can also be deduced from Theorem 7. Indeed, according 
to this theorem the function

F (x, y) =
[
a, x

b, y
; f

]
,

verifies the inequality
[
a, x

b, y
; f

]
−

[
a, x

v, b
; f

]
−

[
u, a

b, y
; f

]
+

[
u, a

v, b
; f

]
≥ 0 (5.1)

whenever u is an intermediate point between a and x and v is an intermediate point between b and y. 
Passing to the limit as u → a and v → b one obtains

[
a, x

b, y
; f

]
−

[
a, x ; ∂f

∂v
(·, b)

]
−

[
b, y ; ∂f

∂u
(a, ·)

]
+ ∂2f

∂u∂v
(a, b)

= f(x, y) − f(a, y) − f(x, b) + f(a, b)
(y − b)(x− a) −

∂f
∂v (x, b) − ∂f

∂v (a, b)
x− a

−
∂f
∂u (a, y) − ∂f

∂u (a, b)
y − b

+ ∂2f

∂u∂v
(a, b) = 1

(y − b)(x− a) · SD ≥ 0,

where
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Fig. 1. The graph of ex+y.

SD = f(x, y) − f(a, y) − f(x, b) + f(a, b) + (y − b)
(
∂f

∂v
(x, b) − ∂f

∂v
(a, b)

)

+ (x− a)
(
∂f

∂u
(a, y) − ∂f

∂u
(a, b)

)
+ (x− a)(y − b) ∂2f

∂u∂v
(a, b).

This implies SD ≥ 0 when (x −a)(y−b) > 0. The case (x −a)(y−b) < 0 can be settled in a similar manner.

Definition 2. Under the assumptions of Theorem 9, we call the function

Af(a, b)(x, y) = −f(a, b) + f(x, b) + f(a, y) + (x− a)∂f
∂u

(a, y) + (y − b)∂f
∂v

(x, b)

− (x− a)∂f
∂u

(a, b) − (y − b)∂f
∂v

(a, b) − ∂2f

∂u∂v
(a, b)(x− a)(y − b)

the box-affine part at (a, b) of the function f .

A box-convex function and its box-affine part are very tight at the point of contact. For example, if 
f ∈ C2(I × J), then f and Af(a, b) coincide along the cross I ×{b} ∪{a} × J together with all their partial 
derivatives of second order, except the mixed derivative ∂2

∂x∂y where the coincidence occurs only at the point 
(a, b). Indeed,

Af(a, b)(a, y) = f(a, y), Af(a, b)(x, b) = f(x, b),

∂Af(a, b)
∂x

(x, b) = ∂f

∂x
(x, b), ∂Af(a, b)

∂y
(a, y) = ∂f

∂y
(a, y),

∂2Af(a, b)
∂x2 (x, b) = ∂2f

∂x2 (x, b), ∂2Af(a, b)
∂y2 (a, y) = ∂2f

∂y2 (a, y),

and

∂2Af(a, b)
∂x∂y

(x, y) = ∂2f

∂x∂y
(a, y) + ∂2f

∂y∂x
(x, b) − ∂2f

∂x∂y
(a, b)

for all x, y ∈ I × J .
If f ∈ C4(I × J), then

∂4Af(a, b)
∂x2∂y2 (x, y) = 0 on I × J .

Taking into account Corollary 2, this motivates the name of box-affine part for the function Af(a, b).
Compare the graph of the box convex function ex+y (shown in Fig. 1) to the graph of its box-affine part 

ex + ey + xey + yex − 1 − x − y − xy, at the origin (shown in Fig. 2).
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Fig. 2. The graph of the box affine part of the function ex+y at the origin.

6. Jensen type integral inequalities

Since the box-convex functions are not necessarily convex, the Jensen integral inequality does not work 
in their context. For example

3/2∫
1/2

3/2∫
1/2

log(x + y)
x + y

dxdy ≈ 0.326 27 but log(1 + 1)
1 + 1 ≈ 0.346 57.

However, a useful box-substitute of Jensen’s inequality can be obtained by integrating the inequality stated 
in Theorem 9 with respect to any Borel probability measure that admits a box-barycenter.

Definition 3. The box-barycenter of a Borel probability measure μ defined on a compact rectangle R =
[a1, a2] × [b1, b2] is the unique point (a, b) ∈ R such that each of the following integrals∫∫

R

(x− a) dμ(x, y),
∫∫

R

(y − b) dμ(x, y) and
∫∫

R

(x− a)(y − b) dμ(x, y)

is equal to zero.

The fact that the first two double integrals appearing in Definition 3 vanish means that a box-barycenter 
(if exists) is also a barycenter in the usual sense.

Taking into account that every Borel probability measure supported by a compact convex set admits a 
barycenter in the usual sense, one can easily show that every product measure μ1 ⊗ μ2 associated to Borel 
probability measures μ1 and μ2 (defined respectively on [a1, a2] and [b1, b2]) admits as a box-barycenter the 
point of coordinates

a =
a2∫

a1

x dμ1(x) and b =
b2∫

b1

y dμ2(y).

For λ, μ ∈ (0, 1), the discrete probability measure

m = (1 − λ)(1 − μ)δ(x1,y1) + λ(1 − μ)δ(x2,y1) + λμδ(x2,y2) + (1 − λ)μδ(x1,y2) (6.1)

defined on the rectangle [x1, x2] × [y1, y2] has the box-barycenter the point of coordinates

a = (1 − λ)x1 + λx2 and b = (1 − μ)y1 + μy2.

However, not every Borel probability measure admits a box-barycenter. So is the case of the absolutely 
continuous probability measure 3

2 (x2 + y2)dxdy on the rectangle [0, 1] × [0, 1].
By integrating both sides of the inequality stated in Theorem 9, one obtains the following Jensen type 

integral inequality:
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Theorem 10. If f ∈ C(I × J) is box-convex and μ is a Borel probability measure on a compact subrectangle 
[a1, a2] × [b1, b2] that admits the box-barycenter (a, b), then

a2∫
a1

b2∫
b1

f(x, y) dμ(x, y) ≥ −f(a, b) +
a2∫

a1

b2∫
b1

[f(x, b) + f(a, y)] dμ(x, y).

For the measure defined by formula (6.1), Theorem 10 yields the Jensen type inequality (1.7) defining 
box-convexity.

Corollary 7. Suppose that (X, M, μ) and (Y, N , ν) are two Borel probability spaces and f : X → [a1, a2] and 
g : Y → [b1, b2] are two Borel measurable functions. Then every box-convex function F ∈ C2([a1, a2] ×[b1, b2])
verifies the inequality

∫
X

∫
Y

F (f(x), g(y)) dμ(x)dν(y) + F

⎛
⎝∫

X

f(x)dμ(x),
∫
Y

g(y)dν(y)

⎞
⎠

≥
∫
X

F

⎛
⎝f(x),

∫
Y

g(y)dν(y)

⎞
⎠ dμ(x) +

∫
Y

F

⎛
⎝∫

X

f(x)dμ(x), g(y)

⎞
⎠ dν(y).

Proof. We use the technique of pushing-forward measures applied to the product probability measure π =
μ ⊗ ν and the π-integrable map T : X × Y → [a1, a2] × [b1, b2] defined by the formula

T (x, y) = (f(x), g(y)).

The push-forward measure λ = T#π is defined on [a1, a2] × [b1, b2] by the formula

λ(A×B) = π(T−1(A×B))

and verifies ∫∫
[a1,a2]×[b1,b2]

F (s, t)dλ(s, t) =
∫∫

X×Y

F (f(x), g(y))dμ(x)dν(y)

for all continuous functions F : [a1, a2] × [b1, b2] → R. See V. Bogachev [6], Vol. I, Section 3.6, for details. 
As a consequence, the barycenter of λ is the point of coordinates

a =
∫∫

[a1,a2]×[b1,b2]

s dλ(s, t) =
∫
X

f(x)dμ(x)

and

b =
∫∫

[a1,a2]×[b1,b2]

t dλ(s, t) =
∫
Y

g(y)dν(y).

According to Theorem 9,
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F (x, y) ≥ −F (a, b) + F (x, b) + F (a, y) + (x− a)∂F
∂u

(a, y) + (y − b)∂F
∂v

(x, b)

− (x− a)∂F
∂u

(a, b) − (y − b)∂F
∂v

(a, b) − ∂2F

∂u∂v
(a, b)(x− a)(y − b),

whence, by integrating it with respect to λ = T#π = (f#μ) ⊗ (g#ν), we obtain the inequality stated by 
Corollary 7. �
Corollary 8. Suppose that p(x)dx and q(y)dy are two absolutely continuous probability measures defined 
respectively on the intervals [a1, a2] and [b1, b2]. Denote by a and b their barycenters, that is,

a =
a2∫

a1

xp(x)dx and b =
b2∫

b1

yq(y)dy.

Then every box-convex function F ∈ C([a1, a2] × [b1, b2]) verifies the inequality

a2∫
a1

b2∫
b1

F (x, y)p(x)q(y)dxdy + F (a, b) ≥
a2∫

a1

F (x, b)p(x)dx +
b2∫

b1

F (a, y)q(y)dy.

For p(x)dx = (a2 − a1)−1dx, q(y)dy = (b2 − b1)−1dy the result of Corollary 8 becomes

1
(a2 − a1)(b2 − b1)

a2∫
a1

b2∫
b1

f(x, y)dxdy + f(a1 + a2

2 ,
b1 + b2

2 )

≥ 1
(a2 − a1)

a2∫
a1

f(x, b1 + b2
2 )dx + 1

(b2 − b1)

b2∫
b1

f(a1 + a2

2 , y)dy.

For f(x, y) = ex+y, the last inequality is equivalent to the following one,

L(ea1 , ea2)L(eb1 , eb2) + e(a1+a2+b1+b2)/2 ≥ e(b1+b2)/2L(ea1 , ea2) + e(a1+a2)/2L(eb1 , eb2),

where

L(u, v) =
{

log v−log u
v−u if u, v > 0, u 	= v

u if u = v > 0,

represents the logarithmic mean. Entering the geometric mean G(u, v) =
√
uv, one can restate the last 

inequality as

L(u1, v1)L(u2, v2) + G (u1, v1)G (u2, v2) ≥ G (u2, v2)L(u1, v1) + G (u1, v1)L(u2, v2)

for all u1, v1, u2, v2 > 0. This shows that L(u1, v1) −L(u2, v2) and G (u1, v1)−G (u2, v2) have the same sign
(when different from 0 ).
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7. Open problems

The theory developed in this paper represents a first attempt towards the study of box-convexity in its 
own. The reader can easily generalize the results presented here to the case of N variables, by using the 
concepts of divided differences for functions of three or more variables.

However, many important questions remained open even in the case of two variables. Some of them are 
listed below.

Problem 1. Is there any box-analog of Hardy-Littlewood-Pólya theory of majorization? The proof of the 
box-analog of Jensen’s inequality (2.1) (as detailed in Section 2) suggests an affirmative answer by replacing 
the use of doubly stochastic matrices with that of multi-stochastic tensors.

Problem 2. Describe the box-analogs of the classes of log-convex functions and strongly convex functions. 
See [18] for the classical theory of these functions.

Problem 3. As was noticed in Section 3, the box-monotonicity plays a role in a series of fields like probability 
and statistics, risk management and combinatorial optimization. What are the practical applications of the 
theory of box-convexity? Since the concepts of box-monotonicity and box-convexity are dual to each other 
(via derivation and integration) it seems reasonable to believe in the existence of such applications. At 
the moment the authors are aware only of some few results involving the presence of this theory in shape 
preserving approximation and the theory of double Fourier series. See [10] and respectively [2], [3] and [19]
for details.

Problem 4. As is well known, the Cauchy problem for the homogeneous wave equation

∂2u

∂t2
(x, t) = c2

∂2u

∂x2 (x, t) for t ≥ 0, x ∈ R

u(x, 0) = Φ(x) for x ∈ R

∂u

∂t
(x, 0) = Ψ(x) for x ∈ R

with continuous initial data and a positive coefficient c > 0 has the solution

u(x, t) = 1
2[Φ(x + ct) + Φ(x− ct)] + 1

2c

x+ct∫
x−ct

Ψ(s)ds.

See L. C. Evans [8], pp. 67-68. Then is a simple exercise to prove the following two assertions showing how 
the properties of monotonicity and convexity of the initial data transfer to the solution u:

(i) If Φ is continuous and convex of order 3 in the sense of Popoviciu and Ψ is continuous and nonde-
creasing on R, then the solution u is box-monotone;

(ii) If Φ and Ψ are continuous and convex of order 4 in the sense of Popoviciu, then the solution of u is 
box-convex.

Find more general results describing when the solution of a boundary value problem is box-monotone 
and/or box-convex.
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