ON L-M DUALITY IN REAL BANACH SPACES

CONSTANTIN P. NICULESCU and DAN TUDOR VUZA

Most results in M-structure theory are related to the following two order relations that make sense for any real Banach space E:

$x \leq_L y$ if and only if $\|y\| = \|x\| + \|y-x\|$.

$x \leq_M y$ if and only if every closed ball containing 0 and y contains also x.

It is the purpose of this paper to prove a new characterization of \leq_M by starting with the obvious remark that

$x \leq_M y$ if and only if $\|x+z\| \leq \max \{\|z\|, \|y+z\|\}$ for every $z \in E$.

Particularly that will allow us to explain why numerical range techniques and M-theory techniques have the same bulk of applications in the context of C^*-algebras.

Theorem 1. Let E be a real Banach space and let x and y be two elements of E. Then the following assertions are equivalent:

i) $x \leq_M y$;

ii) $\|x+z\| \leq \max \{\|z\|, \|y+z\|\}$ for every $z \in E''$, i.e., $x \leq_M y$ in E'';

iii) For every (a certain) $w'-$ dense subspace \mathcal{H} of E',

$$f(x) \leq \sup \{g(y) \mid g \in E', \; g \leq_M f\}, \; \forall f \in \mathcal{H}.$$

Proof. i) \Rightarrow ii). By the principle of local reflexivity (see [4]) for each $\varepsilon > 0$ and each $z \in E''$ there exists a z_ε in E such that

$$\|x+z\| \leq (1+\varepsilon)\|x+z_\varepsilon\| \leq (1+\varepsilon)\max \{\|z_\varepsilon\|, \|y+z_\varepsilon\|\} \leq$$

$$\leq \frac{1+\varepsilon}{1-3\varepsilon} \max \{\|z\|, \|y+z\|\}$$

so it remains to take the infimum in the right hand over $\varepsilon > 0$.

ii) \Rightarrow iii). Let $f \in \mathcal{H}$, $\varepsilon > 0$ and $n \in \mathbb{N}$ be such that $n > \|y\|$. Then we can consider the sublinear functional $p_n : \mathcal{H} \to \mathbb{R}$ given by

$$p_n(\varphi) = \inf \{n \|h| - h(y) + n\|\varphi - h\| \mid h \in \mathcal{H}\}.$$

Since $p_n(\varphi) \leq n\|\varphi\|$ for every $\varphi \in \mathcal{H}$, the functional p_n is continuous and thus there exists a $z \in \mathcal{H}'$ such that

$$f(z) = p_n(f)$$

REV. ROUMAINE MATH. PURES APPL., 38(1993), 3, 275–279
and

\[\varphi(z) \leq p_n(\varphi) \text{ for every } \varphi \in \mathcal{H}. \]

The second condition yields \(\|z\| \leq n \) and \(\|z + y\| \leq n \) so by ii),

\[f(x) + f(z) = f(x + z) \leq \|f\| \cdot \|x + z\| \leq \|f\| \cdot \max\{\|z\|, \|y + z\|\} \leq n\|f\|. \]

Then

\[f(x) \leq n\|f\| - p_n(f) = n\|f\| - \inf \{n\|h\| - h(y) + n\|\varphi - h\| : h \in \mathcal{H}\} = \sup \{n\|f\| - n\|h\| + h(y) - n\|\varphi - h\| : h \in \mathcal{H}\}. \]

We shall prove that the last term is \(< a + \varepsilon\), where \(a = \sup \{g(y) : g \in \mathcal{B}', g \leq_L f\} \).

In fact, if the contrary is true, it would exist a sequence \((h_n)_n \subset \mathcal{H}\) such that

\[(*) \quad n\|f\| + h_n(y) \geq n(\|h_n\| + \|f - h_n\|) + a + \varepsilon \]

for all \(n \geq \|y\| \). Consequently

\[(**) \quad h_n(y) \geq a + \varepsilon \text{ for } n \geq \|y\|, \]

which yields

\[\lim_{n \to \infty} \|h_n\| \leq \lim_{n \to \infty} \frac{n\|f\| - a}{n - \|y\|} = \|f\|. \]

Particularly the sequence \((h_n)_n\) is bounded and (by passing to a subsequence if necessary) we can assume that \(h_n \rightharpoonup h \). By \((*)\),

\[\|f\| + \frac{1}{n} h_n(y) \geq \|h_n\| + \|f - h_n\| + \frac{a + \varepsilon}{n} \]

which implies that

\[\|f\| \geq \|h\| + \|f - h\| \geq \|f\| \]

i.e., \(h \leq_L f \). Then \(h(y) \leq a \), in contradiction with \((**)\).
iii) ⇒ i). Let \(z \in E \) and \(h \in \mathcal{H} \) with \(\|h\| \leq 1 \). Then

\[
\begin{align*}
 h(z) + h(x) &\leq h(z) + \sup \{g(y) \mid g \in E', \ g \ll_L h\} = \\
 &= \sup \{h(z) + g(y) \mid g \in E', \ g \ll_L h\} = \\
 &= \sup \{(h - g)(z) + g(z + y) \mid g \in E', \ g \ll_L h\} \\
 &\leq \sup \{\|h - g\| \|z\| + \|g\| \|z + y\| \mid g \ll_L h\} \\
 &\leq \max \{\|z\|, \|z + y\|\}
\end{align*}
\]

and thus \(\|x + z\| \leq \max \{\|z\|, \|y + z\|\} \) for every \(z \in E \) i.e., \(x \ll_M y \). □

Corollary 1. Let \(E \) be a real Banach space. Then:

i) \(x \ll_M y \) in \(E \) if and only if \(f(x) \ll \sup \{g(y) \mid g \in E', \ g \ll_L f\} \) for every \(f \in E' \).

ii) \(f \ll_M g \) in \(E' \) if and only if \(f(x) \ll \sup \{g(y) \mid y \in E'', \ y \ll_L x\} \) for every \(x \in E \).

From Corollary 1 ii) we can infer immediately that all \(\ll_M \)-intervals \([0, f]\) in \(E' \) are \(w' \)-compact and that the adjoint of every operator in the Cunningham algebra of \(E \) belongs to the centralizer of \(E' \).

Let \(\ll \) be one of the order relations \(\ll_L \) and \(\ll_M \). We shall say that \(\ll \) is trivial provided that

\(x \ll y \) if and only if \(x = ax \cdot y \) for some \(a \in [0, 1] \).

For example, \(\ll_L \) is trivial on any strictly convex Banach space.

Corollary 2. If \(\ll_L \) is trivial on \(E' \) then \(\ll_M \) is trivial on \(E \).

The duality outlined in Corollary 1 is only one way and an interesting open question is whether the assertion ii) in Corollary 1 could be straighten up to

\[
f \ll_M g \text{ in } E' \text{ if and only if } f(x) \ll \sup \{g(y) \mid y \in E, \ y \ll_L x\}
\]

for every \(x \in E \).

A positive answer to that question would yield the following counterpart of Corollary 2: If \(\ll_L \) is trivial on \(E \) then \(\ll_M \) is trivial on \(E' \).

How thin can be the subsets \(\mathcal{H} \) as in Theorem 1 above? Alfsen and Effros have noticed in [1] that

\[
(M) \ x \ll_M y \text{ in } E \text{ if and only if either } 0 \leq f(x) \leq f(y) \text{ or } f(y) \leq f(x) \leq 0
\]

for every extreme point \(f \) of the closed unit ballk of \(E' \) (i.e., \(f(x) = ax \cdot f(y) \) for a suitable \(a \in [0, 1] \)).

Their argument depends upon Choquet's theory. We can offer a (somewhat) simpler argument via Corollary 1 above.
Suppose that \(x \leq_M y \) in \(E \). If \(f \) is an extreme point of \(K \), then \(g \leq_L f \) in \(E' \) yields \(g = \alpha \cdot f \) for a suitable \(\alpha \in [0, 1] \). See [1], p. 106. Then by Corollary 1 i),

\[
f(x) \leq \sup \{ \alpha \cdot f(y) \mid \alpha \in [0, 1] \}.
\]

Since \(-f\) is also an extreme point, we can restrict ourselves to the case where \(f(x) > 0 \). Then the inequality above yields \(0 < f(x) < f(y) \).

Conversely, let \(\sum_{k=1}^{n} \lambda_k f_k \) be a convex combination of extreme points of \(K \). By hypotheses, for each \(k \) there exists an \(\alpha_k \in [0, 1] \) such that \(f_k(x) = \alpha_k \cdot f_k(y) \). Suppose that \(B_k(x) \) is a closed ball in \(E \) containing 0 and \(y \). Then

\[
\left| \sum_{k=1}^{n} \lambda_k f_k(x - z) \right| \leq \sum_{k=1}^{n} \lambda_k \alpha_k |f_k(y - z)| + \\
+ \sum_{k=1}^{n} \lambda_k (1 - \alpha_k) |f_k(z)| \leq r
\]

so by Krein-Milman Theorem we can conclude that \(x \in B_k(z) \) too.

Theorem 2. Suppose that \(E \) is an \(M \)-ideal of \(E'' \). Then \(x \leq_M y \) in \(E'' \) if and only if and only if for each extreme point \(f \) of the closed unit ball \(K \) of \(E' \) either \(0 < f(x) < f(y) \) or \(f(y) < f(x) \leq 0 \).

Proof. We can proceed as in the case of the assertion \((M)\), by noticing the fact that every extreme point of \(K \) extends uniquely to an extreme point of the closed unit ball \(K_0 \) of \(E'' \). In fact, since \(E \) is an \(M \)-ideal of \(E'' \), then every functional \(f \in E' \) has a unique extension \(g \in E'' \) such that \(\|g\| = \|f\| \). See [2], p. 35.

Theorem 2 reveals an interesting connection between \(\leq_M \) and numerical range in the case of \(C^* \)-algebras. To avoid some technicalities, we shall restrict ourselves to a special case.

Let \(H \) be a complex Hilbert space and let \(\mathcal{A}(H) \) be the self-adjoint part of \(L(H, H) \). It is known that \(\mathcal{A}(H) \) is the second dual of the Banach space \(E \) of all self-adjoint compact operators on \(H \) and the dual of the Banach space of all self-adjoint nuclear operators on \(H \); the natural pairing of \(E' \) and \(E'' \) is given by \((A, B) \rightarrow \text{Trace} AB \). See [3] for details. The extreme points of the closed unit ball of \(E' \) are of the form \(\langle x, x \rangle x \), where \(x \) runs over unit sphere of \(H \). \(E \) is an \(M \)-ideal of \(E'' \) by [1], p. 167. Then by Theorem 2 above we can conclude that

\(A \leq_M B \) in \(\mathcal{A}(H) \) if and only if for each \(x \in H \) there exists an \(\alpha \in [0, 1] \) such that \(\langle Ax, x \rangle = \alpha \cdot \langle Bx, x \rangle \).

Some comments are in order. Let \(A, B \in \mathcal{A}(H) \).

If \(B \geq 0 \), then \(A \leq_M B \) if and only if \(0 \leq A \leq B \).

If \(AB = BA \), then \(A \leq_M B \) if and only if \(A^- \leq B^- \) and \(A^+ \leq B^+ \).

Particularly, \(-A^-, A^+ \leq_M A \).

If \(A \leq_M B \), then \(C^*AC \leq_M C^*BC \) for every \(C \in L(H, H) \).
REFERENCES

Received May 5, 1992

University of Craiova
Department of Mathematics
1100 Craiova, Romania
and
Institute of Mathematics
of the Romanian Academy
P.O. Box 1–764, 70700 Bucharest,
Romania