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Abstract. The aim of this paper is to indicate su¢ cient conditions under
which a topologically transitive non-minimmal dynamical system acting on a
locally connected metric space shows sensitive dependence on initial conditions.
That extends previous work due to L. S. Block and W. A. Coppel [3] and I.
Melbourne, M. Dellnitz and M. Golubitsky [6].
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A nice result due to J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey [2]
asserts that a non-minimal dynamical system shows sensitive dependence on initial
data (abbreviated, (S)) provided that the following two conditions are veri�ed:

(T ) The system is topologically transitive;
(P ) The subset of all periodic points is dense.

Simple examples show that in general (T ) is not strong enough to imply (P ) or
even (S): However, this is the case if the state space is an interval, or a union of
intervals. See L. S. Block and W. A. Coppel [3] and respectively I. Melbourne, M.
Dellnitz and M. Golubitsky [6].
The purpose of this paper is to prove that (T ) ) (S) whenever the trajectories

of the system can be observed. The basic idea is that under additional hypotheses
(T ) yields a substitute of (P ); which makes possible to apply one of the criteria of
sensitivity in [2], [4] or [8].
To make the things clear, we need some preparation.
The term of a continuous dynamical system will be understood as any continuous

action � : S �M !M (of one the semigroups N, Z, R+; or R, on a metric space);
the corresponding time�t mapping will be denoted as �t:
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� shows sensitive dependence on initial conditions (equivalently, � is sensitive) if
there exists a � > 0 such that for every x 2 M and every neighbourhood V of x one
can �nd a point y 2 V and a number t 2 S, t > 0, for which

d(�tx;�ty) � �:

Only perfect metric spaces can carry sensitive dynamical systems. That�s why we
restrict ourselves throughout this paper to the case where M is perfect.
� is said to be topologically transitive if there exists a point p 2M whose !�limit

set is M. Usually the topological transitivity appears as a condition of irreducibility
and also as a source of complicated trajectories i.e., of trajectories which are not
eventually periodic. Recall that the trajectory of a point a is said to be eventually
periodic provided that

�t+Ta = �ta

for some t; T 2 S+; T > 0:
The observables of a continuous dynamical system � : S � M ! M are the

continuous mappings V :M ! R. We shall say that V can see the positive orbit of
a point a 2M if

V (�sa) = V (�ta) with s; t 2 S+ implies �sa = �ta:

IfM is homeomorphic to a subspace of R, then each continuous dynamical system
acting onM admits an observable which can see all the orbits of the system. However,
in the general context of metric spaces that nice picture is merely an exception than
a rule. Think at the case where M = S1: Consequently, what we can reasonably ask
to an observable is to see most of the complicated trajectories.
To be more speci�c, let us denote by EPer� the subset of all eventually periodic

points of � and consider a positively invariant subset C �M such that

EPer� \ C = ;:

An observable V of � can see C if V can see all orbits issued at the points of C.
We shall call V a �ne observable if V can see the entire complement of EPer�: To
illustrate this notion, let us consider the case of the doubling angles mapping

T : S1 ! S1; T (z) = z2

(also known as the Shub expansive mapping). An easy computation shows that

V = pr1
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is a �ne observable of T: In fact, a point w = e2�i�t is eventually periodic for T if and

only if t =
integer

2m(2n � 1) ; with m 2 N and n 2 N?: On the other hand, for t not in

this range, an equality of the form

cos(2� � 2pt) = cos(2� � 2qt)

with p; q 2 N; forces p = q:
The notion of a �ne observable could remind us that of a Lyapunov function. In

fact, both distinguish among the points of certain orbits. However, in the presence of
topological transitivity (the usual context in our paper) the only Lyapunov functions
are the constant ones and thus they are irrelevant for the study of dynamics. See [1]
for details.
In what follows we shall describe the topological implications of the existence of

a �ne observable.

Lemma 1. Let F :M !M be a continuous mapping, let C be a positively invariant
subset of M such that C\EPer� = ; and let V be an observable of � which can see
C: Then V is monotonic along each positive orbit issued at a point a of C, provided
that a and F (a) belong to a connected subset of C.

Proof. First notice that an equality of the form

V (Fm(a)) = V (F n(a))

with m;n 2 N is not possible unless m = n:
Suppose that V is not monotonic along the orbit of a. Without loss of generality

we may assume the existence of an n 2 N? such that

V (a) < V (F (a)) < ::: < V (F n(a))

and
V (F n(a)) > V (F n+1(a)):

Then the continuous function '(x) = V (F n(x))� V (F n�1(x)) veri�es the condi-
tion

'(a) � '(F (a)) < 0

which yields a z in C such that V (F n(z)) = V (F n�1(z)); i.e., an eventually periodic
point in N: Or, by our hypotheses, C \ Per� = ; . Consequently V is monotonic
along the trajectory of a. �
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Corollary 2. Let � : S �M ! M be a continuous dynamical system and let U
be a connected open subset of M which contains no eventually periodic point of �:
Suppose that a; �s(a); �t(a) are points of U with 0 < s < t; and V : M ! R is an
observable of �, which can see all positive orbits issued at U . Then either

V (a) < V (�s(a)) < V (�t(a))

or
V (a) > V (�s(a)) > V (�t(a)):

Proof. Clearly, we can restrict ourselves to the case where S is continuous and
s = p1=q and t = p2=q; with p1; p2; q 2 N? and p1 < p2: Suppose that

V (a) < V (�p1 = q(a)) and V (�p2 = q(a)) > V (�p1 = q(a)):

Then, by Lemma 1,

V (a) < V (�p1 = q(a)) < V (�(p2� p1) p1 = q(a)) (1)

and

V (�(p2� p1) p1 = q�p1 = q(a)) < V (�(p2� p1) =q�p1 = q(a)) =

= V (�p2 = q(a) < V (�p1 = q(a)): (2)

By (1) and (2), the continuous function

V (�(p2� p1) p1 = q(x))� V (x)

has opposite signs at a and �p1 = q(a): That produces a periodic point for � in U; a
contradiction. �
We are now in a position to indicate a topological consequence of the existence of

observables:

Theorem 3. Let � : S �M ! M be a topologically transitive dynamical system
acting on a locally connected perfect metric space and let C be a positively invariant
subset of M such that C \ EPer� = ;: If � admits an observable V which can see
C; then

M nC =M:

Proof. Suppose that the contrary is true. Then one can choose a non-empty
connected open subset N of C: Also, we can choose non-empty open subsets A and
B of N with A \B = ;: Because � is topologically transitive,

�s(A) \B 6= ;
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for some s > 0; which gives us an x 2 A with �s(x) 2 B: Clearly, x 6= �s(x); so there
exists an open neighbourhood U of x such that U � N; �s(U) � N and

V (�s(U)) \ V (U) = ;:

Again by the topological transitivity, we can �nd a t > s such that

�t(U) \ U 6= ;

and that yields a z 2 U with �t(z) 2 U: According to Corollary 1 above, V (�s(z))
must be between V (z) and V (�t(z)): Since V (U) is an interval, that leads to

V (�s(z)) 2 V (�s(U)) \ V (U);

a contradiction. �
The above analysis on the presence of a �ne observable will be accompanied by a

criterion of sensitive dependence on initial conditions, a variant of the main result in
[2]:

Lemma 4. Suppose that � is a topologically transitive dynamical system acting on
a metric space M. If � is not minimal and the union of all its eventually periodic
orbits is dense, then � shows sensitive dependence on initial conditions.

A formal proof can be obtained by re�ning the argument given in [4] or [8]. That
is done for example in [7].
By combining Theorem 1 and Lemma 2 above we infer easily the main result of

this paper:

Theorem 5. Suppose that � is a topologically transitive non-minimal dynamical
system, acting on a locally connected metric space. If � admits a �ne observable,
then � shows sensitive dependence on initial conditions.

Corollary 6. (I. Melbourne, M. Dellnitz and M. Golubitsky [6]) Every topologically
transitive dynamical system acting on a union of nondegenerate intervals shows sen-
sitive dependence on initial conditions.

When the state space consists of an interval, the result of Corollary 2 was �rst
noticed by L. S. Block andW. A. Coppel [3]. As was mentionned in [6], only dynamical
systems acting on �nite unions of intervals can ful�l the hypothesis of Corollary 2. An
example illustrating the possibility to take into account non-connected state spaces
can be easily exhibited by starting with the logistic mapping

F4(x) = 4x(1� x); x 2 [0; 1]:
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Due to its connection with the doubling mapping, F4 and all its iterates are
topologically transitive. As a consequence we infer that the mapping

F (x) =

�
2 + F4(x); if x 2 [0; 1]
F4(x� 2); if x 2 [2; 3]:

is topologically transitive on [0; 1] [ [2; 3] and thus Corollary 2 above applies to it.
Theorem 1 has a counterpart relative to the dynamics on the global attractor of

a system. According to Haraux [5], by a global attractor we shall mean any compact,
invariant and attracting subset of the state space.

Theorem 7. Let � be a continuous dynamical system acting on a metric space M.
Suppose that � admits a �ne observable and has a global attractor A such that:
(1) �jA is topologically transitive and non-minimal;
(2) A is locally connected.
Then A is a strange attractor (i.e., the dynamics on it is sensitive).

Some open problems are in order:

Problem 1. Characterize the metric spaces on which every topologically transi-
tive dynamical system shows sensitive dependence on initial conditions.

Problem 2. Theorem 2 was modelled over the criterion of chaoticity of Lemma
2. Or, Lemma 2 has a companion where the abundance of periodic orbits is replaced
by the denseness of other types of well behaved orbits (such as the almost periodic,
algebraically recurrent etc). See [4] or [8]. Reformulate Theorem 2 to take into
account that fact.

Problem 2 has a practical interest because important strange attractors fails the
abundance of periodic orbits.
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