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PROBLEMS

11796. Proposed by Gleb Glebov, Simon Fraser University, Burnaby, Canada. Find∫ ∞

0

sin((2n + 1)x)

sin x
e−αx xm−1 dx

in terms of α, m, and n, when α > 0, m ≥ 1, and n is a nonnegative integer.

11797. Proposed by Zhang Yun, Xi’an, Shaanxi Province, China. Let A1, A2, A3, and
A4 be the vertices of a tetrahedron. Let hk be the length of the altitude from Ak to the
plane of the opposite face, and let r be the radius of the inscribed sphere. Prove that

4∑
k=1

hk − r

hk + r
≥ 12

5
.

11798. Proposed by Finbarr Holland, University College Cork, Cork, Ireland. For
positive integers n, let fn be the polynomial given by

fn(x) =
n∑

r=0

(
n

r

)
x �r/2�.

(a) Prove that if n + 1 is prime, then fn is irreducible over Q.
(b) Prove that for all n (whether n + 1 is prime or not),

fn(1 + x) =
�n/2�∑
k=0

(
n − k

k

)
2n−2k xk .
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11799. Proposed by Vicenţiu Rădulescu, King Abdulaziz University, Jeddah, Saudi
Arabia. Let a, b, and c be positive.
(a) Prove that there is a unique continuously differentiable function f from [0, ∞)

into R such that f (0) = 0 and, for all x ≥ 0,

f ′(x)
(
1 + a| f (x)|b)c = 1.

(b) Find, in terms of a, b, and c, the largest θ such that f (x) = O(x θ ) as x → ∞.

11800. Proposed by Oleksiy Klurman, University of Montreal, Montreal, Canada. Let
f be a continuous function from [0, 1] into R+. Prove that∫ 1

0
f (x) dx − exp

[∫ 1

0
log f (x) dx

]
≤ max

0≤x,y≤1

(√
f (x) −

√
f (y)

)2
.

11801. Proposed by David Carter, Nahant, MA. Let f be a polynomial in one variable
with rational coefficients that has no nonnegative real root. Show that there is a nonzero
polynomial g with rational coefficients such that the coefficients of f g are positive.

11802. Proposed by István Mező, Nanjing University of Information Science and Tech-
nology, Nanjing, China. Let Hn,2 = ∑n

k=1 k−2, and let Dn = n!
∑n

k=0(−1)k/k!. (This
is the derangement number of n, that is, the number of permutations of {1, . . . , n} that
fix no element.) Prove that

∞∑
n=1

Hn,2
(−1)n

n!
= π2

6e
−

∞∑
n=0

Dn

n!(n + 1)2
.

SOLUTIONS

An Uncountable Linearly Independent Set of Binary Sequences

11658 [2012, 608]. Proposed by Greg Oman, University of Colorado at Colorado
Springs, Colorado Springs, CO. Let V be the vector space over R of all (countably
infinite) sequences (x1, x2, . . . ) of real numbers, equipped with the usual addition and
scalar multiplication. For v ∈ V , say that v is binary if vk ∈ {0, 1} for k ≥ 1, and let
B be the set of all binary members of V . Prove that there exists a subset I of B with
cardinality 2ℵ0 that is linearly independent over R. (An infinite subset of a vector space
is linearly independent if all of its finite subsets are linearly independent.)

Solution by Bruce S. Burdick, Roger Williams University, Bristol, RI. Given a bijection
φ : N → Q, for each r ∈ R, define v(r) ∈ B by

v(r)k =
{

1 if φ(k) ≤ r,
0 if φ(k) > r.

Let I = {v(r) : r ∈ R}. We claim first that v is injective. Given r, r ′ ∈ R with r <

r ′, let q be a rational number between r and r ′. Let k = φ−1(q). Since v(r)k = 0 and
v(r ′)k = 1, we have v(r) �= v(r ′). Thus I , R, and B have the same cardinality, 2ℵ0 .

We show also that I is a linearly independent subset of B. Given
∑n

i=1 aiv(ri ) = 0
for distinct real numbers r1, . . . , rn , we may assign indices so that r1 < · · · < rn . Let
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