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Abstract In this paper, we study the fractional Kirchhoff-Choquard equation
(1, /"v lulPde ) (¥ (- )5+ V@)~

- N( Q(y F(u(y)

P gy ) o) stute) inw,

where € is a positive parameter, N = ps,p > 2,s € (0,1),0 < p < N. The Kirchhoff
function M(t) = a + bt,a > 0,b > 0, nonlinear function f has the exponential growth,
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potential functions V' and @ are continuous functions satisfying some suitable conditions.
Using Ljusternik-Schnirelmann category theory and variational methods, we establish the

multiplicity and concentration of positive solutions for small values of the parameter.

Keywords critical exponential; fractional p-Laplace; Ljusternik-Schnirelmann category;
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1 Introduction and Main Results

In this paper, we study the existence, multiplicity and concentration of solutions to Kirchhoftf-

Choquard equation invloving fractional p-Laplacian with competing potentials as follows:

M([u]p +5‘N/V(m)|u|pdx>(sN(—A);u+V(x)u|p‘2u)

]RN
N N( Wdy>62<x>f<u<x>> in RV, (11)
]RN

where ¢ is small positive parameter, 0 < u < N, 0< s <1, N =ps,p > 2, M(t) = a+bt,a >
0,b > 0, the potential functions V' and @ are bounded from below by Vi, > 0 and Qpuin > 0,
respectively. The reaction f has critical exponential growth, and (—A) » represents the fractional

p-Laplacian, which defines (up to a normalization constant) as

T)— P=2(p(x) —
(~A)3p(r) = 2 lim. |p(2) s0|(£/)_y|£f](gs) v) 4
RM\B. (z)

Y

for z € RN, where ¢ € C5°(RY) and B.(z) is a ball with center = and radius e. The absorption
potential V' and reaction potential @) are bounded continuous functions satisfying some suitable
conditions given by:

(V) V:RY — R is a continuous bounded function on RY, satisfying
0 < Viin := inf V(z) < Vo =liminf V(z) < 4o0.
z€RN || =00

This kind of hypothesis was introduced by Rabinowitz in [37].

(Q) Q € C(RNY)NL®(RY), we have Quin := infyepy Q(z) > 0 and Quax 1= max,cpy Q()
> Qoo, Where Qoo = limsup|,_, o Q(z).

(VQ) V(0) = Viin and Q(0) = Qmax, ¥V N Q # 0, where

V={zcR":V(2)=Vin}, Q={r R :Q(z) = Quax}-

Note that our conditions (V') and (Q) are simpler than the conditions due to Ding and Liu
[14] and they are easy to check. Now, we give some assumptions of the nonlinear function f as
follows:

(f1) [ is a continuously differentiable function with the property that f(s) = 0 for all s <0,

and for each

N N
q1 2 —, 42 > )
s s

there exist two positive constants a; > 0, a2 > 0 such that
F1(#) < anlt] ™72 4 ag® s (ot N N [t 272,
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where @y 5(y) = e¥ — ;PBQ y' ,jp =min{j € N:j > p}, ap € (0, ), and cv, is given in the
J:

Lemma 2.1.

(f2) limg o+ % =0.

(f3) There exists § > 2p such that 2f(t)t > 0F(t) > 0 for all ¢ > 0, where F(t fo

(f1) There exists v, > 0 large enough such that F(t) > ~1[t|? for all ¢ > 0, Where 0> 2p is
a constant in the condition (f3).

(/) The map 110

is strictly increasing on (0, +00).
Remark 1.1 We denote M f M (7)dr for all ¢ > 0. Then

— 2
M(t) = at + b < v(t+t2)

b
for all t > 0, where v = max {a, f}. From the condition (f5), we see that % — F(t) is an
increasing function on (0, 400). Clearly, M verifies the following conditions:
(M) The function M € C(R{,R*) satisfies

inf M(t)>a>0.
teR+

(My3) The function t — M (¢) is increasing on [0, +00).
(Ms3) For all t; >ty > 0, then

M) ) (1 1Y

tq to tpy 12

~ 1
(My) The function M(t) — §M(t)t is increasing on [0, +00).

When s — 17 and a = 1,b = 0, our problem (1.1) becomes the following equation

—eNAnu 4 V(@) |uN Py = et N(/Wdy)@(m)ﬂu(w)) in RV, (1.2)

In 2014, Alves-Yang [2] studied the subcritical case of equation (1.2). Namely, they considered
the existence of semiclassical ground state solution of the Choquard equation as follows:

—ePApu+ V(z)|ufP~2u = e~ N(/Q(yﬁ/))dy)c;)(x)f(u(x)) in RY, (1.3)

where € > 0, A, is the p-Laplace operator, 1 < p < N, V and @ are two potential functions
satisfying the the conditions due to Ding-Liu [14]. A solution of the equation (1.3) as € — 0
is said to be semi-classical. In the physical meaning, the semi-calassical as ¢ — 0 should be
corresponded to solutions of equation (1.3) and the critical points of potential V' and @ which
controls the classical dynamics. We see that if u. is a solution of equation (1.3) and zo € RY,

then the function v.(x) = u.(zg + ex) is a solution of the equation

Q(xo +ey)F(v (y))d
|z —yl|~

—Apve + V(o + ex)|v. [P v, ( y) Q(zo +ex)f(ve) in RY. (1.4)
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If 29 € R is a critical point of V and Q with V(z¢) > 0 and Q(z¢) > 0, then we expect that

v should converges to a solution v of the equation
F
et Vil = Qo ([ T ay) flu(e) iR
RN

The initial contribution to semi-classical solutions was presented by Floer-Weinstein [16]. Specif-
ically, when N = 3 and p = 2, equation (1.3) arises in the context of Bose-Einstein condensation,
helping to illustrate finite-range many-body interactions among particles.

When p =2,Q = 1,u = N — o, and F(u) = |u|?, the equation (1.3) transforms into the

following Choquard equation
—Au+V(z)u= (I * [u|")|[uP"2u inRY, (1.5)
where I,, is the Riesz potential defined for each point x € R \ {0} by
"(55°)
,a € (0,N),

r(‘;‘>7rN/22a

I is the Gamma function and V is a potential function. When p =a =2, N =3, and V(z) = v,
the equation (1.5) reduces by the Choquard-Pekar type equation

Aa
Ia(fI;) = W, where Aa

—Au+vu= (I xu?)u, xcR3 (1.6)

which arises from various physical problems. This equation was introduced in 1976 by Choquard
[26] in order to describe an electron trapped in its own hole. It also appears in the theory of
the polaron at rest [19, 20, 34] and in models of interaction between non relativistic quantum
mechanics and gravitation [23, 31, 35] which was proposed by Penrose. It is now called by
Schrédinger-Newton equation. The variational method is used to study the Choquard equation
from the work of Lieb [26] and Lions [27]. After that, many authors use this method to
investigate the existence of weak solutions to Choquard-type equations. In 2016, Alves-Cassani-
Tarsi-Yang [3] studied the problem (1.2) with Q = 1 in the case N = 2. Namely, they considered
the following equation:
—?Au+ V(z)u =N [|$1|“ * F(u)] flu) inR* (0 < pu<?2), (1.7)

when f has exponential growth and V satisfies some following conditions:

(F1) (i) f is a continuous function sastisfying f(s) = 0 for all s < 0 and 0 < f(s) <
Cet™s® s >0, where C > 0 is a constant;

(ii) there are so > 0, My > 0 and g € (0,1] so that 0 < s7F(s) < My f(s) for all |s| > so.

(F2) There are p > 2_7“ and C), > 0 verifying f(s) ~ Cps? as s — 0.

(F3) There is a positive real number K > 1 such that f(s)s > KF(s) for all s > 0, where

F(t) = jF( )ds.

sf(s . . 4LV" 2
(Fa) lim 4o f(s,)f(s) > B3, with > inf,>0 52 p40 ® (2 (4#0)(%) Dk
(F5) The map f( ) is strictly increasing on (0, +00).
(V1) V(x) > Vo > 0 in R? for some Vj > 0;
(V2)

V2) 0 < Vo = infyere V(2) < Vo = liminf ;o V(z) < c0.
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Then they obtain the following result:

Theorem 1.2 Assume that the reaction f satisfies the conditions (F;)—(Fs) and the
potential function V' satisfying the assumptions (V1)—(V3). Then for any ¢ > 0 small enough,
problem (1.7) admits one positive ground state solution. Moreover, if u. is one of these solutions

and 7. is the global maximum of u., then lim._,o V(n.) = V.

In the fractional p-Laplacian case, Ambrosio [8] studied the multiplicity and concentration

of solution to the following equation

1

(—A)u+ V(ex)|ulP~2u = (W * F(u))f(u) in RN, (1.8)
where f has subcritical growth and V' satisfies the condition (V). He uses variational method,
Ljusternik-Schnirelmann theory and follow the method due to Szulkin-Weth [41] to prove the
main result. In 2023, Sun-Liang-Radulescu-Nguyen [25] studied the multiplicity and concentra-
tion of solutions to problem (1.8) when f has exponential growth, and V satisfies the condition
(V). In 2021, Clemente-Albuquerque-Barboza [11] studied the following problem in one dimen-

sional related with problem (1.7) as follows:
(—A)Y2u+u = [I, * F(u)]f(u) in R, (L9)

where 0 < i < 1, I, is the Riesz potential and f has exponential growth. They used the varia-
tional methods and minimax estimate to study the existence of weak solution for problem (1.9).
We suggest readers to the work of Moroz-Schaftingen [30] for guidance on the Choquard equa-
tion. In 2022, Yuan-Tang-Zhang-Zhang [46] have been studied the existence and concentration

of weak solution to the problem as follows
1
(=AY 2u 4+ V(z)u = et ! (W) * F(u))f(u), z eR.

Here, they assume that V satisfies conditions (V1) and (V3) in R, f has the Trudinger-Moser
growth and satisfies some technique assumptions so that the Mountain Pass Level can be
bounded above by a suitable constant. Note that they do not study the multiplicity of weak
solutions by using Ljusternik-Schnirelmann category theory. Zhang-Zhang [50] studied the
muliplicity and concentration solution for Choquard equation with critical growth in R? as

follows:

s v s [ @I QUIF@) | (i, QS
eAu+V(rju=¢ R[ P dy( | + 6— 1 ),

where f has subcritical growth and two potential functions V and @ satisfy some suitable

assumptions. In 2023, Su-Liu [40] are concerned with the following Choquard equation:
—2Au+V(z)u = Iy x F(u))F'(u), z € RY,

where N > 4, a € (0, N), I, is the Riesz potential and & > 0 is a small parameter. Here, they

1 1 - N N
assume that F(u) = —|u|? + 2—*|u\2a, where 2% < q < 2%, 2 = ra and 2} = N+g a
q @ -

lower and upper critical exponents respectively, in the sense of the Hardy-Littlewood-Sobolev

re

inequality. In this work, they construct a bound-state concentrating at an isolated component

of the positive local minimum points of V as ¢ — 0 for each ¢ € (27,2) via to variational

o) “a
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methods, a truncation technique and a new regularity result. For more results, we refer the
readers to [4, 5, 12, 13, 38, 39, 45] and the references therein for more detail information.

When s =1,p =2 and € = 1, our problem reduces to

M(/RN |Vu\2d:c+/RN V(ac)|u|2d:c) [—Au+ V()] = f(u) n RY (1.10)

which has analogue of the well-known Kirchhoff equation

p E [T
Pl — (ho + Y ; |uw|2dm)um =0. (1.11)

It was first proposed by Kirchhoff which is an extension of the classical D’Alembert’s wave
equation to describe the transversal oscillations of a stretched string, where p, Py, F, and L are
constant variables with physical meanings. Fiscella and Valdinoci [18] proposed an interesting
physical explanation of the fractional Kirchhoff equation.

To the best of our knowledge, there is not any result concerning problems (1.1) with expo-
nential growth. Our aim is to give the first result for these type equations with Trudinger-Moser
nonlinearity.

Now let us recall some notations that will be used later. The fractional Sobolev space
WP (RN) is defined by

WeP(RY) := {u € LP(RV) : [u]s,p < 00},
where [u], ) is the Gagliardo seminorm given by

b= ([ H R )

We also know that the fractional Sobolev space W*P(R¥) is a uniformly convex Banach space
(see [36]) equipped with the norm

1/p
ull = lulwesqeny = (Il + [ul2,)

For n > 0, we use another norm on W*?(R") which is given by

1/p
[ully = (nllwllfp@ry + s, )
(RN)

Then two norms ||.|| and .||, are equivalent on W*P(RYN). For each ¢ > 0, we denote the
completion of C§°(RY) under the norm

» » 1/p » »
ullw, = ([l + i)l = [ ViE)u(@)Pde
RN
by space W.. It well known that W, is uniformly convex Banach space (see [36, Lemma 10]
for the proofs). Furthermore, W, is also a reflexive space, and it is compact with weakly
topology. From the condition (V) and Theorem 6.9 in [32], we have the continuous embedding
W, < L*(RN) for all v € [&, 4+00), then there is a best constant S, . > 0 such that

. Julw.
v,E uF0,ueWe ||UHLV(RN)
for all v € [&, 400). Then it holds that
lul| v vy < S,jslHuHWE for all u € We. (1.12)
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Using again Theorem 6.9 in [32], we also have the continuous embedding W*N/$(RN) « L¥
(RN) for all v € [%, +00), then there is a best constant A,,, > 0 which is given by

4, = ot ully
u#0,ueWN/s (&) [[ull Lv @y

for all v € [&, 400). Hence, we have
Jull v ey < Ay llully,  for allu € WHN/(RN), (1.13)

By the change of variable x — ez, the equation (1.1) is equivalent to the following equation of
the form:

m(p, /Vmwm) B3+ V)l )

-WMW<MwW<@ﬂwawm>me ®.)
Definition 1.3 The function u € W, is a weak solution of equation (P.) if
M(||ull? S)( / lu(z) — u(y)| =~ ﬁz(f)y;x(y))(w(:v) - (p(y))dxdy +/ V(m”uzsv_prdx)
R2N ]RN
= [ [ o) ut) ooy

RN RN
for all p € W-.
We denote catg(A) by the category of A with respect to B, namely the least integer k
such that A C A3 U---U Ay, where A; (i = 1,--- ,k) is closed and contractible in B. We set
catp(P) = 0 and catg(A) = +oo if there is no integer with above property. We refer the reader

to [44] for more details on Ljusternik-Schnirelmann theory. Denote
(VN Q)s = {xr e RY : dist(x, YN Q) <6} ford > 0.

Now, we state the main result in this paper as follows:

Theorem 1.4 Let (V),(Q),(VQ) and (f1)—(f5) hold. Then for any § > 0, there exists
€5 > 0 such that problem (1.1) has at least cat(yng),(V N Q) nontrivial nonnegative weak
solutions for any 0 < € < 5. Moreover, if w. denotes one of these solutions and 7. is its global
maximum such that, up to a subsequence, 7. — y € VN Q and v.(x) := w(ex + 1) converges
strongly in W*P(RY) to a ground state solution of

1

Ml Y(~ A+ Vi ulP~u) = ;{mw*FWﬂﬂw in BV,

Furthermore, we have

lim V(T)E) - ‘/rnin and lim Q("]E) = Qmax-
e—0t

e—0+
Next, we consider the conditions (f1)'—(f5)’ instead of (f1)—(f5) respectively as follows:
(f1)’ f is a continuous differentiable function such that f(s) =0 for all s < 0.
For each
@1 =2 N,g2 > N,
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and there exist two positive constants a; > 0,as > 0 such that

F1(1) < arft]™ % + az® (aolt Y/ Nt 72,

J
where O (y) = e¥ — Z;.V:OQ %, and 0 < ag < oy, ajy is defined as in Lemma 2.2.
(o) iy 248 =0
(f ) There exists § > 2N such that 2f(¢)t > 0F(t) > 0 for all t > 0, where F(t) =
Jo (1)
(f4) There exists 71 > 0 large enough such that F(t) > v [t|? for all ¢t > 0, where § > 2N

is a constant in the condition (f3).
t
(f5)) The map tJva(f)l is strictly increasing on (0, +00).
By arguments as Theorem 1.4, we get the following result for problem (1.2):

Corollary 1 Let (V),(Q),(VQ) and (f1)'—(f5)" hold. Then for any 6 > 0, there exists
es > 0 such that problem

M( / |Vau|N + E_NV(x)|uNdx) (—eNAnu + V(@) u)N2u)

RN

— Q|+ 0|70 iR

has at least cat(yngy;(V N Q) nontrivial nonnegative weak solutions for any 0 < ¢ < 5.
Moreover, if w. denotes one of these solutions and 7, is its global maximum such that, up to a
subsequence, 7. — y € VN Q and v.(x) := w.(ex + 1) converges strongly in W*P(RY) to a
ground state solution of

1
M( / |vu|N + Vmin|u|Ndx> (_ANU + Vmin|u|N_2u) = 1?nax |:| |# * F(’U,):| f(’LL) in RN‘
X
RN

Furthermore, we have

lim V(n:) = Vipin  and  lim Q(ne) = Qmax,
e—0t

e—0t

c
— —|r— El
and there exists C' > 0, ¢ > 0 such that |w.(z)| < Ce et for all z € R,

The exponential decay estimate in Corollary 1 is similarly proved as in [2]. Corollary 1
is new up to now. In our present work, there exists the competition between the absorption
potential V' and the reaction potential ). The absorption V' would like to attract the global
maximum point of solutions to its minimum points, and the reaction potential QQ want to attract
the lobal maximum point of solutions to its maximum points. Therefore, the concentration
phenomena of semiclassical states to problem (1.1) is more interesting and delicate than the
case the equation contains only on absorption potential V' as in [3] and [46]. See again the work
of Yuan-Tang-Zhang-Zhang [46], we need overcome some difficulties than their work in proving
the concentration of solutions. In their work, the space solution is a Hilbert space and in our
work, the solution space is not Hilbert space. Then, some nice properties in Hilbert space is not
applied in our work. The proofs about concentration of weak solution in our work is not the
same as [46] due to the properties of fractional p-Laplace operator. The fact that, we can not use

the s-harmonic extension by Caffareli-Silvestre [10] as in [46]. Our more difficulty is to analyse
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the compactness of Palais-Smale sequence for energy function due to potential competion and
the non-Hilbert structure of space solution. In [47], Yuan-Radulescu-Tang-Zhang studied the
concentrating solutions for singularly perturbed fractional %—Laplacian equations with nonlocal
Choquard reaction which comes from (1.1) as M = 1 and @ = 1. Here, the multiple solutions
can not get by using their method. Note that our problem is the lack compactness due to
the condition (V). In order to apply the Ljusternik-Schnirelmann category theory, we need
establish some tools for this aim. We recommend the readers to read Section 2 to Section 5
for that comments. In our work, we assume that N = ps, then it does not have embedding
from W*P(RY) into L>(RY). To overcome this difficulty, we use fractional Trudinger-Moser
inequality in every step. It is the main different point in comparing with the work of Ambrosio
[8]. Final, we will consider the subcritical case for the equation (1.1) in a forcoming work. The
final difficulty is that our problem contains the Kirchhoff function M. Then we need overcome
the obstacle problem in estimating the Moutain pass level, the estimation techniques to prove
the existence, as well as the multiple solutions of problem (1.1).

The plan of the paper is the following: in Section 2, our focus lies in examining the associated
autonomous problem. In Section 3, we study the auxiliary problem. In this section, we prove
some technique results about the compactness of (PS) sequence. In Section 4, we prove the
existence of ground state solution and concentration of solutions to auxiliary problem and some
tools to explore the multiple solutions of auxiliary problem. We also study the limit of sequence
of ground states solutions. Finally, the Section 5 is devoted to completing the proof of Theorem
1.4.

2 Autonomous Problem

In this section, we study the autonomous problem connected with (P;) as follows

M (J[ul ) ((=A)xysu + nlu

B2y o2 [lelf‘ . F(u)} f(u) inRY, (Pow)

where 1 > 0,v > 0 are constants.

The corresponding energy functional .J,,, : W*N/$(RY) — R for problem (P,,) is given by

— V2
Tyo(u) = S50 (Jull) = % [ K(w)(@)F(u(e))da

RN
iy 7 [ [ PUG)Fu@)
= iy -5 [ f sy

|z —y
RN RN

where K (u)(z) = [ £ gy,
RN

le—y|~
We present the following lemmas to prove the results in this section.
Lemma 2.1 ([49]) Let s € (0,1) and sp = N. Then for every 0 < a < a. < of y, the
following inequality holds:
sup / Dy (alul NN =)z < +oo,
uEWS,p(]RN),\\uHWs,p(RN)Sl]RN
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where @y (1) = €' — ;-":[)2 T Jjp =min{j € N:j > p}. Moreover, for a > o} v,
sup / <I>N7s(a\u|N/(N*5))dx = +00,
UEWS’P(RNH‘“HwSm@N)SlRN
where
C v [Wenreey E@w k- 1 T
YN = N! kz_o k! (N + 2k)P = N0sw) '

The optimal of a, in Lemma 2.1 is still a open problem, and in the local case, we have the
following sharp result:

Lemma 2.2 (see [1, Theorem 1.1]) For every a > 0 and v € WHN(RY), the following
inequality holds:

/ <I’N(oz|v\%)dx < 400.
RN
Moreover, for ac < oy, there holds
sup / @N(a\v|%)dx < 400,
VEWLN (RN),[[vllyy1, 3 gy <1 IRV
where )
ay = Nwy ;-

Meanwhile, the inequality is sharp: for o > a7, the supremum is infinity.

Lemma 2.3 ([48, Corollary 2.1]) For any a > 0 and all u € W*N/5(RV), it holds

/ D (aful NN =)z < +oo.

RN

1 1
Lemma 2.4 ([28]) Let r,t > 1 and 0 < p < N such that — + Lt 7= 2, f € L"(RY)
r TN

and h € L*(RY). Then there exists a sharp constant C(r, N, u,t) > 0 independent of f and h
such that

x)h
//dedy<C(T,N,u,t)||f|LT(RN)||h||Lt(RN)_
RN]RN y

In the application, we usually use r = ¢, then we have % + & =2o0rt= QJLL. Then for

2N

1
F(u) = |u|?, we see that [ Lx“ * F(u)] F(u)dz is well-defined on L*(RY) with ¢ = QZ%JXM.
RN

In order to use the continuous embedding from W*N/¢(RV) into L"(RY), r € [&,+00), we

2N—p
2s

Lemma 2.5 Suppose that f satisfies the conditions (f1), (f2). Set

() = E/RN (1 ) F(u))F(u)dx, w e WeN/s(RN),

2 ||+

then ¢ € C1(W=N/5(RV),R). Furthermore, we have
<Y (u),v >= / <1 * F(u))f(u)vd:c
CIANE

for all v € W*N/5(RN). Furthermore, we also have .J,,, € C*(W*N/3(RV), R).

require that gt > &, then ¢ > & =
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Proof By arguments Lemma 2.6 and using Lemma 2.3, we see that 1 is well defined on
W N/s(RN). We have

Plu+tv) —9(u)

t—0 t
1 1
= L / L (Fluly) + o)) ) Flu+to) — (—— = Flu(y)) ) F(u)da.
Ry \ |]# B
By Mean value theorem, there are two functions 61,60, € (0,1) so that

F(u(y) + tv(y)) = F(u(y)) + f(uly) + t610(y))tv(y),
F(u(z) + tv(z)) = F(u(z)) + f(u(z) + thv(x))to(x).

It implies that

| (G ) + 0 Pl ) = (o Fla)) £l

t L\ ="

=(]*wm@»+ﬂww+ww@mmw0ummw+ﬂwm+wwmwwm>

||

- (g P ) P

|
1
|

_ <|1 ) F(u(y))) Flu(@) + ts0(2))to(x)) + <

x|H

* (f(uly) + t91v(y))tv(y))) F(u(z))
+ <|x1|# * (f(uly) + t@w(y))tv(y))) fu(z) + thov(x))tv(x)).

Hence

o | (o P + ) ) Pl o) = (Pl P as

2t x|H
RN
:;/[(Qw*ﬂmwﬂfw@»m%www@»
RN

+ <x1|“ * (f(u(y) + tel’U(y))’U(y))) F(u(m)):| dr
+ 1 / ( L (f(u(y) + t&w(y))v(y))) Fu(z) + thav(2))v(z))dz.

2 ) \lzl#
RN

By the condition (f1), we have
[F(D)] < anlt] " + ag®, (aolt] ¥/ V)|

Using Hardy-Littlewood-Sobolev inequality, we deduce

/( ! <ﬂww+w&wwwwn)fww»+ww@»mex
RN

falr

(2.1)

< |[f(uy) +tbrv(y)) o)l ex f(u(@) + t0av(2))v(@))]]

| v
LN-u (RN) LN-u (RN)

When ¢ small enough, we see that
|f (u(y) + t01v(y))v(y)]
< a2 (Jul™ T+ o Tl
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+ 202 ag u| @, (g2 VT (u NV o MV (] 27 4 o],
Since @y s(t) is a convex function, then
B o (02N V=) ([ /N =9) [N/ (N =9))
< 5 (Pra(002 2V I VO (a2 2N NN
Combine (3.5) and (3.6), there exists a suitable constant

|f (u(y) + t0rv(y)o(y)] < O(jul® o] + o] + (P, (2.2 Ny /=)
+ ® s (ap2.2N T o VD)) (fu| = o] - [o]22)

(2.2)

= C(Jul ™~ Jo] + [o] ™ + D5 (n2.2% N V=) ] 2o

+ q’N,s(ao?-QN/(N_s) ‘u|N/(N—S))|U|q2
+ By (2.2 N =) |y | N/ (N=9)y |y 021y

+ By o (2.2N (N =) | [N/ (N=9)y gy a2,

Then

[F(uly) + tr0())o(y) |5 < (60)75 ((uf® ~ o) 75 + (jo]) 75

2N
+ (D, (2. 2N/ =) [ NN =D) g2 = ) 2077
2N
+ (CI)N’S(QOZQN/(N—S) |U|N/(N_S))|'U|q2) IN—&
2N
+ (D, (2. 2N/ =) [ NN =9y gy a2 =gy ) 5

2N

+ ((I)N,s(Oé()Q.QN/(N*S)|U|N/(Nfs))‘v|q2)m>.
Using Holder inequality,
a-1 N
2 2Ngq a1 2Ng -
/(|u|qu\v\)%dm§ </|U|2N1“dm> </|U|de> |
RN on J

Using the Holder inequality for g, > g2 with ‘”q—:l + q*q;*‘” + q% =1, we get

2N
| @xalaa2 2 MOt

gk 9x
qx I —92 q qp—1
S (/(@N,s(a02'2N/(NS)|u|N/(N3)))q*QQ) </|u|2211\l\[2;4dx>
N

RN R
1

. Tx 2N
< [ plFEde) < Cuullol| o
’ 2N~ B
RN

By [24, Lemma 2.3], there is ¢ > —2— and near —Z— so that
4 —aq2 4—q2

((I)J\LS(0l02.2N/(N75)|u|N/(Nfs)))7{1*‘1_"(12 ) ax—q2 < q)N“g(aOCZQN/(Nfs)‘U|N/(Nfs))_

(2.4)

(2.6)

Combining (3.7), (2.6) and Lemma 2.3, also computing similarly for remain factor in (2.4), we

get that

[1f (uly) + t610(y))v(y)|] < 400

2N
LN=n (RN)

(2.7)
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By arguments as before, we also have

[|f(u(z) + thav(z))v(z))|| 2~ < +00. (2.8)

LN—F (RN)
Combining (2.1), (2.7) and (2.8), we get
(e * (700 + 01000 ) F ) + th20(2))o(e) € L RY)
Hence,
t

iy 5 [ (o () + 010000 ) Sulo) + Barlao(o)ds =0, (29)

t—0 2
RN

1
Similarly, we also have (W * F(u(y))) flu(z) + thyv(z))v(z) € LY(RN). Then there is a

constant A > 0 so that < A almost everywhere. For

(pj ; F(u(y») F(u() + tha0(x))o(2)

any € > 0, there exists § = /A, and any measurable set £ C R¥ satisfying |E| < 6, we obtain
1
[ | (G * Pt state) + 0a0aeto

for all |n| € [0,1]. Note that <|xl|u * F(u(y))) f(u(x) + thv(z))v(z) € LY(RYN), then there is a

positive real number R > 0 so that

/ ( 1, F(u(y») F(u(z) + t00(x))o(2)
RN\ Br(0) | \|7[*

By (2.10) and (2.11), we deduce

dr < AlE|=06A=¢ (2.10)

dz < e. (2.11)

is equi-integrable.

(|;| ' F(u(y») F(u(z) + t030(x))o(z)

Furthermore,

(pju F(u(y ))) f(u(z) + thgv(z))v(z) — (1 « Flu(y ))) Fu(@))o(z)

|

for all z € RY and t — 0. Therefore, by Vitali’s theorem, we get

ing [ (o F(0)) Fula) + 2000t / (e * Flut) ) fut)ota)d,

t—0
RN

(2.12)

Similarly, we also have

lim <;|# « (f(u(y) +t91v(y))v(y>)) F(u(z))dr = / <

t—0
RN

1

— x
||

By chnaging variables between x and y, using Fubini’s theorem, it holds

R{ (1 * f(u(y))v(y)> F(u(x))dx R[ (|331|u * F(u(y))> Fu(z))v(z)da.

||

Combine (2.8), (2.12) and (2.13), we get

(V' (u),v) :RN <|| ) u)vdr = // Iw—y\“ )d dy. (2.14)
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Then we have that 1 is Gateaux differentiable. From the condition (f;), we have

d e L=(RM). (2.15)

Ix\“ |

Indeed, by the condition (f;), we have

L P < / arful® + a®u(aolulM VDl
B |z — y[~
RN
N t
Choosing t > N =i or N > tliil’ then we get
|u|Q1 / ‘u|¢h / |u|tZ1
dy = dy + dy
|z —yl |z —yl |z — yl#
RN {y:lz—y[>1} {y:lo—y|<1}
1
Q qit
< / |u|? dz + < / o= gD y> (/ |ul dm)
RN {y:lz—y|<1}
Also, we get
D (ol Y/ V) ufe T el N
N,s(aolu ) |u|?? N/(N—s)\\¢/(t=1) | ul™ '
dy < Dys ——d ,
/ & —ylr = (/( w.o{eolu ) o — gt
RN RN R
(2.16)
|u‘Q2t
where we choose ¢ > 1 so that 0 < tu < N. By arguments before, we ‘ J I dy’ < Cy.
RN [T —Y
Then there exists a constant C,, > 0 such that
1
W*F(u) <C, (2.17)
for all z € RY. Combine (2.14) and (2.17), we deduce
(W ()0l < Cu [ If(u)old (218)
RN
By the condition (f;), using Holder inequality, for g, > g2 with ‘hq—:l + q*q;*qz + q% =1, we get
/ By, (ol V) ] 2 | de (2.19)
RN
9 g2-1 1
'R % —az ax qx
< </(@N7S(QO|U|N/(NS)))q*qz> </ |’u,q2*df£) </ ‘1; q*dLE) < 02,u||UHLq*(RN)~
RN RN RN

Hence, it holds

/\f(u)v|dx§a1/|u|‘“_1|v|dx+a2/<I>N,S(Oz0|u|N/(N_s))\u|‘“_1|v|dx
RN RN RN

< anl[ul|%e; im0l L @) + a2Co,ul 0| o @) < Caul[V]lwrs /e @y,

(¢ (u), 0)] <

&N)- (2.20)
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This implies that ¢ € (W*~/5(RY))’. We now prove that ¢’ is continuous on (W*~/s(RV))".
Then it is Fréchet differentiable. We claim that

19" (un) = ' (W)]| = sup (¢ (un) — ¢ (u),v)]

1011 y.80/5 v, =1
®N) RZ [(kju * F(lm))f(un)— (|331|u * F(u)>f(u)} vdz

as n — oo. Conversely, if for some ¢y > 0, there exist n large enough so that |4’ (u,) — ¢’ (uw)|| >
g0 > 0. Then there exists v € W*N/5(RN) such that

(¥ (un) = " (), 0)] = ¥ (un) = " (W) = - > (2.21)

Now we show that lim,,_, o < ' (u,) — %' (u),v >= 0. Then it is contradiction with (2.21) as n
large enough. By (2.14), we deduce

= sup —0

||UHWS,N/S(RN>:1

(W () — (1), 0) —RZ (e P ) ) = (o + P ) @]t 22)

||~
By arguments before, we have 1 * F(u) ) f(u)v € LY(RY). Now, we show that
||
1
(|$|“ * F(un)>f(un)v € LY(RY). (2.23)

Using Hardy-Littlewood-Sobolev inequality, we get

/ / PO @n@Do(@) 4 )
o - S

ylr

| (R,\,)||f(un)v\|wgggM &y
RN RN

By the condition (f1), one has

|F ()| 7 < (an|un|® + aslun| 2P, (ofug |V N =2))) 757

< C[un| 75 + g |TV5 (B v (o [N/ N —2))) 25355 (2.24)

1 1
By using Holder inequality, for ¢ > 1 and ¢’ > 1 so that n + 7= 1, we deduce

2Ngq
[l (@ olun V) T

RN

ast 1/t 2Nt/ 1/t/
< ( / |un|3ﬁda:) (@ s (o /=) T az) (2.25)

RN

By [24, Lemma 2.3], for ¢ > 2N_tlu and it is choosen near 221\],V_t;i, we have

2N
(@ .o (aoun] V=N L < By (aoclun V) for all n.
Note that
D (ot |V N=)) < By (aoe(u, — ul 4 |u]) N V=)
< B (2N V= ¢(u,, — u NV |y N (V=9

1
<3 (@N,S(zaozm N=3) ¢y, — u NN =9)) 4 <I>N75(2a02N/(N_S)c|u\N/(N_s))). (2.26)
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Since u,, —> w in W, then ||u, _u||W3,N/s(RN) — 0 as n — oo. Hence lim,, o0 2002/ N =9)||u,, —
N/(N—

HW N/s RN)

Trudinger-Moser inequality to get

= 0 and it is small enough as n large enough. Hence, we can apply fractional

/ Dy o (2002 V= |u,, — u)N/ V=) dz (2.27)
RN
N/(N-—s) |un - ’LL| N/(N=s)
:/@NS 202N N =) ¢||u,, — u| o N/s (RN dr <D < 400
’ we (RY) ||un - U,HWS,N/.;(RN)

RN
for a suitable consant D > 0 as n large enough. From (2.24), (2.25) and (2.27), there exists a
positive constant Cy > 0 so that
[ 1) < ¢, (2.28)
]RN

for all n large enough. Similarly, we also have

/ | )| 7 da
RN

sm( / (| o) 77 d + / <|un|q21|v|¢N,s<aoun|N/<NS>>>zfv”udx), (2.29)
RN RN

where D, > 0 is a suitable constant. Using Holder inequality,

1 2N 2Ngqq qlqizl 2Ngqq é
/(|un|(“_ o)) 5 dr < /|un|72N*udx /\v|72Nwdx . (2.30)
RN RN RN

Using the Holder inequality for g, > ¢ with '”q—_l + q*q;qz + qi =1, we get

2N
L (¢N7s<ao|un|N/<N—s>>|un|q2-1|v|>”*“dx (231)

< ([ @xalantun 7y ) (/|u b udx) (/Mw dx)
I,

qx

g+« —q2
/ (@, (aolun |V N=2)))&5a 4
]RN

< / (@ o (@0cfun N V=) d
RN

g/(@N,s(aodN/(N—s)(\ —u|NN=0)) L By (pe2V N =)y [N/ (N=9)) g (2.32)

RN

By Lemma 2.3, there is ¢ >

and near —&— so that
g« —q2

By arguments (2.27) and continuous embedding from W*N/$(RN) into LI(RN), q >
(3.7) and (2.32), there exists C,, > 0 so that

2N
/ (@5 (a0 | N N =), | 2o dz < C, (2.33)
]RN
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for all n large enough. Combining (2.29), (2.30) and (2.33), we get

[ = < ¢ (2:34)

for all n large enough and C; > 0 is a suitable constant. From (2.28) and (2.34), we get that
(2.68). Similarly, we also have

(|x1|l . F(u))f(u)v e L'®RM). (2.35)

Then, by (2.68) and (2.35), we have
i * F(u Up) — L * F(u u) € LY(RY

Hence there is a suitable constant x so that

‘ (wlﬂ s F(un)>f(un) - (|I1|# ; F(u))f(u)

on RY almost everywhere in RY. For any ¢ > 0, there exists § = ¢/k and for all measurable
set £ C RY such that |E| < 6, we have

L] (e ) o) = (g Pt ) 100

and then { <|1|u * F(un)> flug) — <1|u * F(u))f(u)} is equi-integrable. Since u,, — u and
x x

n

<K

dz < K|E| < 0k = ¢, (2.36)

N

v € WON/S(RN), and W*N/$(RN) is continuously embedded into LI(RN),q > —, there is
s

R > 0 large enough so that

1 1
/ v|5fv“hdx> " <eoand ( / |v|55v”2dx) C<e (2.37)
RN\ BR(0) RN\BR(0)

By arguments (2.68) and (2.35), and we only take integral on RY \ Bg(0) to get

[ |G e rn) st = (e r@)) o

o] [}
RV\ B (0)

where C, > 0 is a suitable constant. Since
1 1

almost every where in RY. Therefore, apply Vitali’s theorem, we get

(e + P ) ) = (0 ) 0o
It implies that

nlgngo‘/H{N {(@*F(un))ﬂun)— <;|N*F(u))f(u)]vdm

which is a contradiction with (2.21). Hence lim, o || (un) — ¢'(u)|] = 0 and ¢’ is con-

tinuous in (W*N/$(RN))". By arguments as above, using Holder inequality and Vitali’s the-

dz < Cie,

lim dz = 0.
n— oo RN

207

orem, we see that for any sequence u, — u in W*N/¢(RY), we get (||un|[2)" — (|[u|[£) in

1~
(W=N/s(RN))'. Hence, [[u|[p belongs CHW=N/s(RV),R) and we have p(u) = 5M(||u||g) €
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CH(W=N/s(RN), R). Indeed, we see that ¢’ (u) = M ([|ul[P)(||ul[5)’, and for any sequence u,, — u
in WV RY), it holds @' (un) = M(|lunll2)([uall2) — M(lul)([[ull2) in (WoN/s RNy,
In conclusion, we get that J,,, € C1(WN/3(RV),R). O

Furthermore, we have

52 (u(z) — u(y) (p(z) 2W) 414y
|$__3A2N

u<pd;z:> // x—y|“)) @) 4zay,

RN RN

<J;u<u>,so>M<||u|p>< / [u(@) ~ uly)

o 1

Lemma 2.6 Suppose that (f1) and (f5) hold. Then there are two positive constants g, po
satisfying J,, (u) > po for all u € WN/3(RN) . [/l s.v/s(may = to
N—p

2s

N N
Proof From the condition (f), for each ¢ > — > ,qo > —, there exist a; >
s s

0, a2 > 0 such that
F(E) < arlt] " + ag® o (ot N N7t 2 7T

Therefore, we get
|F(t)] < a1]t|® + ag|t|® (o]t N =)

for all t € R. Apply Lemma 2.4, we obtain that

(«)
< .
3 [ [P dnay < oo NlIF@IE g, (2.38)
RN RN
Note that
N/(N—s)
1@, 3 g, < A S Y ML RPN X )

1
Using the Holder’s inequality for ¢ > 1,¢ > 1: . + 7= 1, and t’ is choosen near 1, for any

b > 2Nt

, together with [24, Lemma 2.3], show that there is a constant C'(b) > 0 satisfying

2Nt
(@.s(aolul™ =) T < C(B) 0o (baolul ) (2.40)

on RV, and then we deduce

Il @ s (aolul™ NN _ax g

2N§u
= ([ Gulm oot as
RN
2N —p
2N
< ey ([ €O (0ol Y an) (2.41)
L —H o
By Lemma 2.1, for |lul|,, small enough such that
bay|ufl )N < a, (2.42)
we obtain
lu N/(N
/ Dy o (bag|u/N NN dg = /qm,s (bozoanN/(N_s) (Hu) )dx < 400, (243)
RN RN g
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Together with (2.42)-(2.43), for |Jul|, small enough, there exists suitable constants a; > 0 and
D > 0 such that

F(u
3 [ [ P D g <l Dl
|x— 2N — ,_L(]RN) L2N—u
RN RN
Thus, we have
as N/s bs 2N/s 211,112 201,112
T > Il G N = el ™y =D (240

N

Since the continuous embedding W*™/$(RN) < L4(RN) for all ¢ > —, then (2.44) implies
s

that

bs _ _
T () = *HUIIN/S NHUII%N/S —a AL ullp® = DPAGE, lufpE (2.45)
n sN—p "
Let b
as S N 2 4—2 2g1 — N 2 4—2 205 — N
W) = 5+ oyt et A BT DAL, R 20,
We now verify there exists tg > 0 small satisfying h(to) > 5. We see that h is continuous

function on [0, +00) and lim,_,o+ h(t) = %7, then there exists ¢ such that h(t) > % — &1 for all

0 <t <, to is small enough such that Han to satisfying (2.42). If we choose 1 = 27, we
have h(t) > 5 for all 0 < ¢ < to. Especially, h(tg) > 35 and we obtain J,, (u) > 55 tN/S = po
for ||ul|, = to. O

Lemma 2.7 Suppose that (f;) holds. Then there exists a function v € C§°(RY) with
[lv]], > to, such that J,, (v ) <0, Where to > 0 is the number given in Lemma 2.6.

Proof We denote K(u) = = f K(u (u(x))dz. Fix ug € W*N/5(RN)\ {0} such that

ug > 0. We set h(t) = IC(tO

||UO||7;

1
h’(t)zh’( t””) Yo _ / {} *F< il )f( fuo ) w0 gz s Ohee.
l[ulln / [luolly e || [[wolly l[wolly /' [lwolly t

Then integrating above inequality on [1, t[juo||,] with ¢ > m, we get h(t||uolly) > h(1)(t]|uoll,)?

K 2 K ||n>”“0' ot

astN/s bst2N/s
T (i) = T2 g [N* 4+ 2 uol|2V/° - / K (tu0) () F(tuo)da

) for ¢ > 0. By the condition (f,), we have

Hence, we deduce

Consequently, we have

2N

st bst
< H ||N/S H 0|2N/S_V2,C(|| || >||’U,0| te
n

for all t > W Since 6 > 2p, set e = tugy and t large enough, we get the conclusion of Lemma
n
2.7. O

Using Lemma 2.6, Lemma 2.7, and an alternative form of the Mountain Pass Theorem that

doesn’t require the Palais-Smale condition, we obtain a sequence u, C W*N/s (RN) such that
o (un) = cpy and J),(up) — 0 as n — oo,
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where the level ¢, is characterized by

Coy = Clgg e I (C(2))

and ¥ = {¢ € O([0, 1], W*N*(RN)) : ((0) = 0, Jy, (¢(1)) < 0}

Lemma 2.8 ([25]) Assume that f satisfies the condition (f;) and {uw,} is a sequence
verifying limsup,,_, ., ||un||£,w(N75) < [ﬁT"ODS/(N_S) for some b > 1, where @ = min{1, n}. Then
there exists Cp > 0 such that

1
[l

Lemma 2.9 Assume that {u,} is a (PS)

C,, such that py < ¢, < C,,.

* F(up)| < Cp for all n.

e Sequence of Jy,. Then, there is a constant

Proof We consider the function ¢ € C§°(R¥,[0,1]) which is satisfied the conditions
() = 1if |z[ < 1, p(x) = 0if [2] > 2 and Ve(z) < 1. Note that By_j,(0) C Bi(x) since
|z] < 1, hence we get

./‘ = =

0) B1(0) B1(0) B1(0)
/ / dzdx / / dzdx
B1(0) Bi(x) B1(0) By_s |(0)
1—|z|
N|B1(0
= N|B;(0)] / dz / TN_“_ldT=7| 10)] / (1 — |z[)NHdz
N—p
B1(0) 0 Bio)
1
_ NB1(0)|2/(1_ PN N gy = INB1(0)2B(N,N — i+ 1)
N —p N —pu ’

1
where B(z,y) = [t~} (1—t)¥"'dt (x > 0,y > 0) is Beta function. From the assumption (Ms),

0
we can induce that there is a positive constant v such that

M(t) < ~(t+t?) forall ¢t > 0. (2.46)
By assumption (fy), we have
T (tp) = —M([lteol|?) — */F to d:c/ z te)dy
2 29 %
R o iVt / 04 / ¢l
<5 ||sD||n+Tp el = ==— [ lel'de P
RN RN
2.,2420
gl Y 2y 2p _ IV 1
< LtP||g|P 4 =12 ||2P — ——dady. 2.47
< 2olel+ ey - 25 [ e 2an

B1(0) B1(0)
Hence, we obtain that

B V220 . INB1(0)?B(N,N — u+1)
2 N —pu

gl
5ot llellnr

.,
T (tp) < Lt7||||?
wlte) < Tl + 5
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and

Cp < max o (to)

2,,2420 2
Y 7 2 op ViVt [NBi(0)PB(N,N —pu+1)
< Tappiollp o L 42p P _ . . .
g { 2erlelly + Lol - 12 o (2.48)
202|NB;1(0))?B(N,N—p+1
Set ay := Z|[olh, a2 = %Hap”%p and b 1= 1] (2())\,7}5) 11 We denote
g(t) = art? + axt® — bt*
n [0, +00). We have
< t t). 2.49
¢ < max g(t) + maxg(t) (2.49)
Ast €10,1], we get g(t) < h(t) = (a1 + a2)t? — bt**. Compute directly and obtain
Jnax g9(t) < h(b,,) = Cy,, (2.50)
where
0. — (a1 + a2)p 1/(26-p) <1
e 260b -
as b > w. It implies that
20
1 N 1/2
o> (al + G'Q)p( :u) — 'Y* (251)
vN|B1(0)]\ 0B(N,N —pn+1)
Hence, we have
1/(260—p)
P\ ((a1+az)p
Cru = h(0r) = (on + a1~ ) (L) (2.52)
We see that lim., 400 6y, = 0, then lim+, .1 o h(#,,) = 0. By arguments as above, for all ¢ > 1,
we get
g(t) < he(t) = (a1 + ag)t? — bt*°
1/(260—2p)
and h, has uniqueness local maximum point at 3,, = (W) on (0,+00). Note
that if we choose v1 > 7., where -, satisfies b > %, and we have $,, < 1. Then we
need
1 2 N —p)\?
m > (@ +az)p(N = W™= (2.53)
Nv|B1(0)|\ 6B(N,N —u+1)

Hence, we deduce
max g(t) < h.(1) = a1 + az —b.

t>1
3 — a a 1/2
Denoting vux = NVIElfl(O)I (2)(3]\(7]\,7*;\),(_;11;)) , we have
I%1>alxg(t) < 0 for all v; > max{7y., Yax}- (2.54)
Combining (2.49), (2.50), (2.52) and (2.54), we get
1/(20—p)
P ((a1+az)p
L <C, = 1— 2y (laaTazp 9.
o < = (o +an)1 - ) (Ll (2.55)
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for 41 > max{vy*, v«, v« }. Therefore, the Mountain Pass level ¢ is small enough when ~; is large
enough, which will be used later. Combining the result and Lemma 2.6, we get pp < ¢, < Oy,
O

The following result is a version of Lions’s result:

Lemma 2.10 ([9]) If {u,} is a bounded sequence in W*N/$(RN) and

lim sup /|un(m)|N/sdx:0

n— 00 yeRN
Br(y)

for some R > 0, then u,, — 0 in L9(RY) for all g € (£, +00).
By arguments as in [9], we get the following result:

Lemma 2.11 Suppose that {u,} is a sequence in W*N/$(RY) which converges weak-
N=9) - ba—*Ds/(N_s), where b > 1 is a constant and n-
Qo

ear 1. Assume that (f;) holds and lim; o+ fﬂ('i)l = 0, and there exists R > 0 such that
t's
liminf, e sup,epn [ |t |V/*da = 0. Then

Br(y)

! 1
RZ { *F(un)} f(up)t, =0 and R{ { *F(un)}F(un) -0

ly to 0 and limsup,,_, . Huan?V/(

|| ||
Proposition 1 Suppose the conditions (f1)-(fs) are fulfilled. Then, problem (P, ) pos-

sesses a nontrivial nonnegative weak solution.

Proof Using Lemma 2.6 and Lemma 2.7, it is straightforward to verify that the ener-
gy function J,, satisfies the geometric conditions required by the Mountain Pass Theorem.
Consequently, a (PS) sequence exists {u,} C W*N/$(RN) such that

Ty (tn) = cpyand  Jp (un) =0 asn — oo,
where the level ¢ is characterized by

Cp = Clgg tlen[(ﬁ)l’)i] J’r]U(C(t))

and ¥ = {¢ € C([0,1], WsN/$(RN)) : ¢(0) = 0, J,,,,(C(1)) < 0}. This implies that

sup [(Jy, (un), @) = 0 (2.56)
llella=1
as n — 0o, and it holds
1
o (un) = 5T () tn) = e+ 00 (1) + 00 (1)l funl - (2.57)
From the condition (M3), we get
M@ s MO o (2.58)

Then, we obtain
1
Top (n) — §<J’rl]1/(u7l)a Up,)

RN RN
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1 N/s N/s _ F u”
9[M<||un||n Ml s

RN RN
PO (L ) n () — & )y

(2.59)

1 S 1 s
T un) = a5 = 5 )l

Therefore, we have
Touln) = ¢

(2.57) and (2.59), we get
(2.60)

s _1
“\N g

Combine (2.52) and (2.60), with
1
T (Up) — 9<']”V(u”) Up) = Cpy

)|un|£¥/s < g+ 0n(1) + 0n (V)| [unll,

as n — oo, to get
1/(20—p) -1
P ) a
) ST (2.61)
0

(a1 +az)(1 - 1) (“‘1;05“’

lim sup Jun | /* <
(2.62)

n— 00

S
N

VN9 < B, < v,

From that result, we have
M=) sup [|un||
n

Caobis/(

s

-1 ~N—s
mO} <B.,  (263)

when v, > 79, where 7, satisfies
Ns
a1 + az)p (20s—N)(N—s)
L) (0 +az)(1 - Ly 0
207 £ — 2
N9

—s/(N—s) (
co? ( 200

V213N B1(0)|° B(N,N—pu+1)
2(N—p) ’

(N — p)(ay + az2)p
- 1/|N31 )V B(N,N —u+1)6
(205 N)(N—s) 205—N
[(ﬂ 08/ (N— S)> N (a_l(m +az)(1 — 29)> 2 1
s 1 ="0-
N 6

It means that

with b =

(2.64)

(Ve 7s)

Therefore, apply to Lemma 2.1, we deduce
sup/<I>N7S(cao|un\N/(N*s))d
n RN
:sup/CI)Ns(caob S/ IN=9)] |qy,, HN/(N DN/ | ||) NN )z < +o0. (2.65)

n
]RN
Choose a subsequence if necessary, for any ¢ > —, we may assume that
s

Uy — u weak in WN/$(RV),

u, — u strong in L (RY)
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un () — u(x) almost everywhere in RY.

If w = 0, we will get a nontrivial solution as follows. We claim that there exists a sequence
{yn} € R¥ | the positive number R > 0 and § > 0 such that

lim sup / [un (z)|Pdz > 6 > 0. (2.66)

n—oo yERN
Br(y)

By a contradiction, we assume that

lim sup /\un(x)|pdx20,

n—oo yERN
Br(y)

=

then by Lemma 2.10, we get u,, — 0 in L4(R¥) for all ¢ > p = —. Using the condition (2.66)

s
and Lemma 2.11 together with Trudinger-Moser inequality (2.65), we get

/ L 1\# * F(un)} fup)updr — 0 as n — oo.
RN

Then

on(1) = (g ). ) = M (Dl ;=7 [ [1*F< >]f<un>undx

||
RN
= M([lunllP)llunl; + o(1)
as n — co. Hence u,, — 0 strongly in W*™/¢(RN). It implies that
1~ » v? 1
I () = 5M(||un||n) -y | o * F(up) | F(up)dz — 0
RN

as n — o0o. It contradicts with ¢,,, > 0. Therefore (2.66) holds. We denote v, (z) = u,(x + yn),
then from (2.66) we get

/ |vn [Pda > 6/2 for n large enough. (2.67)
Br(0)

Because J;, and J,’,l, are both invariant by the translation, it implies that
Ty (vn) = ¢y and Jp, (v,) = 0in W N/s(RN)”,

Since ||vn|ly = ||tnlly, then {v,} is also bounded in W*N/$(RN), then exists v € WN/5(RY)

such that v,, — v in W*N/5(RY). Up to a subsequence, we may assume that lim,, oo ||v,]| \N/g

o > 0. From (2.67), we get [ |v[Pdz > §/2 > 0, then v # 0. Now, we prove that .J},(v) = 0.
Br(0)
By arguments as [51, Lemma 12], we get the following results:

[ [P e e o [ [ SR

RN RN RN RN
/|’Un|p_2’l}n<pd$—>/|U|p_2’l)(,0d.’L‘,
RN RN
_ p—2 _ _
o) = 0a ()P0 ) = () 0) — 0l
|z —y[2N
R2N
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[u(x) —v(y) P2 (v(x) — v(y))(p(x) — w(y))dxdy
|z —y[?V

—

(2.68)

R2N

for all € W*P(RY). We now show that M(|[v[|#) = M(rf). By the Fatou’s lemma, we obtain
[[ol[f, < liminf [o, ][, = rf.

By the condition (My), we get M([|v[[P) < M(rg). Assume that M(|[v|[F) < M(r), it follows

that )) ( )
M(llel ) [oll7 < M)l ? f/ / ) 4y,

Iaj —y\“

which yields < Jm,(v), v >< 0. Then there is 7 € (0,1) such that 7v € N,,, which is the Nehari
manifold associated with problem (P, :
Ny = {u e W*P(RV)\ {0} :< J,,, (u),u >= 0}.

Together with the characterization ¢,,, M satisfies the condition (My), (fs) and the Fatou’s
lemma, we have

1 IS
» (Jpp (T0), )
1~

1
= —M([|rl[}) - %M(IIWII”)IIWII”

/RN /RN . —y|# [ (rv(gi})?v(%) _ ;F(ﬁ}(x))} dedy

M(loll) - *M(Ilvl\p)\lvllp

/RN [ R gt

< liminf {Jny(vn) - 2p<J,’7V(vn),vn>} = Cpu,s (2.69)

n—roo

pu < I (Fo) = Jpy (T0) —

which is a contradiction. Hence M(|[v|[F) = M (r(). Therefore, we deduce that

(Jp(v),0) = 0.
If u # 0, by arguments as before, then we can show that u is a solution of (P, ).
Now, we show that v is a ground state solution to problem (P,,,). We note that
1 ’
% <‘]nl/ (U)v U>

M(lolf) - %M(Hvll”)llvllp

JON e

< liminf [Jn,,(vn) — 2p<Jm,(vn),vn>} = Cp,s

n—oo

eq < I (v) = Iy (v) —

Hence J,, (v) = ¢y, and v is a ground state solution of equation (P, ). O

Lemma 2.12 Suppose that 1; > 0 and v; > 0 for all i = 1,2 with min{ny—n;,v1—va} > 0.

Then ¢,,1, < ¢p,v,. Furthermore, if max{ns —n1,11 —va} > 0, then ¢,,,,, < cpyu,-
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Proof Let u € N,,,, with J,,,,(u) = ¢;,.,, then we have
c772V2 = J772V2 (u) = I?ZaOX J772V2 (tu)
Furthermore, there exists uniquely ¢y > 0 such that ug = tou € N,),,, satisfying
J771 V1 (UQ) = %13(?( J771 vy (tuo)'

Since M is an increasing function, it implies that M is also an increasing function. Then

M(lluollz,) = M(|fuo||2,) since [[uoll, > |[uo|l, . Clealy, we have

Cnavy = J772V2 (u) > J772V2 (UO)

—lel<uo>+1< M (lfuoll,) — M (JJuol[2,))

— V2 (uo(x uo(y))
> .
/ / |£L' _ y|“ dxdy = C7]1V1

RN RN

The proof is now complete. O

3 The Auxiliary Problem

Using the change variable x +— ez, the problem (1.1) is equivalent to the problem of the

form:

*(Qey) F(u(y)) | Qex) f(u).  (Pe)

Definition 3.1 We say that u € W, is a weak solution of problem (P.) if

M(|[ullfy ) (=A)pu + V(e ul"u) = { :

||

M(Jull?) (/ ju(z - ﬁz(f) l—zx(y))(@(ﬂs)—w(y))dxdy
R2N
+ / V(en)lu(@)] ¥ ~2u(z)p ) / /Qey |;Q_(y|3f(u(x)><p(x) s
RN RN RN

for any ¢ € W-..
In the studying of problem (P.), we use the energy functional I. : W, — R which is given

by
T Qe F(uly) Q) Fu(x)
o) = 31l ~ 5 [ dyds.

Ix —yl~

RN RN
By the condition (f;), we see that I. is well defined on W¢, and I. € C?(W_,R). We denote the
Nehari manifold A, associated to I, by

Ne = {u e W\ {0} : (I(u), u) = 0},

where
u(z) — u(y)|P 2 (u(z) — u x) —
)0 = ) [ =) |;(_;N+£3”“0” W) 40,
]RZN
/V ex)|ulP~ 2u<pdx> //Q ey F |xQ_(y3f(u(x))<p($)dydm,

RN RN
for any u, p € W-.
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Proposition 2 There exists r, > 0 such that
|u|lw. > r« >0 for all u € N..
Proof Clearly, we have the following inequality
llles vy < ming1, Vo) /7 . (3.)

Thus, it follows from Lemma 2.1 and (3.1) that

sup /@N’S(a|u|N/(N_s))dx
wEW..lullwe Smin{1,Vinin}) /N I,

< sup /@N,S(a|u\N/(N*S))dx < 400 (3.2)
UEWS’N/S(]RN)vlluHWS,N/s(RN)SlRN

for all 0 < a < a, < af y. From the Hardy-Littlewood-Sobolev inequality and (f3), it follows
that

I, s If(wull | jan

/ [@ « (Qey) Fu(p)|Qex) f(u)ude < CQ2|F(u)

R2N

< CQRulf Wl g .

IN—L
N
D

where C' > 0 is a suitable constant. By the conditions (f1) and (f3), for any €, > 0 and ¢ >
s

there is a constant Cy ., > 0 satisfying

w7y o (co|ul N V| o (3.3)

L2ZN—&

Fluyul g < ell[u™*) ax +Ce,

for all w € W,. Using inequality (3.2) and by arguments as Lemma 2.6, then for all v € N
which [Ju|lw, is small enough, there exists a suitable constant C(e,) such that the following

inequality holds

2F 2 2q
vz _lullyw, + Cle)llully, (3.4)

s@N—p)’

Ful s <.

N
for some ¢ > —. Assume that there is {u,} C N satisfying |ju,|w. — 0 as n — oco. Since

S
(3.4) is true when we substitute u = u,, as n sufficiently large. Then we have
N N N
alfun [ < M ([

= [ [ = @) )] Qer) (uda

R2N

2 o 2 2 2q
S E*CQmaxS 2N2 EHu"”Ws + C(‘E*)CQmaxHunHWE'

s(2N—p)>

Dividing both sides of above inequality to ||un||‘1,VV/: and taking n — oo, from ¢ > g, we get a
contradiction when ¢, is sufficiently enough. Hence, we finish the proof. § O

Lemma 3.2 It holds that

(i) There exist two positive constants o > 0,p > 0 satisfying I.(u) > « with u € W; so
that [|ullw, = p;

(ii) There is a function e in W, so that ||e||w. > p and I.(e) < 0.
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Proof The proof of Lemma 3.2 is standard. We omit the details here. O

In view of Lemma 3.2, there exists a (PS).. sequence {u,} C W, satisfying
I.(up) = c. and Il(u,)— 0,

where

— inf (£t
ce = Inf max (&)

and E = {¢ € C([0,1], W) : £(0) = 0, 1. (§(1)) < 0}

Inspired by [37, Proposition 3.11], we have the following result:

Proposition 3 It holds that c. = inf,cw,\ [0} SUP;>q Le(tu) = infuenr. Ie(u).

Proof First, we show that for each u € W, \ {0}, there exists uniquely ¢,, > 0 such that
tuu € Ne. Set h(t) = I.(tu). By Lemma 3.2, we have h(t) > 0 for all ¢ > 0 small enough and
h(t) < 0 for ¢ large enough. Therefore max;>o h(t) is attained at some t = ¢, > 0 and by
Fermat’s theorem, we get h'(t,) = 0 and t,u € N.. Note that tu € N iff

M{irully,) Qev)F(tuly)) Qen)f(tu(x) 0
[[tul [y, ||u||€€ // tp|:nfy|ﬂ tp—1 (z)dzdy
F

(tu)_ftu(z) QEenQEnuly)uay,

(tu(y))P (tu(z))P~ |z =yl
{wu(@)>0} {yu(y) >0}

From the condition (f5), we see that F(pt nd L (_t)l are increasing for ¢ > 0. Suppose that for

each u, there exists t; > ty such that tju,tou € NE, then we have

0> alfully (1 . 1) _ M(lly,)  Mltully,)
Welty  to [[t1ul [Ty [t2ullby

= [Jul 5" / (F(tw(y)) fhu(@) _ Fltuly)) f(tzu(x)))

(tru()? (Bu(@)P=t (tau(y))? (f2u(z))P~

{z:u(z)>0} {y:u(y)>0}

y Q(ey)Ql(:ﬂ_)Z(g)p”(x)p dzdy > 0.

It is a contradiction. Hence ¢, is unique. We denote ¢} = inf,ew,\ {0} SUD;>o le(tu) and cf* =
inf,en. Ic(u). Then it holds
sSup Is(tu) = Ie(t(u)u)

>0
and t(u)u € Nz, and we get
c=ctr. (3.5)

We now fix u € W, \ {0}, and observe that I.(tu) < 0 as t sufficiently large. It implies that
there is tg >> 0 such that for all ¢ > tg, we have I.(tu) < 0. Let g, : [0,1] — W, define by
gu(t) = ttou for all t € [0, 1], and then g, € I, and max;>¢ I (tu) = max,co,1] I (gu(t)). Thus,

we deduce

“=  inf I.(tu) = inf I.(gu(t)) > inf I . .
€= et ) Tax =(tu) wernl ) e =(9u(1)) ilértgg)i] (v(t) = c- (3.6)

By arguments [33, Proposition 3], we have
ce > . (3.7)
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Combining (3.5)—(3.7), we finish the proof. O
Lemma 3.3 Suppose that {u,} is a bounded sequence in W, such that
8.0 s/(N—s)

IN/(N 5)(0[0’

tin s 1/~
where 0, = min{1l, Viyin}, ¢ > 1 is a constant and it is near 1. Furthermore, we assume that
(f1) and (f5) hold, u, — w in W,. Then we have the following statements:

(i) limy 00 [O(vp, +u) — O(vy,) — O(u)| = 0.

(ii) For any ¢ € W, such that ||¢|. < 1, we have

lim (©' (v, +u) — O'(vy,) — ©'(u), p) =0,

n— oo

QNP (u(u)Q(ew) Flu(e) g

— _ =1
where v, = u, —u and © := 3 I m—y["

RN RN
Proof By arguments as [43, Lemma 8], we get

/ |F(vy, + u) — F(vn) — F(u)|7 7 dz — 0. (3.8)

We see that

O(uy) — (vn) - @(u)
//Q ex)Q(ey) (F(un (ff))F(Un(y))—F(vn(w))F(Un(y))—F(u(iﬂ))F(U(y)))dxdy

|z — y|#
RN RN
//Q ex)Q(ey) F'(un (@))[F(un(y)) — F(vn(y))*F(U(y))]dxdy
s |z — yl~
//Q ex)Q(ey) F'(vn(2)) [F(u n(y))*F(vn(y))*F(U(y))]dxdy
RN RN |x_y|u
//Q ex)Q(ey) F(u())[F (un (y))—F(vn(y))—F(U(y))]dxdy
RN RN ‘x_yw
//Q ex)Q(ey) F(u(z ))F(vn(y))dxdy
RN RN |x7y“u

2211+I2—|—13+I4.

Using (3.8) and Hardy-Sobolev-inequality inequality and note that Q € L>(RY), we are easy
to get I; — 0 as n — oo for all i = 1,2, 3. Finally, since F(v,) — 0 weak in L7 7 (RV) and
ﬁ F(u) € L%V(RN), we get Iy — 0. Hence (i) is proved. The proof of statement (ii) is the
same as (i). We omit the details. O

Lemma 3.4 Suppose that {u,} C W¢ is a (PS)4 sequence of I, satisfying u,, — 0 in W,

and (N—s)
. N/(N— 5* AS
lim sup ||y |3y, -,
n—o00 (7))
where 9, = min{1, ¥}, ¢ > 1 is a constant and it is choosen near 1. Then we have either:
(i) up, = 0in W, or
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(ii) there is a sequence {y,} C RY, and positive constants R > 0,3 > 0 with

lim sup / Jun |V *dz > 8 > 0.
n—oo
BR(yn)
Proof Assume that (ii) is not true. From Lemma 2.10, it holds u,, — 0 in L4(RY) for
qE€ (%, +00). By arguments as Lemma 2.11, together with conditions (f1) and (f2), we get

i [ [ LD nune) g, o,

n—o0 |x — y|N
RN RN

Since (I’ (up),un) — 0 as n — oo, so we have u,, — 0 in WL. O

Lemma 3.5 Suppose that {v,} C W, is a (PS)4 sequence which converges weakly to 0

e s/(N=s)
and verifying lim sup,,_, . an||N/(N ) < B*DT

near 1. If v, /A 0 in W¢, then d > cy_g_, where

where ¢ > 1 is constant and it is choosen

V@ = fof, max Jv.qn (C(1)

and ¥ = {¢ € C([0,1], W*N/*(RV)) : ((0) = 0, Jy..q..(¢(1)) < 0}.
Proof We denote by {t,} C (0,+00) satisfying {t,v,} C Nv_q..
Claim 1 We have limsup,, . t, < 1.

In fact, if that claim is not true, then there exists § > 0 and a subsequence still denoted by
{tn} such that

t, > 146 for alln € N. (3.9)

We see that {v,} is bounded sequence in W, and we have (I.(v,),vn) = 0,(1) as n — oo. It
means that

allvallfy, + bllonl[57,

//Qfsy (vn(y)Q(ex) f (vn(z))vn ()

dydx + 0, (1).
oyl .

RN RN
Moreover, reminder that {t,v,} C Ny,_q.., we get
f(t t
atpH’Uan + bt2p||’0n”2p _ Q2 / / nUn Un(f)) nUn($) dyd:c

\m —ylr

RN RN
Two above equalities give that

@ [ [ F )ttty [ [ QRS

RN RN — RN RN v =yl
o R / / ( a1 vnﬁ))vn(x) ) F(Un(y)|)xf(_vz|(f))vn(x)>dydx
[ [ e e et
RN RN
<a [V = VieaonlPde + b(lonl 2, = loal 3) + 0,(0). (3.10)
s

For any £ > 0, there is R = R(&) > 0 verifying
V(ex) > Voo — € and Q(ex) < Vo + € for any |z| > R (3.11)
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via the condition (V). Hence, we have

Q% — Qey)Q(ex)| = [(Qoo — Q(ey)) Qo + Qey) (Qoo — Q(e))]
< Qoo — Qe)|Qos + Qmax| Qoo — Q(e2))] < 26Qmax (3.12)
for all |x| > R and |y| > R. Then there exists a suitable constant C, > 0 such that
a /[Voo —V(ex)]|vp|Pdz = a / Voo — V(ex)]|vp|Pda 4+ a / [Voo — V(ex)]|v,|Pdx
RN Br(0) RN\ Br(0)
< CLE. (3.13)
Similarly, we also have

lonllZ, = lloall, = (ol + [ VacloaPdo)? = (2, + [ VicolvnPda)®
RN RN
— 20, P / (Voo — V() o Pde
RN
+( / (Voo = V(ea))oal"de ) ( / (Voo + V(em))loalPdz).  (3.14)
RN RN

Since V € L*®(RY) and {v,} is a bounded sequence, then from (3.13) and (3.14), there exists
a constant C, > 0 such that

2 21
b(|[vnl 32, [[vallif.) < Cust.

We see that
2 (tnvn (Y)f (tnvn(@))vn(@)  F(0n(y))f(vn(z))vn(@) .
“/1 (g e Ja
. (@ = Q) Floa ) ala)a(a) g,
Br(0) Br(0) |x - y‘
N (@ - Q(ay)@(sm?fuﬁ(ynf@n<x>>vn<x> e
B (0) B (0) i
rr [ [ (G GEEI W )
B%(0) Br(0)
+a/[Voo — V(ex) on[Pdz + b(||vnl T, — [lonll}5.) + 0n(1).
RN

Combine (3.10)—(3.13), we deduce
0 / /< (tnvn(y 2p / nvn<x>>vn<x>_F(w(y))f(vn(x))vn(x)) dyda

s y|H |z — y|~
F(vn(y)) f (vn(2))vn(z)
<26Qmax / / o — gl dydx

B (0) Bg(0)

+ 2Qr2nax / / F(vn(y)) f(vn(z))vn(z) dydz

|z — yl~

Br(0) Br(0)
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F(vn(y)f(wn(z))vn(z)

|z — yl|~

dydz + (Cy + Cix)€ + 0,(1). (3.15)

+4Qmax
B%(0) Br(0)
Note that v, — 0 weak in W, then v, — 0 strong in LI(Br(0)) for all ¢ > 1. From the

assumption, we have

0,5/ (V=)
timsup [[oa 3/ ) < lim sup o |/ < D27
n— 00 n— 00 (Ve %)

1
then apply Lemma 2.8, there exists Cy > 0 such that W x F'(v,)| < Cy as n large enough.

x
Using Trudinger-Moser inequality, there exits D, > 0 such that

G [ [ DD,

\x —yl|~
BR(O BR(O

+ 4Qmax /
B£,(0) Br(0)

<6Qhuc [ [ # P Hn(@)ra()da

Br(0)

<6Q20Co [ flen(@)ua(a)de < D.g (3.10
Br(0)

for all n large enough. We still use the Trudinger-Moser inequality and the bound property of

F(un(y))f (vn(x))vn(2) dydx
|z — y[»

the sequence {v,}, there exists F, > 0 such that

(vn () f (vn () v ()
2§Qmax / / |Z‘ — y‘# dyCLT S E*f (317)

for all n large enough. From (3.15)7(3.17), we get
2 (tntn(y)) f (tnvn())vn () _ F(vn(y)f (vn(2))vn(2) r
/] ( = )dyd

x—y|# |z —yl#

RN RN
<(Cy+ Cusx + D + EHE + 0, (D). (3.18)

From v, /4 0 in W, then there is a sequence {y,} C RY and two positive real numbers
R, > 0 and 8 > 0 satisfying

/ o N3z > B> 0 (3.19)
Br. (yn)
via Lemma 3.4. We use the symbols v, (z) = min{v,(z),0} and v} (z) = max{v,(z),0}.
By argumemts as [43] and f(t) = 0, for ¢ € (—00,0], we get ||v,, |lw. — 0 as n — oo/ Set
Tp(2) = vp(x + yp), then we have

= lvallV,,,, < alf,+ / Viex)onl” = llvalliy,

RN

oIy,

Vmin

Since {7, } is bounded sequence in W*/$(RN), then up to a subsequence, we may assume that
there is 7 € W*N/5(RY) with ©,, — T in W*~/5(RY). By Fatou’s lemma, we get

< hmlnf I

7 Vo Vi < limine [l v, = 0.
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Then v = vt and we can assume v, (z) — v(x) on Q C Bg, (0), where  has positive measure.
Then v(xz) > a4, a. > 0 is a constant and v, (z) > % > 0 for all z € Q and n large enough.
Combine (3.10) and (3.18), we deduce

/ / F(tn0n(y)) f(tnVn(2))0n(2) _ F(tnﬁn(y))f(tnﬁn@))in(m)]dydx

2T — g o=yl

supp(T}}) supp (7))

_Q2//{ D 3o D2) _ FTalg T )] g

— — 12
Do |z — gyl |z =y
(tnon(y tnUn (), (2 F(tovn(y)) f(tnvn(x))v, (2
gt [ [ [ atnlehene) _ Ftara)tntshin(e), g,
|z —y|» |z =yl
RN RN
<(Ci+Cus+ D+ EE+ 0,(1) (3.20)
F(t
for any & > 0. From (f5), we have ¥ and tfp(—f)l are increasing function for all ¢ > 0. By

Fatou’s lemma, (3.9), (3.20) and f(¢) = 0 for all ¢ € (—o0, 0], we have
0<Q2//[ (L4 80 (1+0)n(e)ote)  FEOIEE)T)],

(1+0)2p~ Lz —y[n |z —y|»

(1 +0)2(y))P((1 + S)v(x))P~Hz —y|#

_ F@y)f@() )
[o(y)P[o(z) P~z — yl”} dyd

Q Q

=Qi//wwwwuw[ F((1+ 8)p) /(1 + 0)0(x))
Q Q

1+ 5)vn( )P ((1 +0)un(z))P~ o —y|#

_ F(0,(y))f(0n(x)) i
[T () |P [0 () [P~ 1|2 y#}dyd

//{t% Iatnleta(e) _ PO Tulenta)] o,

hm inf

n— oo 2p— 1|q;— |/‘ |x_y|lt

< 02 min / [ [l P,

y[H |z — yl~

n—roo

supp(v )qupp(v
S (C* + C** + D* + E*)E + 071/(1)

for n sufficiently large. This is impossible if we take £ > 0 small enough. Now, we investigate

the cases as follows:
Case 1 limsup,_, . t, = 1. Then up to a subsequence, we may suppose that ¢, — 1.

Remind that I.(v,) — d as n — oo, and Jy,_q.. (tnvn) > cv, .., then we get
d+o0,(1) > I.(vy) — Jv (tnvn) + eV 0., - (3.21)
We now evaluate the following quantity

Ic(vn) = Jvee Qoo (tnvn)
a(l —17) b(1—t3)
I )V  wa G
@ Springer



No.2 T. Boudjeriou et al: FRACTIONAL KIRCHHOFF-CHOQUARD EQUATIONS 675

a

+2 [ W) - avolopds+ o, [ (V)] - Vit ol

RN RN

; 2‘;( / vieo) - eviontas ) ([ (Viee) + Vo pac)
J

- /[Cf () Plotn(a) _ QN Pl g, (a9

|z —y|» 2 —y|»

RN RN

From the assumption (V), (3.11) and v, — 0 in L™/*(Bg(0)), together with ¢, — 1 and

Vier) —t2 Voo = (V(ex) = Voo) + (1 = t2) Voo > =€+ (1 = t2)V,  for all |z| > R,

we deduce
/waﬁ—ﬁ%@bﬂ%wzoﬂn—gCﬁ (3.23)
RN

and
/W@m4%gmmmz%m—wt (3.24)
RN

for a suitable constant C* > 0. We have

1—t

n—roo p

[vall, =0, 1€ {p,2p}. (3.25)

due to the bounded of {v,,} in W,. Then from the assumption
_ 0,5/ (N=s)
tim sup [jo, |3/ < P2
n—oo € cQ

using Vitali convergence theorem, we get

lim//[ (tnvn(y “%@»—H%QWMM@quza (3.26)

n—o00 |l’*y|” \$*y|“
]RN RN
We see that
[ [ Sl ) _ QenPloa DR le),
|z — y|» |z —y|*
RN RN
//Q2 [ t nUn (Y )EF(tnUn(x)) _ F(U"(y))F(v"(x))}dydx
|z — y|~ |z —yl
RN RN
+ [ [ @ - eneen) L) gy
RN RN
By arguments above, we get
i / / (@2 = QenQea) ~ D gz~ (3.27)

From (3.21)—(3.27), we obtain

d+o0,(1) > cv 0. — D¢+ 0,(1)
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for a suitable constant D* > 0 due to the bounded of [v,]? , and

{ /(V(Em) +tﬁVw)|vn|pdx} .
RN "
In above inequality, we get d > cy__ .. by letting n — oo.
Case 2 limsup,,_,. tn = to < 1. Then choose a subsequence if necessary, we may assume
that ¢, — to (< 1) and ¢, < 1 for all n € N. We see that

d+ o0,(1)
— L(vy) - 21 (T (0n), o) (3.28)
|| an / / Qey)Q |x U y|(‘un7)n(y)) [;pf(tnvn(x))tnvn(x) — %F(tnvn(:r)) dydz.
RN RN

Recalling that ¢, v, € Ny_g_, using the condition (f5) and (3.28) which leads to that

1
Vo Qoo < IVee Qe (thvn) = JVeo Quo (thvn) — 7<J{/OCQOC (tnvn), tnvn)

%Hunnf; QL / / (tnvn(y)) (1 f(tnvn(x))tnvn(x)—%F(tnvn(z))]dydx

|z — yl“ 2p
RN RN
1
< ollolth, + @ [ [ T o @))on) - (o (@)ldude + 0, (1)
RN RN
=d+ o,(1).
From above inequality, we get d > cy_g_ by letting n — oo. O

Lemma 3.6 Let {u,} be a (PS). sequence for I, satisfying

5*0*8/(1\[*8)
= NN =)eay’

hmsup HunHN/(N )

¢ > 1is constant and it is choosen near 1. Assume that ¢ < cy,_ ., . Then {u, } has a convergent

subsequence in W-.

Proof This lemma is similarly proved as [43, Lemma 11]. We recall some main steps. By
the condition (f3), we get that {u,} is a bounded sequence in We. Up to a subsequence, we
may assume that u, — u weak in W,. Similar to Proposition 1, we obtain I’(u) = 0. Denote

VU = U, — U, then we deduce
lun = ullfy, = llunllfy, = [lullfy, +0n(1) < luallfy, +o0n(1)
as n — oo via Brezis-Lieb’s lemma. Thus,

(N—s)/s
B ) D..

. P p
h?_iip"un —ullfy. < iggllunll . < <2N/(Ns)ca0

Therefore, there is a natural number ng such that
) ,8* (N—s)/s
sup llun —ullyy, < (W_)cao) Os. (3.29)
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By Fatou’s lemma, we have

o ﬁ* (N—s)/s
lulty, < timintfunlty, < (go7c0en 2. (3.30

By arguments as Thin [43, Lemma 4], we get

nh_}n;(J f(vn)edz — 0, (3.31)
RN
and
nh_{r;o / |’Un(aj) - Un(y)p_Q(er(_w;;in(y))<@(w) — @(y))dxdy -0 (332)
]RQN

as n — oo, for all ¢ € W*N/$(RN). Combining (3.31) and (3.32), we obtain
(IZ(vn), ) = 0 (3.33)

as n — oo, for all ¢ € W.(RY). By the condition (f2), we have

() = L)~ oo 1200 = o ol + [ [lefw)uF(u)}dx >0, (3.34)
RN

Choose a subsequence if necessary, we have lim U = rg > 0. From Brezis-Lieb’s and
Ys n— 00 n||We 2 =

Lemma 3.3, we deduce lemma it holds

I () = 5 lun || W (Z||u|p5+21||u||€€g)—Znuul’:nuh
Yy /st (€0 Plun(y) Flun(e)
|z — y|»
o /Qey PP
ok |z —y|»
b P P 0
:IE(un)_IE(u)_EHUHH EH“H _+ n (1)
=c—fa<u>—b%|\ B+ 0n(1) = d + 0n(1), (3.35)

brP
where d = ¢ — I.(u) — QH’U,H%/ . Hence {v,} is a (PS)q sequence of I, with d < ¢ < ey g -
p £
Lemma 3.5 gives that v, — 0 in W.(RY). It implies that u,, — u in W.(RY). O
Lemma 3.7 Let {u,} be a (PS). sequence for I. constrained to N, with

e 0,5/ (N=5)
tim sup [u, |3/ V) < PR T (3.36)
n—oo (X7}

where ¢ > 1 is a suitable constant. Assume that ¢ < cy,_g. . Then {u,} has a convergent

subsequence in W-.

Proof From Proposition 2, we have
[|un]lw. > 7 > 0 for all n. (3.37)
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Then there is u € W*N/$(RN) which u,, — u weak in We, u, — u strong in L _(RV),
N
q € [—,+00) and u,(z) — u(z) almost everywhere in RY. Futhermore,
s
lm ||Jun||lw, =1, re <1 <supllun|lw, < +o0 (3.38)
n— oo n
Thanks to {u,} C N, we get
Qey)Q(ex) y)) f(up(z))uy(z
Ml = [ [ Pl @) Cn@)nl) g,
[z =yl
RN RN
We consider the case u # 0. Then there exists uniquely ¢ € (0, +00) such that tu € Ny, Qnars
and
F(tu(y)) f (tu(z)) (tu(z))
Ml el = Qo [ [N g0 (330
RN RN
We know that there exists r > 0 such that ||ul|y,,,, >r >0, for all u € Ny, 0,...., then (3.39)

implies u™ # 0 and there is a postive real number Co so that u(x) > (o > 0 on a measure set
Q c RY with |Q] > 0. By the method of Lagrange multipliers, there exists a real sequence
{An} C R such that

Ié(un) = )\nKé(un) + On(l)a (3'40)
inwhich K, : W, — R is defined by

Ko (w) = (1), ) = alul By, + bllul 22, — / / Qey)Qen) Fluw)f(w@)u() g,

|z — yl~

RN RN
Consequently, we have
<Ké(un)7un> paHuan —|—2pb||un|\
[ Q) Qe 1y () n () ()in )y

s |z —yl#
[ [ AL e,
s |z —y|*
- /st (60 () (D) )
s |z — y[~
Qen)Qer) (s 1) / o
/ / ALl (1 8) )~ o)) )]

// Qley)Q i yl“( n(y)) [(2p g Z)f(“m“’t _ ff(u;)uﬂ dydz,

where Q, = {z € RN : up(z) > 0}. By the condition (f5), we have (p — 1)f(¢) — tf'(t) < 0 for
all t > 0. For all n, we have
0
(09— 1 D)y — /) wi)? <0
via (fs) and 6 > 2p. The equality (3.41) show that sup,,cx (K. (), un) < 0. Indeed, if

sup(K.(un), un) = 0.
neN
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Then by choosing a subsequence if necessary, we have lim, o (K. (uy,),u,) = 0. From (3.41),
it holds

/ / Q(ey)Q |x - |N( n(y)) [<2p_ 1 Z)f(“pu’t - f'(u;)uf]dydm > 0.

Thus, we get

// Qey)Q - ylﬂ( n(y)) [(21)— 1- g)f(u;)u; — f(u)ut }dydx > 0. (3.42)

Qn Qp

Applying (f5) again, we deduce that
0
<2p —1- 2>f(u+)u+ — fuhHut? <o (3.43)

on Q C Q,, for n large enough. Hence, combine (3.42) and (3.43), it contradicts. Final, we
consider the case u = 0, then (3.37) implies that u,, /4 0 in W,. Similar to Lemma 3.4, there is
a sequence {y,} C R and constants R > 0, 3 > 0 verifying

lim inf / [un|N/2dz > B > 0. (3.44)
n—oo
Br(yn)
Set v (z) = un(x + yn), we have |vn|lvi, = ltunllviw < llunllw.. Then sequence {v,} is

bounded in W*V/ $(RY), and up to a subsequence, we can suppose that there is a function
N

v € WN/$(RN) with v, — v weakly in We, v, — v strong in LL_(RV), ¢ € [—,400), and
s

vn(2) — v(z) almost everywhere in RY. From (3.44), we obtain v # 0. We see that

un) n>
QEr)QEen Flua) A N
/ / XL 1 ) (20— 1= § ) ) ()l

RN RN

G [ [ )@ - (201 §) Fon (ol 2 0. (3.5)

RN RN

Now, by arguments as u # 0, and we get a contradiction. Hence, we must have sup,, e (KL (un),
un) < 0, and from (3.40), we deduce lim,, o A, = 0. Therefore, {u,} is a (PS). sequence of
I, and Lemma 3.7 is proved by applying Lemma 3.6. O

Corollary 2 The critical points of I.|. are also critical points of I in W..

Proof This result is similarly proved as Proposition 2.1 [17] and we omit the details. O

4 Existence of a Ground State Solution

In this section, we denote the energy function of problem (73\/ ;anx) by

H@ne ) = 3Tl max s [ [ EUEWD) 4,

Ix - yl“
RN RN

We remind that ¢y

min Qmax

is given as follows

Qe = 0f max Jy,, t
Vanin Qs = I, 002 V10 Quua (C(1)
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and ¥ = {¢ € C([0,1], WsN/$(RN)) : ((0) = 0, Jv,1,0mar (C(1)) < 0}, and Ny, @ua, is the
Nehari manifold associated with Jv, ;. 0,... Which is defined as

NVmianax

_ {u e WNE RN\ 0} : Ml ol = Qe [ [ ))u(m)dydx}'

RN RN

Now we are ready to state the main result of this section:
Theorem 4.1 Assume that (f1)—(f5) and (V), (Q) and (VQ) hold. Then there exists
g > 0 such that for all 0 < € < g, problem (P.) has a ground state solution.

Proof We claim that there is € > 0 satisfying ¢. < cv,,,Qu.. for all ¢ € (0,2). Since
CViin Qe < CViooQons then by Lemma 3.6, we get that I satisfies the (PS)., condition. Fur-
thermore, together that result and Lemma 3.2, I, admits a critical point with level c.. From
the condition (V @), we have V(0) = Viuin and Q(0) = Qumax-

Choose the smooth function ® € C§°(RY, [0, 1]) satisfying that

1 if ze€ Bl(()),

a@)={ T
0 if z € RY\ By(0).

We denote v,.(z) = @(E)w(x) for each r > 0, then there is ¢, , > 0 so that t. ,v, € N;, and we
r
get

1
ce < Ic(tevr) = D Htf rvr|[?)

// Q(ey)Q(ex) F(t. rvr(y))F(tE,rUT(z))dydx'
R |z — y|#

For any u € N, we get

allull%y, + bl / / Qey)QEen) Fuly) flul@)u(@) 4 o,

|z —y|»

RN RN

Thus, we deduce

L. = llulfy, + %Hu“z L / / Qey)Q |x <y|<i/>)F(u(x))dydx
RN RN
Qey)QEn) Flu(y)), 1 T
144 |x_y|u (5 (u@)u(e) = FF(u(@)ldyde 0. (4.1)

From (4.1), for each r > 0, sequence {t. ,} is a bounded sequence when ¢ small enough. Indeed,
by a contradiction that lim. o+ t. , = 400, for each fixed r, then we get

at?
Ia<t5,rvr) > —

v, = R QumintZlllvr’l? — =

[[vr
L2N (RN

via the condition (f4). It is a impossible with (4.1). Hence, we can suppose that t., — t, as
e — 07. Note that the support of v, is a compact set, it holds

F(tv F(tyv-(z))
max T s d d — J . t
mm / / |x — y|# yax meQmax( T'Ur)

RN RN

limsup ¢, < M ([tror |y

e—0t
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via Vitali’s theorem. We remind that ¢,v,, w € Ny, 0,... and by [6, Lemma 2.2.], lim, _, ; o, v, —

w in WS’N/S(]RN). Hence, we deduce lim, o t. = 1 by (f5), and
limsupce < UM IV Quax (Br0r) = TVinin Qe (W) = Vinin Qo
e—0t T
By arguments as Lemma 2.9, we get cv, ;. 0,... < C,. Thus, if we take v, sufficiently large as
in (2.64) with 7 = Vigin, ¥ = Qmax- Then for any (PS)., sequence {u,} for I., which satisfies

N/(N s) < 6*0*5/(N75)

hrrln_)SOtip [|n ||W/ < m,where 0, = min{1, Viin }-
Apply Lemma 3.6, we get the result of this lemma. O

Lemma 4.2 Let ¢, — 07 and {u,} := {u., } be ground state solution of (P, ). Then
there exists {§,} C R such that up to a subsequence, {y,} : Yn = €nin — y € VN Q.
Furthermore, the sequence v, (x) = u,(z + §,) converges strongly in W*N/$(RY) to ground

state solution v of

M(|[ully,

up to a subsequence.

Vinin

=830+ Vil 200 = Q| o+ Flu)| ) i BY, (42

Proof Let {u,} be a sequence of solutions due to from Theorem 4.1 with €, — 0. Then

we have

Fe ) = L, () ~ gugn(un),um - (; = 5 e, 055 = hunl.

Iw - y\“ 2
RN RN
0—p »

> alfun|[fy, (4.3)

p

From (4.3), we get
H nHN/S ( — N)aCE S (08 B N)a’c‘/mianax S (98 — N)ac')’l .
NO " No No

First, we prove that there are sequence {7,} C RY, R > 0 and § > 0 satisfying

lim lun|V/*ds > 6 > 0. (4.4)

n—00

Indeed, if for any R > 0, we have

lgr;o SUPyeRrN / | |V/*ds = 0.

Br(y)

N

From Lemma 2.10, we see that u,, — 0 in LI(R™) for all ¢ € (—, 4+oc). Choose 7 large enough
s

such that

s) N/(N—

< limsup ||un ||/ s) <
n— o0

s/(N—s)
*0*
0

hm sup | |U ‘ |‘/mm
n—oo

where ¢ > 1 and near 1. From the condition (f;) and compute as Lemma 3.4, we deduce

iy [ [ QearQen) Pl (un(unte) g,

|z — yl~

n—00
RN RN
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Since u,, € N, , then we see that

allunlt, +llul ., = [ | Qen2)QEny) Flun W) (un(@))un(@) g,

|z — y|~

RN RN
asn — oo. Then ||u,||w., — 0asmn — oo. It contradicts with Proposition 2. Hence (4.4) holds.
We set v, = upn(z 4+ Gn), Val(z) = V(enx + en0n) and Qn(z) = Q(en® + €19n). Then v, is a
solution of following equation

M<[vn]§7p + / Vn(x)vn|”dx> (A)yu+ Vi () |u|P~2u)

RN

[ o (Quy)Flu (y)))]Qn(x)f(UL z e RY (4.5)

||

with energy function

fgwf(”n)le(W p+/V( )on|"dz) - //Qn S E ) Fon()) g g,

—yln

RN RN RN
=1 (up) =ce,. (4.6)

Note that from Theorem 4.1, we have limsup,_,¢ e < €v, ;. Quax -

Claim 1 The sequence {e,9,} is a bounded sequence. Otherwise if the sequence {&,3,}
is not bounded, then up to a subsequence, still denote by {e,9,} such that ,§, — co. By the
boundedness of V' and @, up to a subsequence, we may suppose that V(e,g,) = Vo > Voo >
Vinin and Q(en9n) = Qo < Qoo < Qmax as n — oo. Since V and @ are uniformly continuous
on Bg(0) for any R > 0, then we have

as n — oo on Bgr(0). Similarly, we also have

|Qn(x) — Qol — 0 asn — oo on Bg(0). (4.7)
Since the norm in W*/ $(RY) is invariant with the change of variable z = x + §,,, we have
s/(N
_ 0
limsup|\vn||1‘>[/,(N ) < 57 ,0 < By < (4.8)
s min o

where ¢ > 1 and near 1. From [9], for any ¢ € W*N/$(RN), we have

N
[un () — vn(y)| 8 (;)n_(:z)PN vn(W))(p(@) =) ;. dy
R2N
y,
. / lv(z) —v(y)| 8 |(;J(x)y|—2]$(y))(s0(x)—w(y))dxdy (4.9)
RZN

as n — o0o. Next, we prove that

[ [+ @wrean]@u@see @ [ (e Fow))sowsa

||

(4.10)
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by using Vitali’s convergence theorem. Note that {v,} is a W*N/$(RN), then choose a sub-
sequence if necessary, we find that v € W N/ $(RY) with v,, — v weakly in W*¥ / $(RY) and

v (2) = v(z) on RY outside a set with measure zero. From (4.4), we have v # 0. For any 7 > 0

and ¢ > —, there exists C' = C(q, 7) such that
s

N
/ |Fon)plde < / joal 5 lgldz + C / [0a] 1 . (0] VN | de
RN
N

——1
< T||Un||LSN/8(]RN)||§OHLN/S(]RN)

t
+CHU7L||Lq(]RN (/((I’N,s(O‘O'UnIN/(N S) /|<,0| d-r s (4'11)

RN

-1 1 1
+ -4 o= 1. By [24, Lemma 2.3], there exists

N
where t > —, [ > 1 and near 1 such that q ;
s

¢ > 1 and near 1 such that
((I)N-,S(a0|vn‘N/(N_S)))l < @N,S(a0c|vn|N/(N_s))

for all n. Then from (4.8), using Trudinger-Moser inequality (Lemma 2.2), we have

/(@N,s(ao|vn|N/(N75)))ldeS /‘I’N,s(aoc|vn|N/(N73))dx (4.12)
RN RN
J(N—s) |U | N/(N-s)
/@Ns(a0c|\vn| ? (||H) )dx < D, < 400
onllvie,

RN
for all n, where D, > 0 is a suitable constant. Combine (4.11) and (4.12), and apply Lemma
2.8, there exists C' > 0 such that

[ o5+ @ Fe.w)| @@
J

o dz < C/ |f (vn)pldz < 4o00. (4.13)
Similarly, we also get f Il

RN

o x F(v(y)]f(v(z))p(x)|de < +o00. Therefore,

{([ o (Qu)F (v (i‘/)))}Qn(m)f(vn) - gﬁt*m(y)))ﬂv(w))w} € L'(RY).

||

Then there exists a constant X > 0 such that

(([ 5 * @uream]| @@ s

||

Q4

el

' F(U(@/)))f(v(x)w‘ < K

for all z € RN outside a set with measure zero. Thus for any § > 0, there exist 7 = §/K such
that for any measure F with |E| < §/K, we have

Q3

E/ ‘ ([|x1| " <Q"<y>F<vn<y>>>} Qu(@)f(en) = {0+ F(ﬂ(&/)))f(v(z))s@ dr < |E|K =

for all n. Hence

{<[ : * (Qn(y)F (v (y))):|Qn($)f(Un) - ﬁ * F(y(y))>f(v(z))¢}

|
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is uniform integrability on RY. Since ¢ € LN/*(RN) and ¢ € L*(RY), then for any 7, > 0, we
can choose R >> 0 such that
el s (Be,0y) < T and |@l|Le(Bg,0)) < Ts- (4.14)

By arguments as before, we only take integral in B%(0), there exist C, > 0 such that

/ ‘([ 7 @F@ <y>>>]62n<x>f<vn>—f*F(v(y»)]f(v(x))@dx<c*r*. (4.15)

||
B5(0)

Note that

([1 « (Quly) P (y)))}Qn(w)f(vn)—SﬁL*F(v(y)O]f(v(w))w—m

Ed

as n — oo pointwise on RY outside a set with measure zero. Then all conditions of Vitali’s
covergence theorem are satisfied, we get (4.10).

By arguments as above, we are easy to get

lim [ Vi (2)|v,|P 2vppde =V / lv[P~2veda. (4.16)
n— o0
RB N
Since [v,]? , + f Vi (2)|vn [Pdz = [|un|[jy_, then up to a subsequence, we can assume that

; P -1 PP
lim ([vn}sp+/Vn(x)|vn| dx) fnlgngo||un|| =T

n—oo
RN

Therefore, we have

([ o= 2 0e) —sola) =) )

|z —y[>¥
R2N RN

= Q2 / MH % F(u)} flu(z))o(z)dz = € RY. (4.17)
BN

We now show that M(]|v||}, ) = M(rY). By the Fatou’s lemma, we obtain
0

loll, < tmint (1002, + [ VilonPds) =,
RN
Hence, we get M(|[v[|7,) < M(r{). We will prove that
M(|[vlly,) = M(r).

By a contradiction that M(|[v|[7, ) < M(r}), it follows that

MLl <MD, =@ [ [ FEIEEE gy,

which yields <J‘,/OQO(11),U> < 0. Then there is 7 € (0,1) such that 7v € Ny, g, which is Nehari
manifold associated with Jy,q,. Together with the characterization cy,q,, M satisfies the

condition (My), (f5) and the Fatou’s lemma, we have

- . 1 -
VoQo < TvoQo (V) = Ty, (FV) — %<J{/})Qo (7v), 7v)
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:1 M(||7vl[5 )—*M(HWH NI,

AL R P
+QO/RN/RN |x_y|u — SFGo(@))dudy

2p

< M(|[ollf, )—7M(|Ivll v,

PG 1
+Q0/RN/RN |w—y|ﬂ 7 S Plv(x))]dady
1

< lim inf { - (vg) — %g% (vn),m] — liminf [1 (1n) = 5 (12, () )

n—oo n—o0

= hnrggf CE < cVnu\Qmax < CVOQO’ (418)

which is a contradiction. Hence M(|[v[[y,) = M(r{). Therefore, from (4.17), we deduce that
(J10, (), ) = 0 for all ¢ € WeN/s(RN).
On combining (4.9), (4.16) and (4.17), we get v is a solution of equation

1
M0l - 8)30+ Talu2u = Q| o F(w)| 1w, « € .
Using Fatou’s lemma and (4.6), Lemma 2.12, we get

CViminQmax < CVp,Qo < JVOQO ('U)

1 ’
= JVUQO (U) - %<‘]VOQ0 (U)7 U>

= il + Q%R[ o )| (/00 - 370 )ao

- 1 -
< liminf(I,, (v,) — %Usn (vn), vn)

n—roo

~/

1
= liminf (Isn (un) — o (I, (un), un>) =liminfe., < evpnOman-
p

n—oo n—oo

It is a contradiction. Hence {e,, %, } must be bounded in R, then up to a subsequence, we may
assume that there exists y € R such that ,7, — y as n — oo.
Claim 2 yeVnQ.
If y VN Q, then we have the following cases:
Case 2.1 yeVany¢ Q, then V(y) = Viyin and Q(y) < Qmax-
Case 2.2 y ¢V, and y € Q, then Vipin < V(y) and Q(y) = Qmax-
Case 2.3 y ¢V, and y € Q, then Viyin < V(y) and Q(y) < Qmax-
Using Lemma 2.12, we get

CVininQmax < CV(1),Q() < V()@ (V)
1 /
= Jvwamw ) - %<JV(y)Q(y)(U)a v)

= s lbllver + QW7 [ [ s Fow)] (700 - 350 )as

~

< iminf(le, (vn) = 52 (e, (n), vn)) = Hminf ez, < €Vinin Quma
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It is an impossible and Claim 2 is proved.
Claim 3 v, — v strong in W*™/$(RY). Calculate as Claim 1 to get J{/memx (v) = 0.

We next prove

— [lolIP
ll_)m ||/Un‘ Vnin || H min (419)
Then from (4.19), v, — v strong in W*N/5(RV) via Brezis-Lieb’s lemma. We also have
o]}, < liminf ||v,|[}, (4.20)
II]II] —00 [H]L\

via Fatou’s lemma. Assume that by contradiction that

< hmsup [|on] 5

H ‘ Vinin Vin

Note that

1,
C‘/mianax + On(l) = JVmianax (Un) - %<Jvmianax (Un)7 Un>

7||Un|

Vinin

+ Qe [ [+ Pl | 700000 = 252 o

RN

Using the condition (f2), and Fatou’s lemma, we get

Vinin@max

CVininQumax 2 %hm sup |[vn [y,

1 1
+ Q2 liminf / [ Pl | oo, - 252

/ G| 0| [ 55 000 = E2

%Uvmmcgmx (0),0) = I Qumax (V) 2 CVinin Qunaes

>*|I\

= SViinQuaax (V) —

which is a contradiction. Then

[0lIY,,,, = limsup [[on]fy, - (4.21)
n—oo

min

Combining (4.20) and (4.21), we get (4.19).
Claim 4 v is a ground state solution of (4.2). First we see that v is a solution of (4.2).
Hence,
1

o Vwaw ()

Zlolf, + ()1[ o P (500 - T3 Ja.

On the other hand, by Fatou’s lemma, and y € VN Q, we get

CVininQmax — CV () Q(y) < 27 lim inf <[Un]1s),p + /RN Vn(m)vnv)dx)

p n—oo

V) < vwew (V) = Jvyeuw ) —

< F )] (5 nle)nto) - 25 )aa

|| 2

+ lim inf / Qn(:c)Qn(y){ :
RN

1 ~/ 1 ’
— im0, (00) = o (7, (00), ) = i (I () = 07, (), 0))
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=liminfe., < v Qua:

Hence Jv (1)) (V) = VininQmax (V) = CViminQuax> a0d v is a ground state solution of equation
(4.2). O

5 Multiplicity of Solutions to Problem (P;)

The main result in this section is stated as follows:
Theorem 5.1 Let the conditions (f1)—(f5) and (V), (Q) and (V@) hold. Then for any 6 >
0, there exists €5 > 0 such that for any 0 < € < &4, problem (P.) has at least catz, (M) nontrival
nonnegative solutions, Moreover, assume that u. is a solution and z. is global maximum of wu.,
then
lim V(eze) = Viin and Elim Q(z:) = Qmax-

e—0+ —0+
Proof Fix § > 0 and suppose that w is a ground state solution of problem (Pv,, 0.u)-

It clears that Jv,,., Qua (W) = CViinQuax a0d Jy, o (w) = 0. Choose a be a smooth nonin-

5
creasing cut-off function 7 : [0, +00) — [0, 1] satisfying n(s) = 1if 0 < s < 3 and n(s) = 0 if

s>46. Forye VN Q, set
ex —y
Vey = nlex — y)w ( )

g

and we consider the function ®. : VN Q — N; given by ®.(y) = t.1. 4, where t. > 0 satisfies
1?238( Lo (tey) = Le(tethe y).

From the construction, ®.(y) has compact support for any y € VN Q.

Lemma 5.2 The function &, satisfies the following limit
lIm I (Po(Y)) = Cvipyp Quae Uniformly iny € VN Q.
e—0t

Proof Assume that the statement of Lemma 5.2 doesnot occur, then there exists §o > 0,
{yn} C VN Q and ¢, — 0 such that

e, (e, (Yn) = CVininQuuae| = do- (5.1)
By [6, Lemma 2.2], we have
Tim (e W, = 0l (52)
. / . . EnT — Yn
Since (IL (te, Ve, yn)stenWenyn) = 0, using the change of variable z = —— and z =
n ) ) sn
M, then we get
En
e e+ bllter e I
= / / Q(Enx)Q(gny)F(tEwavan (y))f(tewfnfyn (x))tanwan:yn (.T/‘) dydx (53)
|z =yl
RN RN
By L CR AT TR R CE T TG P
|z — 2| '
RN RN
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Now we prove that t., — 1. First we show that t., — ty < +o0. Conversly if t., — +o0,
Since L% and £ are increasing for t > 0,7 =1 in B%(O) and B; (0) C B (0) for all n big

tp=1 v
enough, we obtain

[ [ LerIQen) Pt O et () .,

2p—1 w
s & e =yl
2 Fltew(z) [f(tew(2) w2 Pds
> Qmin|B%(0)|(t =) (taw(z))p_lB/(O) |w(2)[Pdz, (5.4)

where @(Z) = min g5 o w(z) > 0 (we recall that w € C*(RYN) for some o € (0,1) by [21
2

Corollary 5.5] and w > 0 in RY by maximum principle in [15]). From the conditions (f3) and
(fa), we have f(t) > %0“‘04 for all ¢ > 0. Hence, if t. — oo, we can obtain that

lim @ = lim 1) > lim gL
t—oo tP t—00 ptp—l t—oo 2p

which together with (5.2), (5.3) and (5.4) give a contradiction by dividing both sides of (5.3)

to tgp and taking the limit as n — oo.

L2 40- P — 0,

Hence, choose a subsequence if necessary, we find that t., — t9 > 0 as n — oo. If tg = 0,

from t., e, 4., € N-,, by Lemma 2, there is a positive real number 7, > 0 such that

||t6n wsmyn W,

En

>r, >0

for all n large enough. It is impossible since t., — 0 and [[¢c, 4, [lw., — |||V, > 0 as
n — oo. Now we prove that to = 1. From (5.3) and uses Lebesgue Dominated convergence

theorem to get

twl|} F(
(” ’LUH mm max // towt2p : to(d( )) (I)dyd$

ltwlly,,, ||w||pmm o =yl
- f(t) F(t) . , .
Note that w € Ny, 0na: and (fs5) implies that = and —p e increasing functions on

M(t)

= 1. Apply Vitali’'s theorem, we deduce that

(0,00), and together with the assumption

is a decreasing function on (0,00), we get

lim / Q(enI)Q(Eny)F(t5¢5nay7l (y))F(tEwanvyn (I‘)) dydm
n—oo |:,17 — y|“
RN RN
F(w
mdx / / (2)) ——————~dydz.
Iff - yl“
RN RN
Hence, we obtain
nh_{go I, (@, (yn))

We,,

1 Q Ent) Eny) (tanwanﬂln (y))F(tanwe'/uyn (7))
2// dydz

|z — yl~

. 1~
~ lim [p ([tertoer ol

n— 0o
RN RN

M(|[wllf,,) Flw (@)
- 5 / / \x — y\# dydz = IV, Qumax (W) = Vi Quuax

p
RN RN
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689
g
For any 6 > 0, there exists p = p(d) > 0 satisfying (VN Q)s C B,(0). Let us define the map
x : RV = RY as follows:
x if |z] < p,
Ta) =7 |z <p

El if 2| = p.
Next, we give the definition of the barycenter map 8. : M. — RY by

R‘va T(ew)|u(z)|Pdz
Be(u) =

[ lulpda
Lemma 5.3 ([6, Lemma 3.13])

RN

The following limit holds

e—0+t

lim B.(P:(y)) = y uniformly iny € VN Q.

Lemma 5.4 Assume that ¢, — 07 and {u,} C N, satisfying I. (un) = Vi Quas-
I/

(5.5)
Then there exists {f,} C RY such that up to a subsequence, v,,(z) = u,(x + 7,) converges to
vin WoN/s(RN) and y,, = e, — y € VN Q.
Proof Since 6 > 2p,

En

(Un),un) =0 and I, (Un) = CVpinQuass then we have
1
I, (un) = Ic, (un) —

UL ), )

s 1
= (N - 9) unly,

. / / Qe )

1
3 n2)ua() = 5 F a2 i
>a(5 - ) ol

Thus, there exists a constant C = <

v,

s/N
a ‘min @ a"lcC
UWE) g( -
N 0

s _ 1
N

s/N
) such that
0
lim sup ||u7l||W5n <C.

n—roo

Hence, the sequence {u,,} is a bounded in W*N/5(RN). We claim that

lim sup

/ lun|V/5dz > 5> 0
n— oo

By (in)
then for any r > 0, we have

(5.6)
for some sequence {f,} C RY, and constants r > 0 and 8 > 0. Conversely, if (5.6) is not true,

lim sup

Jun|V/*dz = 0.
n—oo yERN

B (y)

lim sup ||| N/(N
n—oQ

,5)
Vnin

From Lemma 2.10, we deduce that u, converges strongly to 0 in LI(RY), ¢ € (&, +00).
Choosing ~; sufficiently large as the method of (2.64), we deduce

< lim sup ||uy] |%/E(N
n— oo

—s) < ﬁ*ai/(Nis)

(W) ’
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where ¢ > 1 is a constant and ¢ near 1. Appling Lemma 2.11, we have

iy [ [ AW i) g,
n— oo |;L'—y|l‘«

RN RN

Since u, € Nz, , we get |[un|[w. — 0asn — oo. It contradicts with Proposition 2. Therefore,
(5.6) must hold. We denote by vy, := upn(z + gn). We remark that {v,} is a bounded sequence
in WeN/5(RV) due to norm ||.||y,,,, invariant under the translation. Choose a subsequence
if necessary, we find v € WS’N/S(RN) so that v,, converges weakly to v in WS’N/S(RN) and
(RY) with q € [g,—i—oo). From (5.6), we have v # 0. Assume that ¢, > 0 such
that Wy, =tV € NV O ands we set Yy, := €,Yn. Thus, using the transformation z = z + g,
Va(z) = Vien(z 4+ Gn)) = Viin, @Qn(z) = QEn(® + n)) < Qmax, and the invariance by
translation, we can see that

n — v in LI

loc

Cvmemx < SVimin Qumase (W)
)l

< L3 /V v -} [ [ QD) Plen) o,

RN RN
= IEn (tnun) S IEn (un) S c‘/mianax + On(l)

Hence, Jv,,. Qmux (Wn) = CVpinOmax - Because {wyn} C Ny, Qmaes Use (f3), there is a suitable
constant K > 0 satisfying ||wy|v,,, < K for all n. We observe that v, + 0 strongly in
W N/s(RN). Conversely, if v, — 0 strong in W*N/$(RN), then v, — 0 weak in W*N/5(RN),
it is a contradiction since v # 0. Hence, ||v,||v,,,, > @ > 0 for all n and some constant a > 0.

Consequently, we deduce
tna < |ltpvnllv;

min

= [[wnlve < K,

K
which leads to that t, < — for all n € N. Now choosing a subsequence if necessary, we find
@

that lim,, oo t, = tg > 0. We claim that tg > 0. If tg = 0, then w,, — 0 strong in WS’N/S(RN),
and limy, o0 JV,,, Omax (Wn) — 0. It is impossible since ¢y, ;. Q... > 0. Then we may assume that
wy, — w = tov Z 0 weak in WN/$(RY). By the same arguments as Lemma 2.9, we obtain

J‘//miuQmax (w) = 0' NeXt’ we ShOW that

= [wlly, (5.7)

hm l|wn |5
n

Vinin Vinin*

If (5.7) is proved, we can get that w, — w strong in W*N/$(RV) via Brézis-Licb’s lemma.

Using Fatou’s lemma, we get

lwlly,

< limi L .
hnn_1>10r01f w7, (5.8)

Viin

Assume that by contradiction that

lwlly,,,, <limsup fuwn|f;

Vnin*

We have
1
CVmianax + O"(]‘) = JV in@max (wn) - 27<J,memax (QJ") Wn>
- Flen(y F dyd
= ol + Qe [ [ T (o)) 5 Pl )|ty
RN RN
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Then, it holds

C‘/memax = % lim Sup ||wn||vmm

+mmemﬂ//’m_yw[wamwam—éFwamﬂ@mx

RN RN
1
2w _F dyd
> gttt + G [ [ T S rwlote) - 3P0 ao
RN RN
1
= JVmianax (U}) - %<J‘//n]ininax (w)’ w> = ‘]Vmianax (W) 2 CVmianax

via condition (f3) and Fatou’s lemma, which is a contradiction. Then

[l > limsup [sn (5.9)

Vnin

Hence (5.7) is proved by combining (5.8) and (5.9). By the result ¢, — ¢, as n — oo, we
obtain v, — v in W*N/$(RN) as n — co. Now we prove y, — y € VN Q up to a subsequence.
Indeed, if {y,} is not bounded, then there exists a subsequence, still denoted by itselft such
that |y,| — +oo. Because w, — w strongly in W*N/*(RN) and the conditions (V) and (Q),

use the transformations z = x + ¢, and Z = y + ¢, by Lemma 2.12, we have

CVinin Qmax

= JVmianax (w) < JvooQoo w

(w)
< lim inf BM([M;W Vn(x)|wn|”dx> / / @n(@)Qn(y |x( Wn(y))F (w"(x))dydx]

n— o0 — y|ﬂ

. . 1 E:n E’n tnun F tnun —
ﬁﬂgb el L [ [ 2o ﬂtJ»( (»@ﬂ
RN RN
= linrgigf I, (thuy) < linrgigf I, (Un) = CVpin Qumass (5.10)

which is a contradiction. Then the sequence {y,} is bounded. By choosing a subsequence if
necessary, we may assume that y, — y. If y € VN Q, then we have the following cases:

Case 2.1 yeVandy¢ Q, then V(y) = Vinin and Q(y) < Qmax-

Case 2.2 y ¢V and y € Q, then Viuin < V(y) and Q(y) = Qmax-

Case 2.3 y¢Vandy ¢ Q, then Vinin < V(y) and Q(y) < Qmax-
By argument as (5.10), it is impossible. Hence y € VN Q. O

We use the postive function b : RT — RY verifying lim,_,o+ h(¢) = 0 and denote by
N ={ueN.: I.(u) < ey, +h(e)}.

From Lemma 5.3, if we choose h(e) = |I.(®-(y))—cv, |, then we have lim, o+ h(e) = 0. Therefore
. (y) belongs N and N is non empty set for any € > 0.

Lemma 5.5 ([6, Lemma 3.14]) For any ¢ > 0, we have the following limit

lim sup dist(8:(u), (VN Q)s) =
e—0*+ weN.
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Lemma 5.6 Suppose that the conditions (V) and (f1)—(f5) hold. Denote v,, by a non-

trivial nonnegative solution of equation

M<[Un]15)ap + / Vn($)|vn|pdx> ((_A)}SV/svn + Vn(x)"l)n|%_2vn)
RN
1 .
~ |+ @ WF D) Q@) ) i 7Y, -~
where V,(x) = V(ep2 +€40n), Qn(7) = Q(ent+enfn) and ,7, — y € VN Q. If v,, — v strong
in W*N/$(RN) and the following inequality holds

) 2, 5/(N=s)
lim sup ||vn||gn<(jv s) < 5**7’
n—o0 (Y7}

where ¢ > 1 is a constant and it is choosen near 1, then v, € L>(R") and there is a suitable

constant C' > 0 so that [[v,[| @~y < C for all n € N. Furthermore, we also have

lim v, (z) = 0 uniformly in n.
|z|—+o00

Proof For any positive real number 7' > 0 and a > 1, we denote ((¢) = t(min{t, T})P(@~1)

and
C(vn) = Cralvy) = Unvgngz_l) € We, wvr, =min{v,, T}
Set
¢
‘t|p / 1
A(t)="—and ©(t) = [ (¢'(¢))»dr.
P 0
By the similar arguments in [6], we have
N (a—b)(¢(a) —((b)) > |O(a) — O(b)|P for any a,b € R. (5.12)

From (5.12), we get
10(vn(x)) — O(va(y))IP
< Jva(@) = v ()P (0n(2) = 02 () (Wavho V) (@) = (arhie (). (5.13)

Therefore, taking ((v,) = vnvgfz_l) as a test function in (5.11) and together with (5.13), we

have

a([@(vn)]’;,pjt/Vn(x)|unpvgfz—1)dx>
]RN

< M([@(vn)]’;p —:J Vn(x)|un|pdm>

- P=2(y. (z) — v v, P () — (v, 0P8
R RO (S b TURIC. (T W

A |z — y2N
+ WL(x)|vn|pv§Ei_1)dx)
/
N / {ISEII" * (Qn(y)F(Un)):| Qu()f(va)ontf " da. (5.14)
RN
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1
Using (5.12), we have v, v, 1> 10(vy,)|. Since O(v,) > —v,v5 ! and the embedding continuous
o :

WeN/s(RN) — LN"(RN) (N* > &), then there exists a suitable constant S, > 0 such that

100, 2 > SelO@IE e gy > o Sullontf 2 e v (5.15)

On the other hand, from the boundedness of {v,} and Lemma 2.8, it follows that there exists
Cp > 0 such that
|W * F'(vy,)| < Co.
By the assumptions (f1) for ¢ = & and (f2), for any £ > 0, there exists C(£) > 0 such that
6] < P~ 4+ COP ™ @ s (ot VN 7)

for all ¢ € R. Consequently, we have

a 1
JS*anan ”LN*(RN /V |Un\pUT“ )dz

< CofQax / [vnv3, [Pdz + CoC(€)Qhax / s (aofvn VTN oo HPde. (5.16)
RN
len

4CoQ?

max

Choosing 0 < € < , then (5.16) implies

a o—
JS*ananlHLN*(RN) < Coc(f)</(q’N,s(Oéo|Un|N/( )? d33> (/ |vn v 1|qu$>
RN

Apply fractional Trudinger-Moser inequality in W*™/$(RN), then there is a constant D > 0
satisfying

-1 —1
||1}nU ||LN* (RN) < CoDO‘panv%,n ||iqp(RN)7
where g > %, N** =¢gp < N*, ¢ > 1 and near 1. Let T — 400 in that inequality to get
L1
HUnHLN*a S OPQDPO‘OL“‘ HUnHLN**a(RN). (517)

Set o =
get

L5 > 1. It implies that a®?N** = aN*. Now, in (5.17), we use o? instead of a, and

1

2 1 2
[onll xeaz < CEY DooZ @3 [ | pves o vy
% _1_ 2
:Cpa DPO‘2OZO?||’U7LHLN*04(RN)

1
<Cop( +25)

D7t a2 a3 o || v a gy
Continue that process, for any m, we get
m L m R

o]l veam < (CoD)Z3=" 77 a2 |y || e ). (5.18)

Taking the limit in (5.18) as m — oo, we get
lvnllLoeery < C
o 1 o =]

for all n, where C' = (COD)ZJ'=1 vad o 227=19% " qup ol Lo @ry < +o0. O
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Now, we continue to prove Theorem 5.1. Fix € > 0 sufficiently small. From Lemma 5.2 and
Lemma 5.5, we see that (. o ®. is homotopic with the inclusion map id : VN Q — (VN Q)s.
Therefore, we deduce

cat g (/\75) > cat(yno), (VN Q).
Since I, satisfies the (PS). condition with ¢ € (¢v;,;,Qmaxs CVininOmax + P(€)), then by using the
critical points theorem (see Willem [44]), we get that I. has at least cat(yngy,(V N Q) critical
points on ;. We now apply Corollary 2 to deduce that I. has at least cat(yng), (VN Q) critical
points in W-.

Assume that u., is a solution of problem (P.), then v,(z) = u., (z + §,) is a solution of
(5.11). Moreover, choose a subsequence if necessary, we find that v, — v strong in W*/$(RN)
for some v € W*N/$(RN) and y,, = €,9, — vy € VN Q. In the following, we prove that there
exists § > 0 such that [|v,[| e @y) > 0 for all n large enough. Indeed, by Lemma 5.4 (see (5.6)),

we have

0<5 < [ oY de < 1Bl i) (5.19)
B,(0)
N/s

for all n sufficiently large, where § = (m) . Note that v, — v in W*N/$(RN), which
implies that lim|,|— o vn(2) = 0 uniformly in n € N. Set p,, is the global maximum of v,,, then
from Lemma 5.6 and (5.19), there is a positive real number R > 0 so that |p,| < R for all
n € N. Hence, z., = py + ¥y is the maximum point of u., and e,z., — y € VN Q. Since V and
Q are continuous functions, we get V(enze, ) = V(y) = Vinin and Q(enze,) = Q(Y) = Qmax as

n — o0.
If u. is a nontrivial nonnegative solution of problem (P.), then w.(z) = u.(z/e) is a
nontrivial nonnegative solution of (1.1). Then 7. = ez. is maximum point of w.. Setting
Ve, (x) 1= we, (EnT + Me,,) = ue, (¥ + 2c, ). Then by arguments as Lemma 4.2, v, converges

strongly to v in W*P(RY), which is a ground state solution of equation

M (||u|

z‘;mm)((fA);“ + Vmin|u|p—2v) _ rznax [xl|“ * F(u(y))} f(u) in RV

This completes the proof of Theorem 5.1. 0
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