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Abstract In this paper, we study the fractional Kirchhoff-Choquard equation

M

(
[u]ps,p + ε−N

∫
RN

V (x)|u|pdx
)

(εN (−∆)spu+ V (x)|u|p−2u)

= εµ−N
( ∫

RN

Q(y)F (u(y))

|x− y|µ dy

)
Q(x)f(u(x)) in RN ,

where ε is a positive parameter, N = ps, p ≥ 2, s ∈ (0, 1), 0 < µ < N. The Kirchhoff

function M(t) = a + bt, a > 0, b > 0, nonlinear function f has the exponential growth,
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potential functions V and Q are continuous functions satisfying some suitable conditions.

Using Ljusternik-Schnirelmann category theory and variational methods, we establish the

multiplicity and concentration of positive solutions for small values of the parameter.
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1 Introduction and Main Results

In this paper, we study the existence, multiplicity and concentration of solutions to Kirchhoff-

Choquard equation invloving fractional p-Laplacian with competing potentials as follows:

M

(
[u]ps,p + ε−N

∫
RN

V (x)|u|pdx
)

(εN (−∆)spu+ V (x)|u|p−2u)

= εµ−N
( ∫
RN

Q(y)F (u(y))

|x− y|µ
dy

)
Q(x)f(u(x)) in RN , (1.1)

where ε is small positive parameter, 0 < µ < N , 0 < s < 1, N = ps, p ≥ 2, M(t) = a+ bt, a >

0, b > 0, the potential functions V and Q are bounded from below by Vmin > 0 and Qmin > 0,

respectively. The reaction f has critical exponential growth, and (−∆)sp represents the fractional

p-Laplacian, which defines (up to a normalization constant) as

(−∆)spϕ(x) = 2 lim
ε→0+

∫
RN\Bε(x)

|ϕ(x)− ϕ(y)|p−2(ϕ(x)− ϕ(y))

|x− y|N+ps
dy

for x ∈ RN , where ϕ ∈ C∞0 (RN ) and Bε(x) is a ball with center x and radius ε. The absorption

potential V and reaction potential Q are bounded continuous functions satisfying some suitable

conditions given by:

(V ) V : RN → R is a continuous bounded function on RN , satisfying

0 < Vmin := inf
x∈RN

V (x) < V∞ = lim inf
|x|→∞

V (x) < +∞.

This kind of hypothesis was introduced by Rabinowitz in [37].

(Q) Q ∈ C(RN )∩L∞(RN ), we have Qmin := infx∈RN Q(x) > 0 and Qmax := maxx∈RN Q(x)

> Q∞, where Q∞ = lim sup|x|→∞Q(x).

(V Q) V (0) = Vmin and Q(0) = Qmax, V ∩ Q 6= ∅, where

V = {x ∈ RN : V (x) = Vmin}, Q = {x ∈ RN : Q(x) = Qmax}.

Note that our conditions (V ) and (Q) are simpler than the conditions due to Ding and Liu

[14] and they are easy to check. Now, we give some assumptions of the nonlinear function f as

follows:

(f1) f is a continuously differentiable function with the property that f(s) = 0 for all s ≤ 0,

and for each

q1 ≥
N

s
, q2 >

N

s
,

there exist two positive constants a1 > 0, a2 > 0 such that

f ′(t) ≤ a1|t|q1−2 + a2ΦN,s(α0|t|N/(N−s))|t|q2−2,
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where ΦN,s(y) = ey −
∑jp−2
j=0

yj

j!
, jp = min{j ∈ N : j ≥ p}, α0 ∈ (0, α∗), and α∗ is given in the

Lemma 2.1.

(f2) limt→0+
f ′(t)
tp−2 = 0.

(f3) There exists θ > 2p such that 2f(t)t ≥ θF (t) > 0 for all t > 0, where F (t) =
∫ t

0
f(τ)dτ.

(f4) There exists γ1 > 0 large enough such that F (t) ≥ γ1|t|θ for all t ≥ 0, where θ > 2p is

a constant in the condition (f3).

(f5) The map
f(t)

tp−1
is strictly increasing on (0,+∞).

Remark 1.1 We denote M̃(t) =
t∫

0

M(τ)dτ for all t > 0. Then

M̃(t) = at+ b
t2

2
≤ γ(t+ t2)

for all t ≥ 0, where γ = max
{
a,
b

2

}
. From the condition (f5), we see that f(t)t

p − F (t) is an

increasing function on (0,+∞). Clearly, M verifies the following conditions:

(M1) The function M ∈ C(R+
0 ,R+) satisfies

inf
t∈R+

M(t) ≥ a > 0.

(M2) The function t→M(t) is increasing on [0,+∞).

(M3) For all t1 ≥ t2 > 0, then

M(t1)

t1
− M(t2)

t2
≤ a

(
1

t1
− 1

t2

)
.

(M4) The function M̃(t)− 1

2
M(t)t is increasing on [0,+∞).

When s→ 1− and a = 1, b = 0, our problem (1.1) becomes the following equation

−εN∆Nu+ V (x)|u|N−2u = εµ−N
( ∫
RN

Q(y)F (u(y))

|x− y|µ
dy

)
Q(x)f(u(x)) in RN . (1.2)

In 2014, Alves-Yang [2] studied the subcritical case of equation (1.2). Namely, they considered

the existence of semiclassical ground state solution of the Choquard equation as follows:

−εp∆pu+ V (x)|u|p−2u = εµ−N
( ∫
RN

Q(y)F (u(y))

|x− y|µ
dy

)
Q(x)f(u(x)) in RN , (1.3)

where ε > 0, ∆p is the p-Laplace operator, 1 < p < N , V and Q are two potential functions

satisfying the the conditions due to Ding-Liu [14]. A solution of the equation (1.3) as ε → 0

is said to be semi-classical. In the physical meaning, the semi-calassical as ε → 0 should be

corresponded to solutions of equation (1.3) and the critical points of potential V and Q which

controls the classical dynamics. We see that if uε is a solution of equation (1.3) and x0 ∈ RN ,
then the function vε(x) = uε(x0 + εx) is a solution of the equation

−∆pvε + V (x0 + εx)|vε|p−2vε =

( ∫
RN

Q(x0 + εy)F (vε(y))

|x− y|µ
dy

)
Q(x0 + εx)f(vε) in RN . (1.4)
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If x0 ∈ RN is a critical point of V and Q with V (x0) > 0 and Q(x0) > 0, then we expect that

vε should converges to a solution v of the equation

−εp∆pu+ V (x0)|u|p−2u = (Q(x0))2

( ∫
RN

F (u(y))

|x− y|µ
dy

)
f(u(x)) in RN .

The initial contribution to semi-classical solutions was presented by Floer-Weinstein [16]. Specif-

ically, when N = 3 and p = 2, equation (1.3) arises in the context of Bose-Einstein condensation,

helping to illustrate finite-range many-body interactions among particles.

When p = 2, Q = 1, µ = N − α, and F (u) = |u|p, the equation (1.3) transforms into the

following Choquard equation

−∆u+ V (x)u = (Iα ∗ |u|p)|u|p−2u in RN , (1.5)

where Iα is the Riesz potential defined for each point x ∈ RN \ {0} by

Iα(x) =
Aα
|x|N−α

, where Aα =

Γ

(
N − α

2

)
Γ

(
α

2

)
πN/22α

, α ∈ (0, N),

Γ is the Gamma function and V is a potential function. When p = α = 2, N = 3, and V (x) = ν,

the equation (1.5) reduces by the Choquard-Pekar type equation

−∆u+ νu = (I2 ∗ u2)u, x ∈ R3, (1.6)

which arises from various physical problems. This equation was introduced in 1976 by Choquard

[26] in order to describe an electron trapped in its own hole. It also appears in the theory of

the polaron at rest [19, 20, 34] and in models of interaction between non relativistic quantum

mechanics and gravitation [23, 31, 35] which was proposed by Penrose. It is now called by

Schrödinger-Newton equation. The variational method is used to study the Choquard equation

from the work of Lieb [26] and Lions [27]. After that, many authors use this method to

investigate the existence of weak solutions to Choquard-type equations. In 2016, Alves-Cassani-

Tarsi-Yang [3] studied the problem (1.2) with Q = 1 in the case N = 2. Namely, they considered

the following equation:

−ε2∆u+ V (x)u = εµ−N
[

1

|x|µ
∗ F (u)

]
f(u) in R2 (0 < µ < 2), (1.7)

when f has exponential growth and V satisfies some following conditions:

(F1) (i) f is a continuous function sastisfying f(s) = 0 for all s ≤ 0 and 0 ≤ f(s) ≤
Ce4πs2 , s ≥ 0, where C > 0 is a constant;

(ii) there are s0 > 0,M0 > 0 and q ∈ (0, 1] so that 0 < sqF (s) ≤M0f(s) for all |s| ≥ s0.

(F2) There are p > 2−µ
2 and Cp > 0 verifying f(s) ∼ Cpsp as s→ 0.

(F3) There is a positive real number K > 1 such that f(s)s > KF (s) for all s > 0, where

F (t) =
t∫

0

F (s)ds.

(F4) lims→+∞
sf(s)F (s)

e8πs2
≥ β, with β > infρ>0

e
4−µ
4

V0ρ
2

16π2ρ4−µ
(4−µ)2

(2−µ)(3−µ) .

(F5) The map f(s) is strictly increasing on (0,+∞).

(V1) V (x) ≥ V0 > 0 in R2 for some V0 > 0;

(V2) 0 < V0 = infx∈R2 V (x) < V∞ = lim inf |x|→∞ V (x) <∞.
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Then they obtain the following result:

Theorem 1.2 Assume that the reaction f satisfies the conditions (F1)–(F5) and the

potential function V satisfying the assumptions (V1)–(V2). Then for any ε > 0 small enough,

problem (1.7) admits one positive ground state solution. Moreover, if uε is one of these solutions

and ηε is the global maximum of uε, then limε→0 V (ηε) = V0.

In the fractional p-Laplacian case, Ambrosio [8] studied the multiplicity and concentration

of solution to the following equation

(−∆)spu+ V (εx)|u|p−2u = (
1

|x|µ
∗ F (u))f(u) in RN , (1.8)

where f has subcritical growth and V satisfies the condition (V ). He uses variational method,

Ljusternik-Schnirelmann theory and follow the method due to Szulkin-Weth [41] to prove the

main result. In 2023, Sun-Liang-Radulescu-Nguyen [25] studied the multiplicity and concentra-

tion of solutions to problem (1.8) when f has exponential growth, and V satisfies the condition

(V ). In 2021, Clemente-Albuquerque-Barboza [11] studied the following problem in one dimen-

sional related with problem (1.7) as follows:

(−∆)1/2u+ u = [Iµ ∗ F (u)]f(u) in R, (1.9)

where 0 < µ < 1, Iµ is the Riesz potential and f has exponential growth. They used the varia-

tional methods and minimax estimate to study the existence of weak solution for problem (1.9).

We suggest readers to the work of Moroz-Schaftingen [30] for guidance on the Choquard equa-

tion. In 2022, Yuan-Tang-Zhang-Zhang [46] have been studied the existence and concentration

of weak solution to the problem as follows

ε(−∆)1/2u+ V (x)u = εµ−1

(
1

|x|µ
) ∗ F (u)

)
f(u), x ∈ R.

Here, they assume that V satisfies conditions (V1) and (V2) in R, f has the Trudinger-Moser

growth and satisfies some technique assumptions so that the Mountain Pass Level can be

bounded above by a suitable constant. Note that they do not study the multiplicity of weak

solutions by using Ljusternik-Schnirelmann category theory. Zhang-Zhang [50] studied the

muliplicity and concentration solution for Choquard equation with critical growth in R3 as

follows:

−ε2∆u+ V (x)u = εµ−3

∫
R3

|u(y)|6−µ +Q(y)F (u(y))

|x− y|µ
dy

(
|u|4−µu+

Q(x)f(u)

6− µ

)
,

where f has subcritical growth and two potential functions V and Q satisfy some suitable

assumptions. In 2023, Su-Liu [40] are concerned with the following Choquard equation:

−ε2∆u+ V (x)u = ε−α(Iα ∗ F (u))F ′(u), x ∈ RN ,

where N ≥ 4, α ∈ (0, N), Iα is the Riesz potential and ε > 0 is a small parameter. Here, they

assume that F (u) =
1

q
|u|q +

1

2∗α
|u|2∗α , where 2#

α < q < 2∗α, 2#
α =

N + α

N
and 2∗α =

N + α

N − 2
are

lower and upper critical exponents respectively, in the sense of the Hardy-Littlewood-Sobolev

inequality. In this work, they construct a bound-state concentrating at an isolated component

of the positive local minimum points of V as ε → 0 for each q ∈ (2#
α , 2

∗
α) via to variational
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methods, a truncation technique and a new regularity result. For more results, we refer the

readers to [4, 5, 12, 13, 38, 39, 45] and the references therein for more detail information.

When s = 1, p = 2 and ε = 1, our problem reduces to

M

(∫
RN
|∇u|2dx+

∫
RN

V (x)|u|2dx

)
[−∆u+ V (x)u] = f(u) in RN (1.10)

which has analogue of the well-known Kirchhoff equation

ρutt −
(
P0

h
+

E

2L

∫ L

0

|ux|2dx

)
uxx = 0. (1.11)

It was first proposed by Kirchhoff which is an extension of the classical D’Alembert’s wave

equation to describe the transversal oscillations of a stretched string, where ρ, P0, E, and L are

constant variables with physical meanings. Fiscella and Valdinoci [18] proposed an interesting

physical explanation of the fractional Kirchhoff equation.

To the best of our knowledge, there is not any result concerning problems (1.1) with expo-

nential growth. Our aim is to give the first result for these type equations with Trudinger-Moser

nonlinearity.

Now let us recall some notations that will be used later. The fractional Sobolev space

W s,p(RN ) is defined by

W s,p(RN ) := {u ∈ Lp(RN ) : [u]s,p <∞},

where [u]s,p is the Gagliardo seminorm given by

[u]s,p =

(∫∫
R2N

|u(x)− u(y)|p

|x− y|2N
dxdy

)1/p

.

We also know that the fractional Sobolev space W s,p(RN ) is a uniformly convex Banach space

(see [36]) equipped with the norm

||u|| := ‖u‖W s,p(RN ) =
(
||u||p

Lp(RN )
+ [u]ps,p

)1/p

.

For η > 0, we use another norm on W s,p(RN ) which is given by

‖u‖η =
(
η‖u‖p

Lp(RN )
+ [u]ps,p

)1/p

.

Then two norms ‖.‖ and ‖.‖η are equivalent on W s,p(RN ). For each ε > 0, we denote the

completion of C∞0 (RN ) under the norm

‖u‖Wε
=
(

[u]ps,p + ||u||pp,V,ε
)1/p

, ‖u‖pp,V,ε =

∫
RN

V (εx)|u(x)|pdx

by space Wε. It well known that Wε is uniformly convex Banach space (see [36, Lemma 10]

for the proofs). Furthermore, Wε is also a reflexive space, and it is compact with weakly

topology. From the condition (V ) and Theorem 6.9 in [32], we have the continuous embedding

Wε ↪→ Lν(RN ) for all ν ∈ [Ns ,+∞), then there is a best constant Sν,ε > 0 such that

Sν,ε = inf
u 6=0,u∈Wε

‖u‖Wε

‖u‖Lν(RN )

for all ν ∈ [Ns ,+∞). Then it holds that

‖u‖Lν(RN ) ≤ S−1
ν,ε‖u‖Wε

for all u ∈Wε. (1.12)
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Using again Theorem 6.9 in [32], we also have the continuous embedding W s,N/s(RN ) ↪→ Lν

(RN ) for all ν ∈ [Ns ,+∞), then there is a best constant Aν,η > 0 which is given by

Aν,η = inf
u 6=0,u∈W s,N/s(RN )

‖u‖η
‖u‖Lν(RN )

for all ν ∈ [Ns ,+∞). Hence, we have

‖u‖Lν(RN ) ≤ A−1
ν,η‖u‖η for all u ∈W s,N/s(RN ). (1.13)

By the change of variable x 7→ εx, the equation (1.1) is equivalent to the following equation of

the form:

M

(
[u]ps,p +

∫
RN

V (εx)|u|p
)

((−∆)sN/su+ V (εx)|u|p−2u)

=

[
1

|x|µ
∗ (Q(εy)F (u(y)))

]
Q(εx)f(u(x)) in RN . (Pε)

Definition 1.3 The function u ∈Wε is a weak solution of equation (Pε) if

M(||u||pWε
)

( ∫
R2N

|u(x)− u(y)|Ns −2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|2N
dxdy +

∫
RN

V (εx)|u|Ns −2uϕdx

)

=

∫
RN

∫
RN

Q(εy)F (u(y))

|x− y|µ
Q(εx)f(u(x))ϕ(x)dxdy

for all ϕ ∈Wε.

We denote catB(A) by the category of A with respect to B, namely the least integer k

such that A ⊂ A1 ∪ · · · ∪ Ak, where Ai (i = 1, · · · , k) is closed and contractible in B. We set

catB(∅) = 0 and catB(A) = +∞ if there is no integer with above property. We refer the reader

to [44] for more details on Ljusternik-Schnirelmann theory. Denote

(V ∩ Q)δ = {x ∈ RN : dist(x,V ∩ Q) ≤ δ} for δ > 0.

Now, we state the main result in this paper as follows:

Theorem 1.4 Let (V ), (Q), (V Q) and (f1)–(f5) hold. Then for any δ > 0, there exists

εδ > 0 such that problem (1.1) has at least cat(V∩Q)δ(V ∩ Q) nontrivial nonnegative weak

solutions for any 0 < ε < εδ. Moreover, if wε denotes one of these solutions and ηε is its global

maximum such that, up to a subsequence, ηε → y ∈ V ∩Q and vε(x) := wε(εx+ ηε) converges

strongly in W s,p(RN ) to a ground state solution of

M(||u||pVmin
)((−∆)spu+ Vmin|u|p−2u) = Q2

max

[
1

|x|µ
∗ F (u)

]
f(u) in RN .

Furthermore, we have

lim
ε→0+

V (ηε) = Vmin and lim
ε→0+

Q(ηε) = Qmax.

Next, we consider the conditions (f1)′–(f5)′ instead of (f1)–(f5) respectively as follows:

(f1)′ f is a continuous differentiable function such that f(s) = 0 for all s ≤ 0.

For each

q1 ≥ N, q2 > N,
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and there exist two positive constants a1 > 0, a2 > 0 such that

f ′(t) ≤ a1|t|q1−2 + a2ΦN (α0|t|N/(N−1))|t|q2−2,

where ΦN (y) = ey −
∑N−2
j=0

yj

j!
, and 0 < α0 ≤ α∗N , α∗N is defined as in Lemma 2.2.

(f2)′ limt→0+
f ′(t)
tN−2 = 0.

(f3)′ There exists θ > 2N such that 2f(t)t ≥ θF (t) > 0 for all t > 0, where F (t) =∫ t
0
f(τ)dτ.

(f4)′ There exists γ1 > 0 large enough such that F (t) ≥ γ1|t|θ for all t ≥ 0, where θ > 2N

is a constant in the condition (f3).

(f5)′ The map
f(t)

tN−1
is strictly increasing on (0,+∞).

By arguments as Theorem 1.4, we get the following result for problem (1.2):

Corollary 1 Let (V ), (Q), (V Q) and (f1)′–(f5)′ hold. Then for any δ > 0, there exists

εδ > 0 such that problem

M

( ∫
RN

|∇u|N + ε−NV (x)|u|Ndx

)
(−εN∆Nu+ V (x)|u|N−2u)

= Q2
max

[
1

|x|µ
∗ F (u)

]
f(u) in RN

has at least cat(V∩Q)δ(V ∩ Q) nontrivial nonnegative weak solutions for any 0 < ε < εδ.

Moreover, if wε denotes one of these solutions and ηε is its global maximum such that, up to a

subsequence, ηε → y ∈ V ∩ Q and vε(x) := wε(εx + ηε) converges strongly in W s,p(RN ) to a

ground state solution of

M

( ∫
RN

|∇u|N + Vmin|u|Ndx

)
(−∆Nu+ Vmin|u|N−2u) = Q2

max

[
1

|x|µ
∗ F (u)

]
f(u) in RN .

Furthermore, we have

lim
ε→0+

V (ηε) = Vmin and lim
ε→0+

Q(ηε) = Qmax,

and there exists C > 0, c > 0 such that |wε(x)| ≤ Ce
−
c

ε
|x−ηε|

for all x ∈ RN .

The exponential decay estimate in Corollary 1 is similarly proved as in [2]. Corollary 1

is new up to now. In our present work, there exists the competition between the absorption

potential V and the reaction potential Q. The absorption V would like to attract the global

maximum point of solutions to its minimum points, and the reaction potential Q want to attract

the lobal maximum point of solutions to its maximum points. Therefore, the concentration

phenomena of semiclassical states to problem (1.1) is more interesting and delicate than the

case the equation contains only on absorption potential V as in [3] and [46]. See again the work

of Yuan-Tang-Zhang-Zhang [46], we need overcome some difficulties than their work in proving

the concentration of solutions. In their work, the space solution is a Hilbert space and in our

work, the solution space is not Hilbert space. Then, some nice properties in Hilbert space is not

applied in our work. The proofs about concentration of weak solution in our work is not the

same as [46] due to the properties of fractional p-Laplace operator. The fact that, we can not use

the s-harmonic extension by Caffareli-Silvestre [10] as in [46]. Our more difficulty is to analyse
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the compactness of Palais-Smale sequence for energy function due to potential competion and

the non-Hilbert structure of space solution. In [47], Yuan-Radulescu-Tang-Zhang studied the

concentrating solutions for singularly perturbed fractional Ns -Laplacian equations with nonlocal

Choquard reaction which comes from (1.1) as M = 1 and Q = 1. Here, the multiple solutions

can not get by using their method. Note that our problem is the lack compactness due to

the condition (V ). In order to apply the Ljusternik-Schnirelmann category theory, we need

establish some tools for this aim. We recommend the readers to read Section 2 to Section 5

for that comments. In our work, we assume that N = ps, then it does not have embedding

from W s,p(RN ) into L∞(RN ). To overcome this difficulty, we use fractional Trudinger-Moser

inequality in every step. It is the main different point in comparing with the work of Ambrosio

[8]. Final, we will consider the subcritical case for the equation (1.1) in a forcoming work. The

final difficulty is that our problem contains the Kirchhoff function M . Then we need overcome

the obstacle problem in estimating the Moutain pass level, the estimation techniques to prove

the existence, as well as the multiple solutions of problem (1.1).

The plan of the paper is the following: in Section 2, our focus lies in examining the associated

autonomous problem. In Section 3, we study the auxiliary problem. In this section, we prove

some technique results about the compactness of (PS) sequence. In Section 4, we prove the

existence of ground state solution and concentration of solutions to auxiliary problem and some

tools to explore the multiple solutions of auxiliary problem. We also study the limit of sequence

of ground states solutions. Finally, the Section 5 is devoted to completing the proof of Theorem

1.4.

2 Autonomous Problem

In this section, we study the autonomous problem connected with (Pε) as follows

M(||u||pη)((−∆)sN/su+ η|u|Ns −2u) = ν2

[
1

|x|µ
∗ F (u)

]
f(u) in RN , (Pην)

where η > 0, ν > 0 are constants.

The corresponding energy functional Jην : W s,N/s(RN )→ R for problem (Pην) is given by

Jην(u) =
1

p
M̃(‖u‖pη)− ν2

2

∫
RN

K(u)(x)F (u(x))dx

=
1

p
M̃(‖u‖pη)− ν2

2

∫
RN

∫
RN

F (u(y))F (u(x))

|x− y|µ
dxdy,

where K(u)(x) =
∫
RN

F (u(y))
|x−y|µ dy.

We present the following lemmas to prove the results in this section.

Lemma 2.1 ([49]) Let s ∈ (0, 1) and sp = N. Then for every 0 ≤ α < α∗ ≤ α∗s,N , the

following inequality holds:

sup
u∈W s,p(RN ),||u||Ws,p(RN )≤1

∫
RN

ΦN,s(α|u|N/(N−s))dx < +∞,
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where ΦN,s(t) = et −
∑jp−2
j=0

tj

j!
, jp = min{j ∈ N : j ≥ p}. Moreover, for α > α∗s,N ,

sup
u∈W s,p(RN ),||u||Ws,p(RN )≤1

∫
RN

ΦN,s(α|u|N/(N−s))dx = +∞,

where

α∗s,N = N

(
2(NωN )2Γ(p+ 1)

N !

+∞∑
k=0

(N + k − 1)!

k!

1

(N + 2k)p

)s/(N−s)
= N(γs,N )s/(N−s).

The optimal of α∗ in Lemma 2.1 is still a open problem, and in the local case, we have the

following sharp result:

Lemma 2.2 (see [1, Theorem 1.1]) For every α > 0 and υ ∈ W 1,N (RN ), the following

inequality holds: ∫
RN

ΦN (α|υ|
N
N−1 )dx < +∞.

Moreover, for α ≤ α∗N , there holds

sup
υ∈W 1,N (RN ),‖υ‖

W1,N (RN )
≤1

∫
RN

ΦN (α|υ|
N
N−1 )dx < +∞,

where

α∗N = Nω
1

N−1

N−1.

Meanwhile, the inequality is sharp: for α > α∗N , the supremum is infinity.

Lemma 2.3 ([48, Corollary 2.1]) For any α > 0 and all u ∈W s,N/s(RN ), it holds∫
RN

ΦN,s(α|u|N/(N−s))dx < +∞.

Lemma 2.4 ([28]) Let r, t > 1 and 0 < µ < N such that
1

r
+
µ

N
+

1

t
= 2, f ∈ Lr(RN )

and h ∈ Lt(RN ). Then there exists a sharp constant C(r,N, µ, t) > 0 independent of f and h

such that ∫
RN

∫
RN

f(x)h(y)

|x− y|µ
dxdy ≤ C(r,N, µ, t)||f ||Lr(RN )‖h‖Lt(RN ).

In the application, we usually use r = t, then we have 2
t + µ

N = 2, or t = 2N
2N−µ . Then for

F (u) = |u|q, we see that
∫
RN

[
1

|x|µ
∗ F (u)

]
F (u)dx is well-defined on Lt(RN ) with t = 2N

2N−µ .

In order to use the continuous embedding from W s,N/s(RN ) into Lr(RN ), r ∈ [Ns ,+∞), we

require that qt ≥ N
s , then q ≥ N

st = 2N−µ
2s .

Lemma 2.5 Suppose that f satisfies the conditions (f1), (f2). Set

ψ(u) =
1

2

∫
RN

(
1

|x|µ
∗ F (u)

)
F (u)dx, u ∈W s,N/s(RN ),

then ψ ∈ C1(W s,N/s(RN ),R). Furthermore, we have

< ψ′(u), v >=

∫
RN

(
1

|x|µ
∗ F (u)

)
f(u)vdx

for all v ∈W s,N/s(RN ). Furthermore, we also have Jην ∈ C1(W s,N/s(RN ),R).
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Proof By arguments Lemma 2.6 and using Lemma 2.3, we see that ψ is well defined on

W s,N/s(RN ). We have

〈ψ′(u), v〉 = lim
t→0

ψ(u+ tv)− ψ(u)

t

=
1

2t
lim
t→0

∫
RN

(
1

|x|µ
∗ (F (u(y) + tv(y)))

)
F (u+ tv)−

(
1

|x|µ
∗ F (u(y))

)
F (u)dx.

By Mean value theorem, there are two functions θ1, θ2 ∈ (0, 1) so that

F (u(y) + tv(y)) = F (u(y)) + f(u(y) + tθ1v(y))tv(y),

F (u(x) + tv(x)) = F (u(x)) + f(u(x) + tθ2v(x))tv(x).

It implies that

1

t

[(
1

|x|µ
∗ (F (u(y) + tv(y)))

)
F (u+ tv)−

(
1

|x|µ
∗ F (u(y))

)
F (u)

]
=

(
1

|x|µ
∗ (F (u(y)) + f(u(y) + tθ1v(y))tv(y))

)
(F (u(x)) + f(u(x) + tθ2v(x))tv(x))

−
(

1

|x|µ
∗ F (u(y))

)
F (u)

=

(
1

|x|µ
∗ F (u(y))

)
f(u(x) + tθ2v(x))tv(x)) +

(
1

|x|µ
∗ (f(u(y) + tθ1v(y))tv(y))

)
F (u(x))

+

(
1

|x|µ
∗ (f(u(y) + tθ1v(y))tv(y))

)
f(u(x) + tθ2v(x))tv(x)).

Hence

1

2t

∫
RN

[(
1

|x|µ
∗ (F (u(y) + tv(y)))

)
F (u+ tv)−

(
1

|x|µ
∗ F (u(y))

)
F (u)

]
dx

=
1

2

∫
RN

[(
1

|x|µ
∗ F (u(y))

)
f(u(x) + tθ2v(x))v(x))

+

(
1

|x|µ
∗ (f(u(y) + tθ1v(y))v(y))

)
F (u(x))

]
dx

+
t

2

∫
RN

(
1

|x|µ
∗ (f(u(y) + tθ1v(y))v(y))

)
f(u(x) + tθ2v(x))v(x))dx.

By the condition (f1), we have

|f(t)| ≤ a1|t|q1−1 + a2ΦN,s(α0|t|N/(N−s))|t|q2−1.

Using Hardy-Littlewood-Sobolev inequality, we deduce∫
RN

(
1

|x|µ
∗ (f(u(y) + tθ1v(y))v(y))

)
f(u(x) + tθ2v(x))v(x))dx

≤ ||f(u(y) + tθ1v(y))v(y)||
L

2N
N−µ (RN )

||f(u(x) + tθ2v(x))v(x))||
L

2N
N−µ (RN )

. (2.1)

When t small enough, we see that

|f(u(y) + tθ1v(y))v(y)|

≤ a12q1−1(|u|q1−1 + |v|q1−1)|v|
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+ 2q2−1a2|v|ΦN,s(α02N/(N−s)(|u|N/(N−s) + |v|N/(N−s))(|u|q2−1 + |v|q2−1). (2.2)

Since ΦN,s(t) is a convex function, then

ΦN,s(α02N/(N−s)(|u|N/(N−s) + |v|N/(N−s))

≤ 1

2

(
ΦN,s(α02.2N/(N−s)|u|N/(N−s)) + ΦN,s(α02.2N/(N−s)|v|N/(N−s))

)
. (2.3)

Combine (3.5) and (3.6), there exists a suitable constant

|f(u(y) + tθ1v(y))v(y)| ≤C(|u|q1−1|v|+ |v|q1 + (ΦN,s(α02.2N/(N−s)|u|N/(N−s))

+ ΦN,s(α02.2N/(N−s)|v|N/(N−s)))(|u|q2−1|v|+ |v|q2)

=C(|u|q1−1|v|+ |v|q1 + ΦN,s(α02.2N/(N−s)|u|N/(N−s))|u|q2−1|v|

+ ΦN,s(α02.2N/(N−s)|u|N/(N−s))|v|q2

+ ΦN,s(α02.2N/(N−s)|v|N/(N−s))|u|q2−1|v|

+ ΦN,s(α02.2N/(N−s)|v|N/(N−s))|v|q2).

Then

|f(u(y) + tθ1v(y))v(y)|
2N

2N−µ ≤ (6C)
2N

2N−µ

(
(|u|q1−1|v|)

2N
2N−µ + (|v|q1)

2N
2N−µ

+ (ΦN,s(α02.2N/(N−s)|u|N/(N−s))|u|q2−1|v|)
2N

2N−µ

+ (ΦN,s(α02.2N/(N−s)|u|N/(N−s))|v|q2)
2N

2N−µ

+ (ΦN,s(α02.2N/(N−s)|v|N/(N−s))|u|q2−1|v|)
2N

2N−µ

+ (ΦN,s(α02.2N/(N−s)|v|N/(N−s))|v|q2)
2N

2N−µ
)
. (2.4)

Using Hölder inequality,∫
RN

(|u|q1−1|v|)
2N

2N−µ dx ≤
( ∫
RN

|u|
2Nq1
2N−µ dx

) q1−1
q1
( ∫
RN

|v|
2Nq1
2N−µ dx

) 1
q1

.

Using the Hölder inequality for q∗ > q2 with q2−1
q∗

+ q∗−q2
q∗

+ 1
q∗

= 1, we get∫
RN

(ΦN,s(α02.2N/(N−s)|u|N/(N−s))|u|q2−1|v|)
2N

2N−µ
dx

≤
( ∫
RN

(ΦN,s(α02.2N/(N−s)|u|N/(N−s)))
q∗

q∗−q2

) q∗
q∗−q2

( ∫
RN

|u|
2Nq2
2N−µ dx

) q∗
q2−1

×
( ∫
RN

|v|
2Nq∗
2N−µ dx

) 1
q∗

≤ C1,u||v||
2N

2N−µ

L
2Nq∗
2N−µ (RN )

. (2.5)

By [24, Lemma 2.3], there is c > q∗
q∗−q2 and near q∗

q∗−q2 so that

(ΦN,s(α02.2N/(N−s)|u|N/(N−s)))
q∗

q∗−q2

) q∗
q∗−q2 ≤ ΦN,s(α0c2.2

N/(N−s)|u|N/(N−s)). (2.6)

Combining (3.7), (2.6) and Lemma 2.3, also computing similarly for remain factor in (2.4), we

get that

||f(u(y) + tθ1v(y))v(y)||
L

2N
N−µ (RN )

< +∞. (2.7)
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By arguments as before, we also have

||f(u(x) + tθ2v(x))v(x))||
L

2N
N−µ (RN )

< +∞. (2.8)

Combining (2.1), (2.7) and (2.8), we get(
1

|x|µ
∗ (f(u(y) + tθ1v(y))v(y))

)
f(u(x) + tθ2v(x))v(x) ∈ L1(RN ).

Hence,

lim
t→0

t

2

∫
RN

(
1

|x|µ
∗ (f(u(y) + tθ1v(y))v(y))

)
f(u(x) + tθ2v(x))v(x)dx = 0. (2.9)

Similarly, we also have

(
1

|x|µ
∗ F (u(y))

)
f(u(x) + tθ2v(x))v(x) ∈ L1(RN ). Then there is a

constant A > 0 so that

∣∣∣∣ ( 1

|x|µ
∗ F (u(y))

)
f(u(x) + tθ2v(x))v(x)

∣∣∣∣ ≤ A almost everywhere. For

any ε > 0, there exists δ = ε/A, and any measurable set E ⊂ RN satisfying |E| < δ, we obtain∫
E

∣∣∣∣ ( 1

|x|µ
∗ F (u(y))

)
f(u(x) + tθ2v(x))v(x)

∣∣∣∣dx ≤ A|E| = δA = ε (2.10)

for all |η| ∈ [0, 1]. Note that

(
1

|x|µ
∗ F (u(y))

)
f(u(x) + tθ2v(x))v(x) ∈ L1(RN ), then there is a

positive real number R > 0 so that∫
RN\BR(0)

∣∣∣∣ ( 1

|x|µ
∗ F (u(y))

)
f(u(x) + tθ2v(x))v(x)

∣∣∣∣dx < ε. (2.11)

By (2.10) and (2.11), we deduce

∣∣∣∣ ( 1

|x|µ
∗ F (u(y))

)
f(u(x) + tθ2v(x))v(x)

∣∣∣∣ is equi-integrable.

Furthermore,(
1

|x|µ
∗ F (u(y))

)
f(u(x) + tθ2v(x))v(x)→

(
1

|x|µ
∗ F (u(y))

)
f(u(x))v(x)

for all x ∈ RN and t→ 0. Therefore, by Vitali’s theorem, we get

lim
t→0

∫
RN

(
1

|x|µ
∗ F (u(y))

)
f(u(x) + tθ2v(x))v(x)dx =

∫
RN

(
1

|x|µ
∗ F (u(y))

)
f(u(x))v(x)dx.

(2.12)

Similarly, we also have

lim
t→0

∫
RN

(
1

|x|µ
∗ (f(u(y) + tθ1v(y))v(y))

)
F (u(x))dx =

∫
RN

(
1

|x|µ
∗ f(u(y))v(y)

)
F (u(x))dx.

(2.13)

By chnaging variables between x and y, using Fubini’s theorem, it holds∫
RN

(
1

|x|µ
∗ f(u(y))v(y)

)
F (u(x))dx =

∫
RN

(
1

|x|µ
∗ F (u(y))

)
f(u(x))v(x)dx.

Combine (2.8), (2.12) and (2.13), we get

〈ψ′(u), v〉 =

∫
RN

(
1

|x|µ
∗ F (u)

)
f(u)vdx =

∫
RN

∫
RN

F (u(y))f(u(x))v(x)

|x− y|µ
dxdy. (2.14)
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Then we have that ψ is Gâteaux differentiable. From the condition (f1), we have

1

|x|µ
∗ F (u) =

∫
RN

F (u(y))

|x− y|µ
dy ∈ L∞(RN ). (2.15)

Indeed, by the condition (f1), we have∣∣∣∣ 1

|x|µ
∗ F (u)

∣∣∣∣ ≤ ∫
RN

a1|u|q1 + a2ΦN,s(α0|u|N/(N−s))|u|q2
|x− y|µ

dy.

Choosing t >
N

N − µ
or N >

µt

t− 1
, then we get∫

RN

|u|q1
|x− y|µ

dy =

∫
{y:|x−y|≥1}

|u|q1
|x− y|µ

dy +

∫
{y:|x−y|≤1}

|u|q1
|x− y|µ

dy

≤
∫
RN

|u|q1dx+

( ∫
{y:|x−y|≤1}

1

|x− y|µt/(t−1)
dy

) t−1
t
( ∫
RN

|u|q1tdx
) 1
t

.

Also, we get∫
RN

ΦN,s(α0|u|N/(N−s))|u|q2
|x− y|µ

dy ≤
( ∫
RN

(ΦN,s(α0|u|N/(N−s)))t/(t−1)

) t−1
t
( ∫
RN

|u|q2t

|x− y|µt
dy

) 1
t

,

(2.16)

where we choose t > 1 so that 0 < tµ < N. By arguments before, we
∣∣∣ ∫
RN

|u|q2t

|x− y|µt
dy
∣∣∣ < Cu.

Then there exists a constant Cu > 0 such that∣∣∣∣ 1

|x|µ
∗ F (u)

∣∣∣∣ ≤ Cu (2.17)

for all x ∈ RN . Combine (2.14) and (2.17), we deduce

|〈Ψ′(u), v〉| ≤ Cu
∫
RN

|f(u)v|dx. (2.18)

By the condition (f1), using Hölder inequality, for q∗ > q2 with q2−1
q∗

+ q∗−q2
q∗

+ 1
q∗

= 1, we get∫
RN

ΦN,s(α0|u|N/(N−s))|u|q2−1|v|dx (2.19)

≤
( ∫
RN

(ΦN,s(α0|u|N/(N−s)))
q∗

q∗−q2

) q∗
q∗−q2

( ∫
RN

|u|q2∗dx
) q2−1

q∗
( ∫
RN

|v|q∗dx
) 1
q∗

≤ C2,u||v||Lq∗ (RN ).

Hence, it holds∫
RN

|f(u)v|dx ≤ a1

∫
RN

|u|q1−1|v|dx+ a2

∫
RN

ΦN,s(α0|u|N/(N−s))|u|q2−1|v|dx

≤ a1||u||q1−1
Lq1 (RN )

||v||Lq1 (RN ) + a2C2,u||v||Lq∗ (RN ) ≤ C3,u||v||W s,N/s(RN ),

|〈ψ′(u), v〉| ≤ C3,u||v||W s,N/s(RN ). (2.20)
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This implies that ψ ∈ (W s,N/s(RN ))′. We now prove that ψ′ is continuous on (W s,N/s(RN ))′.

Then it is Fréchet differentiable. We claim that

||ψ′(un)− ψ′(u)|| = sup
||v||

Ws,N/s(RN )
=1

|〈ψ′(un)− ψ′(u), v〉|

= sup
||v||

Ws,N/s(RN )
=1

∣∣∣∣ ∫
RN

[(
1

|x|µ
∗ F (un)

)
f(un)−

(
1

|x|µ
∗ F (u)

)
f(u)

]
vdx

∣∣∣∣→ 0

as n→∞. Conversely, if for some ε0 > 0, there exist n large enough so that ||ψ′(un)−ψ′(u)|| >
ε0 > 0. Then there exists v ∈W s,N/s(RN ) such that

|〈ψ′(un)− ψ′(u), v〉| ≥ ||ψ′(un)− ψ′(u)|| − ε0

2
>
ε0

2
. (2.21)

Now we show that limn→∞ < ψ′(un)−ψ′(u), v >= 0. Then it is contradiction with (2.21) as n

large enough. By (2.14), we deduce

〈ψ′(un)− ψ′(u), v〉 =

∫
RN

[(
1

|x|µ
∗ F (un)

)
f(un)−

(
1

|x|µ
∗ F (u)

)
f(u)

]
vdx (2.22)

By arguments before, we have

(
1

|x|µ
∗ F (u)

)
f(u)v ∈ L1(RN ). Now, we show that(

1

|x|µ
∗ F (un)

)
f(un)v ∈ L1(RN ). (2.23)

Using Hardy-Littlewood-Sobolev inequality, we get∫
RN

∫
RN

|F (un(y))f(un(x))v(x)

|x− y|µ
dxdy ≤ ||F (un)||

L
2N

2N−µ (RN )
||f(un)v||

L
2N

2N−µ (RN )
.

By the condition (f1), one has

|F (un)|
2N
N−µ ≤ (a1|un|q1 + a2|un|q2ΦN,s(α0|un|N/(N−s)))

2N
2N−µ

≤ C(|un|
2Nq1
2N−µ + |un|

2Nq2
2N−µ (ΦN,s(α0|un|N/(N−s)))

2N
2N−µ . (2.24)

By using Hölder inequality, for t > 1 and t′ > 1 so that
1

t
+

1

t′
= 1, we deduce∫

RN

|un|
2Nq2
2N−µ (ΦN,s(α0|un|N/(N−s)))

2N
2N−µ dx

≤
( ∫
RN

|un|
2Nq2t
2N−µ dx

)1/t(
(ΦN,s(α0|un|N/(N−s)))

2Nt′
2N−µ dx

)1/t′

. (2.25)

By [24, Lemma 2.3], for c > 2Nt′

2N−µ and it is choosen near 2Nt′

2N−µ , we have

(ΦN,s(α0|un|N/(N−s)))
2Nt′
2N−µ ≤ ΦN,s(α0c|un|N/(N−s)) for all n.

Note that

ΦN,s(α0c|un|N/(N−s)) ≤ ΦN,s(α0c(|un − u|+ |u|)N/(N−s))

≤ ΦN,s(α02N/(N−s)c(|un − u|N/(N−s) + |u|N/(N−s)))

≤ 1

2

(
ΦN,s(2α02N/(N−s)c|un − u|N/(N−s)) + ΦN,s(2α02N/(N−s)c|u|N/(N−s))

)
. (2.26)
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Since un → u in W, then ||un−u||W s,N/s(RN ) → 0 as n→∞. Hence limn→∞ 2α02N/(N−s)||un−
u||N/(N−s)

W s,N/s(RN )
= 0 and it is small enough as n large enough. Hence, we can apply fractional

Trudinger-Moser inequality to get∫
RN

ΦN,s(2α02N/(N−s)c|un − u|N/(N−s))dx (2.27)

=

∫
RN

ΦN,s

(
2α02N/(N−s)c||un − u||N/(N−s)W s,N/s(RN )

(
|un − u|

||un − u||W s,N/s(RN )

)N/(N−s))
dx ≤ D < +∞

for a suitable consant D > 0 as n large enough. From (2.24), (2.25) and (2.27), there exists a

positive constant C0 > 0 so that ∫
RN

|F (un)|
2N
N−µ dx ≤ C0 (2.28)

for all n large enough. Similarly, we also have∫
RN

|f(un)v|
2N

2N−µ dx

≤ D∗
( ∫
RN

(|un|q1−1|v|)
2N

2N−µ dx+

∫
RN

(|un|q2−1|v|ΦN,s(α0|un|N/(N−s)))
2N

2N−µ dx

)
, (2.29)

where D∗ > 0 is a suitable constant. Using Hölder inequality,∫
RN

(|un|q1−1|v|)
2N

2N−µ dx ≤
( ∫
RN

|un|
2Nq1
2N−µ dx

) q1−1
q1
( ∫
RN

|v|
2Nq1
2N−µ dx

) 1
q1

. (2.30)

Using the Hölder inequality for q∗ > q2 with q2−1
q∗

+ q∗−q2
q∗

+ 1
q∗

= 1, we get∫
RN

(ΦN,s(α0|un|N/(N−s))|un|q2−1|v|)
2N

2N−µ
dx (2.31)

≤
( ∫
RN

(ΦN,s(α0|un|N/(N−s)))
q∗

q∗−q2

) q∗
q∗−q2

( ∫
RN

|un|
2Nq2
2N−µ dx

) q∗
q2−1

( ∫
RN

|v|
2Nq∗
2N−µ dx

) 1
q∗

.

By Lemma 2.3, there is c > q∗
q∗−q2 and near q∗

q∗−q2 so that∫
RN

(ΦN,s(α0|un|N/(N−s)))
q∗

q∗−q2 dx

≤
∫
RN

(ΦN,s(α0c|un|N/(N−s)))dx

≤
∫
RN

(ΦN,s(α0c2
N/(N−s)(|un − u|N/(N−s))) + ΦN,s(α0c2

N/(N−s)|u|N/(N−s))dx (2.32)

By arguments (2.27) and continuous embedding from W s,N/s(RN ) into Lq(RN ), q ≥ N

s
, from

(3.7) and (2.32), there exists Cv > 0 so that∫
RN

(ΦN,s(α0|un|N/(N−s))|un|q2−1|v|)
2N

2N−µ
dx ≤ Cv (2.33)
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for all n large enough. Combining (2.29), (2.30) and (2.33), we get∫
RN
|f(un)v|

2N
2N−µ ≤ C1 (2.34)

for all n large enough and C1 > 0 is a suitable constant. From (2.28) and (2.34), we get that

(2.68). Similarly, we also have (
1

|x|µ
∗ F (u)

)
f(u)v ∈ L1(RN ). (2.35)

Then, by (2.68) and (2.35), we have(
1

|x|µ
∗ F (un)

)
f(un)−

(
1

|x|µ
∗ F (u)

)
f(u) ∈ L1(RN ).

Hence there is a suitable constant κ so that∣∣∣∣( 1

|x|µ
∗ F (un)

)
f(un)−

(
1

|x|µ
∗ F (u)

)
f(u)

∣∣∣∣ ≤ κ
on RN almost everywhere in RN . For any ε > 0, there exists δ = ε/κ and for all measurable

set E ⊂ RN such that |E| < δ, we have∫
E

∣∣∣∣( 1

|x|µ
∗ F (un)

)
f(un)−

(
1

|x|µ
∗ F (u)

)
f(u)

∣∣∣∣dx ≤ κ|E| < δκ = ε, (2.36)

and then

{(
1

|x|µ
∗F (un)

)
f(un)−

(
1

|x|µ
∗F (u)

)
f(u)

}
n

is equi-integrable. Since un → u and

v ∈ W s,N/s(RN ), and W s,N/s(RN ) is continuously embedded into Lq(RN ), q ≥ N

s
, there is

R > 0 large enough so that( ∫
RN\BR(0)

|v|
2Nq1
2N−µ dx

) 1
q1

≤ ε and

( ∫
RN\BR(0)

|v|
2Nq∗
2N−µ dx

) 1
q∗

< ε (2.37)

By arguments (2.68) and (2.35), and we only take integral on RN \BR(0) to get∫
RN\BR(0)

∣∣∣∣[( 1

|x|µ
∗ F (un)

)
f(un)−

(
1

|x|µ
∗ F (u)

)
f(u)

]
v

∣∣∣∣dx < C∗ε,

where C∗ > 0 is a suitable constant. Since[(
1

|x|µ
∗ F (un)

)
f(un)−

(
1

|x|µ
∗ F (u)

)
f(u)

]
v → 0

almost every where in RN . Therefore, apply Vitali’s theorem, we get

lim
n→∞

∫
RN

∣∣∣∣[( 1

|x|µ
∗ F (un)

)
f(un)−

(
1

|x|µ
∗ F (u)

)
f(u)

]
v

∣∣∣∣dx = 0.

It implies that

lim
n→∞

∣∣∣ ∫
RN

∣∣∣∣[( 1

|x|µ
∗ F (un)

)
f(un)−

(
1

|x|µ
∗ F (u)

)
f(u)

]
vdx

∣∣∣∣ = 0,

which is a contradiction with (2.21). Hence limn→∞ ||ψ′(un) − ψ′(u)|| = 0 and ψ′ is con-

tinuous in (W s,N/s(RN ))′. By arguments as above, using Hölder inequality and Vitali’s the-

orem, we see that for any sequence un → u in W s,N/s(RN ), we get (||un||pη)′ → (||u||pη)′ in

(W s,N/s(RN ))′. Hence, ||u||pη belongs C1(W s,N/s(RN ),R) and we have ϕ(u) =
1

p
M̃(||u||pη) ∈
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C1(W s,N/s(RN ),R). Indeed, we see that ϕ′(u) = M(||u||pη)(||u||pη)′, and for any sequence un → u

in W s,N/s(RN ), it holds ϕ′(un) = M(||un||pη)(||un||pη)′ → M(||u||pη)(||u||pη)′ in (W s,N/s(RN ))′.

In conclusion, we get that Jην ∈ C1(W s,N/s(RN ),R). �

Furthermore, we have

〈J ′ην(u), ϕ〉 = M(||u||pη)

( ∫
R2N

|u(x)− u(y)|Ns −2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|2N
dxdy

+ η

∫
RN

|u|Ns −2uϕdx

)
− ν2

∫
RN

∫
RN

F (u(y))f(u(x))ϕ(x)

|x− y|µ
dxdy.

Lemma 2.6 Suppose that (f1) and (f5) hold. Then there are two positive constants t0, ρ0

satisfying Jην(u) ≥ ρ0 for all u ∈W s,N/s(RN ) : ‖u‖W s,N/s(RN ) = t0.

Proof From the condition (f1), for each q1 ≥
N

s
>

2N − µ
2s

, q2 >
N

s
, there exist a1 >

0, a2 > 0 such that

f(t) ≤ a1|t|q1−1 + a2ΦN,s(α0|t|N/(N−s))|t|q2−1.

Therefore, we get

|F (t)| ≤ a1|t|q1 + a2|t|q2ΦN,s(α0|t|N/(N−s))

for all t ∈ R. Apply Lemma 2.4, we obtain that

1

2

∫
RN

∫
RN

F (u(y))F (u(x))

|x− y|µ
dxdy ≤ C(r,N, µ)||F (u)||2

L
2N

2N−µ (RN )
. (2.38)

Note that

‖F (u)‖
L

2N
2N−µ (RN )

≤ a1‖uq1‖
L

2N
2N−µ (RN )

+ a2‖|u|q2ΦN,s(α0|u|N/(N−s))‖
L

2N
2N−µ (RN )

. (2.39)

Using the Hölder’s inequality for t > 1, t′ > 1 :
1

t
+

1

t′
= 1, and t′ is choosen near 1, for any

b > 2Nt′

2N−µ , together with [24, Lemma 2.3], show that there is a constant C(b) > 0 satisfying(
ΦN,s(α0|u|N/(N−s))

) 2Nt′
2N−µ ≤ C(b)ΦN,s(bα0|u|N/(N−s)) (2.40)

on RN , and then we deduce

‖|u|q2ΦN,s(α0|u|N/(N−s))‖ 2N
2N−µ (RN )

=

( ∫
RN

(|u|q2ΦN,s(α0|u|N/(N−s)))
2N

2N−µ dx

) 2N−µ
2N

≤ ‖u‖q2
L

2Ntq2
2N−µ

( ∫
RN

C(b)ΦN,s(bα0|u|N/(N−s))dx
) 2N−µ

2N

. (2.41)

By Lemma 2.1, for ‖u‖η small enough such that

bα0‖u‖N/(N−s)η < α∗, (2.42)

we obtain∫
RN

ΦN,s(bα0|u|N/(N−s))dx =

∫
RN

ΦN,s

(
bα0‖u‖N/(N−s)η

(
|u|
‖u‖η

)N/(N−s))
dx < +∞. (2.43)
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Together with (2.42)–(2.43), for ‖u‖η small enough, there exists suitable constants a1 > 0 and

D > 0 such that

1

2

∫
RN

∫
RN

F (u(y))F (u(x))

|x− y|µ
dxdy ≤ a1‖u‖2q1

L
2Nq1
2N−µ (RN )

+D‖u‖q2
L

2Ntq2
2N−µ

.

Thus, we have

Jην(u) ≥ as

N
‖u‖N/sη +

bs

2N
‖u‖2N/sη − a1ν

2‖u‖2q1
L

2Nq1
2N−µ (RN )

−Dν2‖u‖2q2
L

2Ntq2
2N−µ

. (2.44)

Since the continuous embedding W s,N/s(RN ) ↪→ Lq(RN ) for all q ≥ N

s
, then (2.44) implies

that

Jην(u) ≥ as

N
‖u‖N/sη +

bs

2N
‖u‖2N/sη − a1ν

2A−2q1
2Nq1
2N−µ ,η

‖u‖2q1η −Dν2A−2q2
2Ntq2
2N−µ ,η

‖u‖2q2η . (2.45)

Let

h(t) =
as

N
+

bs

2N
tN/s − a1ν

2A−2q1
2Nq1
2N−µ ,η

t2q1−
N
s −Dν2A−2q2

2Ntq2
2N−µ ,η

t2q2−
N
s , t ≥ 0.

We now verify there exists t0 > 0 small satisfying h(t0) ≥ as
2N . We see that h is continuous

function on [0,+∞) and limt→0+ h(t) = as
N , then there exists t0 such that h(t) ≥ as

N − ε1 for all

0 ≤ t ≤ t0, t0 is small enough such that ||u||η = t0 satisfying (2.42). If we choose ε1 = as
2N , we

have h(t) ≥ as
2N for all 0 ≤ t ≤ t0. Especially, h(t0) ≥ as

2N and we obtain Jην(u) ≥ as
2N · t

N/s
0 = ρ0

for ||u||η = t0. �

Lemma 2.7 Suppose that (f4) holds. Then there exists a function v ∈ C∞0 (RN ) with

||v||η > t0, such that Jην(v) < 0, where t0 > 0 is the number given in Lemma 2.6.

Proof We denote K(u) =
1

2

∫
RN

K(u)(x)F (u(x))dx. Fix u0 ∈W s,N/s(RN ) \ {0} such that

u0 ≥ 0. We set h(t) = K
(

tu0

‖u0‖η

)
for t > 0. By the condition (f4), we have

h′(t) = h′
(
tu0

‖u‖η

)
u0

‖u0‖η
=

∫
RN

[
1

|x|µ

]
∗ F

(
tu0

‖u0‖η

)
f

(
tu0

‖u0‖η

)
u0

||u0||η
dx >

θ

t
h(t).

Then integrating above inequality on [1, t‖u0‖η] with t > 1
‖u0‖η , we get h(t‖u0‖η) ≥ h(1)(t‖u0‖η)θ.

Hence, we deduce

K(tu0) ≥ K
(

u0

‖u0‖η

)
‖u0‖θηtθ.

Consequently, we have

Jην(tu0) =
astN/s

N
‖u0‖N/sη +

bst2N/s

2N
‖u0‖2N/sη − ν2

∫
RN

K(tu0)(x)F (tu0)dx

≤ stN/s

N
||u0||N/sη +

bst2N/s

2N
‖u0‖2N/sη − ν2K

(
u0

‖u0‖η

)
‖u0‖θηtθ

for all t > 1
‖u0‖η . Since θ > 2p, set e = tu0 and t large enough, we get the conclusion of Lemma

2.7. �

Using Lemma 2.6, Lemma 2.7, and an alternative form of the Mountain Pass Theorem that

doesn’t require the Palais-Smale condition, we obtain a sequence un ⊂W s,N/s(RN ) such that

Jην(un)→ cην and J ′ην(un)→ 0 as n→∞,
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where the level cην is characterized by

cην = inf
ζ∈Σ

max
t∈[0,1]

Jην(ζ(t))

and Σ = {ζ ∈ C([0, 1],W s,N/s(RN )) : ζ(0) = 0, Jην(ζ(1)) < 0}.

Lemma 2.8 ([25]) Assume that f satisfies the condition (f1) and {un} is a sequence

verifying lim supn→∞ ‖un‖
N/(N−s)
η < α∗

bα0
ds/(N−s) for some b > 1, where d = min{1, η}. Then

there exists C0 > 0 such that ∣∣∣∣ 1

|x|µ
∗ F (un)

∣∣∣∣ ≤ C0 for all n.

Lemma 2.9 Assume that {un} is a (PS)cην sequence of Jην . Then, there is a constant

Cγ1 such that ρ0 ≤ cην ≤ Cγ1 .

Proof We consider the function ϕ ∈ C∞0 (RN , [0, 1]) which is satisfied the conditions

ϕ(x) = 1 if |x| ≤ 1, ϕ(x) = 0 if |x| ≥ 2 and ∇ϕ(x) ≤ 1. Note that B1−|x|(0) ⊂ B1(x) since

|x| ≤ 1, hence we get∫
B1(0)

∫
B1(0)

ϕθ(x)ϕθ(y)

|x− y|µ
dxdy =

∫
B1(0)

∫
B1(0)

1

|x− y|µ
dxdy

=

∫
B1(0)

∫
B1(x)

1

|z|µ
dzdx ≥

∫
B1(0)

∫
B1−|x|(0)

1

|z|µ
dzdx

= N |B1(0)|
∫

B1(0)

dx

1−|x|∫
0

rN−µ−1dr=
N |B1(0)|
N − µ

∫
B1(0)

(1− |x|)N−µdx

=
|NB1(0)|2

N − µ

1∫
0

(1− r)N−µ rN−1dr =
|NB1(0)|2B(N,N − µ+ 1)

N − µ
,

where B(x, y) =
1∫
0

tx−1(1− t)y−1dt (x > 0, y > 0) is Beta function. From the assumption (M3),

we can induce that there is a positive constant γ such that

M̃(t) ≤ γ(t+ t2) for all t ≥ 0. (2.46)

By assumption (f4), we have

Jην(tϕ) =
1

p
M̃(‖tϕ‖pη)− ν2

2

∫
RN

F (tϕ)dx

∫
RN

1

|x− y|µ
F (tϕ)dy

≤ γtp

p
‖ϕ‖pη +

γt2p

2p
‖ϕ‖2pη −

γ2
1ν

2t2θ

2

∫
RN

|ϕ|θdx
∫
RN

|ϕ|θ

|x− y|µ
dy

≤ γ

p
tp‖ϕ‖pη +

γ

2p
t2p‖ϕ‖2pη −

γ2
1ν

2t2θ

2

∫
B1(0)

∫
B1(0)

1

|x− y|µ
dxdy. (2.47)

Hence, we obtain that

Jην(tϕ) ≤ γ

p
tp‖ϕ‖pη +

γ

2p
t2p‖ϕ‖2pη −

γ2
1ν

2t2θ

2
· |NB1(0)|2B(N,N − µ+ 1)

N − µ
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and

cην ≤ max
t≥0

Jην(tϕ)

≤ max
t≥0

{
γ

p
tp‖ϕ‖pη +

γ

2p
t2p‖ϕ‖2pη −

γ2
1ν

2t2θ

2
· |NB1(0)|2B(N,N − µ+ 1)

N − µ

}
. (2.48)

Set a1 := γ
p‖ϕ‖

p
η, a2 = γ

2p‖ϕ‖
2p
η and b :=

γ2
1ν

2|NB1(0)|2B(N,N−µ+1)
2(N−µ) . We denote

g(t) = a1t
p + a2t

2p − bt2θ

on [0,+∞). We have

c ≤ max
t∈[0,1]

g(t) + max
t≥1

g(t). (2.49)

As t ∈ [0, 1], we get g(t) ≤ h(t) = (a1 + a2)tp − bt2θ. Compute directly and obtain

max
t∈[0,1]

g(t) ≤ h(θγ1) = Cγ1 , (2.50)

where

θγ1 =

(
(a1 + a2)p

2θb

)1/(2θ−p)

≤ 1

as b ≥ (a1 + a2)p

2θ
. It implies that

γ1 ≥
1

νN |B1(0)|

(
(a1 + a2)p(N − µ)

θB(N,N − µ+ 1)

)1/2

:= γ∗. (2.51)

Hence, we have

Cγ1 = h(θγ1) = (a1 + a2)(1− p

2θ
)

(
(a1 + a2)p

2θb

)1/(2θ−p)

. (2.52)

We see that limγ1→+∞ θγ1 = 0, then limγ1→+∞ h(θγ1) = 0. By arguments as above, for all t ≥ 1,

we get

g(t) ≤ h∗(t) = (a1 + a2)t2p − bt2θ

and h∗ has uniqueness local maximum point at βγ1 =
(

(a1+a2)p
θb

)1/(2θ−2p)

on (0,+∞). Note

that if we choose γ1 ≥ γ∗, where γ∗ satisfies b ≥ (a1 + a2)p

θ
, and we have βγ1 ≤ 1. Then we

need

γ1 ≥
1

Nν|B1(0)|

(
2(a1 + a2)p(N − µ)

θB(N,N − µ+ 1)

)1/2

:= γ∗. (2.53)

Hence, we deduce

max
t≥1

g(t) ≤ h∗(1) = a1 + a2 − b.

Denoting γ∗∗ = 1
Nν|B1(0)|

(
2(N−µ)(a1+a2)
B(N,N−µ+1)

)1/2

, we have

max
t≥1

g(t) ≤ 0 for all γ1 ≥ max{γ∗, γ∗∗}. (2.54)

Combining (2.49), (2.50), (2.52) and (2.54), we get

cην ≤ Cγ1 = (a1 + a2)(1− p

2θ
)

(
(a1 + a2)p

2θb

)1/(2θ−p)

(2.55)
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for γ1 ≥ max{γ∗, γ∗, γ∗∗}. Therefore, the Mountain Pass level c is small enough when γ1 is large

enough, which will be used later. Combining the result and Lemma 2.6, we get ρ0 ≤ cην ≤ Cγ1 .
�

The following result is a version of Lions’s result:

Lemma 2.10 ([9]) If {un} is a bounded sequence in W s,N/s(RN ) and

lim
n→∞

sup
y∈RN

∫
BR(y)

|un(x)|N/sdx = 0

for some R > 0, then un → 0 in Lq(RN ) for all q ∈ (Ns ,+∞).

By arguments as in [9], we get the following result:

Lemma 2.11 Suppose that {un} is a sequence in W s,N/s(RN ) which converges weak-

ly to 0 and lim supn→∞ ||un||
N/(N−s)
η <

α∗
bα0

ds/(N−s), where b > 1 is a constant and n-

ear 1. Assume that (f1) holds and limt→0+
f(t)

t
N
s
−1

= 0, and there exists R > 0 such that

lim infn→∞ supy∈RN
∫

BR(y)

|un|N/sdx = 0. Then

∫
RN

[
1

|x|µ
∗ F (un)

]
f(un)un → 0 and

∫
RN

[
1

|x|µ
∗ F (un)

]
F (un)→ 0.

Proposition 1 Suppose the conditions (f1)–(f5) are fulfilled. Then, problem (Pην) pos-

sesses a nontrivial nonnegative weak solution.

Proof Using Lemma 2.6 and Lemma 2.7, it is straightforward to verify that the ener-

gy function Jην satisfies the geometric conditions required by the Mountain Pass Theorem.

Consequently, a (PS) sequence exists {un} ⊂W s,N/s(RN ) such that

Jην(un)→ cην and J ′ην(un)→ 0 as n→∞,

where the level c is characterized by

cην = inf
ζ∈Σ

max
t∈[0,1]

Jην(ζ(t))

and Σ = {ζ ∈ C([0, 1],W s,N/s(RN )) : ζ(0) = 0, Jην(ζ(1)) < 0}. This implies that

sup
||ϕ||η=1

|〈J ′ην(un), ϕ〉| → 0 (2.56)

as n→∞, and it holds

Jην(un)− 1

θ
〈J ′ην(un), un〉 = cην + on(1) + on(1)||un||η. (2.57)

From the condition (M3), we get

M̃(t) ≥ M(t) + a

2
t for all t ≥ 0. (2.58)

Then, we obtain

Jην(un)− 1

θ
〈J ′ην(un), un〉

=
s

N
M̃(||un||N/sη )− ν2

2

∫
RN

∫
RN

F (un(y))F (un(x))

|x− y|µ
dydx
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− 1

θ

[
M(||un||N/sη )||un||N/sη − ν2

∫
RN

∫
RN

F (un(y))f(un(x))un(x)

|x− y|µ
dydx

]

≥ a
(
s

N
− 1

θ

)
||un||N/sη s+ ν2

∫
RN

∫
RN

F (un(y))

|x− y|µ
[
1

θ
f(un(x))un(x)− 1

2
F (un(x))]dydx.

Therefore, we have

Jην(un)− 1

θ
〈J ′ην(un), un〉 ≥ a

(
s

N
− 1

θ

)
||un||N/sη . (2.59)

By (2.57) and (2.59), we get

a

(
s

N
− 1

θ

)
||un||N/sη ≤ cην + on(1) + on(1)||un||η. (2.60)

Combine (2.52) and (2.60), with

Jην(un)− 1

θ
〈J ′ην(un), un〉 → cην

as n→∞, to get

lim sup
n→∞

‖un‖N/sη ≤ (a1 + a2)(1− p

2θ
)

(
(a1 + a2)p

2θb

)1/(2θ−p)

· a−1

s
N −

1
θ

. (2.61)

From that result, we have

cα0d
−s/(N−s) sup

n
‖un‖N/(N−s)η ≤ β∗ < α∗, (2.62)

when γ1 ≥ γ0, where γ0 satisfies

cα0d
−s/(N−s)

(
(a1 + a2)p

2θb

) Ns
(2θs−N)(N−s)

{
(a1 + a2)(1− p

2θ
) · m

−1
0

s
N −

1
θ

} s
N−s

≤ β∗, (2.63)

with b =
ν2γ2

0 |NB1(0)|2B(N,N−µ+1)
2(N−µ) . It means that

γ1 ≥
1

ν|NB1(0)|

√
(N − µ)(a1 + a2)p

B(N,N − µ+ 1)θ

×

[(
β∗d

s/(N−s)

cα0

) (2θs−N)(N−s)
2Ns

(
a−1(a1 + a2)(1− p

2θ )
s
N −

1
θ

) 2θs−N
2N

]
:= γ0.

(2.64)

Therefore, apply to Lemma 2.1, we deduce

sup
n

∫
RN

ΦN,s(cα0|un|N/(N−s))dx

= sup
n

∫
RN

ΦN,s(cα0d
−s/(N−s)||un||N/(N−s)η (ds/Nu/||un||η)N/(N−s))dx < +∞. (2.65)

Choose a subsequence if necessary, for any q ≥ N

s
, we may assume that

un ⇀ u weak in W s,N/s(RN ),

un → u strong in Lqloc(RN ),
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un(x)→ u(x) almost everywhere in RN .

If u ≡ 0, we will get a nontrivial solution as follows. We claim that there exists a sequence

{yn} ⊂ RN , the positive number R > 0 and δ > 0 such that

lim
n→∞

sup
y∈RN

∫
BR(y)

|un(x)|pdx ≥ δ > 0. (2.66)

By a contradiction, we assume that

lim
n→∞

sup
y∈RN

∫
BR(y)

|un(x)|pdx = 0,

then by Lemma 2.10, we get un → 0 in Lq(RN ) for all q > p =
N

s
. Using the condition (2.66)

and Lemma 2.11 together with Trudinger-Moser inequality (2.65), we get∫
RN

[
1

|x|µ
∗ F (un)

]
f(un)undx→ 0 as n→∞.

Then

on(1) = 〈J ′ην(un), un〉 = M(‖un‖pη)‖un‖pη − ν2

∫
RN

[
1

|x|µ
∗ F (un)

]
f(un)undx

= M(‖un‖pη)‖un‖pη + o(1)

as n→∞. Hence un → 0 strongly in W s,N/s(RN ). It implies that

Jην(un) =
1

p
M̃(‖un‖pη)− ν2

2

∫
RN

[
1

|x|µ
∗ F (un)

]
F (un)dx→ 0

as n→∞. It contradicts with cην > 0. Therefore (2.66) holds. We denote vn(x) = un(x+ yn),

then from (2.66) we get ∫
BR(0)

|vn|pdx ≥ δ/2 for n large enough. (2.67)

Because Jην and J ′ην are both invariant by the translation, it implies that

Jην(vn)→ cην and J ′ην(vn)→ 0 in W s,N/s(RN )
∗
.

Since ||vn||η = ||un||η, then {vn} is also bounded in W s,N/s(RN ), then exists v ∈ W s,N/s(RN )

such that vn ⇀ v in W s,N/s(RN ). Up to a subsequence, we may assume that limn→∞ ||vn||N/sη =

r0 > 0. From (2.67), we get
∫

BR(0)

|v|pdx ≥ δ/2 > 0, then v 6≡ 0. Now, we prove that J ′ην(v) = 0.

By arguments as [51, Lemma 12], we get the following results:∫
RN

∫
RN

F (vn(y))f(vn(x))ϕ(x)

|x− y|µ
dydx→

∫
RN

∫
RN

F (v(y))f(v(x))ϕ(x)

|x− y|µ
dydx,

∫
RN

|vn|p−2vnϕdx→
∫
RN

|v|p−2vϕdx,

∫
R2N

|vn(x)− vn(y)|p−2(vn(x)− vn(y))(ϕ(x)− ϕ(y))

|x− y|2N
dxdy
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→
∫

R2N

|v(x)− v(y)|p−2(v(x)− v(y))(ϕ(x)− ϕ(y))

|x− y|2N
dxdy (2.68)

for all ϕ ∈W s,p(RN ). We now show that M(||v||pη) = M(rp0). By the Fatou’s lemma, we obtain

||v||pη ≤ lim inf
n→∞

||vn||pη = rp0 .

By the condition (M2), we get M(||v||pη) ≤ M(rp0). Assume that M(||v||pη) < M(rp0), it follows

that

M(||v||pη)||v||pη < M(rp0)||v||pη =

∫
RN

∫
RN

F (v(y))f(v(x))v(x)

|x− y|µ
dxdy,

which yields < J
′

ην(v), v >< 0. Then there is r̃ ∈ (0, 1) such that r̃v ∈ Nην which is the Nehari

manifold associated with problem (Pην) :

Nην = {u ∈W s,p(RN ) \ {0} :< J
′

ην(u), u >= 0}.

Together with the characterization cην , M satisfies the condition (M4), (f5) and the Fatou’s

lemma, we have

cην ≤ Jην(r̃v) = Jην(r̃v)− 1

2p
〈J ′ην(r̃v), r̃v〉

=
1

p
M̃(||r̃v||pη)− 1

2p
M(||r̃v||pη)||r̃v||pη

+

∫
RN

∫
RN

F (r̃v(y))

|x− y|µ

[
f(r̃v(x))r̃v(x)

2p
− 1

2
F (r̃v(x))

]
dxdy

<
1

p
M̃(||v||pη)− 1

2p
M(||v||pη)||v||pη

+

∫
RN

∫
RN

F (v(y))

|x− y|µ

[
f(v(x))v(x)

2p
− 1

2
F (v(x))

]
dxdy

≤ lim inf
n→∞

[
Jην(vn)− 1

2p
〈J ′ην(vn), vn〉

]
= cην , (2.69)

which is a contradiction. Hence M(||v||pη) = M(rp0). Therefore, we deduce that

〈J ′ην(v), v〉 = 0.

If u 6≡ 0, by arguments as before, then we can show that u is a solution of (Pην).

Now, we show that v is a ground state solution to problem (Pην). We note that

cην ≤ Jην(v) = Jην(v)− 1

2p
〈J
′

ην(v), v〉

=
1

p
M̃(||v||pη)− 1

2p
M(||v||pη)||v||pη

+

∫
RN

∫
RN

F (v(y))

|x− y|µ

[
f(v(x))v(x)

2p
− 1

2
F (v(x))

]
dxdy

≤ lim inf
n→∞

[
Jην(vn)− 1

2p
〈J ′ην(vn), vn〉

]
= cην ,

Hence Jην(v) = cην , and v is a ground state solution of equation (Pην). �

Lemma 2.12 Suppose that ηi > 0 and νi > 0 for all i = 1, 2 with min{η2−η1, ν1−ν2} ≥ 0.

Then cη1ν1 ≤ cη2ν2 . Furthermore, if max{η2 − η1, ν1 − ν2} > 0, then cη1ν1 < cη2ν2 .
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Proof Let u ∈ Nη2ν2 with Jη2ν2(u) = cη2ν2 , then we have

cη2ν2 = Jη2ν2(u) = max
t≥0

Jη2ν2(tu).

Furthermore, there exists uniquely t0 > 0 such that u0 = t0u ∈ Nη1ν1 satisfying

Jη1ν1(u0) = max
t≥0

Jη1ν1(tu0).

Since M is an increasing function, it implies that M̃ is also an increasing function. Then

M̃(||u0||pη2) ≥ M̃(||u0||pη1) since ||u0||η2 ≥ ||u0||η1 . Clearly, we have

cη2ν2 = Jη2ν2(u) ≥ Jη2ν2(u0)

= Jη1ν1(u0) +
1

p
(M̃(||u0||pη2)− M̃(||u0||pη1))

+
ν2

1 − ν2
2

2

∫
RN

∫
RN

F (u0(x))F (u0(y))

|x− y|µ
dxdy ≥ cη1ν1 .

The proof is now complete. �

3 The Auxiliary Problem

Using the change variable x 7→ εx, the problem (1.1) is equivalent to the problem of the

form:

M(||u||pWε
)((−∆)spu+ V (εx)|u|p−2u) =

[
1

|x|µ
∗ (Q(εy)F (u(y)))

]
Q(εx)f(u). (Pε)

Definition 3.1 We say that u ∈Wε is a weak solution of problem (Pε) if

M(||u||pWε
)

(∫∫
R2N

|u(x)− u(y)|Ns −2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|2N
dxdy

+

∫
RN

V (εx)|u(x)|Ns −2u(x)ϕ(x)dx

)
=

∫
RN

∫
RN

Q(εy)F (u(y))Q(εx)f(u(x))ϕ(x)

|x− y|µ
dydx

for any ϕ ∈Wε.

In the studying of problem (Pε), we use the energy functional Iε : Wε → R which is given

by

Iε(u) =
1

p
M̃(‖u‖pWε

)− 1

2

∫
RN

∫
RN

Q(εy)F (u(y))Q(εx)F (u(x))

|x− y|µ
dydx.

By the condition (f1), we see that Iε is well defined on Wε, and Iε ∈ C2(Wε,R). We denote the

Nehari manifold Nε associated to Iε by

Nε = {u ∈Wε \ {0} : 〈I ′ε(u), u〉 = 0},

where

〈I ′ε(u), ϕ〉 = M(||u||pWε
)

( ∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+ps
dxdy

+

∫
RN

V (εx)|u|p−2uϕdx

)
−
∫
RN

∫
RN

Q(εy)F (u(y))Q(εx)f(u(x))ϕ(x)

|x− y|µ
dydx,

for any u, ϕ ∈Wε.
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Proposition 2 There exists r∗ > 0 such that

||u||Wε
≥ r∗ > 0 for all u ∈ Nε.

Proof Clearly, we have the following inequality

‖u‖W s,p(RN ) ≤ min{1, Vmin}−1/p‖u‖Wε . (3.1)

Thus, it follows from Lemma 2.1 and (3.1) that

sup
u∈Wε,||u||Wε≤(min{1,Vmin})s/N

∫
RN

ΦN,s(α|u|N/(N−s))dx

≤ sup
u∈W s,N/s(RN ),||u||

Ws,N/s(RN )
≤1

∫
RN

ΦN,s(α|u|N/(N−s))dx < +∞ (3.2)

for all 0 ≤ α < α∗ ≤ α∗s,N . From the Hardy-Littlewood-Sobolev inequality and (f3), it follows

that ∫
R2N

[
1

|x|µ
∗ (Q(εy)F (u(y))]Q(εx)f(u)udx ≤ CQ2

max‖F (u)‖
L

2N
2N−µ

‖f(u)u‖
L

2N
2N−µ

≤ CQ2
max‖f(u)u‖2

L
2N

2N−µ
,

where C > 0 is a suitable constant. By the conditions (f1) and (f2), for any ε∗ > 0 and q ≥ N

s
,

there is a constant Cq,ε∗ > 0 satisfying

|f(u)u| 2N
2N−µ

≤ ε∗‖|u|N/s‖
L

2N
2N−µ

+ Cq,ε∗‖|u|qΦN,s(α0|u|N/(N−s))‖
L

2N
2N−µ

(3.3)

for all u ∈ Wε. Using inequality (3.2) and by arguments as Lemma 2.6, then for all u ∈ Nε
which ‖u‖Wε

is small enough, there exists a suitable constant C(ε∗) such that the following

inequality holds

|f(u)u|2 2N
2N−µ

≤ ε∗S
− 2N

s

2N2

s(2N−µ) ,ε
‖u‖

2N
s

Wε
+ C(ε∗)‖u‖2qWε

(3.4)

for some q >
N

s
. Assume that there is {un} ⊂ Nε satisfying ‖un‖Wε

→ 0 as n → ∞. Since

(3.4) is true when we substitute u = un as n sufficiently large. Then we have

a‖un‖N/sWε
≤M(‖un‖N/sWε

)‖un‖N/sWε

=

∫
R2N

[
1

|x|µ
∗ (Q(εy)F (un(y)))]Q(εx)f(un)undx

≤ ε∗CQ2
maxS

− 2N
s

2N2

s(2N−µ) ,ε
‖un‖

2N
s

Wε
+ C(ε∗)CQ

2
max‖un‖

2q
Wε
.

Dividing both sides of above inequality to ‖un‖N/sWε
and taking n→ ∞, from q >

N

s
, we get a

contradiction when ε∗ is sufficiently enough. Hence, we finish the proof. �

Lemma 3.2 It holds that

(i) There exist two positive constants α > 0, ρ > 0 satisfying Iε(u) ≥ α with u ∈ Wε so

that ||u||Wε
= ρ;

(ii) There is a function e in Wε so that ||e||Wε
> ρ and Iε(e) < 0.
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Proof The proof of Lemma 3.2 is standard. We omit the details here. �

In view of Lemma 3.2, there exists a (PS)cε sequence {un} ⊂Wε satisfying

Iε(un)→ cε and I ′ε(un)→ 0,

where

cε = inf
ξ∈Ξ

max
t∈[0,1]

Iε(ξ(t))

and Ξ = {ξ ∈ C([0, 1],Wε) : ξ(0) = 0, Iε(ξ(1)) < 0}.
Inspired by [37, Proposition 3.11], we have the following result:

Proposition 3 It holds that cε = infu∈Wε\{0} supt≥0 Iε(tu) = infu∈Nε Iε(u).

Proof First, we show that for each u ∈ Wε \ {0}, there exists uniquely tu > 0 such that

tuu ∈ Nε. Set h(t) = Iε(tu). By Lemma 3.2, we have h(t) > 0 for all t > 0 small enough and

h(t) < 0 for t large enough. Therefore, maxt≥0 h(t) is attained at some t = tu > 0 and by

Fermat’s theorem, we get h′(tu) = 0 and tuu ∈ Nε. Note that tu ∈ Nε iff

M(||tu||pWε
)

||tu||pWε

=
1

||u||2pWε

∫
RN

∫
RN

Q(εy)F (tu(y))

tp|x− y|µ
Q(εx)f(tu(x))

tp−1
u(x)dxdy

=

∫
{x:u(x)>0}

∫
{y:u(y)>0}

F (tu(y))

(tu(y))p
f(tu(x))

(tu(x))p−1

Q(εy)Q(εx)u(y)pu(x)p

|x− y|µ
dxdy.

From the condition (f5), we see that F (t)
tp and f(t)

tp−1 are increasing for t > 0. Suppose that for

each u, there exists t1 > t2 such that t1u, t2u ∈ Nε, then we have

0 > a||u||−pWε

(
1

t1
− 1

t2

)
≥
M(||t1u||pWε

)

||t1u||pWε

−
M(||t2u||pWε

)

||t2u||pWε

= ||u||−2p
Wε

∫
{x:u(x)>0}

∫
{y:u(y)>0}

(
F (t1u(y))

(t1u(y))p
f(t1u(x))

(t1u(x))p−1
− F (t2u(y))

(t2u(y))p
f(t2u(x))

(t2u(x))p−1

)

× Q(εy)Q(εx)u(y)pu(x)p

|x− y|µ
dxdy > 0.

It is a contradiction. Hence tu is unique. We denote c∗ε = infu∈Wε\{0} supt≥0 Iε(tu) and c∗∗ε =

infu∈Nε Iε(u). Then it holds

sup
t≥0

Iε(tu) = Iε(t(u)u)

and t(u)u ∈ Nε, and we get

c∗ε = c∗∗ε . (3.5)

We now fix u ∈ Wε \ {0}, and observe that Iε(tu) < 0 as t sufficiently large. It implies that

there is t0 >> 0 such that for all t ≥ t0, we have Iε(tu) < 0. Let gu : [0, 1] → Wε define by

gu(t) = tt0u for all t ∈ [0, 1], and then gu ∈ Γ, and maxt≥0 Iε(tu) = maxt∈[0,1] Iε(gu(t)). Thus,

we deduce

c∗ε = inf
u∈Wε\{0}

max
t≥0

Iε(tu) = inf
u∈Wε\{0}

max
t∈[0,1]

Iε(gu(t)) ≥ inf
γ∈Γ

max
t∈[0,1]

Iε(γ(t)) = cε. (3.6)

By arguments [33, Proposition 3], we have

cε ≥ c∗∗ε . (3.7)
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Combining (3.5)–(3.7), we finish the proof. �

Lemma 3.3 Suppose that {un} is a bounded sequence in Wε such that

lim sup
n→∞

‖un‖N/(N−s)Wε
<

β∗d
s/(N−s)
∗

2N/(N−s)cα0
,

where d∗ = min{1, Vmin}, c > 1 is a constant and it is near 1. Furthermore, we assume that

(f1) and (f5) hold, un ⇀ u in Wε. Then we have the following statements:

(i) limn→∞ |Θ(vn + u)−Θ(vn)−Θ(u)| = 0.

(ii) For any ϕ ∈Wε such that ‖ϕ‖ε ≤ 1, we have

lim
n→∞

〈Θ′(vn + u)−Θ′(vn)−Θ′(u), ϕ〉 = 0,

where vn = un − u and Θ := 1
2

∫
RN

∫
RN

Q(εy)F (u(y))Q(εx)F (u(x))
|x−y|µ dydx.

Proof By arguments as [43, Lemma 8], we get∫
RN

|F (vn + u)− F (vn)− F (u)|
2N

2N−µ dx→ 0. (3.8)

We see that

Θ(un)−Θ(vn)−Θ(u)

=
1

2

∫
RN

∫
RN

Q(εx)Q(εy)(F (un(x))F (un(y))− F (vn(x))F (vn(y))− F (u(x))F (u(y)))

|x− y|µ
dxdy

=
1

2

∫
RN

∫
RN

Q(εx)Q(εy)F (un(x))[F (un(y))− F (vn(y))− F (u(y))]

|x− y|µ
dxdy

+
1

2

∫
RN

∫
RN

Q(εx)Q(εy)F (vn(x))[F (un(y))− F (vn(y))− F (u(y))]

|x− y|µ
dxdy

+
1

2

∫
RN

∫
RN

Q(εx)Q(εy)F (u(x))[F (un(y))− F (vn(y))− F (u(y))]

|x− y|µ
dxdy

+

∫
RN

∫
RN

Q(εx)Q(εy)F (u(x))F (vn(y))

|x− y|µ
dxdy

:= I1 + I2 + I3 + I4.

Using (3.8) and Hardy-Sobolev-inequality inequality and note that Q ∈ L∞(RN ), we are easy

to get Ii → 0 as n → ∞ for all i = 1, 2, 3. Finally, since F (vn) → 0 weak in L
2N

2N−µ (RN ) and
1
|x|µ ∗ F (u) ∈ L

2N
µ (RN ), we get I4 → 0. Hence (i) is proved. The proof of statement (ii) is the

same as (i). We omit the details. �

Lemma 3.4 Suppose that {un} ⊂Wε is a (PS)d sequence of Iε satisfying un ⇀ 0 in Wε

and

lim sup
n→∞

‖un‖N/(N−s)Wε
<
β∗d

s/(N−s)
∗

cα0
,

where d∗ = min{1, V0}, c > 1 is a constant and it is choosen near 1. Then we have either:

(i) un → 0 in Wε or
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(ii) there is a sequence {yn} ⊂ RN , and positive constants R > 0, β > 0 with

lim sup
n→∞

∫
BR(yn)

|un|N/sdx ≥ β > 0.

Proof Assume that (ii) is not true. From Lemma 2.10, it holds un → 0 in Lq(RN ) for

q ∈ (Ns ,+∞). By arguments as Lemma 2.11, together with conditions (f1) and (f2), we get

lim
n→∞

∫
RN

∫
RN

Q(εy)F (un(y))Q(εx)f(un(x))un(x)

|x− y|µ
dydx = 0.

Since 〈I ′ε(un), un〉 → 0 as n→∞, so we have un → 0 in Wε. �

Lemma 3.5 Suppose that {vn} ⊂ Wε is a (PS)d sequence which converges weakly to 0

and verifying lim supn→∞ ‖vn‖
N/(N−s)
Wε

≤ β∗d∗
s/(N−s)

cα0
, where c > 1 is constant and it is choosen

near 1. If vn 6→ 0 in Wε, then d ≥ cV∞Q∞ , where

cV∞Q∞ = inf
ζ∈Σ

max
t∈[0,1]

JV∞Q∞(ζ(t))

and Σ = {ζ ∈ C([0, 1],W s,N/s(RN )) : ζ(0) = 0, JV∞Q∞(ζ(1)) < 0}.
Proof We denote by {tn} ⊂ (0,+∞) satisfying {tnvn} ⊂ NV∞Q∞ .
Claim 1 We have lim supn→∞ tn ≤ 1.

In fact, if that claim is not true, then there exists δ > 0 and a subsequence still denoted by

{tn} such that

tn ≥ 1 + δ for all n ∈ N. (3.9)

We see that {vn} is bounded sequence in Wε, and we have 〈I ′ε(vn), vn〉 = on(1) as n → ∞. It

means that

a||vn||pWε
+ b||vn||2pWε

=

∫
RN

∫
RN

Q(εy)F (vn(y))Q(εx)f(vn(x))vn(x)

|x− y|µ
dydx+ on(1).

Moreover, reminder that {tnvn} ⊂ NV∞Q∞ , we get

atpn||vn||
p
V∞

+ bt2pn ||vn||
2p
V∞

= Q2
∞

∫
RN

∫
RN

F (tnvn(y))f(tnvn(x))tnvn(x)

|x− y|µ
dydx.

Two above equalities give that

Q2
∞

∫
RN

∫
RN

F (tnvn(y))f(tnvn(x))vn(x)

t2p−1
n |x− y|µ

dydx−
∫
RN

∫
RN

Q(εy)Q(εx)F (vn(y))f(vn(x))vn(x)

|x− y|µ
dydx

= Q2
∞

∫
RN

∫
RN

(
F (tnvn(y))f(tnvn(x))vn(x)

t2p−1
n |x− y|µ

− F (vn(y))f(vn(x))vn(x)

|x− y|µ

)
dydx

−
∫
RN

∫
RN

(Q2
∞ −Q(εy)Q(εx))F (vn(y))f(vn(x))vn(x)

|x− y|µ
dydx

≤ a
∫
RN

[V∞ − V (εx)|vn|pdx+ b(||vn||2pV∞ − ||vn||
2p
Wε

) + on(1). (3.10)

For any ξ > 0, there is R = R(ξ) > 0 verifying

V (εx) ≥ V∞ − ξ and Q(εx) ≤ V∞ + ξ for any |x| ≥ R (3.11)
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via the condition (V ). Hence, we have

|Q2
∞ −Q(εy)Q(εx)| = |(Q∞ −Q(εy))Q∞ +Q(εy)(Q∞ −Q(εx))|

≤ |(Q∞ −Q(εy))|Q∞ +Qmax|Q∞ −Q(εx))| ≤ 2εQmax (3.12)

for all |x| ≥ R and |y| ≥ R. Then there exists a suitable constant C∗ > 0 such that

a

∫
RN

[V∞ − V (εx)]|vn|pdx = a

∫
BR(0)

[V∞ − V (εx)]|vn|pdx+ a

∫
RN\BR(0)

[V∞ − V (εx)]|vn|pdx

≤ C∗ξ. (3.13)

Similarly, we also have

||vn||2pV∞ − ||vn||
2p
Wε

= ([vn]ps,p +

∫
RN

V∞|vn|pdx)2 − ([vn]ps,p +

∫
RN

V (εx)|vn|pdx)2

= 2[vn]ps,p

∫
RN

(V∞ − V (εx))|vn|pdx

+
( ∫
RN

(V∞ − V (εx))|vn|pdx
)( ∫

RN

(V∞ + V (εx))|vn|pdx
)
. (3.14)

Since V ∈ L∞(RN ) and {vn} is a bounded sequence, then from (3.13) and (3.14), there exists

a constant C∗∗ > 0 such that

b(||vn||2pV∞ − ||vn||
2p
Wε

) ≤ C∗∗ξ.

We see that

Q2
∞

∫
RN

∫
RN

(
F (tnvn(y))f(tnvn(x))vn(x)

t2p−1
n |x− y|µ

− F (vn(y))f(vn(x))vn(x)

|x− y|µ

)
dydx

≤
∫

BR(0)

∫
BR(0)

(Q2
∞ −Q(εy)Q(εx))F (vn(y))f(vn(x))vn(x)

|x− y|µ
dydx

+

∫
BcR(0)

∫
BcR(0)

(Q2
∞ −Q(εy)Q(εx))F (vn(y))f(vn(x))vn(x)

|x− y|µ
dydx

+ 2

∫
BcR(0)

∫
BR(0)

(Q2
∞ −Q(εy)Q(εx))F (vn(y))f(vn(x))vn(x)

|x− y|µ
dydx

+ a

∫
RN

[V∞ − V (εx)|vn|pdx+ b(||vn||2pV∞ − ||vn||
2p
Wε

) + on(1).

Combine (3.10)–(3.13), we deduce

Q2
∞

∫
RN

∫
RN

(
F (tnvn(y))f(tnvn(x))vn(x)

t2p−1
n |x− y|µ

− F (vn(y))f(vn(x))vn(x)

|x− y|µ

)
dydx

≤ 2εQmax

∫
BcR(0)

∫
BcR(0)

F (vn(y))f(vn(x))vn(x)

|x− y|µ
dydx

+ 2Q2
max

∫
BR(0)

∫
BR(0)

F (vn(y))f(vn(x))vn(x)

|x− y|µ
dydx
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+ 4Q2
max

∫
BcR(0)

∫
BR(0)

F (vn(y))f(vn(x))vn(x)

|x− y|µ
dydx+ (C∗ + C∗∗)ξ + on(1). (3.15)

Note that vn → 0 weak in Wε, then vn → 0 strong in Lq(BR(0)) for all q ≥ 1. From the

assumption, we have

lim sup
n→∞

‖vn‖N/(N−s)Vmin
≤ lim sup

n→∞
‖vn‖N/(N−s)Wε

≤ β∗d∗
s/(N−s)

cα0
,

then apply Lemma 2.8, there exists C0 > 0 such that

∣∣∣∣ 1

|x|µ
∗ F (vn)

∣∣∣∣ ≤ C0 as n large enough.

Using Trudinger-Moser inequality, there exits D∗ > 0 such that

2Q2
max

∫
BR(0)

∫
BR(0)

F (vn(y))f(vn(x))vn(x)

|x− y|µ
dydx

+ 4Q2
max

∫
BcR(0)

∫
BR(0)

F (vn(y))f(vn(x))vn(x)

|x− y|µ
dydx

≤ 6Q2
max

∫
BR(0)

[ 1

|x|µ
∗ F (vn(y))

]
f(vn(x))vn(x)dx

≤ 6Q2
maxC0

∫
BR(0)

f(vn(x))vn(x)dx ≤ D∗ξ (3.16)

for all n large enough. We still use the Trudinger-Moser inequality and the bound property of

the sequence {vn}, there exists E∗ > 0 such that

2ξQmax

∫
BcR(0)

∫
BcR(0)

F (vn(y))f(vn(x))vn(x)

|x− y|µ
dydx ≤ E∗ξ (3.17)

for all n large enough. From (3.15)–(3.17), we get

Q2
∞

∫
RN

∫
RN

(
F (tnvn(y))f(tnvn(x))vn(x)

t2p−1
n |x− y|µ

− F (vn(y))f(vn(x))vn(x)

|x− y|µ

)
dydx

≤ (C∗ + C∗∗ +D∗ + E∗)ξ + on(1). (3.18)

From vn 6→ 0 in Wε, then there is a sequence {yn} ⊂ RN and two positive real numbers

R∗ > 0 and β > 0 satisfying ∫
BR∗ (yn)

|vn|N/sdx ≥ β > 0 (3.19)

via Lemma 3.4. We use the symbols v−n (x) = min{vn(x), 0} and v+
n (x) = max{vn(x), 0}.

By argumemts as [43] and f(t) = 0, for t ∈ (−∞, 0], we get ‖v−n ‖Wε
→ 0 as n → ∞/ Set

vn(x) = vn(x+ yn), then we have

‖vn‖pVmin
= ‖vn‖pVmin

≤ [vn]ps,p +

∫
RN

V (εx)|vn|p = ‖vn‖pWε
.

Since {vn} is bounded sequence in W s,N/s(RN ), then up to a subsequence, we may assume that

there is v ∈W s,N/s(RN ) with vn ⇀ v in W s,N/s(RN ). By Fatou’s lemma, we get

||v−||Vmin
≤ lim inf

n→∞
||v−n ||Vmin

≤ lim inf
n→∞

||v−n ||Wε
= 0.
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Then v = v+ and we can assume vn(x)→ v(x) on Ω ⊂ BR∗(0), where Ω has positive measure.

Then v(x) > a∗, a∗ > 0 is a constant and vn(x) >
a∗
2
> 0 for all x ∈ Ω and n large enough.

Combine (3.10) and (3.18), we deduce

Q2
∞

∫
supp(v+n )

∫
supp(v+n )

[
F (tnvn(y))f(tnvn(x))vn(x)

t2p−1
n |x− y|µ

− F (tnvn(y))f(tnvn(x))vn(x)

|x− y|µ
]dydx

= Q2
∞

∫
RN

∫
RN

[
F (tnvn(y))f(tnvn(x))vn(x)

t2p−1
n |x− y|µ

− F (tnvn(y))f(tnvn(x))vn(x)

|x− y|µ

]
dydx

= Q2
∞

∫
RN

∫
RN

[
F (tnvn(y))f(tnvn(x))vn(x)

t2p−1
n |x− y|µ

− F (tnvn(y))f(tnvn(x))vn(x)

|x− y|µ

]
dydx

≤ (C∗ + C∗∗ +D∗ + E∗)ξ + on(1) (3.20)

for any ξ > 0. From (f5), we have
F (t)

tp
and f(t)

tp−1 are increasing function for all t > 0. By

Fatou’s lemma, (3.9), (3.20) and f(t) = 0 for all t ∈ (−∞, 0], we have

0 < Q2
∞

∫
Ω

∫
Ω

[
F ((1 + δ)v(y))f((1 + δ)v(x))v(x)

(1 + δ)2p−1|x− y|µ
− F (v(y))f(v(x))v(x)

|x− y|µ

]
dydx

= Q2
∞

∫
Ω

∫
Ω

|v(y)|p|v(x)|p
[

F ((1 + δ)v(y))f((1 + δ)v(x))

((1 + δ)v(y))p((1 + δ)v(x))p−1|x− y|µ

− F (v(y))f(v(x))

|v(y)|p|v(x)|p−1|x− y|µ

]
dydx

≤ Q2
∞ lim inf

n→∞

∫
Ω

∫
Ω

|vn(y)|p|vn(x)|p
[

F ((1 + δ)vn(y))f((1 + δ)vn(x))

((1 + δ)vn(y))p((1 + δ)vn(x))p−1|x− y|µ

− F (vn(y))f(vn(x))

|vn(y)|p|vn(x)|p−1|x− y|µ

]
dydx

≤ Q2
∞ lim inf

n→∞

∫
Ω

∫
Ω

[
F (tnvn(y))f(tnvn(x))vn(x)

tn
2p−1|x− y|µ

− F (vn(y))f(vn(x))vn(x)

|x− y|µ

]
dydx

≤ Q2
∞ lim inf

n→∞

∫
supp(v+n )

∫
supp(v+n )

[
F (tnvn(y))f(tnvn(x))vn(x)

tn
2p−1|x− y|µ

− F (vn(y))f(vn(x))vn(x)

|x− y|µ

]
dydx

≤ (C∗ + C∗∗ +D∗ + E∗)ε+ on(1)

for n sufficiently large. This is impossible if we take ξ > 0 small enough. Now, we investigate

the cases as follows:

Case 1 lim supn→∞ tn = 1. Then up to a subsequence, we may suppose that tn → 1.

Remind that Iε(vn)→ d as n→∞, and JV∞Q∞(tnvn) ≥ cV∞Q∞ , then we get

d+ on(1) ≥ Iε(vn)− JV∞(tnvn) + cV∞Q∞ . (3.21)

We now evaluate the following quantity

Iε(vn)− JV∞Q∞(tnvn)

=
a(1− tpn)

p
[vn]ps,p +

b(1− t2pn )

2p
[vn]2ps,p
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+
a

p

∫
RN

(V (εx)− tpnV∞)|vn|pdx+
b

p
[vn]ps,p

∫
RN

(V (εx)| − V∞t2pn )|vn|p

+
b

2p

( ∫
RN

(V (εx)− tpnV∞)|vn|pdx
)( ∫

RN

(V (εx) + tpnV∞)|vn|pdx
)

+
1

2

∫
RN

∫
RN

[
Q2
∞F (tnvn(y))F (tnvn(x))

|x− y|µ
− Q(εy)F (vn(y))Q(εy)F (vn(x))

|x− y|µ

]
dydx. (3.22)

From the assumption (V ), (3.11) and vn → 0 in LN/s(BR(0)), together with tn → 1 and

V (εx)− tpnV∞ = (V (εx)− V∞) + (1− tpn)V∞ ≥ −ξ + (1− tpn)V∞ for all |x| ≥ R,

we deduce ∫
RN

(V (εx)− tpnV∞)|vn|pdx ≥ on(1)− ξC∗, (3.23)

and ∫
RN

(V (εx)− t2pn V∞)|vn|pdx ≥ on(1)− ξC∗, (3.24)

for a suitable constant C∗ > 0. We have

lim
n→∞

(1− tln)

p
[vn]ls,p = 0, l ∈ {p, 2p}. (3.25)

due to the bounded of {vn} in Wε. Then from the assumption

lim sup
n→∞

||vn||N/(N−s)Wε
≤ β∗d∗

s/(N−s)

cα0
,

using Vitali convergence theorem, we get

lim
n→∞

∫
RN

∫
RN

[
F (tnvn(y))F (tnvn(x))

|x− y|µ
− F (vn(y))F (vn(x))

|x− y|µ

]
dydx = 0. (3.26)

We see that ∫
RN

∫
RN

[
Q2
∞F (tnvn(y))F (tnvn(x))

|x− y|µ
− Q(εy)F (vn(y))Q(εy)F (vn(x))

|x− y|µ

]
dydx

=

∫
RN

∫
RN

Q2
∞

[
F (tnvn(y))F (tnvn(x))

|x− y|µ
− F (vn(y))F (vn(x))

|x− y|µ

]
dydx

+

∫
RN

∫
RN

(Q2
∞ −Q(εy)Q(εx))

F (vn(y))F (vn(x))

|x− y|µ
dydx.

By arguments above, we get

lim
n→∞

∫
RN

∫
RN

(Q2
∞ −Q(εy)Q(εx))

F (vn(y))F (vn(x))

|x− y|µ
dydx = 0. (3.27)

From (3.21)–(3.27), we obtain

d+ on(1) ≥ cV∞Q∞ −D∗ξ + on(1)
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for a suitable constant D∗ > 0 due to the bounded of [vn]ps,p and{ ∫
RN

(V (εx) + tpnV∞)|vn|pdx
}
n

.

In above inequality, we get d ≥ cV∞Q∞ by letting n→∞.
Case 2 lim supn→∞ tn = t0 < 1. Then choose a subsequence if necessary, we may assume

that tn → t0 (< 1) and tn < 1 for all n ∈ N. We see that

d+ on(1)

= Iε(vn)− 1

2p
〈I ′ε(vn), vn〉 (3.28)

=
a

2p
||vn||pWε

+

∫
RN

∫
RN

Q(εy)Q(εx)F (tnvn(y))

|x− y|µ

[
1

2p
f(tnvn(x))tnvn(x)− 1

2
F (tnvn(x))

]
dydx.

Recalling that tnvn ∈ NV∞Q∞ , using the condition (f5) and (3.28) which leads to that

cV∞Q∞ ≤ JV∞Q∞(tnvn) = JV∞Q∞(tnvn)− 1

2p
〈J ′V∞Q∞(tnvn), tnvn〉

=
a

2p
||vn||pV∞ +Q2

∞

∫
RN

∫
RN

F (tnvn(y))

|x− y|µ
[

1

2p
f(tnvn(x))tnvn(x)− 1

2
F (tnvn(x))]dydx

≤ a

2p
||vn||pWε

+Q2
∞

∫
RN

∫
RN

F (vn(y))

|x− y|µ
[

1

2p
f(vn(x))vn(x)− 1

2
F (vn(x))]dydx+ on(1)

= d+ on(1).

From above inequality, we get d ≥ cV∞Q∞ by letting n→∞. �

Lemma 3.6 Let {un} be a (PS)c sequence for Iε satisfying

lim sup
n→∞

||un||N/(N−s)Wε
≤ β∗d∗

s/(N−s)

2N/(N−s)cα0
,

c > 1 is constant and it is choosen near 1. Assume that c < cV∞Q∞ . Then {un} has a convergent

subsequence in Wε.

Proof This lemma is similarly proved as [43, Lemma 11]. We recall some main steps. By

the condition (f3), we get that {un} is a bounded sequence in Wε. Up to a subsequence, we

may assume that un ⇀ u weak in Wε. Similar to Proposition 1, we obtain I ′ε(u) = 0. Denote

vn = un − u, then we deduce

||un − u||pWε
= ||un||pWε

− ||u||pWε
+ on(1) ≤ ||un||pWε

+ on(1)

as n→∞ via Brezis-Lieb’s lemma. Thus,

lim sup
n→∞

||un − u||pWε
≤ sup
n∈N
||un||pWε

<

(
β∗

2N/(N−s)cα0

)(N−s)/s

d∗.

Therefore, there is a natural number n0 such that

sup
n≥n0

||un − u||pWε
<

(
β∗

2N/(N−s)cα0

)(N−s)/s

d∗. (3.29)
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By Fatou’s lemma, we have

||u||pWε
≤ lim inf

n→∞
||un||pWε

<

(
β∗

2N/(N−s)cα0

)(N−s)/s

d∗. (3.30)

By arguments as Thin [43, Lemma 4], we get

lim
n→∞

∫
RN

f(vn)ϕdx→ 0, (3.31)

and

lim
n→∞

∫
R2N

|vn(x)− vn(y)|p−2(vn(x)− vn(y))(ϕ(x)− ϕ(y))

|x− y|2N
dxdy = 0 (3.32)

as n→∞, for all ϕ ∈W s,N/s(RN ). Combining (3.31) and (3.32), we obtain

〈I ′ε(vn), ϕ〉 → 0 (3.33)

as n→∞, for all ϕ ∈Wε(RN ). By the condition (f2), we have

Iε(u) = Iε(u)− 1

2p
〈I ′ε(u), u〉 =

a

2p
‖u‖pWε

+

∫
RN

[
1

2p
f(u)u− F (u)

]
dx ≥ 0. (3.34)

Choose a subsequence if necessary, we have limn→∞ ||un||Wε
= r2 ≥ 0. From Brezis-Lieb’s and

Lemma 3.3, we deduce lemma it holds

Iε(vn) =
a

p
||un||pWε

+
b

2p
||un||2pWε

−
(
a

p
||u||pWε

+
b

2p
||u||2pWε

)
− b

p
||un||pWε

||u||pWε

− 1

2

∫
RN

∫
RN

Q(εy)Q(εx)F (un(y))F (un(x))

|x− y|µ
dydx

+
1

2

∫
RN

∫
RN

Q(εy)Q(εx)F (u(y))F (u(x))

|x− y|µ
dydx+ on(1)

= Iε(un)− Iε(u)− b

p
||un||pWε

||u||pWε
+ on(1)

= c− Iε(u)− brp2
p
||u||pWε

+ on(1) = d+ on(1), (3.35)

where d = c − Iε(u) − brp2
p
||u||pWε

. Hence {vn} is a (PS)d sequence of Iε with d ≤ c < cV∞Q∞ .

Lemma 3.5 gives that vn → 0 in Wε(RN ). It implies that un → u in Wε(RN ). �

Lemma 3.7 Let {un} be a (PS)c sequence for Iε constrained to Nε with

lim sup
n→∞

||un||N/(N−s)Wε
≤ β∗d∗

s/(N−s)

cα0
, (3.36)

where c > 1 is a suitable constant. Assume that c < cV∞Q∞ . Then {un} has a convergent

subsequence in Wε.

Proof From Proposition 2, we have

||un||Wε ≥ r∗ > 0 for all n. (3.37)
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Then there is u ∈ W s,N/s(RN ) which un → u weak in Wε, un → u strong in Lqloc(RN ),

q ∈ [
N

s
,+∞) and un(x)→ u(x) almost everywhere in RN . Futhermore,

lim
n→∞

||un||Wε = l, r∗ ≤ l ≤ sup
n
||un||Wε < +∞ (3.38)

Thanks to {un} ⊂ Nε, we get

M(||un||pWε
)||un||pWε

=

∫
RN

∫
RN

Q(εy)Q(εx)F (un(y))f(un(x))un(x)

|x− y|µ
dydx.

We consider the case u 6≡ 0. Then there exists uniquely t ∈ (0,+∞) such that tu ∈ NVminQmax ,

and

M(‖tu‖pVmin
)‖tu‖pVmin

= Q2
max

∫
RN

∫
RN

F (tu(y))f(tu(x))(tu(x))

|x− y|µ
dydx. (3.39)

We know that there exists r > 0 such that ‖u‖Vmin
≥ r > 0, for all u ∈ NVminQmax

, then (3.39)

implies u+ 6≡ 0 and there is a postive real number ζ0 so that u(x) ≥ ζ0 > 0 on a measure set

Ω ⊂ RN with |Ω| > 0. By the method of Lagrange multipliers, there exists a real sequence

{λn} ⊂ R such that

I ′ε(un) = λnK
′
ε(un) + on(1), (3.40)

inwhich Kε : Wε → R is defined by

Kε(u) = 〈I ′ε(u), u〉 = a||u||pWε
+ b||u||2pWε

−
∫
RN

∫
RN

Q(εy)Q(εx)F (u(y))f(u(x))u(x)

|x− y|µ
dydx.

Consequently, we have

〈K ′ε(un), un〉 = pa||un||pWε
+ 2pb||un||2pWε

−
∫
RN

∫
RN

Q(εy)Q(εx)f(un(y))f(un(x))un(x)un(y)

|x− y|µ
dydx

−
∫
RN

∫
RN

Q(εy)Q(εx)F (un(y))f ′(un(x))un(x)2

|x− y|µ
dydx

−
∫
RN

∫
RN

Q(εy)Q(εx)F (un(y))f(un(x))un(x)

|x− y|µ
dydx (3.41)

≤
∫
RN

∫
RN

Q(εy)Q(εx)F (un(y))

|x− y|µ

[(
2p−1− θ

2

)
f(un(x))un(x)−f ′(un(x))u2

n(x)

]
dydx

=

∫
Ωn

∫
Ωn

Q(εy)Q(εx)F (un(y))

|x− y|µ

[(
2p− 1− θ

2

)
f(u+

n )u+
n − f ′(u+

n )u+
n

2
]
dydx,

where Ωn = {x ∈ RN : un(x) > 0}. By the condition (f5), we have (p− 1)f(t)− tf ′(t) < 0 for

all t > 0. For all n, we have

(2p− 1− θ

2
)f(u+

n )u+
n − f ′(u+

n )(u+
n )2 < 0

via (f5) and θ > 2p. The equality (3.41) show that supn∈N〈K
′

ε(un), un〉 ≤ 0. Indeed, if

sup
n∈N
〈K ′ε(un), un〉 = 0.
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Then by choosing a subsequence if necessary, we have limn→∞〈K ′ε(un), un〉 = 0. From (3.41),

it holds ∫
RN

∫
RN

Q(εy)Q(εx)F (un(y))

|x− y|µ

[(
2p− 1− θ

2

)
f(u+

n )u+
n − f ′(u+

n )u+
n

2
]
dydx ≥ 0.

Thus, we get∫
Ωn

∫
Ωn

Q(εy)Q(εx)F (un(y))

|x− y|µ

[(
2p− 1− θ

2

)
f(u+

n )u+
n − f ′(u+

n )u+
n

2
]
dydx ≥ 0. (3.42)

Applying (f5) again, we deduce that(
2p− 1− θ

2

)
f(u+)u+ − f ′(u+)u+2

< 0 (3.43)

on Ω ⊂ Ωn, for n large enough. Hence, combine (3.42) and (3.43), it contradicts. Final, we

consider the case u ≡ 0, then (3.37) implies that un 6→ 0 in Wε. Similar to Lemma 3.4, there is

a sequence {yn} ⊂ RN and constants R > 0, β > 0 verifying

lim inf
n→∞

∫
BR(yn)

|un|N/sdx ≥ β > 0. (3.44)

Set vn(x) = un(x + yn), we have ‖vn‖Vmin
= ||un||Vmin

≤ ‖un‖Wε
. Then sequence {vn} is

bounded in W s,N/s(RN ), and up to a subsequence, we can suppose that there is a function

v ∈ W s,N/s(RN ) with vn → v weakly in Wε, vn → v strong in Lqloc(RN ), q ∈ [
N

s
,+∞), and

vn(x)→ v(x) almost everywhere in RN . From (3.44), we obtain v 6≡ 0. We see that

− 〈K ′ε(un), un〉

=

∫
RN

∫
RN

Q(εx)Q(εy)F (un(y))

|x− y|µ
[f ′(un(x))un(x)

2 −
(

2p− 1− θ

2

)
f(un(x))un(x)]dydx

≥ Q2
min

∫
RN

∫
RN

F (vn(y))

|x− y|µ
[f ′(vn(x))vn(x)

2 −
(

2p− 1− θ

2

)
f(vn(x))vn(x)]dydx ≥ 0. (3.45)

Now, by arguments as u 6≡ 0, and we get a contradiction. Hence, we must have supn∈N〈K ′ε(un),

un〉 < 0, and from (3.40), we deduce limn→∞ λn = 0. Therefore, {un} is a (PS)c sequence of

Iε and Lemma 3.7 is proved by applying Lemma 3.6. �

Corollary 2 The critical points of Iε|Nε are also critical points of Iε in Wε.

Proof This result is similarly proved as Proposition 2.1 [17] and we omit the details. �

4 Existence of a Ground State Solution

In this section, we denote the energy function of problem (PVminQmax
) by

JVminQmax(u) =
1

p
M̃(||u||pV0

)− Q2
max

2

∫
RN

∫
RN

F (u(y))F (u(x))

|x− y|µ
dydx.

We remind that cVminQmax is given as follows

cVminQmax
= inf
ζ∈Σ

max
t∈[0,1]

JVminQmax
(ζ(t))
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and Σ = {ζ ∈ C([0, 1],W s,N/s(RN )) : ζ(0) = 0, JVminQmax
(ζ(1)) < 0}, and NVminQmax

is the

Nehari manifold associated with JVminQmax which is defined as

NVminQmax

=

{
u ∈W s,N/s(RN ) \ {0} : M(||u||pV0

)||u||pV0
= Q2

max

∫
RN

∫
RN

F (u(y))f(u(x))u(x)

|x− y|µ
dydx

}
.

Now we are ready to state the main result of this section:

Theorem 4.1 Assume that (f1)–(f5) and (V ), (Q) and (V Q) hold. Then there exists

ε > 0 such that for all 0 < ε < ε, problem (Pε) has a ground state solution.

Proof We claim that there is ε > 0 satisfying cε < cVminQmax
for all ε ∈ (0, ε). Since

cVminQmax
< cV∞Q∞ , then by Lemma 3.6, we get that Iε satisfies the (PS)cε condition. Fur-

thermore, together that result and Lemma 3.2, Iε admits a critical point with level cε. From

the condition (V Q), we have V (0) = Vmin and Q(0) = Qmax.

Choose the smooth function Φ ∈ C∞0 (RN , [0, 1]) satisfying that

Φ(x) =

1 if x ∈ B1(0),

0 if x ∈ RN \B2(0).

We denote vr(x) = Φ(
x

r
)w(x) for each r > 0, then there is tε,r > 0 so that tε,rvr ∈ Nε, and we

get

cε ≤ Iε(tε,rvr) =
1

p
M̃(||tε,rvr||p)−

∫
RN

∫
RN

Q(εy)Q(εx)F (tε,rvr(y))F (tε,rvr(x))

|x− y|µ
dydx.

For any u ∈ Nε, we get

a‖u‖pWε
+ b‖u‖2pWε

=

∫
RN

∫
RN

Q(εy)Q(εx)F (u(y))f(u(x))u(x)

|x− y|µ
dydx.

Thus, we deduce

Iε(u)|Nε =
a

p
||u||pWε

+
b

2p
||u||2pWε

− 1

2

∫
RN

∫
RN

Q(εy)Q(εx)F (u(y))F (u(x))

|x− y|µ
dydx

≥
∫
RN

∫
RN

Q(εy)Q(εx)F (u(y))

|x− y|µ
[

1

2p
f(u(x))u(x)− 1

2
F (u(x))]dydx ≥ 0. (4.1)

From (4.1), for each r > 0, sequence {tε,r} is a bounded sequence when ε small enough. Indeed,

by a contradiction that limε→0+ tε,r = +∞, for each fixed r, then we get

Iε(tε,rvr) ≥
atpε,r
p
||vr||pWε

− γ2
1Q

2
mint

2θ
ε,r‖|vr|θ‖2

L
2N

2N−µ (RN )
→ −∞

via the condition (f4). It is a impossible with (4.1). Hence, we can suppose that tε,r → tr as

ε→ 0+. Note that the support of vr is a compact set, it holds

lim sup
ε→0+

cε ≤
1

p
M̃(||trvr||pVmin

)− Q2
max

2

∫
RN

∫
RN

F (trvr(y))F (trvr(x))

|x− y|µ
dydx = JVminQmax

(trvr)
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via Vitali’s theorem. We remind that trvr, w ∈ NVminQmax
and by [6, Lemma 2.2.], limr→+∞ vr →

w in W s,N/s(RN ). Hence, we deduce limr→∞ tr = 1 by (f5), and

lim sup
ε→0+

cε ≤ lim
r→+∞

JVminQmax
(trvr) = JVminQmax

(w) = cVminQmax
.

By arguments as Lemma 2.9, we get cVminQmax ≤ Cγ1 . Thus, if we take γ1 sufficiently large as

in (2.64) with η = Vmin, ν = Qmax. Then for any (PS)cε sequence {un} for Iε, which satisfies

lim sup
n→∞

||un||N/(N−s)Wε
≤ β∗d∗

s/(N−s)

2N/(N−s)cα0
,where d∗ = min{1, Vmin}.

Apply Lemma 3.6, we get the result of this lemma. �

Lemma 4.2 Let εn → 0+ and {un} := {uεn} be ground state solution of (Pεn). Then

there exists {ỹn} ⊂ RN such that up to a subsequence, {yn} : yn = εnỹn → y ∈ V ∩ Q.
Furthermore, the sequence vn(x) = un(x + ỹn) converges strongly in W s,N/s(RN ) to ground

state solution v of

M(||u||pVmin
)((−∆)spu+ Vmin|u|p−2u) = Q2

max

[
1

|x|µ
∗ F (u(y))

]
f(u) in RN , (4.2)

up to a subsequence.

Proof Let {un} be a sequence of solutions due to from Theorem 4.1 with εn → 0. Then

we have

Iεn(un) = Iεn(un)− 1

θ
〈I ′εn(un), un〉 = a

(
1

p
− 1

θ

)
||un||pWεn

+ b

(
1

2p
− 1

θ

)
||un||2pWεn

+

∫
RN

∫
RN

Q(εny)Q(εnx)F (un(y))

|x− y|µ
[
1

θ
f(un(x))un(x)− 1

2
F (u(x))]dx

≥ θ − p
θp

a||un||pWεn
(4.3)

From (4.3), we get

||un||N/sWε
≤ (θs−N)a

Nθ
cεn ≤

(θs−N)acVminQmax

Nθ
≤ (θs−N)aCγ1

Nθ
.

First, we prove that there are sequence {ỹn} ⊂ RN , R > 0 and δ > 0 satisfying

lim
n→∞

∫
BR(ỹn)

|un|N/sds ≥ δ > 0. (4.4)

Indeed, if for any R > 0, we have

lim
n→∞

supy∈RN

∫
BR(y)

|un|N/sds = 0.

From Lemma 2.10, we see that un → 0 in Lq(RN ) for all q ∈ (
N

s
,+∞). Choose γ1 large enough

such that

lim sup
n→∞

||un||N/(N−s)Vmin
≤ lim sup

n→∞
||un||N/(N−s)Wε

≤ β∗d
s/(N−s)
∗

cα0
, 0 < β∗ < α∗,

where c > 1 and near 1. From the condition (f1) and compute as Lemma 3.4, we deduce

lim
n→∞

∫
RN

∫
RN

Q(εnx)Q(εny)F (un(y))f(un(x))un(x)

|x− y|µ
dydx = 0.
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Since un ∈ Nεn , then we see that

a||un||pWεn
+ b||un||2pWεn

=

∫
RN

∫
RN

Q(εnx)Q(εny)F (un(y))f(un(x))un(x)

|x− y|µ
dydx→ 0

as n→∞. Then ||un||Wεn
→ 0 as n→∞. It contradicts with Proposition 2. Hence (4.4) holds.

We set vn = un(x + ỹn), Vn(x) = V (εnx + εnỹn) and Qn(x) = Q(εnx + εnỹn). Then vn is a

solution of following equation

M

(
[vn]ps,p +

∫
RN

Vn(x)|vn|pdx
)

((−∆)spu+ Vn(x)|u|p−2u)

=

[
1

|x|µ
∗ (Qn(y)F (u(y)))

]
Qn(x)f(u), x ∈ RN (4.5)

with energy function

Ĩεn(vn) =
1

p
M̃([vn]ps,p +

∫
RN

Vn(x)|vn|pdx)−
∫
RN

∫
RN

Qn(y)Qn(x)F (vn(y))F (vn(x))

|x− y|µ
dydx

= Iεn(un) = cεn . (4.6)

Note that from Theorem 4.1, we have lim supε→0 cε ≤ cVminQmax
.

Claim 1 The sequence {εnỹn} is a bounded sequence. Otherwise if the sequence {εnỹn}
is not bounded, then up to a subsequence, still denote by {εnỹn} such that εnỹn →∞. By the

boundedness of V and Q, up to a subsequence, we may suppose that V (εnỹn) → V0 ≥ V∞ >

Vmin and Q(εnỹn) → Q0 ≤ Q∞ < Qmax as n → ∞. Since V and Q are uniformly continuous

on BR(0) for any R > 0, then we have

|Vn(x)− V0| ≤ |V (εn(x+ ỹn))− V (εnỹn)|+ |V (εnỹn)− V0| → 0

as n→∞ on BR(0). Similarly, we also have

|Qn(x)−Q0| → 0 as n→∞ on BR(0). (4.7)

Since the norm in W s,N/s(RN ) is invariant with the change of variable z = x+ ỹn, we have

lim sup
n→∞

||vn||N/(N−s)Vmin
≤ β∗d

s/(N−s)
∗

cα0
, 0 < β∗ < α∗ (4.8)

where c > 1 and near 1. From [9], for any ϕ ∈W s,N/s(RN ), we have

∫
R2N

|vn(x)− vn(y)|
N

s
−2

(vn(x)− vn(y))(ϕ(x)− ϕ(y))

|x− y|2N
dxdy

→
∫

R2N

|v(x)− v(y)|
N

s
−2

(v(x)− v(y))(ϕ(x)− ϕ(y))

|x− y|2N
dxdy (4.9)

as n→∞. Next, we prove that∫
RN

[
1

|x|µ
∗ (Qn(y)F (vn(y)))

]
Qn(x)f(vn)ϕdx→ Q2

∞

∫
RN

(
1

|x|µ
∗ F (v(y))

)
f(v(x))ϕ(x)dx.

(4.10)
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by using Vitali’s convergence theorem. Note that {vn} is a W s,N/s(RN ), then choose a sub-

sequence if necessary, we find that v ∈ W s,N/s(RN ) with vn → v weakly in W s,N/s(RN ) and

vn(x)→ v(x) on RN outside a set with measure zero. From (4.4), we have v 6≡ 0. For any τ > 0

and q >
N

s
, there exists C = C(q, τ) such that

∫
RN

|f(vn)ϕ|dx ≤ τ
∫
RN

|vn|
N

s
−1
|ϕ|dx+ C

∫
RN

|vn|q−1ΦN,s(α0|vn|N/(N−s))|ϕ|dx

≤ τ ||vn||
N

s
−1

LN/s(RN )
||ϕ||LN/s(RN )

+ C||vn||q−1
Lq(RN )

( ∫
RN

(ΦN,s(α0|vn|N/(N−s)))ldx
)1/l( ∫

RN

|ϕ|tdx
)1/t

, (4.11)

where t ≥ N

s
, l > 1 and near 1 such that

q − 1

q
+

1

l
+

1

t
= 1. By [24, Lemma 2.3], there exists

c > 1 and near 1 such that

(ΦN,s(α0|vn|N/(N−s)))l ≤ ΦN,s(α0c|vn|N/(N−s))

for all n. Then from (4.8), using Trudinger-Moser inequality (Lemma 2.2), we have∫
RN

(ΦN,s(α0|vn|N/(N−s)))ldx ≤
∫
RN

ΦN,s(α0c|vn|N/(N−s))dx (4.12)

=

∫
RN

ΦN,s(α0c||vn||N/(N−s)Vmin

(
|vn|

||vn||Vmin

)N/(N−s)
)dx ≤ D∗ < +∞

for all n, where D∗ > 0 is a suitable constant. Combine (4.11) and (4.12), and apply Lemma

2.8, there exists C > 0 such that∫
RN

∣∣∣∣[ 1

|x|µ
∗ (Qn(y)F (vn(y)))

]
Qn(x)f(vn)ϕ

∣∣∣∣dx ≤ C ∫
RN

|f(vn)ϕ|dx < +∞. (4.13)

Similarly, we also get
∫
RN
|[ 1

|x|µ
∗ F (v(y)))]f(v(x))ϕ(x)|dx < +∞. Therefore,

{([
1

|x|µ
∗ (Qn(y)F (vn(y)))

]
Qn(x)f(vn)− Q2

0

|x|µ
∗ F (v(y))

)
f(v(x))ϕ

}
∈ L1(RN ).

Then there exists a constant K > 0 such that∣∣∣∣(([ 1

|x|µ
∗ (Qn(y)F (vn(y)))

]
Qn(x)f(vn)− Q2

0

|x|µ
∗ F (v(y))

)
f(v(x))ϕ

∣∣∣∣ ≤ K
for all x ∈ RN outside a set with measure zero. Thus for any δ > 0, there exist τ = δ/K such

that for any measure E with |E| < δ/K, we have∫
E

∣∣∣∣([ 1

|x|µ
∗ (Qn(y)F (vn(y)))

]
Qn(x)f(vn)− Q2

0

|x|µ
∗ F (v(y))

)
f(v(x))ϕ

∣∣∣∣dx ≤ |E|K = τ

for all n. Hence{([
1

|x|µ
∗ (Qn(y)F (vn(y)))

]
Qn(x)f(vn)− Q2

0

|x|µ
∗ F (v(y))

)
f(v(x))ϕ

}
n
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is uniform integrability on RN . Since ϕ ∈ LN/s(RN ) and ϕ ∈ Lt(RN ), then for any τ∗ > 0, we

can choose R >> 0 such that

||ϕ||LN/s(BcR(0)) < τ∗ and ||ϕ||Lt(BcR(0)) < τ∗. (4.14)

By arguments as before, we only take integral in BcR(0), there exist C∗ > 0 such that∫
BcR(0)

∣∣∣∣([ 1

|x|µ
∗ (Qn(y)F (vn(y)))

]
Qn(x)f(vn)− Q2

0

|x|µ
∗ F (v(y))

)
]f(v(x))ϕ

∣∣∣∣dx < C∗τ∗. (4.15)

Note that ([
1

|x|µ
∗ (Qn(y)F (vn(y)))

]
Qn(x)f(vn)− Q2

0

|x|µ
∗ F (v(y))

)
]f(v(x))ϕ→ 0

as n → ∞ pointwise on RN outside a set with measure zero. Then all conditions of Vitali’s

covergence theorem are satisfied, we get (4.10).

By arguments as above, we are easy to get

lim
n→∞

∫
RB

Vn(x)|vn|p−2vnϕdx = V0

∫
RN

|v|p−2vϕdx. (4.16)

Since [vn]ps,p +
∫
RN

Vn(x)|vn|pdx = ||un||pWε
, then up to a subsequence, we can assume that

lim
n→∞

(
[vn]ps,p +

∫
RN

Vn(x)|vn|pdx
)

= lim
n→∞

||un||pWε
= rp1 .

Therefore, we have

M(rp1)

( ∫
R2N

|v(x)− v(y)|p−2(v(x)− v(y))(ϕ(x)− ϕ(y))

|x− y|2N
+

∫
RN

V0|v|p−2vϕdx

)

= Q2
0

∫
RN

[
1

|x|µ
∗ F (u)

]
f(u(x))ϕ(x)dx x ∈ RN . (4.17)

We now show that M(||v||pV0
) = M(rp1). By the Fatou’s lemma, we obtain

||v||pV0
≤ lim inf

n→∞

(
[vn]ps,p +

∫
RN

Vn(x)|vn|pdx
)

= rp1 .

Hence, we get M(||v||pV0
) ≤M(rp1). We will prove that

M(||v||pV0
) = M(rp1).

By a contradiction that M(||v||pV0
) < M(rp1), it follows that

M(||v||pV0
)||v||pV0

< M(rp1)||v||pV0
= Q2

0

∫
RN

∫
RN

F (v(y))f(v(x))v(x)

|x− y|µ
dxdy,

which yields 〈J ′V0Q0
(v), v〉 < 0. Then there is r̃ ∈ (0, 1) such that r̃v ∈ NV0Q0

which is Nehari

manifold associated with JV0Q0
. Together with the characterization cV0Q0

, M satisfies the

condition (M4), (f5) and the Fatou’s lemma, we have

cV0Q0 ≤ JV0Q0(r̃v) = JV0Q0(r̃v)− 1

2p
〈J ′V0Q0

(r̃v), r̃v〉
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=
1

p
M̃(||r̃v||pV0

)− 1

2p
M(||r̃v||pV0

)||r̃v||pV0

+Q2
0

∫
RN

∫
RN

F (r̃v(y))

|x− y|µ
[
f(r̃v(x))r̃v(x)

2p
− 1

2
F (r̃v(x))]dxdy

<
1

p
M̃(||v||pV0

)− 1

2p
M(||v||pV0

)||v||pV0

+Q2
0

∫
RN

∫
RN

F (v(y))

|x− y|µ
[
f(v(x))v(x)

2p
− 1

2
F (v(x))]dxdy

≤ lim inf
n→∞

[
Ĩεn(vn)− 1

2p
〈Ĩ
′

εn(vn), vn〉
]

= lim inf
n→∞

[
Iεn(un)− 1

2p
〈I
′

εn(un), un〉
]

= lim inf
n→∞

cεn ≤ cVminQmax
< cV0Q0

, (4.18)

which is a contradiction. Hence M(||v||pV0
) = M(rp1). Therefore, from (4.17), we deduce that

〈J ′V0Q0
(v), ϕ〉 = 0 for all ϕ ∈W s,N/s(RN ).

On combining (4.9), (4.16) and (4.17), we get v is a solution of equation

M(||v||pV0
)(−∆)spv + V0|u|p−2u = Q2

0

[
1

|x|µ
∗ F (u)

]
f(u), x ∈ RN .

Using Fatou’s lemma and (4.6), Lemma 2.12, we get

cVminQmax
< cV0,Q0

≤ JV0Q0
(v)

= JV0Q0
(v)− 1

2p
〈J
′

V0Q0
(v), v〉

=
a

2p
||v||pV0

+Q2
0

∫
RN

[
1

|x|µ
∗ F (v(y))

](
1

2p
f(v)v − 1

2
F (v)

)
dx

≤ lim inf
n→∞

(Ĩεn(vn)− 1

2p
〈Ĩ
′

εn(vn), vn〉

= lim inf
n→∞

(
Iεn(un)− 1

2p
〈Ĩ
′

εn(un), un〉
)

= lim inf
n→∞

cεn ≤ cVminQmax
.

It is a contradiction. Hence {εnỹn} must be bounded in RN , then up to a subsequence, we may

assume that there exists y ∈ RN such that εnỹn → y as n→∞.
Claim 2 y ∈ V ∩ Q.

If y 6∈ V ∩ Q, then we have the following cases:

Case 2.1 y ∈ V an y 6∈ Q, then V (y) = Vmin and Q(y) < Qmax.

Case 2.2 y 6∈ V, and y ∈ Q, then Vmin < V (y) and Q(y) = Qmax.

Case 2.3 y 6∈ V, and y 6∈ Q, then Vmin < V (y) and Q(y) < Qmax.

Using Lemma 2.12, we get

cVminQmax
< cV (y),Q(y) ≤ JV (y)Q(y)(v)

= JV (y)Q(y)(v)− 1

2p
〈J
′

V (y)Q(y)(v), v〉

=
a

2p
||v||V (y)p +Q(y)2

∫
RN

[
1

|x|µ
∗ F (v(y))

](
1

2p
f(v)v − 1

2
F (v)

)
dx

≤ lim inf
n→∞

(Ĩεn(vn)− 1

2p
〈Ĩ
′

εn(vn), vn〉) = lim inf
n→∞

cεn ≤ cVminQmax
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It is an impossible and Claim 2 is proved.

Claim 3 vn → v strong in W s,N/s(RN ). Calculate as Claim 1 to get J
′

VminQmax
(v) = 0.

We next prove

lim
n→∞

||vn||pVmin
= ||v||pVmin

. (4.19)

Then from (4.19), vn → v strong in W s,N/s(RN ) via Brezis-Lieb’s lemma. We also have

||v||pVmin
≤ lim inf

n→∞
||vn||pVmin

(4.20)

via Fatou’s lemma. Assume that by contradiction that

||v||pVmin
< lim sup

n→∞
||vn||pVmin

.

Note that

cVminQmax + on(1) = JVminQmax(vn)− 1

2p
〈J
′

VminQmax
(vn), vn〉

=
a

2p
||vn||pVmin

+Q2
max

∫
RN

[
1

|x|µ
∗ F (vn(y))

][
1

2p
f(vn)vn −

F (vn)

2

]
dx.

Using the condition (f2), and Fatou’s lemma, we get

cVminQmax ≥
a

2p
lim sup
n→∞

||vn||pVminQmax

+Q2
max lim inf

n→∞

∫
RN

[
1

|x|µ
∗ F (vn(y))

][
1

2p
f(vn)vn −

F (vn)

2

]
dx

>
a

2p
||v||pVmin

+

∫
RN

Q2
max

[
1

|x|µ
∗ F (v)

][
1

2p
f(v)v − F (v)

2

]
dx

= JVminQmax
(v)− 1

2p
〈J
′

VminQmax
(v), v〉 = JVminQmax

(v) ≥ cVminQmax
,

which is a contradiction. Then

||v||pVmin
≥ lim sup

n→∞
||vn||pVmin

. (4.21)

Combining (4.20) and (4.21), we get (4.19).

Claim 4 v is a ground state solution of (4.2). First we see that v is a solution of (4.2).

Hence,

cV (y)Q(y) ≤ JV (y)Q(y)(v) = JV (y)Q(y)(v)− 1

2p
〈J
′

V (y)Q(y)(v), v〉

=
a

2p
||v||pV (y) +Q(y)2

∫
RN

[
1

|x|µ
∗ F (v(y))

](
1

2p
f(v)v − F (v)

2

)
dx.

On the other hand, by Fatou’s lemma, and y ∈ V ∩ Q, we get

cVminQmax
= cV (y)Q(y) ≤

a

2p
lim inf
n→∞

(
[vn]ps,p +

∫
RN

Vn(x)|vn|pdx
)

+ lim inf
n→∞

∫
RN

Qn(x)Qn(y)

[
1

|x|µ
∗ F (vn(y))

](
1

2p
f(vn(x))vn(x)− F (vn(x))

2

)
dx

= lim inf
n→∞

(Ĩεn(vn)− 1

2p
〈Ĩ
′

εn(vn), vn〉) = lim inf
n→∞

(
Iεn(un)− 1

2p
〈I
′

εn(un), un〉
)
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= lim inf
n→∞

cεn ≤ cVminQmax
.

Hence JV (y)Q(y)(v) = JVminQmax
(v) = cVminQmax

, and v is a ground state solution of equation

(4.2). �

5 Multiplicity of Solutions to Problem (Pε)

The main result in this section is stated as follows:

Theorem 5.1 Let the conditions (f1)–(f5) and (V ), (Q) and (V Q) hold. Then for any δ >

0, there exists εδ > 0 such that for any 0 < ε < εδ, problem (Pε) has at least catMδ
(M) nontrival

nonnegative solutions, Moreover, assume that uε is a solution and zε is global maximum of uε,

then

lim
ε→0+

V (εzε) = Vmin and lim
ε→0+

Q(εzε) = Qmax.

Proof Fix δ > 0 and suppose that w is a ground state solution of problem (PVminQmax
).

It clears that JVminQmax(w) = cVminQmax and J ′VminQmax
(w) = 0. Choose a be a smooth nonin-

creasing cut-off function η : [0,+∞) → [0, 1] satisfying η(s) = 1 if 0 ≤ s ≤ δ

2
and η(s) = 0 if

s ≥ δ. For y ∈ V ∩ Q, set

ψε,y = η(|εx− y|)w
(
εx− y
ε

)
and we consider the function Φε : V ∩ Q → Nε given by Φε(y) = tεψε,y, where tε > 0 satisfies

max
t≥0

Iε(tψε,y) = Iε(tεψε,y).

From the construction, Φε(y) has compact support for any y ∈ V ∩ Q.
Lemma 5.2 The function Φε satisfies the following limit

lim
ε→0+

Iε(Φε(y)) = cVminQmax
uniformly in y ∈ V ∩ Q.

Proof Assume that the statement of Lemma 5.2 doesnot occur, then there exists δ0 > 0,

{yn} ⊂ V ∩ Q and εn → 0 such that

|Iεn(Φεn(yn))− cVminQmax
| ≥ δ0. (5.1)

By [6, Lemma 2.2], we have

lim
n→∞

‖ψεn,yn‖
p
Wεn

= ‖w‖pVmin
. (5.2)

Since 〈I ′εn(tεnψεn,yn), tεnψεn,yn〉 = 0, using the change of variable z =
εnx− yn

εn
and z̄ =

εny − yn
εn

, then we get

a||tεnψεn,yn ||
p
Wεn

+ b||tεnψεn,yn ||
2p
Wεn

=

∫
RN

∫
RN

Q(εnx)Q(εny)F (tεψεn,yn(y))f(tεψεn,yn(x))tεnψεn,yn(x)

|x− y|µ
dydx (5.3)

=

∫
RN

∫
RN

Q(εnz + yn)Q(εnz + yn)F (tεnη(|εnz̄|)w(z̄))f(tεnη(|εnz|)w(z))tεnη(|εnz|)w(z)

|z − z̄|µ
dz̄dz.
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Now we prove that tεn → 1. First we show that tεn → t0 < +∞. Conversly if tεn → +∞,
Since f(t)

tp−1 and F (t)
tp are increasing for t > 0, η = 1 in B δ

2
(0) and B δ

2
(0) ⊂ B δ

2εn
(0) for all n big

enough, we obtain∫
RN

∫
RN

Q(εnx)Q(εny)F (tεψεn,yn(y))f(tεψεn,yn(x))ψεn,yn(x)

t2p−1
ε |x− y|µ

dxdy

≥ Q2
min|B δ

2
(0)|F (tε$(z̄)

(tε$(z̄))p
· f(tε$(z̄)

(tε$(z̄))p−1

∫
B δ

2
(0)

|ω(z)|pdz, (5.4)

where $(z̄) = minz∈B δ
2

(0) ω(z) > 0 (we recall that ω ∈ Cα(RN ) for some α ∈ (0, 1) by [21,

Corollary 5.5] and ω > 0 in RN by maximum principle in [15]). From the conditions (f3) and

(f4), we have f(t) ≥ γ1θ
2 |t|

θ−1 for all t ≥ 0. Hence, if tε →∞, we can obtain that

lim
t→∞

F (t)

tp
= lim
t→∞

f(t)

ptp−1
≥ lim
t→∞

γ1θ

2p
tθ−p →∞,

which together with (5.2), (5.3) and (5.4) give a contradiction by dividing both sides of (5.3)

to t2pεn and taking the limit as n→∞.
Hence, choose a subsequence if necessary, we find that tεn → t0 ≥ 0 as n → ∞. If t0 = 0,

from tεnψεn,yn ∈ Nεn , by Lemma 2, there is a positive real number r∗ > 0 such that

||tεnψεn,yn ||Wεn
≥ r∗ > 0

for all n large enough. It is impossible since tεn → 0 and ||ψεn,yn ||Wεn
→ ||w||Vmin > 0 as

n → ∞. Now we prove that t0 = 1. From (5.3) and uses Lebesgue Dominated convergence

theorem to get

M(‖tw‖pVmin
)

‖tw‖pVmin

=
Q2

max

‖w‖pVmin

∫
RN

∫
RN

F (t0ω(y))f(t0ω(x))ω(x)

t2p−1
0 |x− y|µ

dydx.

Note that ω ∈ NVminQmax , and (f5) implies that
f(t)

tp−1
and

F (t)

tp
are increasing functions on

(0,∞), and together with the assumption
M(t)

t
is a decreasing function on (0,∞), we get

t0 = 1. Apply Vitali’s theorem, we deduce that

lim
n→∞

∫
RN

∫
RN

Q(εnx)Q(εny)F (tεψεn,yn(y))F (tεψεn,yn(x))

|x− y|µ
dydx

= Q2
max

∫
RN

∫
RN

F (ω(y))F (ω(x))

|x− y|µ
dydx.

Hence, we obtain

lim
n→∞

Iεn(Φεn(yn))

= lim
n→∞

[
1

p
M̃(||tεnψεn,yn ||

p
Wεn

)− 1

2

∫
RN

∫
RN

Q(εnx)Q(εny)F (tεnψεn,yn(y))F (tεnψεn,yn(x))

|x− y|µ
dydx

]

=
M̃(||w||pVmin

)

p
− Q2

max

2

∫
RN

∫
RN

F (ω(y))F (ω(x))

|x− y|µ
dydx = JVminQmax

(ω) = cVminQmax
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which contradicts with (5.1). �

For any δ > 0, there exists ρ = ρ(δ) > 0 satisfying (V ∩Q)δ ⊂ Bρ(0). Let us define the map

χ : RN → RN as follows:

T(x) =

x if |x| < ρ,

ρx
|x| if |x| ≥ ρ.

Next, we give the definition of the barycenter map βε : Nε → RN by

βε(u) =

∫
RN

T(εx)|u(x)|pdx∫
RN
|u|pdx

.

Lemma 5.3 ([6, Lemma 3.13]) The following limit holds

lim
ε→0+

βε(Φε(y)) = y uniformly in y ∈ V ∩ Q. (5.5)

Lemma 5.4 Assume that εn → 0+ and {un} ⊂ Nεn satisfying Iεn(un) → cVminQmax .

Then there exists {ỹn} ⊂ RN such that up to a subsequence, vn(x) = un(x+ ỹn) converges to

v in W s,N/s(RN ) and yn = εỹn → y ∈ V ∩ Q.
Proof Since θ > 2p, 〈I ′εn(un), un〉 = 0 and Iεn(un)→ cVminQmax , then we have

Iεn(un) = Iεn(un)− 1

θ
〈I ′εn(un), un〉

≥ a
(
s

N
− 1

θ

)
||un||pWεn

+

∫
RN

∫
RN

Q(εx)Q(εy)F (un(y))

|x− y|µ

[
1

θ
f(un(x))un(x)− 1

2
F (un(x))

]
dydx

≥ a
(
s

N
− 1

θ

)
||un||pWεn

.

Thus, there exists a constant C =

(
a−1cVminQ|max

s
N−

1
θ

)s/N
≤
(
a−1Cγ1
s
N−

1
θ

)s/N
such that

lim sup
n→∞

||un||Wεn
≤ C.

Hence, the sequence {un} is a bounded in W s,N/s(RN ). We claim that

lim sup
n→∞

∫
Br(ỹn)

|un|N/sdx ≥ β > 0 (5.6)

for some sequence {ỹn} ⊂ RN , and constants r > 0 and β > 0. Conversely, if (5.6) is not true,

then for any r > 0, we have

lim
n→∞

sup
y∈RN

∫
Br(y)

|un|N/sdx = 0.

From Lemma 2.10, we deduce that un converges strongly to 0 in Lq(RN ), q ∈ (Ns ,+∞).

Choosing γ1 sufficiently large as the method of (2.64), we deduce

lim sup
n→∞

||un||N/(N−s)Vmin
≤ lim sup

n→∞
||un||N/(N−s)Wε

≤ β∗d
s/(N−s)
∗

cα0
,
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where c > 1 is a constant and c near 1. Appling Lemma 2.11, we have

lim
n→∞

∫
RN

∫
RN

Q(εy)Q(εx)F (un(y))f(un(x))un(x)

|x− y|µ
dydx = 0.

Since un ∈ Nεn , we get ||un||Wεn
→ 0 as n→∞. It contradicts with Proposition 2. Therefore,

(5.6) must hold. We denote by vn := un(x+ ỹn). We remark that {vn} is a bounded sequence

in W s,N/s(RN ) due to norm ||.||Vmin
invariant under the translation. Choose a subsequence

if necessary, we find v ∈ W s,N/s(RN ) so that vn converges weakly to v in W s,N/s(RN ) and

vn → v in Lqloc(RN ) with q ∈ [
N

s
,+∞). From (5.6), we have v 6≡ 0. Assume that tn > 0 such

that wn = tnvn ∈ NVminQmax
and we set yn := εnỹn. Thus, using the transformation z = x+ ỹn,

Vn(x) := V (εn(x + ỹn)) ≥ Vmin, Qn(x) := Q(εn(x + ỹn)) ≤ Qmax, and the invariance by

translation, we can see that

cVminQmax
≤ JVminQmax

(wn)

≤ 1

p
M̃([wn]ps,p +

1

p

∫
RN

Vn(x)|wn|pdx)− 1

2

∫
RN

∫
RN

Qn(x)Qn(y)F (ωn(y))F (ωn(x))

|x− y|µ
dydx

= Iεn(tnun) ≤ Iεn(un) ≤ cVminQmax + on(1).

Hence, JVminQmax(wn) → cVminQmax . Because {wn} ⊂ NVminQmax , use (f3), there is a suitable

constant K > 0 satisfying ‖wn‖Vmin
≤ K for all n. We observe that vn 6→ 0 strongly in

W s,N/s(RN ). Conversely, if vn → 0 strong in W s,N/s(RN ), then vn → 0 weak in W s,N/s(RN ),

it is a contradiction since v 6≡ 0. Hence, ‖vn‖Vmin
≥ α > 0 for all n and some constant α > 0.

Consequently, we deduce

tnα ≤ ‖tnvn‖Vmin
= ‖wn‖Vmin

≤ K,

which leads to that tn ≤
K

α
for all n ∈ N. Now choosing a subsequence if necessary, we find

that limn→∞ tn = t0 ≥ 0. We claim that t0 > 0. If t0 = 0, then wn → 0 strong in W s,N/s(RN ),

and limn→∞ JVminQmax(wn)→ 0. It is impossible since cVminQmax > 0. Then we may assume that

wn → w := t0v 6≡ 0 weak in W s,N/s(RN ). By the same arguments as Lemma 2.9, we obtain

J ′VminQmax
(w) = 0. Next, we show that

lim
n→∞

‖wn‖pVmin
= ‖w‖pVmin

. (5.7)

If (5.7) is proved, we can get that wn → w strong in W s,N/s(RN ) via Brézis-Lieb’s lemma.

Using Fatou’s lemma, we get

‖w‖pVmin
≤ lim inf

n→∞
‖wn‖pV0

. (5.8)

Assume that by contradiction that

‖w‖pVmin
< lim sup

n→∞
‖wn‖pVmin

.

We have

cVminQmax
+ on(1) = JVminQmax

(ωn)− 1

2p
〈J ′VminQmax

(ωn), ωn〉

=
a

2p
‖wn‖pVmin

+Q2
max

∫
RN

∫
RN

F (ωn(y))

|x− y|µ

[
1

2p
f(ωn(x))ωn(x)− 1

2
F (ωn(x))

]
dydx.
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Then, it holds

cVminQmax
≥ a

2p
lim sup
n→∞

‖ωn‖pVmin

+ lim inf
n→∞

Q2
max

∫
RN

∫
RN

F (ωn(y))

|x− y|µ

[
1

2p
f(ωn(x))ωn(x)− 1

2
F (ωn(x))

]
dydx

>
a

2p
‖w‖pVmin

+Q2
max

∫
RN

∫
RN

F (ω(y))

|x− y|µ

[
1

2p
f(ω(x))ω(x)− 1

2
F (ω(x))

]
dydx

= JVminQmax(ω)− 1

2p
〈J ′VminQmax

(ω), ω〉 = JVminQmax(ω) ≥ cVminQmax

via condition (f3) and Fatou’s lemma, which is a contradiction. Then

‖ω‖pVmin
≥ lim sup

n→∞
‖ωn‖pVmin

. (5.9)

Hence (5.7) is proved by combining (5.8) and (5.9). By the result tn → t0 as n → ∞, we

obtain vn → v in W s,N/s(RN ) as n→∞. Now we prove yn → y ∈ V ∩Q up to a subsequence.

Indeed, if {yn} is not bounded, then there exists a subsequence, still denoted by itselft such

that |yn| → +∞. Because wn → w strongly in W s,N/s(RN ) and the conditions (V ) and (Q),

use the transformations z = x+ ỹn and z̄ = y + ỹn, by Lemma 2.12, we have

cVminQmax

= JVminQmax
(w) < JV∞Q∞(w)

≤ lim inf
n→∞

[
1

p
M̃

(
[wn]ps,p +

∫
RN

Vn(x)|wn|pdx
)
− 1

2

∫
RN

∫
RN

Qn(x)Qn(y)F (wn(y))F (wn(x))

|x− y|µ
dydx

]

= lim inf
n→∞

[
1

p
M̃(||tnun||pWεn

)− 1

2

∫
RN

∫
RN

Q(εnz)Q(εnz)F (tnun(z̄))F (tnun(z))

|z − z̄|µ
dz̄dz

]
= lim inf

n→∞
Iεn(tnun) ≤ lim inf

n→∞
Iεn(un) = cVminQmax , (5.10)

which is a contradiction. Then the sequence {yn} is bounded. By choosing a subsequence if

necessary, we may assume that yn → y. If y 6∈ V ∩ Q, then we have the following cases:

Case 2.1 y ∈ V and y 6∈ Q, then V (y) = Vmin and Q(y) < Qmax.

Case 2.2 y 6∈ V and y ∈ Q, then Vmin < V (y) and Q(y) = Qmax.

Case 2.3 y 6∈ V and y 6∈ Q, then Vmin < V (y) and Q(y) < Qmax.

By argument as (5.10), it is impossible. Hence y ∈ V ∩ Q. �

We use the postive function h : R+ → R+ verifying limε→0+ h(ε) = 0 and denote by

Ñε = {u ∈ Nε : Iε(u) ≤ cV0
+ h(ε)}.

From Lemma 5.3, if we choose h(ε) = |Iε(Φε(y))−cV0
|, then we have limε→0+ h(ε) = 0. Therefore

Φε(y) belongs Nε and Ñε is non empty set for any ε > 0.

Lemma 5.5 ([6, Lemma 3.14]) For any δ > 0, we have the following limit

lim
ε→0+

sup
u∈Ñε

dist(βε(u), (V ∩ Q)δ) = 0.
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Lemma 5.6 Suppose that the conditions (V ) and (f1)–(f5) hold. Denote vn by a non-

trivial nonnegative solution of equation

M

(
[vn]ps,p +

∫
RN

Vn(x)|vn|pdx
)

((−∆)sN/svn + Vn(x)|vn|
N
s −2vn)

=

[
1

|x|µ
∗ (Qn(y)F (vn))

]
Qn(x)f(vn) in RN , (5.11)

where Vn(x) = V (εnx+εnỹn), Qn(x) = Q(εnx+εnỹn) and εnỹn → y ∈ V ∩Q. If vn → v strong

in W s,N/s(RN ) and the following inequality holds

lim sup
n→∞

‖vn‖N/(N−s)Vmin
≤ β∗d∗

s/(N−s)

cα0
,

where c > 1 is a constant and it is choosen near 1, then vn ∈ L∞(RN ) and there is a suitable

constant C > 0 so that ‖vn‖L∞(RN ) ≤ C for all n ∈ N. Furthermore, we also have

lim
|x|→+∞

vn(x) = 0 uniformly in n.

Proof For any positive real number T > 0 and α > 1, we denote ζ(t) = t(min{t, T})p(α−1)

and

ζ(vn) = ζT,α(vn) = vnv
p(α−1)
T,n ∈Wε, vT,n = min{vn, T}.

Set

Λ(t) =
|t|p

p
and Θ(t) =

t∫
0

(ζ ′(t))
1
p dτ.

By the similar arguments in [6], we have

Λ′(a− b)(ζ(a)− ζ(b)) ≥ |Θ(a)−Θ(b)|p for any a, b ∈ R. (5.12)

From (5.12), we get

|Θ(vn(x))−Θ(vn(y))|p

≤ |vn(x)− vn(y)|p−2(vn(x)− vn(y))((vnv
p(α−1)
T,n )(x)− (vnv

p(α−1)
T,n )(y)). (5.13)

Therefore, taking ζ(vn) = vnv
p(α−1)
T,n as a test function in (5.11) and together with (5.13), we

have

a

(
[Θ(vn)]ps,p +

∫
RN

Vn(x)|vn|pvp(α−1)
T,n dx

)

≤M
(

[Θ(vn)]ps,p +

∫
RN

Vn(x)|un|pdx
)

×
( ∫
R2N

|vn(x)− vn(y)|p−2(vn(x)− vn(y))((vnv
p(α−1)
T,n )(x)− (vnv

p(β−1)
T,n )(y))

|x− y|2N
dxdy

+

∫
RN

Vn(x)|vn|pvp(α−1)
T,n dx

)

=

∫
RN

[
1

|x|µ
∗ (Qn(y)F (vn))

]
Qn(x)f(vn)vnv

p(β−1)
T,n dx. (5.14)
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Using (5.12), we have vnv
α−1
T,n ≥ |Θ(vn)|. Since Θ(vn) ≥ 1

α
vnv

α−1
T,n and the embedding continuous

W s,N/s(RN ) ↪→ LN
∗
(RN ) (N∗ > N

s ), then there exists a suitable constant S∗ > 0 such that

‖Θ(vn)‖pVmin/2
≥ S∗‖Θ(vn)‖p

LN∗ (RN )
≥ 1

αp
S∗‖vnvα−1

L,n ‖
p

LN∗ (RN )
. (5.15)

On the other hand, from the boundedness of {vn} and Lemma 2.8, it follows that there exists

C0 > 0 such that

| 1

|x|µ
∗ F (vn)| ≤ C0.

By the assumptions (f1) for q = N
s and (f2), for any ξ > 0, there exists C(ξ) > 0 such that

|f(t)| ≤ ξ|t|p−1 + C(ξ)|t|p−1ΦN,s(α0|t|N/(N−s))

for all t ∈ R. Consequently, we have

a

αp
S∗‖vnvβ−1

T,n ‖
p

LN∗ (RN )
+

1

2

∫
RN

Vn(x)|vn|pvp(α−1)
T,n dx

≤ C0ξQ
2
max

∫
RN

|vnvα−1
T,n |

pdx+ C0C(ξ)Q2
max

∫
RN

ΦN,s(α0|vn|N/(N−s))|vnvα−1
T,n |

pdx. (5.16)

Choosing 0 < ξ <
Vmin

4C0Q2
max

, then (5.16) implies

a

αp
S∗‖vnvα−1

T,n ‖
p

LN∗ (RN )
≤ C0C(ξ)

( ∫
RN

(ΦN,s(α0|vn|N/(N−s)))q
′
dx

) 1

q′
( ∫
RN

|vnvα−1
T,n |

qpdx

)1

q
.

Apply fractional Trudinger-Moser inequality in W s,N/s(RN ), then there is a constant D > 0

satisfying

‖vnvα−1
T,n ‖

p

LN∗ (RN )
≤ C0Dα

p‖vnvα−1
T,n ‖

p
Lqp(RN )

,

where q ≥ N
s , N∗∗ = qp < N∗, q′ > 1 and near 1. Let T → +∞ in that inequality to get

‖vn‖LN∗α ≤ C
1
pα

0 D
1
pαα

1
α ‖vn‖LN∗∗α(RN ). (5.17)

Set α = N∗

N∗∗ > 1. It implies that α2N∗∗ = αN∗. Now, in (5.17), we use α2 instead of α, and

get

‖vn‖LN∗α2 ≤ C

1

pα2

0 D
1
pα2 α

2
α2 ‖vn‖LN∗∗α2 (RN )

= C
1
pα2

0 D
1
pα2 α

2
α2 ||vn||LN∗α(RN )

≤ C
1
p ( 1
α+ 1

α2 )

0 D
1
p ( 1
α+ 1

α2 )α
1
α+ 2

α2 ‖vn‖LN∗∗α(RN ).

Continue that process, for any m, we get

‖vn‖LN∗αm ≤ (C0D)
∑m
j=1

1

pαj α
∑m
j=1 jα

−j
||vn||LN∗∗α(RN ). (5.18)

Taking the limit in (5.18) as m→∞, we get

‖vn‖L∞(RN ) ≤ C

for all n, where C = (C0D)
∑∞
j=1

1

pαj α
∑∞
j=1 jα

−j
supn ||vn||LN∗∗α(RN ) < +∞. �
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Now, we continue to prove Theorem 5.1. Fix ε > 0 sufficiently small. From Lemma 5.2 and

Lemma 5.5, we see that βε ◦ Φε is homotopic with the inclusion map id : V ∩ Q → (V ∩ Q)δ.

Therefore, we deduce

catÑε(Ñε) ≥ cat(V∩Q)δ(V ∩ Q).

Since Iε satisfies the (PS)c condition with c ∈ (cVminQmax
, cVminQmax

+ h(ε)), then by using the

critical points theorem (see Willem [44]), we get that Iε has at least cat(V∩Q)δ(V ∩ Q) critical

points on Nε. We now apply Corollary 2 to deduce that Iε has at least cat(V∩Q)δ(V ∩Q) critical

points in Wε.

Assume that uεn is a solution of problem (Pε), then vn(x) = uεn(x + ỹn) is a solution of

(5.11). Moreover, choose a subsequence if necessary, we find that vn → v strong in W s,N/s(RN )

for some v ∈ W s,N/s(RN ) and yn = εnỹn → y ∈ V ∩ Q. In the following, we prove that there

exists δ > 0 such that ‖vn‖L∞(RN ) ≥ δ for all n large enough. Indeed, by Lemma 5.4 (see (5.6)),

we have

0 <
β

2
≤
∫

Br(0)

|vn|N/sdx ≤ |Br(0)‖vn‖N/sL∞(RN )
(5.19)

for all n sufficiently large, where δ =
(

β
2|Br(0)|

)N/s
. Note that vn → v in W s,N/s(RN ), which

implies that lim|x|→∞ vn(x) = 0 uniformly in n ∈ N. Set pn is the global maximum of vn, then

from Lemma 5.6 and (5.19), there is a positive real number R > 0 so that |pn| ≤ R for all

n ∈ N. Hence, zεn = pn + ỹn is the maximum point of uεn and εnzεn → y ∈ V ∩Q. Since V and

Q are continuous functions, we get V (εnzεn)→ V (y) = Vmin and Q(εnzεn)→ Q(y) = Qmax as

n→∞.
If uε is a nontrivial nonnegative solution of problem (Pε), then wε(x) = uε(x/ε) is a

nontrivial nonnegative solution of (1.1). Then ηε = εzε is maximum point of wε. Setting

vεn(x) := wεn(εnx + ηεn) = uεn(x + zεn). Then by arguments as Lemma 4.2, vε converges

strongly to v in W s,p(RN ), which is a ground state solution of equation

M(||u||pVmin
)((−∆)spu+ Vmin|u|p−2v) = Q2

max

[
1

|x|µ
∗ F (u(y))

]
f(u) in RN .

This completes the proof of Theorem 5.1. �
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