20 Reading

October 17, 2025 12:83 WSPC/S0219-5305 176-AA 2650001

World Scientific

© World Scientific Publishing Company wwamoridsclantiiic.com

Analysis and Applications (2026) \\’
DOI: |10.1142/50219530526500016

Nonlocal elliptic equations with singular reaction

Rakesh Arora,

Department of Mathematical Sciences
Indian Institute of Technology Varanasi (IIT-BHU)
Uttar Pradesh 221005, India
rakesh.mat@iitbhu.ac.in; arora.npde@gmail.com

Phuoc-Tai Nguyen

Department of Mathematics and Statistics
Masaryk University, Brno, Czech Republic
ptnguyen@math.muni.cz

Vicentiu D. Radulescul®f*

Faculty of Applied Mathematics
AGH Unwwersity of Krakéw, al. Mickiewicza 30
30-059 Krakow, Poland
Faculty of Electrical Engineering and Communication
Brno University of Technology
Technickd 3058/10, Brno 61600, Czech Republic

Scientific Research Center
Baku Engineering University
Baku AZ0102, Azerbaijan

Simion Stoilow Institute of Mathematics of the Romanian Academy
P. O. Box 1-764 Bucharest 014700._Romania
radulescu@inf.ucv.ro

Received 25 April 2025
Accepted 22 September 2025
Published

In this work, we address the questions of existence, uniqueness, and boundary behavior
of the positive weak-dual solution of equation ]Lfyu = F(u), posed in a C? bounded
domain Q C RY, with appropriate homogeneous boundary or exterior Dirichlet con-
ditions. Operator L5, belongs to a general class of nonlocal operators including typical
fractional Laplacians such as restricted fractional Laplacian, censored fractional Lapla-
cian and spectral fractional Laplacian. The nonlinear term F(u) covers three different
amalgamation of nonlinearities: a purely singular nonlinearity F(u) = u=% (¢ > 0), a
singular nonlinearity with a source term F(u) = u~ % 4 f(u), and a singular nonlinear-
ity with an absorption term F(u) = u~? — g(u). Based on a delicate analysis of the
Green kernel associated to LY, we develop a new unifying approach that empowered us
to construct a theory for equatlon Liu= F(u). In particular, we show the existence of
two critical exponents q;ﬂ/ and g, which provides a fairly complete classification of the
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weak-dual solutions via their boundary behavior. Various types of nonlocal operators
are discussed to exemplify the wide applicability of our theory.

Keywords: Singular nonlinearities; nonlocal elliptic equations; Green function; weak-dual
solution; sub-super solution method.

Mathematics Subject Classification 2020: 35A01, 35B33, 35B65, 35J61, 35J75, 47G20

1. Introduction

The development of nonlocal analysis during the last few decades has been pro-
foundly influenced by the attempts to understand various real-world phenomena
from numerous areas such as probability and statistics, finance, mathematical
physics, and other scientific disciplines. A great amount of attention has been paid
to several aspects of elliptic equations involving different kinds of operators varying
from typical fractional Laplacians to a more general integro-differential operator.
Lately, the study of elliptic equations involving a wide class of nonlocal operators
determined by two-sided estimates of the associated Green kernel has come to the
light (see for instance [3, [T5HIS] 211, [42] [43] and references therein).

In this work, we focus on elliptic problems involving a large class of nonlocal
operators L in the presence of a singular nonlinearity and a source or an absorption
term of the following form:

Liu=F(u), u>0 inQ, (1.1)
with homogeneous boundary or exterior Dirichlet condition
u =0 on dN or in Q° if applicable, (1.2)

where 2 is a C2 bounded domain in RY (N > 1), F is a nonlinear term representing
three different kinds of singular nonlinearities and L is a local or nonlocal operator.
Parameters v and s depict the interior point singularity and the boundary behavior
of the Green function associated to L3 (see Sec. for more details).

The study of elliptic or integral equations involving singular terms started in
the early sixties by the works of Fulks and Maybee [31], originating from the mod-
els of steady-state temperature distribution in an electrically conducting medium.
Later on, equations with singular nonlinearities attracted the attention of many
researchers. On the one hand, the study of such types of equations is a challenging
mathematical problem. On the other hand, they appear in a variety of real-world
models. We refer here to [31] for applications in the theory of heat conduction in
electrically conducting materials, [50] in the pseudo-plastic fluids, [55] for Chan-
drasekhar equations in radiative transfer, and [28] in non-Newtonian fluid flows in
porous media and heterogeneous catalysts.

One of the seminal breakthroughs in this area was the work of Crandall et al.
[27] which majorly provoked the research in the direction of the study of singular
nonlinearities. Afterward, a large number of publications have been devoted to
investigating a diverse spectrum of issues revolving around local/nonlocal elliptic
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equations involving the singular nonlinearities (see, for example, [28 [3T) [55] and
monographs [32] [40]). Let us recall some known results in the literature for both
local and nonlocal elliptic equations with singular nonlinearities.

In the local case, Crandall et al. [27] studied the singular boundary value prob-
lems (LI) and (L2) with LS = —A, ie., s =+ =1, and F(u) = u~? for ¢ > 0. By
using the classical method of sub and supersolutions on the nonsingular approx-
imating problem, they proved the existence and uniqueness results of the classi-
cal solution of our original problem. In addition, by exploiting the second-order
ODE techniques and localization near the boundary, they showed the existence
of a critical exponent which is equal to 1 and derived the boundary behavior of
the solution. Thanks to Stuart [50], similar results on the existence of solutions
were obtained using, this time, an approximation argument with respect to the
boundary condition. Actually, both papers |27, [56] provide results for more general
differential operators with smooth coefficients, not necessarily in divergence form,
and for nonmonotone nonlinearities as well. The same model of elliptic equations
with purely singular nonlinearity was considered by Lazer and McKenna [47] in
which they simplified the proof of the boundary behavior of classical solutions by
constructing appropriate sub and super solutions. For similar works concerning the
local elliptic or integral equations with a purely singular nonlinearity, we refer to
[57, 28, [36], 511 B5] and for singular nonlinearity with source terms or absorption
terms, we refer to [26] [56] 20 B9 [4T] with no intent to furnish an exhaustive list.

Concerning the nonlocal case, there have been very few available works on sin-
gular equations in the literature, mainly dealing with the well-known fractional
Laplace operator (see for instance [4, 618, [TT], 33]). In [4], Adimurthi et al. studied
problems ([LT)) and (L2) with L3 being the fractional Laplace operator, namely
L5 = (=A)%, and F(u) = u~? with ¢ > 0. They discussed the existence and
uniqueness of the classical solution using the approximation method and compar-
ison principle. Moreover, by employing the integral representation via the Green
function and maximum principle, they showed the existence of a critical exponent
which is equal to 1 and obtained the sharp boundary behavior of the weak solution.
Very lately, in [§], Arora and Radulescu studied the problems (1) and (C2) with
L5 = (=A) + (=A)%, and F(u) = u~? with ¢ > 0. They established the existence,
uniqueness, and regularities properties of the weak solution by deriving uniform a
priori estimates and using the method of approximation. When L2 = (-A)® and
F(u) = u=94+ Af(u) for ¢ > 0, A > 0 and [ satisfies subcritical, critical growth
or exponential nonlinearities, we refer to the work [0 [IT] [33]. For further issues
on nonlocal singular problems, the interested reader can consult the bibliographic
references in [7], 8] [49].

Recently, elliptic and parabolic equations involving a large class of operators
characterized by their Green function have been studied in a series of works [3] 9]
[I5HI8, 211, B7] from the PDE point of view and in [45], 46] from the probabilistic
point of view. An important contribution in this research direction is the work
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of Bonforte et al. [I6], where the concept of weak-dual solutions was introduced to
investigate the existence and uniqueness of solutions of nonlinear diffusion evolution
equations. Later on, Bonforte et al. [I5] studied the qualitative properties of weak-
dual solutions of semilinear elliptic Eqgs. (I and (C2) with F(u) = uP, 0 < p < 1.
More precisely, they proved that the weak-dual solution u has the following sharp
boundary estimates:

{5l
5(z) L—p if 25 +py # 7,

§(x) In?s ((;E—S;)) if 25 + py =,
where dg = diam(f2) and 6(z) = dist(z, RY \ Q). Thereafter, Abatangelo et al. in
[3] and Chan et al. in [21] proved some more results related to the boundary behav-
ior of solutions and eigenvalue problems for equations involving general nonlocal
operators. Very lately, Huynh and Nguyen studied the semilinear elliptic equations
involving superlinear source terms F(u) = u? + u (see [42]) and absorption terms
F(u) = p—g(u) (see [43]), where p is a Radon measureon 2, p > land g : R — Ris
nondecreasing continuous function. By developing a set of unifying techniques based
on a fine analysis of the Green function, they established the existence/nonexistence
and uniqueness/multiplicity and qualitative properties of weak dual solutions.

Apart from these publications, we are unaware of works on the existence and
boundary behavior of the solution of elliptic problem driven by different kinds of
local or nonlocal operators, whilst the results for equations involving singular non-
linearities seem to be completely missing. The interaction between the properties
of the operator and the presence of the singular nonlinearities may lead to disclose
new types of difficulties in the analysis and requires a novel approach.

Objectives of this paper. Motivated from the above mentioned works, we aim
to set up a general framework and to develop unifying techniques which enable us
to study the existence, uniqueness, and the boundary behavior of weak-dual solu-
tion to problems (LI) and (L.2) for various types of operators LS and different
types of singular nonlinearities 7. The class of operators L5 under considerations
is assumed to satisfy a set of mild hypotheses and cover famous nonlocal operators.
The elementary assumptions on L5 are described in terms of two-sided estimates
of the associated Green function and new convexity inequality. The main results of
this paper are novel for various case of operators, cover and extend the aforemen-
tioned works regarding problems with singular nonlinearities in the literature, and
complement the works of Bonforte et al. in [I5], and Huynh and Nguyen in [42] [43].

Outline of the paper. The rest of the paper is organized as follows. In Sec. 2]
we give the definition of function spaces and present the main assumptions on the
operator 7. We also give a list of examples of operators to which our theory can be
applied. In Sec.[3 we introduce the main problems, the notion of solutions and state-
ment of main results. In Sec. @l we recall some crucial preliminary results and prove
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the Kato’s inequality which plays the role of comparison principle in our general
setting. Section[Hlis devoted to study the purely singular problem (P (see below).
First, we establish sharp estimates regarding the action of Green’s operator on neg-
ative powers of distance function perturbed with logarithmic growth. This in turn
enables to prove the existence of a weak-dual solution via approximation method
and Schauder fixed point theorem. As an application of our new Kato-type inequal-
ity, we show the uniqueness and boundary behavior of weak-dual solutions. In Sec.[G]
we study the semilinear elliptic Egs. (Sx,¢) and (Ag4) (see below) involving a sin-
gular nonlinearity and a source/absorption term and prove the existence of a weak-
dual solution via sub-super solution method. In Sec. [Appendix A] we discuss the
applicability of our results on the Laplace operator perturbed by Hardy potential.

2. Definitions, Assumptions, and Examples
2.1. Functional spaces

Throughout the paper, the symbol ¢, C, ¢;, C; (i = 1,2,...) will be used to denote
the constants which can be calculated or estimated through the data. If necessary,
we will write C' = C(a, b, . ..) to emphasize the dependence of C' on a, b. We fix some
shorthand notations: for two functions f, g, we write f < g if there exists a C > 0
such that f < Cgand f < gif f < gand g < f. We also write aAb := min{a, b} and
a Vb :=max{a,b}. Finally, we assume € is a C? bounded domain in RY (N > 2)
and denote §(x) = dist(z, RY \ Q). We also denote dg = 2diam(€2). For a Borel set
A c RY, 1, denotes the indicator function of A.

For a given nonnegative function p and p € [1,00), the weighted Lebesgue space
LP(Q, p) is defined as

LP(Q,p) == {f : @ — R Borel measurable such that/ [f|Pp dx < oo}
Q

I fllze(0,p) = (/Q [fIPp dx) ’

LE(Q,p) :={f € LP(Qp): f =0 on 9N or in Q° if applicable} .
We also denote by pL>(2) the space
pL>(Q) == {f :  — R | there exists v € L>(Q) such that f = pv}.
For s € (0,1), the fractional Sobolev space H*(£2) is defined by

() — u(y)?
= ————= dx dy < +0o0},
(A o oy I

endowed with the norm

and

H3(Q) == {u e L*(Q) : [us0

)

which is a Hilbert space equipped with the inner product

(u,v) gs () = /Q uv dx + /Q /Q (u(@) — u()(v(z) — v(y)) dx dy, wu,v € H*(Q).

o=y
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The space H§ () is defined as the closure of C$°(€)) with respect to the norm

||U||Hg(sz) =/ <uau>HS(Q)-

Next, we define Hg,(€2) given by

HEy(Q) = {u € HY(Q): 51 € LQ(Q)} .

It can be seen that the space Hg,(€2) endowed with the norm

1
. 1 2 Ju(z) — u(y)[? :

is a Banach space. Speaking roughly, the space H,(€2) is the space of functions in
H5(Q) satisfying the Hardy’s inequality. By [I2, Subsec. 8.10], there holds

1
Hi(Q) ifo<s< 27
1 1 1
Hgo () = S HEH(Q) C HE () ifs= 3’
o1
Hi(Q) if g <s< 1.

In fact, Hg,(f2) is the space of functions in H*(RY) supported in (2, or equiv-
alently, the trivial extension of functions in H,(Q2) belongs to H*(RY) (see [38,
Lemma 1.3.2.6]). Furthermore, C°(2) is a dense subset of H§,(€2). The strict inclu-

sion HO%O(Q) C HO%(Q) holds since 1 € HO%(Q) but 1 & HO%O(Q).

2.2. Main assumptions

We consider a general family of linear operators LS indexed on two parameters
depicting the interior point singularity and boundary behavior of the Green kernel.
Operator L7 includes the three most typical fractional Laplace operators, as well
as the classical Laplace operator.

In the sequel, for the sake of simplicity, we write L for L7,

Assumptions on L. We impose the following assumptions on the operator L.
(L1) L:C(2) C L?(Q) — L%*(Q) is a positive, symmetric operator.

Under the above assumption, we infer from the standard spectral theory that L
admits a positive, self-adjoint extension L, which is a Friedrich’s extension of L.
Furthermore, H(Q2) := Dom(L?) is a Hilbert space equipped with the inner product

(’U,, 1)) = <ua v>L2(Q) + B(ua 1)), u,v € H(Q)v
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where the B is a bilinear form defined as
~1 ~1
B(u,v) := (L2u,L2v) 12y, u,v € H(Q).

The inner product induces the following norm on H((2):

\/Huugzm) +B(u,u), ueHR). (2.1)

Hereafter, without any confusion, we use the same notation 1. to denote the
extension L.

(L2) There exists a constant A > 0 such that
||u||2Lg(Q) < AL, u) 2oy for all u € C2°(9).
Under Assumption ([2]) and the fact that C°(€) is dense in H(f2), we have

[ull320) < AML2u,L2u) 20y = AB(u,u), for all u € H(Q),

which further implies the norm in () and the norm |Julg) = /B(u,u) are
equivalent on H(Q2). The norm || - [|z(q) is induced by the inner product
(u, v)mq) = B(u,v) for u,v € H(). (2.2)

We additional assume that
(L3) H(Q2) = H§ ().

This assumption is indicated and motivated by the fact that it is fulfilled in the
case of well-known fractional Laplace operators.
Next we assume that the following convexity inequality holds.

(L4) For u,v € H(2) N L>(Q) with v > 0 and smooth convex function p € C11(R)
with p(0) = p’(0) = 0, there holds

(p(), V) < (u, P/ (W)v)g(q) -

Assumptions on the inverse of L. We also require the existence of the inverse
operator of L.

(G1) There exists an operator G such that for every f € C2°(Q), one has
LIGY[f]] = f ae. inQ (2.3)

In other words, G is a right inverse of IL and for every f € C2°(Q), one has
G[f] € Dom(L) C H(Q).
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(G2) The operator G admits a Green kernel G, namely
Golfl(@) = [ Gt dy, w0,
)

where G : Dom(G%) := Q x Q\ {(z,z) : # € Q} — R* is Borel measurable,
symmetric and satisfies the following two-sided estimate:

G (z,y) = ! ( o) /\1)7< W), 1)V, z,y € Dom(G*),

|z —y[V=2 |z —y |z -yl

(2.4)
with s,v € (0,1] and N > 2s.
Finally, we require the continuity property of G

(G3) For x € 2 and any sequence z,, C § such that x,, — x as n — 0o, we have
GHxp,y) = Gz, y) for ae. x #y e Q.

2.3. Examples

At first glance, it seems that the set of assumptions in Subsec. 22lis quite restrictive,
however there are several local and nonlocal operators satisfying these assumptions,

as shown below. It was proven in [43] that Assumptions (LI)-(L3]) and (GI)-(G2)
are fulfilled for the following operators. Therefore, it is sufficient to verify only (L4)

and (G3]).

The restricted fractional Laplacian (RFL). A famous example of nonlocal
operator satisfying the set of assumptions in Subsec. is the restricted fractional
Laplacian L = (—A)};py, defined, for any s € (0,1), by

s ulr) —uly
(—A)kpru(z) == an,s P.V. /RN % dy, x€,

restricted to the functions that vanishes outside (2. Here the abbreviation P.V.
stands for “the principal value sense”. This operator corresponds to the s-power of
classical Laplace operator and has been intensively studied in the literature; see,

e.g., [19, 63, ].

We consider the following bilinear form:
1
Bl =5 | [ Ju)(ule) ~ um) o) ~ o) do dy + [ Blau(eea) da
(2.5)
with
aN. s 1
J = d B = s d s
)= e Bl o [ e

r,y€Q, z#y
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on the domain
D(B) = {u € L*(Q) : B(u,u) < +oc}.

By (L)) and [43] Proposition 5.1], we deduce C2°(Q2) C D(B) and D(B) is a complete
space with respect to the norm

1
2

lullogs) = (ullfza) +Blu,u))
Moreover,
(u, v)r) = B(u,v) = <E%u,i%u>L2(Q) = B(u,v) for all u,v € H().

To show that (—A)§p, satisfies Assumption (L4]), let us take a convex function
p € CHL(R) such that p(0) = p/(0) = 0 and u,v € H(Q) N L>(Q) with v > 0. By
Lemma [£4] we obtain p(u),p’(u)v € H(Q). The convexity of the function p implies

(p(a) —p(0))(A = B) < (a —b)(Ap'(a) — Bp'(b)) and p(a) <p'(a)a, (2.6)
for every a,b € R and A, B > 0. By taking a = u(x), b = u(y), A = v(z), and
B =wv(y) in 20), we derive

(p(u), v)m@) = Bp(u),v) < Blu,p'(u)v) = (u,p'(u)v)u0)-
Hence, (L4) holds. Finally, (G3) follows from [25, Page 467).

The censored fractional Laplacian. The censored fractional Laplacian (CFL)
is defined for s > % by

s ulr) —uly
(7A)CFLU(I) = bN,s P.Vv. /Q % dy, x €.

Stochastically speaking, the CFL generates a censored 2s-stable process restricted
in 2 and killed upon hitting the boundary of  (for more details see [13] 22 23]).

Assumption (L4) holds true by repeating the same arguments as in the case of
RFL by considering the bilinear form B as in ([Z3]) with

bn,s
J(x,y)zdm and B(z)=0, z,y€eq, z#y.

Finally, (G3]) follows from [22] Theorem 1.1].
The spectral fractional Laplacian. The spectral fractional Laplacian (SFL) is

defined for s € (0,1) by

(=A)spru(z) = C(N,s) P.V. /RN (u() —u(y))Js(z,y) dy + Is(z)u(z), =€,

where

S pQ(taway)
Jo(x,y) = dt, z,y€Q
(w y) (1 s) /0 s T,y €
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and

s > 1 1
I(z) = —> 1— ta,y) d dt = , Q.
@ity | (17 et dv) i de= s ae

Here pg is the heat kernel of the Laplace operator (—A) in Q. The SFL generates
a subordinate killed Brownian motion (a Brownian motion killed upon hitting the
boundary of ) and then treated as an s-stable process in (0,00) (for more details

see [14, [54]).

Assumption (L4) follows by repeating the same arguments as in the case of
RFL with J(z,y) = Js(x,y) and B(z) = Is(z) in Z3). Finally, Assumption (G3)
is satisfied due to the proof of Lemma 14 in [2, Page 7].

Sum of two RFLs. Let 0 < 8 < a < 1. The sum of a-RFL and §-RFL is
defined as

Loy u(w) 1= (=D ua) + (<A ta) = PV. [ T p(e9)(u(e) = uly) dy,
where

L N, o an,s
Joo(0:9) = v Ty

This type of operators has been studied in [24]. By proceeding as in case of RFL
with minor modification, we can easily show that ([]) is satisfied. Finally, to show
(G3), we use the following integral representation of the Green kernel given by
continuous transition density function (or heat kernel) pg’ﬁ

G“(w,y)=/ P& (t,x,y) dt.
0

Let (x,y) € Dom(G%) and assume that |z — y| > 2n > 0. Let {(z,,yn)} be a
sequence in Dom(G*?) converging to (x,%). For n large enough, we have |z,, — | >
7. From [24] Theorem 1], there exists a uniformly dominated integrable function ggq
satisfying

P (t, 20, yn)

5(In)a) ( 5(yn)a)
1IN —— 1N —
( Vit Vit
_N t t .
<C; ><<t hA<|$n—yn|N+2“+|$n—yn|N+2ﬁ)> if t < Ty,

e MG (1) (yn )™ if t > Ty,

tn~N=2 if t < Ty,
< ga(t) == Co
e~ Mt if t > T,
where C; = C;i(Ty, o, 5,9Q), i = 1,2, and )\ is the smallest eigenvalue of %, 5. This
means that 0 < pg’ﬁ(-,xn,yn) < go € L'((0,4+00)). By the continuity of the heat
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kernel p&? (see [24, Page 4]), we have p&” (¢, xn,yn) — p&P(t,2,y) as n — oo.
Therefore, by employing the Lebesgue dominated convergence theorem, we obtain

o0

[e'e)
n—00 n—oo fq 0

This implies the joint continuity of G}, whence (G3)) follows.

An interpolation of the RFL and the SFL. For 01,02 € (0, 1], we consider the

o2-spectral decomposition of the o1-RFL in the domain Q, namely [(—A)%% S5

This type of interpolation operator has been recently studied in [45] by a proba-
bilistic approach.

Let X be a rotationally invariant o;-stable process in RN and X be the sub-
process of X that is killed upon existing Q. Then, we subordinate X** by an inde-
pendent go-stable subordinator Y to obtain a process Z%, i.e., (Z9); = (X9)y,.
Let (S{?) be the semigroup of Z** whose infinitesimal generator can be written as

Lo os = [(—A)Rrr]SRL-

In particular, from [45] (2.20) and (3.4)], we have that, for u € C°(Q),

Lo oyu(x) = /Q(U(x) —u(Yy))Jor,0. (T, y) dy + Loy 0y (2)u(z), € Q
where

J0'1>02 (Ivy) = / p?zﬁz (tvxvy) V(dt)v Z,y € Q?
0

Iy, .0,() ::/0 (1 — /Qp?f’az(t,x,y) dy) v(dt) x €.

In the above definition,

(2.7)

92 jmoa-lgy

v(dt) = m

is a Lévy measure of the oy-stable subordinator ¥ and pg)’”* denotes the heat
kernel of the o1-RFL in the domain 2.

Assumption ([4)) follows by repeating the arguments as in the case of RFL
with J(x,y) = Js, 00 (2, y) and B(z) = I, o, (z) in (ZI). Finally, by employing an
analogous argument as in the case of sum of two RFLs, together with the continuity
of the heat kernel p,"”* [46, Page 17] and exit time estimates in [45, Page 26, (6.2)
and (6.3)], we obtain the continuity of Green function in (G3).

Restricted relativistic Schrodinger operators. We consider a class of rela-
tivistic Schrédinger operators with mass m > 0 of the following form:

LE, = (A 4+ m?T)* — m*I1,

restricted to the class of functions that are zero outside €2, where s € (0,1) and T
denotes the identity operator. Alternatively, by [29, (1.3) and (6.7)], the operator
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L7 can be expressed as

L] u(x) = cN,SmN?SP.V. / MKN«;ZS (ml|z —y|) dy, = €9,
R

m N |:L._y|N#2»2s

where for v > 0,

= L) (g)iy, r > 0.

and I' is the usual Gamma function. Due to the significant appearance of this oper-
ator in many research areas of mathematics and physics, it has attracted attention
of numerous mathematicians; see, e.g., [52 29 5]. Assumption (L4 is satisfied by
using a similar argument as in the case of RFL with

K%(WW*M) N42s

N m 2, x,y €, xFy
|z —yl 2

J<$7 y) = CN,s

and

, x e

B(x) = CN, s 2 Ni2s
lz —y| =

in the bilinear form (Z3]). Finally, the continuity of Green function in (G3)) follows
from [44] Theorem 4.6].

N+2s / K% ("n|:17 - y|)
RN\Q

3. Description of Main Problems and Results

In this section, we study the following nonlocal problem involving the operator L
and purely singular nonlinearities of the following form:

1
Lu=— in Q,
ud
u >0 in Q, (Ps)
u=20 on 0N or in € if applicable,

where L satisfies the set of Assumptions (LI)-(L4) and (GI)—(G3)), and g > 0. The
notion of weak-dual solutions is given below.

Definition 3.1. A positive function u is said to be a weak-dual solution of the
problem (P if

we LA (Q,6), w e LY(Q,87) (3.1)

and
1
/ng dr = /Q EG“[&] dav &€ € §7L>°(Q). (3.2)

Remark 3.2. The integrals in ([B.2]) are well defined. Indeed, the term on the left-
hand side of ([B2)) is well defined since u € L*(Q,87) and £ € §7L>°(). For the
term on the right-hand side, we deduce from [3, Theorem 3.4] that |G?[¢]| < C§”
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in Q. This, together with the condition (BII), implies

/ iG“[g] de < C L5 de < 4oo.
S

) ul o ul
The value of ¢ plays a crucial role in the analysis of problem ([P]). An interesting
feature of the study of (P lies at the involvement of two critical exponents ¢
and ¢;~, given by

95 400 if v>2s—1,
Go= - b @h= 2]

— if 2s — 1.
25—~ -1 I v<2zs

These exponents classify the weak and strong singular nonlinearities in the class
of nonlocal problem (Pg). This classification is reflected via the behavior of the
weak-dual solution near the boundary.

Denote

1 1
o —+ . * * * %
E:= {(q,v) ERT x(0,25):0<qg<q;,,7>s— 3 or q € (q5 ., qsn), Y > 8 — 5}

Throughout the remaining text, we will assume that (q,7) € E.
Our first main result is the existence and uniqueness of the weak-dual solution
to the purely singular problem (Pg).

Theorem 3.3. Assume (L) (L) and (GI)-(G3) hold and (q,~) € E. Then there

exists a unique weak-dual solution u. of the problem (Pg).

The boundary behavior of the weak-dual solution to problem ([P is depicted
in terms of the distance function in the following theorem.

Theorem 3.4. Let u, be the weak-dual solution of the problem (P obtained in
Theorem [33.

(I) Weakly singular nonlinearity: If ¢ € (0,45 ) then
ue €AT(Q) i ={u:uxd}.

(IT) Critical singular nonlinearity: If ¢ = qs, then

{u:ux571n<?)s if s<4~,

1
{u:é”ﬁuﬁ(?”’ln(d%)} if s—§<7<s.

u, € A°(Q) =

(IIT) Strongly singular nonlinearity: If ¢ € (q5 ., q%,) then

u. € AT(Q) = {u:uxcsq%}.
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As we can see from the above theorem, when ¢ = g5, and s — % <7y <s, we
have 07 S u < 67 1n(dT“)}. It would be interesting to see if these estimates are sharp
or can be improved.

Put
A=(Q) ifge (O,q:,v) ,
AQ) = AQ)  ifg=qi., (3.3)
AT(Q) ifge (a5
Denote

&1 = Jullzm and & = |G Lx),

where u, is the unique weak-dual solution of ([Pg).
Next, we consider the following nonlocal semilinear problem involving a singular
nonlinearity and a source term

1 :
Lv:v—q—i—/\f(v) in Q,

v>0 in Q, (Sx.q)
v=20 on 0N or in Q if applicable,

where the pair (A, f) satisfies the following assumptions:

(f1) f : (0,00) — R* is a bounded domain map, i.e., for any bounded set A C
(0,00), f(A) is bounded;
(f2) There exist constants A and Cy > 0 such that

A(t) <Aforall te€l0,c1+ Acg] and X € (0,Ch)

for some ¢; > &4 and ¢y > Go;
(f3) The map t — st + Af(t) is increasing in (0, & + AS;] for some k > 0.

We present below some examples of the source term satisfying conditions

[ETHESL

Examples.

(i) Let f(t) =" for t > 0 and 0 < r < 1. Then, for any A > 0, the pair (X, f)

satisfies Assumptions fIHf3l Indeed, for A > 0, put
A

Cpi= ———.

A (Cl + CQA)T

Note that Cy — 400 as A — +o0. One can choose A > 0 large enough such
that Af(c1 + caA) < A for A € (0,Ch).

(ii) Let f(t) =t for t > 0 and p > 1. Then there exists A* > 0 such that for
all A € (0, \*) the pair (), f) satisfies Assumptions [THI3l Precisely, we choose

M =Lifp=1andfor \* = 2= L ifp s,

p—1
cy ~capP
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Weak-dual sub- and supersolutions of problem are defined as follows.

Definition 3.5. A positive function v is said to be a weak-dual subsolution (respec-
tively weak-dual supersolution) of if,

veE LY, 87), vl f(v) € LY,

and

/Qvf dx < (respectively 2)/Q vquQ[ﬁ] dx + )\/Qf(v)GQ[f] dx,

XV & € 67L®(Q), £ > 0.

A function which is both weak-dual sub- and supersolution of is called a
weak-dual solution to (Sx,)-

Theorem 3.6. Assume ([LI)-(L4), (GI)(G3), and EIHE hold, and (q,7) € E.
Then there exists a weak-dual solution v of (Sx4)). Moreover, v € A.().

Next we are concerned with the following nonlocal semilinear problem involving
a singular nonlinearity and an absorption term.

Lw + g(w) = % in Q,
w >0 in £, (Ag,q)
w=0 on 0N or in (Q if applicable,
where the function g satisfies the following conditions:
(gl) g:(0,00) — RT is a bounded domain map;
(¢2) The map t — ut — g(t) is increasing in the interval (0, &4] for some p > 0;

(g3) lim;_ o+ tPg(t) < 400 with p < q.

Examples.

(i) Let g(t) = t? for t > 0 and p > 1. Then, for any u > prﬁl, the function g
satisfies Assumptions [gIHg3}
(ii) Let g(t) =t " for t > 0 and 0 < r < g. Then g satisfies Assumptions [gI}{z3]

The definition of weak-dual sub- and supersolutions is given below.

Definition 3.7. A positive function w is said to be a weak-dual subsolution
(respectively weak-dual supersolution) of (A, ) if

w € Lg(9,07), w™?, g(w) € L'(2,67)
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and

Jwgdo+ [ oGO do < (respectively 2) [ -6 da,
Q Q

o w?
Y Ee§TL=(Q), £ 0.

A function which is both weak-dual sub- and super weak-dual solution of is
called a weak-dual solution to (Agq).

Theorem 3.8. Assume (L1)-(L4), (GI)-(G3), [gIHg3| hold, and (q,v) € E. Then

there exists a unique weak-dual solution w of (Ag)). Moreover, w € A.(Q).

We end this section with an open question. We note that the case ¢ > ¢;7, and
v < 2s — 1 in not included in this paper due to the absence of boundary estimates
of the solution to approximating problems. Therefore, it would be interesting to
investigate this case.

4. Preliminary Results and Kato Type Inequalities
4.1. Preliminary results

In this subsection, we recall some basic results comprised of lower Hopf type esti-
mate, integration by parts formula and action of the Green kernel on power of the
distance functions.

Lemma 4.1 ([3, Theorem 2.6]). Assume (GI) and (G2) hold. Then there exists
¢ > 0 such that for any 0 < f € L1(Q,87),

G f)(x) > cb(x)" / FW)s(w)" dy, z € Q.
Q

Lemma 4.2 ([21, Lemma 4.5]). Assume (GI) and (G2) hold, f € L*(Q,67) and
€ € 07L>(Q). Then we have

[ &g ao= [ reog ae

Lemma 4.3 ([3, Theorem 3.4]). Assume (GI) and (G2) hold and § < v + 1.
Then 6=P € L(£2,67) and

5 if v < 2s—[3,
G677 = {67 ln(dTQ) ify=2s— 0 and 2y > 2s — 1, (4.1)
5258 ify>2s— 0 and 2y > 2s — 1.

Here dg = 2diam(9).

Lemma 4.4 ([43, Lemma 5.2]). Assume u,v € H3,(Q) and h : R — R is a
Lipschitz function such that h(0) = 0. Then h(u) € Hy(Q) and wv € Ho () if
u,v € L*°(Q).
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4.2. Kato-type inequalities

In this subsection, we prove a Kato-type inequality expressed in terms of the Green
operator under Assumptions ([I)-(L4) and (GI)-(G2), which plays the role of
the comparison principle in our study of weak-dual solutions. The proof of the
inequality is based on the convexity inequality (L4) and ideas recently developed in
[43, Lemma 5.2 and Theorem 3.2]. It is worth stressing that the following Kato-type
inequality seems to have a wider applicability in comparison with the inequality
obtained in [43] Theorem 3.2].

Proposition 4.5. Assume ([LI)~(L4) and (GI)—(G2) hold, f € L*(Q,67) and u =
G[f]. Then

/ [ul€ dx < / sign(u)G[E]f dx (4.2)
Q Q
and
/u+§ dx < / sign® (u)G[¢]f du, (4.3)
Q Q
for every € € 67L>°(Q) such that G%[¢] > 0 a.e. in Q.

Proof. The proof is based on two claims.

Claim 1. Assume f € C°(Q), u = G?[f] and p € C*(R) is a convex function
such that p(0) = p’(0) = 0 and |p’| < 1. Then, for any & € §7L>®(Q), G?[¢] > 0, we
have

/ p)é do < / 7 (WG] da. (4.4)
Q Q

In order to prove (&), we will employ the following equality, derived from
[42, Proposition 5.2], which asserts that for any g € L?(Q2), G%[g] € H(Q2) and

| a¢ 42 = @10 Quwy. vCem@), (45)
¢
Take ¢ € 67 L>®(Q) with G®*[¢] > 0. Then it can be easily checked that & € L2(Q)

and hence u = G%[f] € H. Consequently, by Lemma B4, we have p(u) € H.
Therefore, replacing g by € and ¢ by p(u) in ([@3]), we deduce that

| o€ d = (000, 6716 (4.6)

Next, by using [42, Propositions 4.11 and 5.2], Assumption (G2]) and Lemma 4]
we have u = G[f] € H(Q), p(u) € H(Q) N L>=(Q), and p’(u)G[¢] € H(2). Now,
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by taking g = f and ¢ = p'(u)G[¢] in (@), and using ([4), we obtain
/Q ' (@)GP[E] dx = (G2[f], 1/ (W)G[E]) ) = (w0 (W) GV €]y

> <p(u), G" [€]>H(Q) : (4.7)
Gathering (L0) and (£7), we deduce that

/Q 7' (WG] do = (p(u), G E])y ) = / p(u)€ da,

Q
which yields (£4).

Claim 2. Claim 1 still holds true if f € L'(£,67).

Indeed, assume f € L'(£,67) and take & € §7L>(Q) with G[¢] > 0. Let
{fu}nen C C(Q) be a sequence of functions such that f,, — f in L'(Q,67) and
a.e. in Q.

Put u, := G[f,]. Then by Claim 1, we have

/prn)g do < [ /()% do. (4.8)

Recall that u = G[f]. Since the map G : L}(Q,57) — L*(Q,57) is continuous
and p € CH1(R), [p'| < 1, we deduce that, up to a subsequence, u,, — u in L(Q,§7)
and a.e. in Q, and p(u,) — p(u) in L(2,67) and a.e. in . It follows that

lim | p(up)§ doe = /Qp(u)§ dx. (4.9)

n—oo Q

Now, again by using [p'(u,)| < 1, fup'(u,) — fp'(u) ae. in Q and the general-
ized Lebesgue dominated convergence theorem, we obtain f,p'(u,) — fp'(u) in
L'(9Q, 7). Moreover, since the map G : §7L>(Q) — §7L>°(Q) is continuous (see
[21], Proposition 3.5]), we have G?[¢] in 67 L>°(Q). Therefore

lim | fup (un)GY[E] dz = i I (w)GR¢] d. (4.10)

By letting n — oo in ) and using @) and [@I0), we get the required claim.
Next we will prove inequality ([@2]). Consider the sequence {pi}ren given by

)

1
i >
- it

pr(t) = (4.11)

kt?

2
Then for every k € N, pi, € C11(R) is convex, pi(0) = (px)’(0) = 0 and |(px)| < 1.
Hence, employing Claim 2 with p = p, one has

/ pr(wé do < / o) (W)GRle] da, Ve € STLe(Q), G2l > 0. (4.12)
Q Q

E IS

if [t] <

Note that pr(t) — |t| and (px)’'(t) — sign(t) as k — oco. Hence, letting k& — oo in
(#I2) and using the dominated convergence theorem, we obtain (Z.2)).
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Finally, inequality (@3] follows from inequality ([@2]) and the integration by
parts formula (see Lemma [2]). The proof is complete. O

Proposition 4.6. Assume (GI)) and (G2)) hold and 3 < v+ 1. Then there exists a
unique weak-dual solution ¢ € L(,67) of the following problem:

Lo = 5% in §,
¢ >0 in Q, (4.13)
¢o=0 on O or in Q° if applicable,
in the sense that
/ ¢pé dx :/ iGQ[g] dr, V&e§L>(Q).
Q o of

Moreover, ¢g admits the behavior as in ([@I).

Proof. Define

1

Q .

G [—5 B] if z € Q,

0 if x € 99 or Q° if applicable.

Then by using Lemmas and E3, we obtain ¢g € L§(,07), ¢s admits the
behavior as in ([@I]) and

_ Q i _ i Q oo
[ u dxf/QG [W}gd:p_/ﬂ 5G] do, V€ € TL™(Q).

Moreover, ¢g is the unique weak-dual solution of (LI3)) due to [3, Theorem 2.5]
and an approximation argument. O

op(a) = (4.14)

5. Purely Singular Problem

In this section, we focus on the purely singular problem (Pg). To this purpose, first
we prove some estimates of Green operator acting over singular perturbed terms
and then by using the approximation method and Kato-type inequality, we establish
the existence, uniqueness and boundary behavior of the weak-dual solution to (Pg).

5.1. Estimates on Green kernel

Let s € (0,1] and ¢ > 0. Denote

2sq 2s
= =25s—f3 = 1
= 2L, ammop-—n (5.1
and for > 0, put
Q, ={reQ:dx) <n} (5.2)

Lemma 5.1. Assume (GI) and (G2) hold. Then, for e¢,n € (0,1) and v > «,
there exist positive constants ¢c; = ¢1(8) and ca = ca(diam(2),n,~, 8) such that the
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following estimates hold:
1 1 1
Gﬂ[ill }x>c (—(5:64—30‘—), Ve Qn 5.3
@2 e (G0 e - ;63
and
1 1
G® {71} x) > ca(0(x) +ex) —e, VaeQs. 5.4
(6+ea)ﬁ()_2(() ) 2 (5.4)

Here 1q, denotes the characteristic function of €.

Proof. First we will prove estimate (5.3). Denote e; = e=. By Assumption (G2),
we have, for x € Qg

1 B G (z,y)
e [(Mel)ﬁ 1“’7} (@) ‘/Q 6w + )P

n

1 1
onB(e, 222 (6(y) + €1)P [z —y|N =22

() () e 69

) C Q. Now for z € Qn and y € QN B(z, 5(2—1)), we

>C

d(z)
2

(5(”3) /\1>V21,( o) /\1>V21 and 1

lz -y lz -y (6(y) +€1)?

B
2 1
>z - 5.6
B <3> (0(x) +€1)? (56)
Combining (55) and (56), we obtain

G {ﬁlnn] () = (;)ﬁ m/mw,“;))

1 Co(x)*

Here we note that QN B(x,
have

dy = . 5.7

E T B ey 7

By applying the inequality
(a4 b)* < max{1,22" 1 }(a* +b*), a>0,b>0,
with a = §(x) and b = €1, we get
1
2s 2s 2s
Finally, by using (B.8)) in (1), we obtain
1 1 1
GQ 1 — GQ 1 > - 5 2s—[3 o 2s—f3
{(5 +en)B Q"} (@) 6 +e)p @)= e 2( (z) +e1) “

1 1
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Next we prove estimate ([B4)). Let @ € Q5. Then by using Lemma and
2
assumption y > «, we get

Go [%] (@) > —G21q](x) > c(x)mnlr2s)

(5 + €1 B - (dQ + l)ﬁ
> op(0(w) + €%)* — ¢, (5.9)
where c¢o depends upon 7, a, v, and dgq. O

Lemma 5.2. Assume (GI) and (G2) hold and s — & < v < 2s. Then for o € [0,1),
there holds

1 d d
G% [5257 In~? (%)} (z) < §(z)? In*~° (ﬁ) , Va e,

for some n > 0.

Proof. Let n > 0 small. To prove upper and lower estimates, first we split the
integrals over two regions 2, and Q\ Q, as follows:

e [5237 e (dTQ)} (=) = /Q 6G<Z§w D (6@)) dy
Q T
] S () o

=: 1 (z) + Iz(x).
Take z € Q1 and let @ : B(z,1) — B(0,1) be a diffeomorphism such that

QN B(x,1)) = B0O,1)N{y e RY : y-en >0}, (511)
O(y)-en =06(y) for y € B(x,1) and @(z) = 6(z)en .

For the first integral I (z), we partition the set €, into the following five com-
ponents:

0y := B(z,0(x)/2), Os:=Q,\ B(z,1),

ovi={u:0) < @20 B, o= {2 <o) <ab e,
Oy = {y : 5(2—“7) < d(y) < 3553)} N (B(x,l)\B( @) ))) :

Lower estimate. For y € 0y, we have

Therefore

e [ G (o () et o
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Now, by performing a change of variables via diffeomorphism ® in (EI1]) and using
estimates on [3, Proof of Lemma 3.3, Page 40], we get

212\7—25 ,
dy Z §(x)” dzndz
{

3501 o ey (10(@) — 2] + [N 25977

5 . n/é(z) 1/6(x) tN72h27725
= dt dh
(517) /3/2 /O (|1 o h| + t)N—25+2v

P n/é(x) h2y—2s 1/(h—1)8(x) N2
- T NI —2st24 ———————dr dh
(117) /3/2 (h _ 1)1—2s+2'y /0 (1 T T‘)N_25+27 T

- . n/é(x) h2r—2s 1/(h—1)8(x) 1
2 o(x) /3 m/l (IJFT)TM dr dh

G (z,y)
o, 0(y)>—

/2
L[ s
> () /3 P e dh

(h
> 5(:1:)7/3:2/6@) % dh = §(z) <1n <$> ~In (g)) .

This implies that there exists a constant C' independent of the parameter o such

that
Gﬂ(x,y) T n do
[, st vz cttar i (55). o

By combining (.10), (512), and (E13), we obtain
1 d d
Q —0o _Q > > 0% l1—0o Q
G [5257 In ( 5 )} () > Ii(z) > Cé(x)” In <—5(x)) .

Thus, we obtain the lower bound.

Upper estimate. By partitioning the domain of integral I1(x) over {€;}5_,, we
find the upper estimates over each subdomain &;. Observing, for y; € €7 and
Yo € UJ_,0;, we have

<M/\1)x1 and (MM)vM

|z — 1 |? |z — yal? T =g

Now, again by using the change of variables via diffeomorphism ¢ and [3, Proof of
Lemma 3.3], we get estimates in each domain.

2dg

sp(1) for some

Upper bound in &;. Choosing 1 small enough such that 0 < n <
c € (0,1), we have, for any y € 0,

50(2) < 3y) < So(x), W7 (%) <M (%) <c'ln? (%) .
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Therefore

Yy
< lme (5‘?—2)) 5(z)! 28/( = 1|N — dy
<c 'l (%) §(x)
<o (22 s

where C' is independent of parameter o.

Upper bound in &5. We have

G a,y) | _ do _o [ do 5(y)>r—2s
——In" 7| — <In 9 = v oy
6o 5(y)25*’y n (5(y)) dy s n ( 7 ) 6(1') ,/6’2 |17 — y|N*25+2’Y dy

< (@) sy [ ot ay
Ui Oy

)

< ) ' (1) e

where in the second last inequality we used the fact that v > s — % and C is
independent of parameter o.

< n2'\/72s+1 hl—a <

Upper bound in &5. We note that, for any y € O3,

—o [ da > e ( do )
— ) <In — .
<5(y) B ()
Therefore

/, s () < (i) o /, e

d o(x)/2 212\/7 2s )
<1 — dznd
~ (6( ) /| / (18() = 2n] + [PV 2727 N

do 1/5(x) Noo 1/2 $27—2s

— h™ dt dh
< (5( ) /0 ((L—t) +h)N—2s42

d 1/5(@ BN -2

— —————dh
N 5 (1 + h)N725+2'y

da

< C(sm o)’ (5(@)6@)?
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Upper bound in 04. We have

Q 2v—2s
| S (5 ) av <o [ d) By
6, 0(y)*7 6(y) 01 o — y|N-25+27 In® (d_sz>

o(y)
Soay [
{322 oy <n}NB(0,1)

2y—2
wy

X N dwy dw'

(15() — wn |+ [0/ V=227 " ()

n/6(x) 1/6(x) tN=2p2v-2s
= §(z) / / dt dh
2 Joo (1= h+ Nz ()

n/é(x) h2v—2s 1/(h=1)é(x)
oy /
3/2 (h _ 1)172s+2'y In® ( do ) 0

hé(x

A

,r.N72

X —(1 +T)N72s+2'y

n/dé(x) h27—2s 1/(h—=1)é(z)
oy [ /
2 (- 1)z (gl

dr dh

hé(x)

hé(x)
—1 dr dh
x 1+ r)2—2s+27 r
n/dé(x) h2v—2s
< (5(:6)7/ dh
v G e ()

n/6(z) In~7 (58
< 5(:17)7/ M dh
3/2 h

In(2da/36(x)) 1

= C(dgz)é(d?)’y / —dt.

In(de/n) ¢

This gives

™ <5d(_2)> Q 0(5777777(;5) 1— d(l
/@4 77G (l’,y) dy S ﬁln (m) 6(,@)7

2do

S0 for

Upper bound in O5. Again, by choosing 7 small enough such that n <
some ¢ € (0,1), we have, for y € O,

5(y) < ga(:c) and In~° (%) <c7Iln° (%) <c'ln™? (;—Z)) :
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Therefore
GQ(way) — ( dQ )
— T In 7 —=|d
o5 0(y)25 7 5y)) @
2v—2s
<oy | 11—
o la— gl ()

“2sy —o [ do 1
<4 3y 251 o / d
S 6@ 1 ( 5(:0)) e
[ d 35(z)/2 pl N2
SOl <—) / / dt dh
8(x) ) Jsy2  Js@y (10(x) — | + )N =2s+27
_ _ do 1 o 6(x)/2t 1
< §(a) 2 I (_)/ (2527 1/ I S
5(517) 6(;E)/2 _5(I)/2t (|7’| —+ 1)N72S+2'y

<oy (L) [ e [T L
< 0@ Thn <6<w>>/1/2 p / (N e

< O(5,7,m, ¢) '~ (;(l—j)) 5(a)".

Here in the last estimate, we have used the assumption that v > s — % Finally, by
collecting all the estimates in {€;}, we get the desired upper estimate. O

Lemma 5.3. Assume (GI) and (G2) hold and s f% < v < 2s. Then for o € [0,1),
there holds

G® {(5251—V In~7 <%)] (z) = 6(x) In*~° ((;E—S;)) VazeQ\Qa,

for some n > 0.

Proof. Let n > 0 small and I1(z), Ix(z) as in (&I0Q).
Lower estimate. We have

>Cln° (%) 5(z)7 > C(n)In*~° (%) 5(z)7

> C(n) '~ (%) 5z)".
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Upper estimate. Using the estimates from [3, Proof of Lemma 3.2, Page 37|, for
1 small enough, we obtain

Qs Uz
h(e) + (o) < 77 (%) oo ( Sl [ S dy)

=7 (2)
7723—')/

<Cln™° (‘%") 5(z)Y (1 + 772%) + C(dg)In'~7 ((5‘2—2)) 5(z)Y

X

G®[1o](x)

25— 1—o (2do
7n?s~7 In ( n“)
< C(dg,n)In*~° o §5(x)”.
This implies the desired upper bound. O

5.2. Existence and uniqueness results

For € > 0, consider the following approximating problem:

1

Lu=—— in Q,
(ue + €)1
u >0 in Q, (Fs)
u=20 on 0N or in Q° if applicable,

where ¢ > 0.

Proposition 5.4. Assume ([LI)-(L4) and (GI)-(G3) hold. Then for any e > 0,
there exists a unique weak-dual solution ue € L§($2,07) N L>(Q) of problem (P
in the sense that

1
Cder= | ————G%¢] dx, VEe€dLXN). 5.14
Jutin= [ e i veerIm@) (5.14)
The solution is represented by
Ue = GY {;] a.e. in €.
(ue + €)1

Moreover, the mapping € — u. is decreasing.

Proof. Fix € > 0. For any ¢ € L*°(Q), in light of the continuous embedding
property of the Green operator G : L>(Q) — L*(Q) (see [3, Theorem 2.1]) and
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Lemma [£2] the function

1
=G | ——| € L™
! {(Wﬂ)q] S £,
where ¢ = max{¢p, 0}, is the unique positive weak-dual solution for the following
problem:
1 .
Lu = m in €,
u >0 in €, (5.15)
u=20 on 0N or in Q€ if applicable,
in the sense that
1
ufdwz/iGﬂﬁ dr, YV &e€dL>e(R). 5.16
/ R @ (5.16)
Define the solution map T, : L>®(2) — L>(Q) as
Te(y) := G {é} p e L>®(Q).
‘ (ot +e)]’

We will use the Schauder fixed point theorem to show that T. admits a fixed point
which is a weak-dual solution of (G.13)).
For any ¢ € L*°(Q) and x € 2, we obtain

o (]

and thus,

< e 1G[1(2) < € GO L) || p=(0) =t Res

ITe()l| Lo () < Re. (5.17)
Put
De :={p € L>(Q) : |l¢llLc() < Re}
then 2, is a closed, convex subset of L>°(Q2). Moreover, by (5.17), T.(Z.) C Z..

Claim 1. T, is continuous.
Indeed, let {pr} C L>(£2) such that ¢, — ¢ in L®(2). Put up = Te(pr) and
u=T(p). For any = € 2, we have

jun(z) — u(@)| = |62 [W%)] 0~ 6% | e | @)
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IN

eqq+1 /QGQ@»y)!%(y)—w*(y)! dy

q
L6 [lef — ") (@)
q

IN

S 1G]]l e o) 0k — @l ()
Therefore
q
luk — ull L) < d+1HGQfUHLm«nH¢k—'¢HLwaD- (5.18)

Consequently, since ¢ — @ in L>®(), by letting & — oo in (BI])), we derive that
ug — w in L*>(Q). Thus T, is continuous.
Claim 2. T.(Z.) is relatively compact.

Indeed, by Arzela—Ascoli theorem and (5I7), it is enough to show that the set

T.(Z.) is equicontinuous, namely for any = €  and p > 0, there exists v > 0 such
that if for every y € B(z,v) and u € T¢(Z,) there holds

u(z) —u(y)| < p.
To this end, let # € Q and g > 0. Using the fact that G}[L>®(Q)] c C(Q) is
continuous ([3, Theorem 2.10]), we get G[1] € C(Q). This implies

lim | G%(y,2)dz = / G (x, 2)dz.

v=r I Q
This, together with Assumption (G3]), implies that

lim | |G%(z,2) — Gy, 2)|dz = 0.

Yy—x Q
Therefore there exists v > 0 such that if y € B(x,v) then

G (@, 2) — Gy, 2)|dz < pe.
Q

Now take u € Te(Ze), then there exists ¢ € Z, such that u = T.(p). Fory € B(z,v),

we have
" | Grra] @ " e )
< Elq/Q |G (z, 2) — Gy, 2)|dz < p.

Therefore T(Z.) is equicontinuous. By Arzela—Ascoli theorem, T.(Z,) is relatively
compact. Therefore, we have proved Claim 2.

We infer from the Schauder fixed point theorem that there exists a fixed point
Ue € P, of T, namely

From Lemma 2] we see that u. is a weak-dual solution of (B.IH]) in the sense of

E.16).

lu(z) = u(y)| =
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Finally, we will show that € — wu, is decreasing. To this end, let ¢ > ¢ and
denote by u. and u. are the corresponding weak-dual solutions of (Pg)). For any
£€0X(Q), £>0, G > 0, from Kato’s inequality (see, Lemma FZH), we obtain

1 1 o
0 S ‘/Q(ue - U51)+§ de S ‘/{uszuf/} ((u€ + e)q - (ue/ + 6/)(]) G [f] de' S 07
(5.19)

which implies that (ue — ue )™ = 0 in Q, whence ue < ue in Q. O

Let ¢1 and A\ be the first eigenfunction and eigenvalue for the operator L, then
by [21], Proposition 3.7] and [I5, Proposition 5.3, 5.4], we have
@1 =67 and 1 = \;G%[p1] in Q. (5.20)

Theorem 5.5. Assume ([[I)—(L4) and (GI)-(G3) hold and (q,v) € E. Then
there exists a unique weak-dual solution u. of the problem (P in the sense of

Definition [311
Proof. Let u; be the weak-dual solution of (P2), then u; can be represented as
1
u =G |——| inQ. 5.21
' [(Ul + 1)‘1] (521

On the one hand, we see that
0<u; <G%1] in Q.

On the other hand, for z € ),

e1(x) = MG ] (z) = MG [% ([l oo o) + 1)‘1}

(lurl[ Lo 0y +1)9
< Mol (lutllpeo) + DIG? [(Jur || pooy + 1) (x)  (5.22)

1
—— | (z) = Cuy(x),
| ) = Cul)
where C' depends on N, s,v,8,q, A1, ¢1.
For 0 < e < 1, let u, be the weak-dual solution of (PY)), then w. is represented

gc«;ﬂ[

as

1 G
ue(z) = GY [7] (x) :/ _G@y) dy, z €
(ue + E)q Q (ue<y) + E)q
Combining the fact that € — u, is decreasing, estimate (520)) and (522)), we deduce
that, for e < 1,

Ue > up > Cpp > CH7 in ), (5.23)

where the constant C' is independent of e.
To prove the upper boundary behavior, we consider the following cases.
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Case 1. 0 < ¢ < g; . Using estimate (2.23) and Lemma 3] we get
w <G |—1 _|<g2|L]<sy ifgemndg 1421 (5.24)
o (v +e)9| — sva |~ 4 Bs, v v :
Combining (5:23)) and (E24), there exist C, Cy > 0 such that for any 0 < e < 1,
1
C107 <ue < 00" if ¢ < min {q;‘,y,l—i- —}. (5.25)
' v
We note that if v > s — % then ¢35, < 1+ %, hence the condition on ¢ becomes

q<dqs.-
Case 2. g€ (q¢;,,q:%) Put e = ex > 0. Let w,, be the weak-dual solution of

1
Law, Q,
We, Grea) in
we, > 0 in Q, (P%)
We, =0 on 0N or in Q° if applicable.

Using Lemma 3 with 5 and « are defined in (51I), we obtain

1 1 Y , 1
wq:GQ {W}SGQ {6—ﬁ]§05 in Q 1f’y>max{oz,s§,ﬂl}.
(5.26)
On the other hand for 0 < n < 1, Lemma [5.1] gives
_ o 1
we @) = 6% | 5| @
) G2 {ﬁl%} @) > e (%(5(@ Fea)o - e) ifz € Qy,
e (5() +en) —e ifz€Q\Qy,
. 1 . 1
> min{ci, c2} (5(6(50) +e€1)* — E) , z€Q ify>max {a,s— §7B_ 1}.
(5.27)

Combining (26]) and (B27]), there exist constants ¢z, ¢4 > 0 depending upon 7, a, s
(but independent of €;) such that

e (50000 + )" = ) < wa ) < cudlo”,

(5.28)
1
x e if7>max{a,s—§,ﬁ—1}.
Define
C Rt
gE::c#wﬂ‘Wﬁh0<<cn<-—l(ﬁ> : (5.29)
Cq 2
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where C1, ¢y are the constants defined in (528) and (52]), respectively. We note
that ¢, is independent of € such that
u, < uein Q\ Qn
and
U, + € < 2cs0p (8 +€1) + (1 —cacy)e  in Q.

If 2c4c,(d(x ) €1)® > (1 — cacy)e then by choosing 1 small enough such that
ey < (dea)” @1 we have

(u, 4+ €) 77 > (deaey) U0+ €)% > e, (0 +e1) M =c (6 +e1) P =Ly, in Q.
If 2¢4¢,(0(x) + €1)® < (1 — cacyy)e then again by choosing 7 small enough such that
cacy < 1 and ¢; < (2(1 — cacyy)) ™9, we have

(e + €)% = (2(1 = cacy)) e = (2(1 = cacy)) (0 + €)™
>cp(04€e)=c,(0+6) " =Ly, inQ.

Combining the above cases, we obtain

Lu

_5_

Recalling that w is the weak-dual solution of (PZ)). By applying the Kato-type
inequality ([@3]), we get u, < u. in €, namely there exist constants 0 < c5, cg < %
(by taking 7 small enough) such that

c5(0+€1)® —cge <wue in Q. (5.30)

1°

Using the integral representation of the solution u. and (526]) with 8 = ag = jj_q
we obtain the upper bound as follows:

ﬁ} = [<c5<5 o c6>e>q]

1 1 1
< Q% Q| - | < g5o - . )
<G [(50“1} G [55]”5 1f’y>max{a,5 2,ﬂ 1}

The above condition breaks sdown the range of ¢ as

g€ (gi00) if2s—1 <~

(5.31)

and
v+1

qc (qjﬂ,ﬁ) lf’y < 2s—1.

Case 3. ¢ = ¢ . In this case, by using (£.22)) and Lemma[L3] we get

1 1
pare) < oG
vt {(Ue+6)q]_CG [(57+6)q}
1 d 1
Q Q) . .
<CG [W} <C§In <7> ifg=gq;, < 1+;.

(5.32)

o . 1 . . 1
The above condition ¢; ., <1+ 5 follows from the assumption v > s — 3.
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Define w, := lim¢_gue. Then, by using uniform boundary behavior in € and
Lebesgue dominated convergence theorem, we pass to the limits in (5.14]) and obtain

/ wn da = / L6 de Ve LoQ) (5.33)
Q Q U

Again, the uniqueness of the weak-dual solution from Kato-type inequality (Z3]).
The proof is complete. O

5.3. Boundary behavior of weak-dual solutions

Theorem 5.6. Assume ([[I)-(L4) and (GI)-(G3) hold and (q,v) € E. Let u, be
the weak-dual solution of problem ([Pg)) obtained in Theorem[58. Then u, € A.(Q)
where A.(Q) is defined in [B3).

Proof. Let u, be the weak-dual solution of the problem (Pg). Using (5.25) for
q < g5, and @30), @.3) for ¢ > ¢, and B.22), B.32) for ¢ = ¢5 , and v <'s,

we get u, € A,(Q2). Now, it remains to prove the optimal boundary behavior when
q=4q;and s <7y < 2s.

Case 1. s <y < 2s. For o € (0,1), define

1 d
Q —0 _Q .
() = G [5257 In ( 5 )} () ifxeq, (5.34)
0 if x € 99 or QF if applicable.

Since i~ In~7(%2) € LY(,47), by using Lemmas 2 B2} and B3, we obtain
Yy € L1(,87),

L5t (%) < Wy () < M(z)" In" (%) »zef, (535)

where M is independent of the parameter o € (0, o) for some 0 < g9 < 1 and

1 d
_ Q —0 _Q
/ngﬁdxf/ﬂ((} {625_V1n <§)]§dx
[ L (2o [€] dx, V€€ 67L>®(Q)
Q 6% o ’ '
Let u, be the weak-dual solution of (BJ). For o = ¢ € (0,1), define ¢ _:= C~ %),
where C' is defined in (532). Then using the upper bound of u in (&32), we get
1 1 1

= < — =Lu,. :
.= G (& S Lu (5.36)

L

From (5.30) and Kato’s inequality, we infer that

1
MC4

5(x)? In' (;g—‘;)) < C 1y () < un(z), T €D (5.37)
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Define 9, := M9CT 4, for o1 = q(1 — q) € (0,1) and using (537) and the fact
that gy = 2s — v, we obtain
Mo _

1
Lot = ul = 5257 In9(t—9) (dTQ) =L, (5.38)

Then by again using (535) and the Kato inequality, we get

u, < MICT ), < MIHI0T 57 It~ +e’ (ﬁ) in Q.

)
Now, by iterating theses estimates, we get for any m € N,
1 2 2m+1 [ do
Y1, 1—q+q"+...—q haitd
M1+q+q2+...+q2m’ch2m’16 In ( ) ) S U

)
By passing m — oo and recalling that ¢ = ¢ , € (0,1), we obtain

< MU e O g <@) in Q.

d d
= 57 InZ= (79) < uy < Mz §7 Inz= (TQ) in Q. (5.39)
2y—2s

Case 2. vy = s. In this case, ¢ = ¢; , = 1 and hence, by taking o = + in (534), we
derive that w% satisfies

¥y =GO

1
2

1
— | ma (5.40)
57 In7 (42)

Next, by taking o = % and using (5.34]), we have

1 1 ( do 1 [ do
_ Tnz | —— | < 1 < Tln? | — . .
M5(x) In ((5(;10)) < ¢i(x) < Mé(z)" In <(5(;E))’ x e (5.41)
Recall that
Uy, = G {i} in Q. (5.42)
U

Combining (5.40)-([5.42) and applying Kato-type inequality (£3)) for the functions
T — 1 and ¥ — Mu, successively, we obtain

1 1 [ dg 1 9 1 [ do

— 52 In? [ =X ) < —p1 <un(x) < Mips < Tn? [ —= ), )
M2§(x) n (5(:1:))_Mw2_u (¥) < Mipy < M76(x)” In (5(x)) x €
The proof is complete. O

Proof of Theorems and [3.4l Combining the results in Theorems and
(.6l we complete our proof. O

Remark 5.7. Under the same assumption Theorem B3 and f € §7L>(Q2), f >0
and with minor changes in the proof of Lemma [£3] Proposition 5.4l Theorems
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and [1.6], we can prove the existence of a unique weak-dual solution u € A, () of
the perturbed problem.

1
Lu=—+f in Q,
ud
u>0 in €, (5.43)
u=20 on 0N or in  if applicable.

6. Applications: Semilinear Problems Involving Singular
Nonlinearities

In this section, we study the semilinear elliptic problems in the presence of singular
nonlinearities and a source or absorption term via sub-super solution method.

6.1. Source term

Let u. be the solution of (Pg) and put vo = u.. To study the problem (Sy ), first
we prove the existence results for the following parameterized iterative scheme with
parameter A and k.

1
Lvy, + kvn = —7 + Af(vn-1) + Kvp 1 in Q,
Un

vy, >0 in Q, (Qn)
vy =0 on 0f2 or in Q° if applicable,

for n > 1, via Schauder fixed point theorem which is required in the proof of
Theorem 3.6l The weak-dual solution of ((J,)) is understood in the sense that

/Qvné- dx + H/Q anQ[g] dr = /Q <% =+ Af(vnfl) + "VUH1> GQK] dz,

VE € LE(9). (6.1)

Proposition 6.1. Assume (LI)-(L4), (GI)-(G3), [l hold and (q,~) € E. Then for

any n € N, there exists a weak-dual solution v, € A.(Q) of the iterative scheme
(©n)) -
Proof. Let n =1, ¢ >0 and x > 1. Let u, be the solution of (]E[) Put
M= o+ IS () + e
For any function v € L*(Q), put

Ac(v) = {2 € Q: —kM[|GP[1]||F~ q) < v(2) < Me||G[L]]| e (e }-
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For any function v € L*°(Q), there exists a unique weak-dual solution @ of the
problem

(% (
=0 on I or in Q° if applicable.

Solution v is represented as

- 1 | o
5 =G" — + Af(v0) + K(vo — vT14,(0)| € LX(Q).

(vt +¢)

Now, we define the solution map S, : L>(2) — L*°(Q) as

1
L (v + €)1

+ )\f(vo) + IQ(UO — v+1A€(v)) y RS LOO(Q)

Se(v) := G*

On the one hand, we see that
Se(v) < M[|G*[1]|| () for ae. x € Q. (6.2)

On the other hand, we obtain

Se(v) > —kGvT14, (1] > —RMEHGQ[l]H%w(Q) for a.e. z € Q. (6.3)
Combining ([6:2) and ([G3]) implies

MGy < S(0)@) < MG 1) for . 7 €,

Put
8= {o € LX) : —RMC 13 @) < () < MG ey for ace. 2 € Q).
Then &, is a closed, convex subset of L>(Q) and S.(&;) C &..

Claim 1. S is continuous.
Indeed, let {vy} C & such that vy — v in L>(Q). Put o = Sc(vx) and 0 =
Se(v). Since vy, € &, it follows that v € &. Moreover, 14 (,,) = 1a.(») = 1 a.e. in
Q. Then
1 1
(Ulj + €)a (vt + €)1

|0 — ] < GY [

] RGOl — o]

q )
< <eq+1 + n) G vt — vt
q
= (Eqﬂ + K) [[ox, = “”L“’(Q)||GQ[1]HL°°(Q)-
This implies

- - q
o = Bl ey < (o + ) low = vll o) IG9 Ul e -
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Since vy — v in L™(Q), by letting k& — oo in the above estimate, we deduce that
O — 0 in L>®(Q).

Claim 2. S.(&,) is relatively compact. By Arzela—Ascoli theorem and S, (&%) C &,
it is enough to show that the set S¢(&;) is equicontinuous. To this end, let x € Q
and g > 0. Therefore, there exists v > 0 such that if y € B(z,v) then

G2, 2) — Gy, 2)|dz < .
Q

Now take © € S¢(&%). For y € B(z,v), then there exists v € &, such that 0 = S¢(v),
we have

i) - 300 = [6° | 2

g2 [ﬁ + Mf(vo) + K(vo — 'U+1As(v)):| (y)’

(o) + (o — mAE(v))] ()

1
< (e_q + [|Af (vo) + Kvol| Lo o) + Me||GQ[1]||L°°(Q))
« / GO, 2) — G2(y, 2)|d=
Q
1
< (e_q + IAf(vo) + Kol Lo () + Me||GQ[1]||L°°(Q)) -

Therefore, S.(&.) is equicontinuous. By the Arzela—Ascoli theorem, S.(&) is rela-
tively compact.

We infer from the Schauder fixed point theorem that there exists a fixed point
Ve,1 € & of S¢, namely

1

Veq = Se(vey) = G | ———
o1 ( 71) (U::l‘i‘ﬁ)q

+Af(vo) + K (vo — U:l)] :

From Lemma [I2] we see that v, is a unique weak-dual solution of

1
Lves + m;;fl = m + Af(vg) + kg in Q,
€,1
=0

Ve 1 on 02 or in Q¢ if applicable.

To prove the positivity and boundary behavior of the weak-dual solution v 1,
we construct a positive subsolution and supersolution of the above problem. We
take u., which is the weak-dual solution of (]ED, as a weak-dual subsolution of the
above problem. We see that

1 1

v (g )T )

Ue — Ve = G
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By using Kato-type inequality ([@3]), we obtain that, for any 0 < & € C2°(2) such
that G[¢] > 0,

/(ue - Ue,1)+§ dx < /
Q {ue>ve1}

x G[¢] d.

1 1
v G aap )Tl

<0.

The second inequality follows from the fact that vy > u.. Therefore, uc < v¢1. In
particular ve; > 0. Next, put V. = u, + MG®[1] for some M > 0 which will be
determined later. Then

ve=e [(ue+e)q +M} '
It follows that

1 1
(Ve,1 + €)4 - (ue + €)1
Now by choosing M = [|Af(vo) + kvol| (o) and applying the Kato inequality (.3]),
we obtain

/ (ver — Vi)te da
Q

Ve1 — Ve = G [ + Af(vo) + K(vo — ve1) — M} :

1 1
< _
B /{v€,1>V€} [(Ue,l +e)7  (ue+e€)?

xGY[¢] dx < 0.

+ Af(vo) + k(vg — ve1) — M}

Hence ve 1 < Ve in Q. Next, by using again Kato’s inequality, we obtain, for € > €/,

1 1
+
Vel — Ver dr < — — K(Ve1 — Ver
~/Q( o ‘ ,1) 6 N /{vswlzvf/)l} |:(v€,1 + e)q (UE/,l + El)q ( o ‘ ,1):|

x G[¢] dx

<0.

It follows that ve 1 < ver 1. Therefore, € — v is decreasing and 0 < ve < ve 1 < Ve
in Q for every € > 0. Put v; := lim¢_.o v¢,1. We notice that

/ ve,1§ dx = / [; FAf(v0) + K(vo — ven)| GPE] dz V€ € 7L (2)6.4)
Q o L(

Ve,1 + €)4

By using estimate ue < veq < Ve in Q, ue, Ve € AL () and by letting ¢ — 0, we
obtain that vy satisfies (@) for n = 1 and v; € A.(Q). The remaining proof can
be done by induction. O

Now, we prove our main result on problem ([Sy ) involving the source term
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Proof of Theorem Let u. € A(Q) be the weak-dual solution of (Pg) and
put
W=, + UY,

where U? = AG®[1] is the weak-dual solution LU® = A in Q. By choosing A such

that A > M| f(u. + AG®[1])|| () due to Assumption [[2] we deduce that u, and

v° are sub weak-dual solution and super weak-dual solution of (Sy_]), respectively.

Forn > 1, let v, € A.(2)NL(Q,5§7) be the weak-dual solution of the iterative
scheme (@,). The existence of the weak-dual solution v,, € A,(Q) is guaranteed by
Proposition [6.1l Now, we claim that

0<us <v, <0’ foralln>1. (6.5)

Let 0 # ¢ € C2°(Q) such that ¢ > 0 and G%[¢] > 0. Then using the definition of wu.
and Kato-type inequality (£3]), we obtain

11
xG[¢] dx < 0. (6.6)

This implies (u,—v1)™ = 0in , whence u, < vy in Q. Then by using Assumption[f3]

Kato-type inequality [@3), for any 0 # ¢ € C°(Q) and &, G?[¢] > 0, we obtain

0= /Q(vl - v0)+§ b= /{mZvU} (i - i " )\f(u*) oA H(UO N U1)>

] ud

x G[¢] dx

Lol ) — PO 4 (e — o0 4 (e — vy
g/{mzvo}< (Uo)q+)\(f( <) = f(07) + r(us )+ r( ))

vi
x G¢] dx < 0. (6.7)

This gives (v; —v%)* = 0 in Q, whence v; < v¥ in Q. By using the argument similar
to the one leading to ([C.0) and (67 for any n € N, we obtain (G.3)).

Put v := lim, o v,. By using (65) and letting n — oo in (6I), we obtain
v € A (Q) and

1
/ vé da = / —GYel dz+ X\ [ f(v)GP¢] dr, VEeESTLZ(RQ).
Q q V1 Q
This means v is a weak-dual solution of . O

6.2. Absorption term

In this part, we focus on the semilinear elliptic problem (]m involving singular
nonlinearities and absorption term. Let u. € A.(Q2) be the solution of ([P and put
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wy = us. We start by studying the existence result of the following parameterized
iterative scheme involving a positive parameter p
1 .
Lwn+ﬂwn+g(wnfl) = F‘Fuwnfl in Q,
n

wy, >0 in Q,
wy, =0 on JN) or in Q° if applicable,
(@Qn)

for n > 1, where weak-dual solution of (@D is understood in the sense that

g o+ [ uun + gtw,0) 6% s = | (wi +uwn_1) Gle] de,
VE € STLO(Q). (6.8)

Proposition 6.2. Assume (LI)—(L4), (GI)—(G3), [gT} [g3] hold and (¢,v) € E. Then,

for any n_€ N, there exists a weak dual solution w, € A (Q) of the iterative

scheme .

Proof. Let n =1, € > 0 and p > 0. Let u. € A.(Q2) be the solution of (P and
put wg = u,. Denote

1
]VE = 5_‘1 + /J,Hw()”Loo(Q).
For any given function w € L*°(Q), set
Bo(w) = {r € Q: NG ) — 16 g(w0)]lc (o)
< w(z) < Nel|G L[| (e } -

Using Assumptions [g]] [g3} Lemma and the fact that wy € A.(Q2), we notice
that g(wo) € L'(R,67) and G?[g(wg)] € L>=(£2). Since G* maps L>(Q) to L>(N)
(see, [3, Theorem 2.1]), for any w € L°(2) there exists a unique weak-dual solution

w of the following problem
1
~ + .
L = wh o7 g(wo) + p(wo —w'lp () in Q,
w = on 02 or in Q€ if applicable.

The solution w is represented as

s glun) + sl — L )| € 7).

e
w=6 {(uﬁ—i—e

Now, we define the solution map P, : L>°(Q) — L>(Q) as

Pe(w) := G” [m — g(wo) + pu(wo — w+1Be<w>)] :
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Using the same arguments as in Proposition [6.I] we obtain, for any w € L™ (1),
—uN[|G ][ 0y — G [g(wo)][lLoe ) < Pe(w)(2) < Nel|GP1]]| o< ()
for a.e. x € (.
Set
Fe = {v e L¥(Q) : —uN| G []|[7 () — IG*[g(wo)]ll 1= () < v(=)
< NEHGQ[l]HLoo(Q) for a.e. z € Q}.

Then Z. is a closed, convex subset of L°(Q) and P.(%#.) C %#.. Now, by adopting
the same arguments of continuity and compactness by Schauder fixed point theorem
as in proof of Proposition [6.1] there exists at least one fixed point w1 € %, of the
map P, such that P.(we 1) = we 1. Finally, from Lemma L] we obtain

1

we1 =G | ———— + g(wo) + p(wo — wH) |,

€1 (w:1+€)q g(wo) + p(wo 5,1)

hence w,,; satisfies
1
Lwe 1 + pwt, + glwg) = ———— + pw in €,
e,1 T MW,y g( 0) (wi1+€)q Hwo
we,1 =0 on 0N) or in Q¢ if applicable.

To prove the positivity and boundary behavior of the weak-dual solution we 1,
we construct a positive sub weak-dual solution and super weak-dual solution of the
above problem. For super weak-dual solution, define w := wg such that

Lw + pwt + g(wo) > + pwp in Q.

(@™ +€)?
For sub weak-dual solution, define w = ku,, < kwo where ¢, := ek~ 1, Ue, 1s the
weak-dual solution of problem (P, ) and k is chosen small enough such that

K (e, + exl% gy 19(000) [ ey + ) < 1.

Then
Lw + pw™ + g(wy) < ————— + pw™ + g(w
W T QW g(wo) < (u?k Fen) Hw g(wo)
katt 1 — katt
STt rer T e
S m + HWo 1N Q (69)
Then from Kato-type inequality [@3)), we obtain 0 < w < w1 < wg = w. Now by
defining wy := lim._,o w1 and by using the oundary behavior of u.,wy and by

passing limits € — 0, we obtain w; satisfies (0,.) for n =1 and w; € A (Q). The
remaining proof can be done by induction and we omit it. O
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Proof of Theorem 3.8l Let u, € A.(Q2) be the weak dual solution of (Pg), which
acts as a super weak-dual solution of the problem m Put wo = u..

Now, to construct the weak-dual subsolution of the problem (A ), because of
(g94) we choose a constant ¢ > 0 small enough such that

C([[woll 7 oo () lg (Cwo) [ oo () +€) < 1.

Put wy := fwg then w, is a sub weak-dual solution of problem (A4, ) since it
satisfies
patt 1 — ettt patl 1
L = — Y4 < —f — = —. 6.10
wy + g(w) o + g(lw,) < ol + W Tl (6.10)

For n > 1, let w, € A.(Q) N LY(Q,57) be the weak-dual solution of the iterative
scheme . The existence of the weak-dual solution w,, € A.(§2) is guaranteed
by Proposition

We claim that

0<wy <wy, <wp_q <wpy foralln>1. (6.11)

To this end, we choose p large enough such that ¢ — ut — g(t) is increasing in
the interval (0, ||wol| ()] due to Assumption [g2] Now by using the definition of
wy, wo and Kato’s inequality for 0 # ¢ € C°(Q) such that ¢ > 0 and G%[¢] > 0,
we obtain

0< /(QO —wy) "¢ da
Q

< /{wozm} <$ - iq + g(lwo) + (g(wo) — g(wy)) + p(wr — wo))

Yo wy

xG[¢] dx

< /{ o (7~ o7+ (o)~ g(am) + sl o) + s ~ 1))

Q_g wy
xG[¢] dz <0 (6.12)

and

1 1
OS/(wlf’wo)Q dl’S/ <—q—qg(w1)+ﬂ(w01th))
Q {wi>we} \W1 Wy

xG[¢] dx < 0. (6.13)

The above estimate implies wy < w; < wp in §2. By using a similar argument, we

obtain (G.IT]).

Next put w := lim,,— o0 wy,. By using (EI1)) and by letting n — oo in ([G.8]), we
obtain w € A, (2) and

Q _ i Q 0o
/ng d:c—l—/gg(w)G ] d:c—/Qw GUe dr V€ TLO(Q).

q

This means that w is a solution of (Ay)). The proof is complete. O
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Appendix A. Appendix A

In this section, we discuss the Laplace operator with Hardy potential L, which is
strongly singular on the boundary.
o H
L,:=—-A- 52
where 1 € R is a parameter and 6(x) = dist(x, 99). This operator has been inves-
tigated extensively in the literature (see [30, [10} [34, [35] [48]) and acts as a special
case of Schrodinger operators. The parameter p is imposed to satisfy p € [0, Cr(2))
where C'pr(§2) is the best constant in Hardy’s inequality given by

in fQ |V30|2 dx
peHL(Q\{0} [o [0/0]* do’

We will show that the operator L, satisfies assumptions mentioned in Sub-

sec.[Z2) Tt was showed in [42] Sec. 9] that Assumptions (LI)-(L3) and (GI))-(G2) are
fulfilled for L,,. In particular, in this case, (G2) holds for s = 1and vy = £ 4/ —
and Assumption (L3)) becomes H(2) = H}(Q2). We also have

Cu(Q) :=

(U, v) g1 (0) Z/QVU-V’U d:zc—u/ﬂ% dx, Yu,ve H}(Q). (A1)

Next, Assumption (G3) holds true by using a similar argument as in the case
of the sum of two RFLs in Subsec. together with the continuity and small and
long time estimates of the heat kernel in [30, (1.2) and (1.3)].

We notice that Assumption (L4) is only used in proving the Kato-type inequality
in Proposition @5 and due to the presence of the potential, the operator L,, does not
satisfy Assumption (L4). Now, in order to prove Kato-type inequality and ensure
that our results remains true for this operator, we replace Assumption (L4) by a
stronger assumption involving the singular potential as follows.

(L4),, For any u,v € H(Q)NL>(Q2) with v > 0 and any convex function p € C*!(R)
with p(0) = p’(0) = 0, there holds

(p(). Ve < 0.7 (W) + 1 (P e = plw) g5 )

We will show below that the operator L, satisfies Assumption (L4-newl). Take
u,v € H(Q) N L*®(Q) with v > 0 and a convex function p € C11(R) with p(0) =
p'(0) = 0. Then by LemmalZdl, p(u), p'(u)v € H} (). Moreover, since p is a convex
function, it is twice differentiable a.e. Then, by applying (AT]) for u and p'(u)v, we
get

(0. (0)0) gy + 1 (P = p) )
/\Vu|2 ! vdm+/ !(u)Vu - Vo d:tc—u/Qp(u)di2 dz

> [ Vo) Vo ds—p [ pagy de = (p).0) 0.
It means that (L4), is fulfilled.
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With suitable changes in the proof of Proposition in light of Assumption
(L4),,, we can prove the required Kato type inequality. For the sake of completeness,
we give a sketch of the proof.

First assume that f € C°(Q), u = G*[f], p € CV1(R) is a convex function such
that p(0) = p/(0) = 0 and |p/| < 1 and & € 6L>(Q) such that G2[¢] > 0. By @5)
and (L4),,, we obtain

, 0/ ()GE) dx = (G [f], 9 (W)GIE]) () = (w2 (WG[E]) 1

Q
> (p(u), G* [€]>H5(Q) — <P'(u)u —p(u), 652[6] >L2(Q) (A.2)

Q
= [ pwede—p [ @u—pun ST @
Q Q
The above inequality holds for any f € L'(Q,67) by repeating the approximation
arguments in Claim 2 of Proposition 3l
Now, counsider the sequence {pi}ren defined in @II]). Then for every k € N,
pr € CHL(R) is convex, pi(0) = (pr)'(0) = 0 and |(px)’| < 1. Hence, employing
(A2) with p = pi, we have, for any & € JL>=(Q), G?[¢] > 0,

Q
[ e —n [ awZ < [ joywegan @y
Q Q Q

where gi(t) := p).(t)t — pr(t). Notice that py(t) — [|¢t| and (px)'(t) — sign(t) as
k — +o00. Then, by using the Lebesgue dominated convergence theorem, we obtain

/ pr(w)€ do — / lul¢ dz and / (o) (w)G[E]f dw — [ sign™ (u)G[€]f da.
Q Q Q

Q

Now, in order to prove the required inequality ([@2l), it is enough to claim that

/ gr(u) Gi;[f] dr — 0 as k — oo.
Q

Let € > 0 be given. Since % € L?(Q), there exists a n = n(e) > 0 such that

L . G2l
if A is a measurable subset of Q with |A| < 7 then 3 dx < e.
A

It is easy to observe that gi(u) € H} () and g}, (u) < 1 for all k. Let e; > 0. Then,

2

by using the Hardy inequality, and taking e < ”uugl and a measurable set A C
H} ()
such that |[A| < 7, we obtain ’
G®[¢ gk (u G2[¢ L
el g e < 2] TR g )y
0 0 ) 0
A L2(Q) L2(A)

1
< e?fjullg ) < e

Hence, the sequence {gi(u)G®[¢]6"2}ren is equi-integrable. Finally, by using the
fact that gi(t) — 0 as k — oo for every t € R and employing the Vitaly convergence
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theorem, we get the desired result. Inequality (3] follows by the same argument
as in the proof of Proposition
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