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Equations with Variable Growth

Giovanni Molica Bisci, Vicenţiu D. Rădulescu* and Binlin Zhang

Abstract. In this paper, using a Hodge-type decomposition of variable
exponent Lebesgue spaces of Clifford-valued functions and variational
methods, we study the properties of weak solutions to the homogeneous
and nonhomogeneous A-Dirac equations with variable growth in the
setting of variable exponent Sobolev spaces of Clifford-valued functions.
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1. Introduction

The Dirac equation arises in the study of nonlinear spinor fields in the uni-
fied theory of elementary particles, see Heisenberg [26] and Weyl [39]. The
stationary states of the nonlinear Dirac field have been proposed as a model
for elementary extended fermions and nucleons, see Thaller [38].

The paper is primarily concerned with the existence of weak solutions
to the homogeneous A-Dirac equations

DA(x,Du) = 0, (1.1)

and the non-homogenous A-Dirac equations

DA(x,Du) = Df, (1.2)

where u is a function valued in the universal Clifford algebra C�n over a
bounded domain Ω with a sufficiently smooth boundary ∂Ω in Rn(n ≥ 2), D

is the usual Euclidean Dirac operator, f ∈ Lp′(x)(Ω,C�n) and the operator
A : Ω× C�n → C�n satisfies the following conditions with variable growth:

(A1) A(x, ξ) is measurable with respect to x for ξ ∈ C�n and continuous with
respect to ξ for a.e. x ∈ Ω;

(A2) |A(x, ξ)| ≤ C1|ξ|p(x)−1+g(x) for a.e. x ∈ Ω and ξ ∈ C�n;
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(A3)
[
A(x, ξ)ξ

]
0
≥ C2|ξ|p(x)+h(x) for a.e. x ∈ Ω and ξ ∈ C�n;

(A4)
[
(A(x, ξ1)−A(x, ξ2))(ξ1 − ξ2)

]
0
≥ 0 for a.e. x ∈ Ω and ξ1, ξ2 ∈ C�n,

where Ci (i = 1, 2) are positive constants, g(x) is bounded in Lp′(x)(Ω) and
h(x) ∈ L1(Ω). Of course, DA(x,Du) = 0 and DA(x,Du) = Df are meant in
the distributional sense.

Clifford algebras have important applications in a variety of fields in-
cluding geometry, theoretical physics and digital image processing. They are
named after the English geometer William Kingdon Clifford, see [4].

A study of the conformal p-Dirac equations, a special case of A-Dirac
equations, appears in [34]. These equations are nonlinear generalizations of
the Dirac Laplace equation as well as generalizations of elliptic equations of
A-harmonic type divA(x,∇u) = 0. The study of these equations is partially
motivated by the fact that some arise as the Euler-Lagrange equations to
variational integrals.

In [32, 33], Nolder first introduced A-Dirac equations (1.1) and devel-
oped some tools for the study of weak solutions to nonlinear A-Dirac equa-
tions in the spaceW 1,p

0 (Ω,C�n). In [3], Wang and Chen considered the nonho-

mogeneous A-Dirac equations DA(x,Du) = f(x,Du) in space W 1,p
0 (Ω,C�n).

The authors proved that under certain conditions, the solutions to the inho-
mogeneous A-harmonic equations if f satisfies the controllable growth condi-
tion is in fact the scalar part of weak solutions to the corresponding inhomo-
geneous A-Dirac equations. In [31], Lu and Bao were concerned with the reg-
ularity properties of weak solutions to the obstacle problem for homogeneous
A-Dirac equations, such as a global reverse Hölder inequality and stability.
However, the existence of weak solutions to the A-Dirac equations has not
been showed under the conditions (A1)–(A3) as p(x) ≡ p. Inspired by their
works, Fu and Zhang [15, 16, 40] were interested in the the existence of weak
solutions for A-Dirac equations with variable growth. Until now they have
proved the existence of weak solutions to the scalar part of homogeneous and
non-homogeneous A-Dirac equations under the assumptions (A1)–(A4). Re-
cently, Fu, Zhang and Rădulescu [17] established a Hodge-type decomposition
of variable exponent Lebesgue spaces of Clifford-valued functions. By using
this decomposition, together with the Minty-Browder Theorem, existence and
uniqueness of a weak solution to the A-Dirac equations DA(Du) = 0 were
obtained under the following assumptions:

(H1) |A(ξ)−A(η)| ≤ C
′

1(|ξ|+ |η|)p(x)−2|ξ − η|;

(H2)
[(
A(ξ)−A(η)

)
(ξ − η)

]
0
≥ C

′

2(|ξ|+ |η|)p(x)−2|ξ − η|2;

(H3) A(0) ∈ Lp′(x)(Ω,C�n),

where ξ and η are arbitrary elements from C�n, both C
′

1 and C
′

2 are positive
constants independent of ξ and η. Obviously, conditions (A1)–(A4) are weaker
than conditions (H1)–(H3).

Author's personal copy
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It is worth pointing out that an A-harmonic equation divA(x,∇u) = 0
is the scalar part of the equation (1.1) under appropriate identifications, see
[32, 33]. When u is a real function, Du can be identified with ∇u. Hence the
equation (1.2) corresponds to the nonhomogeneous A-harmonic equation

divA(x,∇u) = divf, (1.3)

Iwaniec and Sbordone [27] introduced the definition of very weak solutions

for the equation (1.3) in the Sobolev space W 1,p
0 (Ω) and studied the existence

and uniqueness of such solutions under the conditions (H1), (H2) and the ho-
mogeneity condition as p(x) ≡ p. Many results have been obtained concerning
existence, uniqueness and regularity results for this kinds of equations (1.3),
for example, see [2, 5, 13, 18, 23, 27] and the references therein.

In [20], Diening, Kaplicky and Schwarzacher showed BMO estimates
of p–Laplace system given by −div(|∇u|p−2∇u) = −divf . In [5], Dien-
ing and Kaplicky studied the interior regularity of the local weak solutions
u ∈ W 1,ϕ(Ω) and π ∈ Lϕ∗

(Ω) of the following stationary generalized Stokes
system: {

−divA(Du) +∇π = −divG in Ω

div u = 0 in Ω,

where D is the symmetric part of the gradient, the extra stress tensor A
determines properties of the fluid. The system originates in fluid mechanics.
The authors showed optimal BMO and Campanato estimates for A(Du). In
[7], Diening and Kaplicky proceeded to study regularity theory of solution
to the stationary generalized Stokes system, then apply these estimates to
the stationary generalized Navier–Stokes system. Therefore, it is reasonable
to consider the nonhomogeneous A-Dirac equations DA(x,Du) = Df as a
national extension.

This paper is organized as follows. In section 2, we begin with a brief
summary of basic knowledge of Clifford algebras and variable exponent spaces
of Clifford-valued functions, which will be needed later. In section 3, appealing
to a Hodge-type decomposition as well as variational methods, we prove the
existence and uniqueness of solutions to the homogeneous A-Dirac equations

with variable growth in W
1,p(x)
0 (Ω,C�n), and a Caccioppoli-type estimate for

weak solutions is obtained in the variable exponent context. In section 4, we
study the existence, uniqueness and stability of solutions to the nonhomoge-

neous A-Dirac equations with variable growth in W
1,p(x)
0 (Ω,C�n).

2. Preliminaries

2.1. Clifford algebra

We first recall some related notions and results from Clifford algebra. The
most important Clifford algebras are those over real and complex vector
spaces equipped with nondegenerate quadratic forms. For a detailed account

Author's personal copy
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we refer to [1, 8, 10, 11, 19, 21, 22, 28, 34, 37]. Let C�n be the real universal
Clifford algebra over Rn. Denote

C�n = span{e0, e1, e2, . . . , en, e1e2, . . . , en−1en, . . . , e1e2 . . . en}
where e0 = 1 (the identity element in Rn), {e1, e2, . . . , en} is an orthonor-
mal basis of Rn with the relation eiej + ejei = −2δije0. Thus, the dimen-
sion of C�n is 2n. In particular, by H := C�2 we denote the algebra of real
quaternions, see [20] for further details about the algebra of real quaternions.
For I := {i1, . . . , ir} ⊂ {1, . . . , n} with 1 ≤ i1 < i2 < . . . < in ≤ n, put
eI = ei1ei2 . . . eir , while for I = ∅, e∅ = e0. For 0 ≤ r ≤ n fixed, the space
C�rn is defined by

C�rn = span{eI : |I| = r},
where |I| denotes cardinal number of the set I. The Clifford algebra C�n is a
graded algebra as

C�n =
⊕

0≤r≤n

C�rn.

Any element a ∈ C�n may thus be written in a unique way as

a = [a]0 + [a]1 + . . .+ [a]n,

where [ ]r : C�n → C�rn denotes the projection of C�n onto C�rn. It is custom-
ary to identify R with C�0n and identify Rn with C�1n respectively. This means
that each element x of Rn may be represented by x =

∑n
i=1 xiei. From an

analysis viewpoint, an important property of the universal Clifford algebra
is that every non-zero vector x ∈ Rn has a multiplicative inverse given by
−x/|x|2. Up to a sign, this inverse corresponds to the Kelvin inverse of a
vector in Euclidean space.

We point out that Hamilton’s quaternions are constructed as the even
sub algebra of the Clifford algebra, while dual quaternions are constructed
as the even Clifford algebra of real four dimensional space with a degenerate
quadratic form.

For u ∈ C�n, we denote by [u]0 the scalar part of u, that is, the coefficient
of the element e0. We define the Clifford conjugation as follows:

ei1ei2 . . . eir = (−1)
r(r+1)

2 ei1ei2 . . . eir .

For A ∈ C�n, B ∈ C�n, we have

AB = B A, A = A.

We denote
(A,B) = [AB]0.

Then an inner product is thus obtained, give rising to the norm | · | on C�n
given by

|A|2 = [AA]0.

By [22], we know that this norm is submultiplicative:

|AB| ≤ Cn|A||B|, (2.1)

where Cn is a positive constant depending only on n and smaller than 2n/2.

Author's personal copy



Vol. 25 (2015)   Stationary States for A-Dirac Equations with Variable Growth 389Stationary States for A-Dirac Equations with Variable Growth 5

A Clifford-valued function u : Ω → C�n can be written as u =
∑
I

uIeI ,

where the coefficients uI : Ω → R are real-valued functions.

The Dirac operator on Euclidean space used here is introduced by

D =

n∑
j=1

ej
∂

∂xj
.

This is a special case of the Atiyah-Singer-Dirac operator acting on sections
of a spinor bundle. We also point out that the most famous Dirac operator
describes the propagation of a free fermion in three dimensions.

If u is a real-valued function defined on a domain Ω in Rn, then Du =
∇u. Moreover, D2 = −∆, where ∆ is the Laplace operator which operates
only on coefficients. A function is left monogenic if it satisfies the equation
Du(x) = 0 for each x ∈ Ω. A similar definition can be given for right mono-
genic function. An important example of a left monogenic function is the
generalized Cauchy kernel

G(x) =
1

ωn

x

|x|n
,

where ωn denotes the surface area of the unit ball in Rn. This function is a
fundamental solution of the Dirac operator. Basic properties of left monogenic
functions one can refer to [8, 19, 21, 22].

2.2. Variable exponent spaces of Clifford-valued functions

Next we investigate some basic properties of variable exponent spaces of
Clifford-valued functions. Note that in what follows, we use the short notation
Lp(x)(Ω), W 1,p(x)(Ω), instead of Lp(x)(Ω,R), W 1,p(x)(Ω,R). Throughout this
paper we always assume (unless declared specially)

p ∈ P log(Ω) and 1 < p− := inf
x∈Ω

p(x) ≤ p(x) ≤ sup
x∈Ω

p(x) =: p+ < ∞, (2.2)

where P log(Ω) is the set of exponent p satisfying the so-called log-Hölder
continuity, that is,

|p(x)− p(y)| ≤ C

log(e + |x− y|−1)

holds for all x, y ∈ Ω, see [29, 6]. Let P(Ω) be the set of all Lebesgue mea-
surable functions p : Ω → (1,∞). Given p ∈ P(Ω) we define the conjugate
function p′(x) ∈ P(Ω) by

p′(x) =
p(x)

p(x)− 1
, for all x ∈ Ω.

The variable exponent Lebesgue space Lp(x)(Ω) is defined by

Lp(x)(Ω) =
{
u ∈ P(Ω) :

∫

Ω

|u(x)|p(x)dx < ∞
}
,

Author's personal copy
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with the norm

‖u‖Lp(x)(Ω) = inf
{
t > 0 :

∫

Ω

∣∣u(x)
t

∣∣p(x)dx ≤ 1
}
,

and the variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
,

with the norm

‖u‖W 1,p(x)(Ω) = ‖∇u‖Lp(x)(Ω) + ‖u‖Lp(x)(Ω). (2.3)

Let W
1,p(x)
0 (Ω) be the completion of C∞

0 (Ω) in W 1,p(x)(Ω) with respect to

the norm (2.3). The space W−1,p(x)(Ω) is defined as the dual of the space

W
1,p′(x)
0 (Ω). For more details we refer to [6, 12, 14, 29] and the references

therein.
In the sequel, we say that u ∈ Lp(x)(Ω,C�n) can be understood coordi-

natewisely. For example, u ∈ Lp(x)(Ω,C�n) means that {uI} ⊂ Lp(x)(Ω) for
u = ΣIuIeI ∈ C�n with the norm ‖u‖Lp(x)(Ω,C�n) =

∑
I ‖uI‖Lp(x)(Ω). In this

way, spaces W 1,p(x)(Ω,C�n), W
1,p(x)
0 (Ω,C�n), C

∞
0 (Ω,C�n), etc., can be un-

derstood similarly. In particular, the space L2(Ω,C�n) can be converted into
a right Hilbert C�n-module by defining the following Clifford-valued inner
product (see [21, Definition 3. 74])

(
f, g

)
Cln

=

∫

Ω

f(x)g(x)dx. (2.4)

Remark 2.1. A simple calculation shows that

2
−n(1+p+)

p− ‖|u|‖Lp(x)(Ω) ≤ ‖u‖Lp(x)(Ω,C�n) ≤ 2n‖|u|‖Lp(x)(Ω).

holds for each u ∈ Lp(x)(Ω,C�n), see [3, Remark 1]. Thus, ‖u‖Lp(x)(Ω,C�n)

and ‖|u|‖Lp(x)(Ω) are equivalent norms on Lp(x)(Ω,C�n). Furthermore, we

have that ‖Du‖Lp(x)(Ω,C�n) and ‖u‖
W

1,p(x)
0 (Ω,C�n)

are equivalent norms on

W
1,p(x)
0 (Ω,C�n), see [40, Definition 2.9].

The following definitions and lemmas will be crucial in the sequel.

Lemma 2.1. (See [6].) Let ρ(u) =

∫

Ω

|u(x)|p(x)dx. For u ∈ Lp(x)(Ω), we have

(1) If ‖u‖Lp(x)(Ω) ≥ 1, then ‖u‖p−
Lp(x)(Ω)

≤ ρ(u) ≤ ‖u‖p+

Lp(x)(Ω)
.

(2) If ‖u‖Lp(x)(Ω) ≤ 1, then ‖u‖p+

Lp(x)(Ω)
≤ ρ(u) ≤ ‖u‖p−

Lp(x)(Ω)
.

Lemma 2.2. (See [15].) Assume that p(x) ∈ P(Ω). Then the inequality
∫

Ω

|uv|dx ≤ C(n, p)‖u‖Lp(x)(Ω,C�n)‖v‖Lp′(x)(Ω,C�n)

holds for every u ∈ Lp(x)(Ω,C�n) and v ∈ Lp′(x)(Ω,C�n).

Author's personal copy
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Lemma 2.3. (See [15, 16].) Assume that p(x) ∈ P(Ω). Then

(1) The dual of the space Lp(x)(Ω,C�n) is the space Lp′(x)(Ω,C�n). That

is,
(
Lp(x)(Ω,C�n)

)∗
= Lp′(x)(Ω,C�n). Thus, L

p(x)(Ω,C�n) is a reflexive
and separable Banach space.

(2) The space W 1,p(x)(Ω,C�n) is a reflexive and separable Banach space.

Definition 2.1. (See [21].)

(i) Let u ∈ C(Ω,C�n). The Teodorescu operator is defined by

Tu(x) =

∫

Ω

G(x− y)u(y)dy,

where G(x) is the generalized Cauchy kernel above mentioned.
(ii) Let u ∈ C1(Ω,C�n)

⋂
C(Ω,C�n). The boundary operator is defined by

Fu(x) =

∫

∂Ω

G(y − x)α(y)u(y)dSy,

where α(y) denotes the outward normal unit vector at y.

Lemma 2.4. (See [15].) The operator D : W 1,p(x)(Ω,C�n) → Lp(x)(Ω,C�n) is
bounded.

Lemma 2.5. (See [16].) The operator T : Lp(x)(Ω,C�n) → W 1,p(x)(Ω,C�n) is
bounded.

Lemma 2.6. Let p(x) ∈ P(Ω). If u ∈ W 1,p(x)(Ω,C�n), then the Borel-Pompeiu
formula Fu(x) + TDu(x) = u(x) holds for all x ∈ Ω. Moreover, if u ∈
Lp(x)(Ω,C�n), then the equation DTu(x) = u(x) holds for all x ∈ Ω.

Proof. By Remark 4.21 in [21], the conclusions are implied byW 1,p(x)(Ω,C�n)
↪→ W 1,p−(Ω,C�n) and Lp(x)(Ω,C�n) ↪→ Lp−(Ω,C�n). �

Lemma 2.7. The operator F : tr
(
W 1,p(x)(Ω,C�n)

)
→ W 1,p(x)(Ω,C�n)∩ kerD

is bounded. Here, the trace space tr
(
W 1,p(x)(Ω,C�n)

)
is defined by

tr
(
W 1,p(x)(Ω,C�n)

)
=

{
f ∈ L1(∂Ω,C�n) : ∃u ∈ W 1,p(x)(Ω,C�n), s.t. u|∂Ω = f

}
.

Proof. Let u ∈ tr
(
W 1,p(x)(Ω,C�n)

)
. Then there exists v ∈ W 1,p(x)(Ω,C�n)

such that v|∂Ω = u. Using Borel-Pompeiu formula, we know that Fu =
v− TDv. By Lemma 2.4 and Lemma 2.5, Fu ∈ W 1,p(x)(Ω,C�n) and I − TD
is continuous in W 1,p(x)(Ω,C�n). Since DFu = Du − DTDu = 0, we have
Fu ∈ kerD. �

Lemma 2.8. (See [17].) There exists a unique linear extension T̃ of the op-

erator T such that the operator T̃ : W−1,p(x)(Ω,C�n) → Lp(x)(Ω,C�n) is
bounded.

Diening, Lengeler and Ružička [9] showed that the Dirichlet problem of
the Poisson equation with homogeneous boundary data


−∆u = f in Ω

u = 0 on ∂Ω,
(2.5)
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possesses a unique weak solution u ∈ W 1,p(x)(Ω) for each f ∈ W−1,p(x)(Ω).
Moreover, there is the estimate

‖u‖W 1,p(x)(Ω) ≤ C(n, p,Ω)‖f‖W−1,p(x)(Ω)

where we call u a weak solution of (2.5) provided that

〈f, ϕ〉 =
∫

Ω

∇u · ∇ϕdx, ∀ ϕ ∈ W
1,p′(x)
0 (Ω).

Then it is easy to see that for all f ∈ W−1,p(x)(Ω,C�n) the problem (2.5)
still has a unique weak solution u ∈ W 1,p(x)(Ω,C�n). We denote by ∆−1

0 the
solution operator. On the other hand, it is clear that the operator

∆ : W 1,p(x)(Ω,C�n) → W−1,p(x)(Ω,C�n)

is continuous, so we obtain that the operator D̃ = −∆T : Lp(x)(Ω,C�n) →
W−1,p(x)(Ω,C�n) is continuous from Lemma 2.5, where the operator D̃ can
be considered as a unique continuous linear extension of the Dirac operator.

Lemma 2.9. (See [17].) Assume that p(x) satisfies relation (2.2).

(i) If u ∈ Lp(x)(Ω,C�n), then the equation T̃ D̃u(x) = u(x) holds for all
x ∈ Ω.

(ii) If u ∈ W−1,p(x)(Ω,C�n), then the equation D̃T̃ u(x) = u(x) holds for all
x ∈ Ω.

Lemma 2.10. (See [17].) The space Lp(x)(Ω,C�n) allows the Hodge-type de-
composition

Lp(x)(Ω,C�n) = (kerD̃ ∩ Lp(x)(Ω,C�n))⊕DW
1,p(x)
0 (Ω,C�n)

with respect to the Clifford-valued product (2.4).

Proof. The proof is given in [17, Theorem 3.1]. We sketch it here for the
reader’s convenience. First, it is easy to prove that

(
kerD̃ ∩ Lp(x)(Ω,C�n)

)
∩DW

1,p(x)
0 (Ω,C�n) = {0}.

Now let u∈Lp(x)(Ω,C�n). Then we have u2 = D∆−1
0 D̃u∈DW

1,p(x)
0 (Ω,C�n).

Let u1 = u− u2. Then u1 ∈ Lp(x)(Ω,C�n). Furthermore, we have

Du1 = Du− D̃D∆−1
0 Du = Du+∆∆−1

0 Du = Du−Du = 0.

Thus, u1 ∈ kerD̃. Since u ∈ Lp(x)(Ω,C�n) is arbitrary, the desired result
follows immediately. �

Beginning with this decomposition we can get the following projections

P : Lp(x)(Ω,C�n) → kerD̃ ∩ Lp(x)(Ω,C�n),

Q : Lp(x)(Ω,C�n) → DW
1,p(x)
0 (Ω,C�n).

For p(x) ≡ 2, these are ortho-projections. Notice that directly from the proof
of Theorem 3.1 we obtain

Q = D∆−1
0 D̃, P = I −Q. (2.6)
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It follows from (2.6) that the operator Q as well as P maps the space
Lp(x)(Ω,C�n) into itself.

Lemma 2.11. (See [17].) The space Lp(x)(Ω,C�n)∩imQ is a closed subspace of

Lp(x)(Ω,C�n), that is, the space DW
1,p(x)
0 (Ω,C�n) is closed in Lp(x)(Ω,C�n).

Lemma 2.12. (See [17].)
(
Lp(x)(Ω,C�n)∩ imQ

)∗
= Lp′(x)(Ω,C�n)∩ imQ, that

is, the linear operator

Φ : DW
1,p′(x)
0 (Ω,C�n) →

(
DW

1,p(x)
0 (Ω,C�n)

)∗

given by

Φ(Du)(Dϕ) = (Dϕ,Du)Sc :=

∫

Ω

[DϕDu]0dx

is a Banach space isomorphism.

3. The Homogeneous A-Dirac Equations

In this section, we are interested in the existence of weak solutions for the
homogeneous A-Dirac equations (1.1). In order to get the existence of weak
solutions to (1.1), we need the following result, see [30, Theorem 2.1] for the
proof.

Proposition 3.1. Let X be a reflexive, separable Banach space, and assume
that G : X → X∗ is

(i) monotone: (Gv −Gw, v − w) ≥ 0 ∀ v, w ∈ X;
(ii) bounded: G maps bounded sets to bounded sets;
(iii) demicontinuous: (G(u + λv), w) → (G(u + v), w), as λ ∈ R, λ → 0,

u, v, w ∈ X;
(iv) coercive: lim‖v‖→∞ ‖v‖−1

(Gv, v) = ∞.

Then G is surjective.

Now we are ready to prove our result as follows.

Theorem 3.1. Under the conditions (A1)–(A4), there exists a weak solution

u ∈ W
1,p(x)
0 (Ω,C�n) to the A-Dirac equations (1.1), that is to say, there exists

a Clifford-valued function u ∈ W
1,p(x)
0 (Ω,C�n) such that∫

Ω

A(x,Du)Dvdx = 0 (3.1)

for any v ∈ W
1,p(x)
0 (Ω,C�n). Furthermore, the solution to the scalar part of

(1.1) is unique up to a monogenic function.

Proof. We divide the proof into four steps:
Step 1. We first claim that A(x, u) ∈ Lp′(x)(Ω,C�n) for every u ∈ Lp(x)(Ω,C�n).

Indeed, from (A2) we obtain∫

Ω

|A(x, u)|p
′(x)dx ≤ 2n−1C1

∫

Ω

|u|p(x)dx+ 2n−1

∫

Ω

|g|p
′(x)dx.
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This estimate together with Remark 2.1 and Lemma 2.1 yields the previous
assertion.

Step 2. By Lemma 2.11, we know that DW
1,p(x)
0 (Ω,C�n) is a reflexive and

separable Banach space. By Lemma 2.12, we get that
(
DW

1,p(x)
0 (Ω,C�n)

)∗
=

DW
1,p′(x)
0 (Ω,C�n). Obviously, it follows from (2.6) that

QA
(
Ω×DW

1,p(x)
0 (Ω,C�n)

)
⊂ DW

1,p′(x)
0 (Ω,C�n).

Now, we define the nonlinear mapping

F : DW
1,p(x)
0 (Ω,C�n) → DW

1,p′(x)
0 (Ω,C�n)

as follows:

F(Du) = QA(x,Du), for each u ∈ W
1,p(x)
0 (Ω,C�n).

In the following, to get surjectivity of the operator F , we need to verify the
conditions of Proposition 3.1 respectively.

(1) The operator F is demicontinuous. Obviously, it suffice to show
that the operator F is strongly-weakly continuous. Suppose that Duk, Du ∈
DW

1,p(x)
0 (Ω,C�n) and ||Duk −Du||Lp(x)(Ω,C�n) → 0 as k → ∞. Then {Duk}

is uniformly bounded in Lp(x)(Ω,C�n). By (A1) we can deduce that for each

v ∈ W
1,p(x)
0 (Ω,C�n)
[
QA(x,Duk)Dv

]
0
→

[
QA(x,Du)Dv

]
0

a.e. on Ω, as k → ∞.

On the other hand, to see equi-continuous integrability of the sequence{[
A(x,Duk)Dv

]
0

}
, we take a measurable subset Ω

′ ⊂ Ω, by (2.1), (A2) and

the Hölder inequality we have for each v ∈ W
1,p(x)
0 (Ω,C�n)

∣∣∣
∫

Ω
′

[
QA(x,Duk)Dv

]
0
dx

∣∣∣

≤ 2Cn‖Q‖
Lp′(x)(Ω

′
)

∥∥ |Dv|
∥∥
Lp(x)(Ω

′
)

(
C1

∥∥|Duk|p(x)−1
∥∥
Lp′(x)(Ω

′
)
+ ‖g‖

Lp′(x)(Ω
′
)

)
.

(3.2)

In terms of Remark 2.1, Lemma 2.1 and boundedness of the operator Q, we
obtain that the third part of (3.2) is uniformly bounded in k. The second

norm of (3.2) is arbitrarily small if the measure of Ω
′
is chosen small enough.

By the Vitali Convergence Theorem, we have for each v ∈ W
1,p(x)
0 (Ω,C�n)

(F(Duk), Dv) :=

∫

Ω

[
QA(x,Duk)Dv

]
0
dx

→
∫

Ω

[
QA(x,Du)Dv

]
0
dx = (F(Du), Dv)

as k → ∞. That is to say, F is strongly-weakly continuous.

(2) The operator F is bounded. In terms of the Hölder inequality, the
boundedness of Q and (A2), together Remark 2.1 and Lemma 2.1, we obtain
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for each v ∈ W
1,p(x)
0 (Ω,C�n)

∣∣(F(Du), Dv)
∣∣ =

∣∣∣
∫

Ω

[
QA(x,Du)Dv

]
0
dx

∣∣∣

≤ C3

(
C4max

{
‖Du‖p+−1

Lp(x)(Ω,C�n)
, ‖Du‖p−−1

Lp(x)(Ω,C�n)

}

+ ‖g(x)‖Lp′(x)(Ω)

)
‖Dv‖Lp(x)(Ω,C�n),

where C3 and C4 are two positive constants. This implies that F is bounded.

(3) The operator F is monotone. In view of Lemma 2.10, we have

QA(x,Du) = A(x,Du)− PA(x,Du)

for each u ∈ W
1,p(x)
0 (Ω,C�n). Thus, for any u, v ∈ W

1,p(x)
0 (Ω,C�n), (3.2)

gives

(
QA(Du), Dv

)
Sc

=
(
A(Du), Dv

)
Sc

−
(
PA(Du), Dv

)
Sc

=
(
A(Du), Dv

)
Sc
.

(3.3)

Then the condition (A4) yields
(
F(Du)−F(Dv), Du−Dv

)
=

(
QA(Du)−QA(Dv), Du−Dv

)
Sc

=
(
A(Du)−A(Dv), Du−Dv

)
Sc

=

∫

Ω

[(
A(Du)−A(Dv)

)
(Du−Dv)

]
0
dx ≥ 0.

(4) The operator F is coercive. By means of (3.3) and (A3) we have
(
F(Du), Du

)
‖|Du|‖Lp(x)(Ω)

=

(
QA(x,Du), Du

)
Sc

‖|Du|‖Lp(x)(Ω)

=

(
A(x,Du), Du

)
Sc

‖|Du|‖Lp(x)(Ω)

=

∫

Ω

[
A(x,Du)Du

]
0
dx

‖||Du|‖Lp(x)(Ω)

≥
C2

∫

Ω

|Du|p(x)dx+

∫

Ω

h(x)dx

‖|Du|‖Lp(x)(Ω)

.

Since∫

Ω

|Du|p(x)dx

‖|Du|‖Lp(x)(Ω)

=

∫

Ω

(
|Du|

2−1‖|Du|‖Lp(x)(Ω)

)p(x)

(
2−1‖|Du|‖Lp(x)(Ω)

)p(x)

‖|Du|‖Lp(x)(Ω)

dx,

when ‖|Du|‖Lp(x)(Ω) ≥ 1, we have
∫

Ω

|Du|p(x)dx

‖|Du|‖Lp(x)(Ω)

≥ 2−p+‖|Du|‖p−−1

Lp(x)(Ω)
.
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Hence, by Remark 2.1, it easily follows that

(F(Du), Du)

‖Du‖Lp(x)(Ω,C�n)

→ ∞

as ‖Du‖Lp(x)(Ω,C�n) → ∞.

Step 3. Let X = DW
1,p(x)
0 (Ω,C�n). According to Proposition 3.1, we

get that the operator F is surjective. Consequently, there exists u ∈
W

1,p(x)
0 (Ω,C�n) such that F(Du) = QA(x,Du) = 0. Furthermore, Lemma

2.10 deduces
∫
Ω
A(x,Du)Dϕdx =

∫
Ω

(
QA(x,Du) + PA(x,Du)

)
Dϕdx

=
∫
Ω
D̃PA(x,Du)ϕdx = 0,

for any ϕ ∈ W
1,p(x)
0 (Ω,C�n). Therefore, u is a weak solution of the A-Dirac

equations (1.1).

Step 4. If u1, u2 are solutions to the A-Dirac equations (1.1), then(
A(x,Dui), Dϕ

)
Sc

= 0 (i = 1, 2) hold for any ϕ ∈ W
1,p(x)
0 (Ω,C�n). Set

ϕ = u1 − u2, then the condition (A4) yields

0 =
(
A(x,Du1)−A(x,Du2), Du1 −Du2

)
Sc

=

∫

Ω

[(
A(x,Du1)−A(x,Du2)

)
(Du1 −Du2)

]
0
dx ≥ 0.

Thus, [Du1]0 = [Du2]0. The proof is now complete. �

As p(x) is a constant function, Nolder [32, Theorem 3.1] proved a
Caccioppoli-type estimate for weak solutions for (1.1) under the assumptions
(A2) with g(x) ≡ 0 and (A3) with h(x) ≡ 0. Harjulehto, Hästo and Latvala
[25, Lemma 5.3] showed a Caccioppoli-type estimate for weak solutions to
the equation −div(p(x)|∇u|p(x)−2∇u) = 0 as u is a real function. Thus it is
natural to study a Caccioppoli-type estimate for weak solutions to (1.1) in
the variable exponent setting. Taking the similar approach presented in [25]
we prove the following result:

Theorem 3.2. Let p(x) ∈ P(Ω) and A satisfies the hypotheses (A2) with
g(x) ≡ 0 and (A3) with h(x) ≡ 0. If u be a weak solution to (1.1) and
η ∈ C∞

0 (Ω) with 0 < η ≤ 1, then∫

Ω

|Du|p(x)ηp+dx ≤
(
1 +

2C1p+
C2

)p+
∫

Ω

|u|p(x)|∇η|p(x)dx.

Proof. Choose ϕ = −uηp+ . Then Dϕ = −p+η
p+−1(Dη)u − ηp+Du. Hence,

according to (3.1) and (A3) we obtain

0 =

∫

Ω

[
A(x,Du)Dϕ

]
0
dx =

∫

Ω

[
A(x,Du)(−p+η

p+−1(Dη)u− ηp+Du)
]
0
dx

≤ −C2

∫

Ω

|Du|p(x)ηp+dx+ p+

∫

Ω

∣∣A(x,Du)
∣∣|u||Dη||η|p+−1dx.
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Then from (A2) we have

C2

∫

Ω

|Du|p(x)ηp+dx ≤ p+

∫

Ω

∣∣A(x,Du)
∣∣|u||Dη||η|p+−1dx

≤ C1p+

∫

Ω

∣∣Du
∣∣p(x)−1|u||Dη||η|p+−1dx.

By the Young’s inequality, for any ε ∈ (0, 1] we have

ab ≤
(1
ε

)p(x)−1 ap(x)

p(x)
+ ε

bp
′(x)

p′(x)
≤

(1
ε

)p(x)−1

ap(x) + εbp
′(x).

Take a = |u||Dη|ηp+− p+
p(x)

−1 and b =
∣∣Du

∣∣p(x)−1
η

p+
p(x) , we get

∫

Ω

∣∣Du
∣∣p(x)−1|u||Dη|ηp+−1dx

≤
(1
ε

)p(x)−1
∫

Ω

|u|p(x)|Dη|p(x)ηp+−p(x)dx+ ε

∫

Ω

|Du|p(x)ηp+dx.

Let ε = min
{
1, C2

2C1p+

}
. Then

∫

Ω

|Du|p(x)ηp+dx ≤ 2C1p+
C2

(
1 +

2C1p+
C2

)p+−1
∫

Ω

|u|p(x)|∇η|p(x)dx.

Thus the proof is complete. �

Remark 3.1. From the proof of Theorem 3.2, we know that the conclusion in
Theorem 3.2 still holds if u is just a weak solution to the scalar part of the
equations (1.1).

4. The Nonhomogeneous A-Dirac Equations

In this section we are concerned with the existence of solutions for the fol-
lowing nonlinear A-Dirac equations with right hand side in Dirac equations
form:

DA(x,Du) = Df. (4.1)

The natural space in which to consider the weak solutions of (4.1) is the

Sobolev spaces W
1,p(x)
0 (Ω,C�n) under the conditions (A1)–(A4). Thus, we

suppose that f belongs to the dual space Lp′(x)(Ω,C�n). Note that for every
f ∈ Rm×n, the existence and uniqueness of the solution u : Ω → Rm were
established by general principles of monotone operators in Iwaniec and Sbor-
done [27, Proposition 4.1]. For further details we refer to [5, 13, 23, 27] and
the references therein.

Theorem 4.1. Under the assumptions (A1)–(A4), for each f ∈ Lp′(x)(Ω,C�n),

there exists a weak solution u ∈ W
1,p(x)
0 (Ω,C�n) to the A-Dirac equations

(4.2), that is to say, there exists a Clifford-valued function u∈W
1,p(x)
0 (Ω,C�n)

such that ∫

Ω

A(x,Du)Dvdx =

∫

Ω

fDvdx

Author's personal copy
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for any v ∈ W
1,p(x)
0 (Ω,C�n). Furthermore, the solution to the scalar part of

(4.2) is unique up to a monogenic function.

Proof. We notice that Step 1, Step 2, Step 4 of the proof are completely
similar to those of the proof in Theorem 3.1. The only difference lies in Step

3. In fact, let X = DW
1,p(x)
0 (Ω,C�n). In view of Proposition 3.1, the operator

F is surjective. By means of Lemma 2.10, for each f ∈ Lp′(x)(Ω,C�n), we
have the following decomposition:

f = f1 + f2, f1 ∈ kerD̃ ∩ Lp′(x)(Ω,C�n), f2 ∈ DW
1,p′(x)
0 (Ω,C�n).

Then for f2 ∈ DW
1,p′(x)
0 (Ω,C�n), there exists u ∈ W

1,p(x)
0 (Ω, Cln) such that

F(Du) = QA(x,Du) = f2. Furthermore, Lemma 2.10 gives∫

Ω

A(x,Du)Dϕdx =

∫

Ω

(
QA(x,Du) + PA(x,Du)

)
Dϕdx

=

∫

Ω

f − f1Dϕdx+

∫

Ω

PA(x,Du)Dϕdx

=

∫

Ω

fDϕdx−
∫

Ω

D̃f1ϕdx+

∫

Ω

D̃PA(x,Du)ϕdx =

∫

Ω

fDϕdx,

for any ϕ ∈ W
1,p(x)
0 (Ω,C�n). Therefore, u is a weak solution of the A-Dirac

equations (4.1). �

In what follows we first consider the solvability of the following Dirac
equation with homogeneous boundary data.


Du = f in Ω

u = 0 on ∂Ω,
(4.2)

Let us show the following results.

Theorem 4.2. Let f ∈ Lp(x)(Ω,C�n). Then the equations (4.2) is solvable in

W
1,p(x)
0 (Ω,C�n) if and only if tr Tf = 0. Furthermore, if a solution u exists,

then it can be represented by u = Tf .

Proof. On the one hand, if the equations (4.2) is solvable, then from the
Borel-Pompeiu formula we have

u = Fu+ TDu = TDu = Tf.

Thus we get tr Tf = 0 due to u ∈ W
1,p(x)
0 (Ω,C�n).

On the other hand, let tr Tf = 0. In view of Lemma 2.10, we know that
f = Pf +Qf . Then we have

tr Tf = tr TPf + tr TQf = 0.

From (2.6), it follows that tr TQf = 0. Thus, tr TPf = 0. Note that

−∆TPf = D̃DTPf = 0 due to Lemma 2.6 and the definition of the op-
erator P . According to the uniqueness of solutions of the problem (2.5), we
obtain TPf = 0. And hence DTPf = Pf = 0. Further, f = Qf . Therefore,
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by the definition of the operator Q, there exists u ∈ W
1,p(x)
0 (Ω,C�n) such

that Du = f . The proof is now completed. �

Corollary 4.1. Let f ∈ W−1,p(x)(Ω,C�n). Then the equations (4.2) is solvable

in W
1,p(x)
0 (Ω,C�n) if and only if tr T̃ f = 0. Furthermore, if a solution u

exists, then it can be represented by u = T̃ f .

Proof. By means of Proposition 12.3.4 in [6], it is easy to show that that the
space C∞

0 (Ω,C�n) is dense in W−1,p(x)(Ω,C�n). According to Theorem 2.1 in
[31], we know that C∞

0 (Ω,C�n) is dense in Lp(x)(Ω,C�n). Therefore, by the
density arguments it is easy to see that the desired conclusion follows from
Lemma 2.8 and Theorem 4.2. �

We would like to point out that the uniqueness of weak solutions for the
equations (1.1) in Theorem 3.1 and (4.1) in Theorem 4.1 can be obtained if
the condition (A4) is replaced by the following strong monotonicity:

(A4′)
[
(A(x, ξ1)−A(x, ξ2))(ξ1 − ξ2)

]
0
≥ C3|ξ1 − ξ2|p(x),

where C3 > 0 is a constant. Indeed, it is easy to deduce the assertion from
Step 4 in the proof of Theorem 3.1 and Remark 2.1. Furthermore, we can
consider the stability of weak solutions to the non-homogeneous A-Dirac
equations. In other words, we have the following result.

Theorem 4.3. Under the assumptions (A1)–(A3) and (A4′), for given f, g ∈
Lp′(x)(Ω,C�n), each of the two equations




DA(x,Du) = Df

u ∈ W
1,p(x)
0 (Ω,C�n),

(4.3)





DA(x,Dv) = Dg

v ∈ W
1,p(x)
0 (Ω,C�n),

(4.4)

has a unique weak solution and

min

{
‖u− v‖p+−1

W
1,p(x)
0 (Ω,C�n)

, ‖u− v‖p−−1

W
1,p(x)
0 (Ω,C�n)

}
≤ C(n, p,Ω)‖f − g‖

Lp′(x)(Ω,C�n)
.

Proof. In view of Theorem 4.1 and the above arguments, we know that the
equations (4.3) and (4.4) has a unique weak solution u and v respectively.
Then we have
(
A(x,Du), D(u−v)

)
Sc

= (f,D(u−v))Sc,
(
A(x,Dv), D(u−v)

)
Sc

= (g,D(u−v))Sc.

Therefore, we obtain
(
A(x,Du)−A(x,Dv), Du−Dv

)
Sc

= (f − g,Du−Dv)Sc.
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From (A4′) and Lemma 2.2 it follows that∫

Ω

|Du−Dv|p(x)dx ≤ 1

C3

∫

Ω

[(
A(x,Du)−A(x,Dv)

)
(Du−Dv)

]
0
dx

≤ 1

C3

∫

Ω

[
(f − g)(Du−Dv)

]
0
dx

≤ C(n, p,Ω)‖f − g‖Lp′(x)(Ω,C�n)
‖Du−Dv‖Lp(x)(Ω,C�n).

Using Remark 2.1 and Lemma 2.1 we have

min

{
‖Du−Dv‖p+−1

Lp(x)(Ω,C�n)
, ‖Du−Dv‖p−−1

Lp(x)(Ω,C�n)

}

≤ C(n, p,Ω)‖f − g‖Lp′(x)(Ω,C�n)
.

Then the desired inequality immediately follows from Remark 2.1. �
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[36] M. Ružička, Electrorheological fluids: modeling and mathematical theory. Sprin-
ger-Verlag, Berlin, 2000.
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