Advances in Differential Equations Volume xx, Number xxx, , Pages xx—xx

MULTIPLE SOLUTIONS WITH SIGN INFORMATION FOR
NONAUTONOMOUS, NONCOERCIVE (p, q)-EQUATIONS

L1 Ca1
School of Mathematics, Yangzhou University, Yangzhou 225002, P.R. China
Email: caili230198817@163.com

NIKOLAOS S. PAPAGEORGIOU
Center for Applied Mathematics of Guangxi, Yulin Normal University, Yulin
537000, P.R. China
National Technical University, Department of Mathematics, Zografou Campus,
Athens 15780, Greece
Department of Mathematics, University of Craiova, 200585 Craiova, Romania
Email: npapg@math.ntua.gr

VICENTIU D. RADULESCU
Faculty of Applied Mathematics, AGH University of Krakéw, al. Mickiewicza 30,
30-059 Krakéw, Poland
Brno University of Technology, Faculty of Electrical Engineering and
Communication, Technickd 3058/10, Brno 61600, Czech Republic
Simion Stoilow Institute of Mathematics of the Romanian Academy, 010702
Bucharest, Romania
Scientific Research Center, Baku Engineering University, Baku AZ0102,
Azerbaijan
Email: radulescu@agh.edu.pl

(Submitted by: Marius Ghergu)

Abstract. We consider a nonlinear Dirichlet problem driven by the
nonautonomous (p, g)-Laplacian with a (p — 1)-linear reaction which
makes the energy functional of the problem noncoercive. Using varia-
tional tools from the critical point theory, together with truncation and
comparison techniques and critical groups, we show that the problem
has at least five nontrivial smooth solutions, all with sign information
(two positive, two negative and the fifth nodal).

AMS Subject Classifications: 35J60 (Primary); 35B34, 35D30, 38E05, 47J10, 58E05,
70K30 (Secondary).

Key words: nonlinear regularity theory, nonlinear maximum principle, eigenvalue and
eigenfunction, mountain pass theorem, critical groups.

Accepted for publication: Month 2026.

1



2 L. Ca1, N.S. PAPAGEORGIOU, V.D. RADULESCU

1. INTRODUCTION

Let Q C RY be a bounded domain with a C%-boundary 9. In this paper,
we study the following nonautonomous, Dirichlet (p, ¢)-equation

{ —AZu(z) — Al2u(z) = f(z,u(z)), in €, }

u]39:0,1<q<p.

(1.1)

For a € L>®(f2) and r € (1,00), by A? we denote the nonautonomous
r-Laplace differential operator (weighted r-Laplacian) defined by

A%u(z) = div (a(z)|Du|""2Du).

The interest in the study of this type of problem is twofold. On the one
hand, there are physical motivations, since the double phase operator has
been applied to describe steady-state solutions of reaction-diffusion problems
in biophysics, plasma physics, and chemical reaction analysis. The prototype
equation for these models can be written in the form

up = A u(z) + Ag?u(z) + f(z,u(2)).

In this framework, the function u generally stands for a concentration,
the term Aftu(z) + Ag2u(z) corresponds to the diffusion with coefficient
a1(2)|Du|P~2 + az(2)|Du|972, while f(z,u) represents the reaction term re-
lated to source and loss processes; see Cherfils & II'yasov [4] and Singer [23].
On the other hand, such operators provide a valuable framework for explain-
ing the behavior of highly anisotropic materials whose hardening properties,
which are linked to the exponent governing the propagation of the gradient
variable, differ considerably with the point, where the modulating coefficient
a(z) dictates the geometry of a composite made by two different materials.

Equation in (1.1) is driven by the sum of two such operators with distinct
exponents and possibly distinct weights. The reaction (right-hand side) of
(1.1) is a Carathéodory function f(z,z) (that is, for all z € R, z — f(z, ) is

measurable and for a.a. z € Q, z — f(z,z) is continuous). We assume that
f(z.2)

B

asymptotically as x — Fo00, the quotient stays above the principal

eigenvalue A (p) > 0 of (—Ag, VVO1 P(€))). We allow only partial interaction

with A (p) > 0 (nonuniform nonresonance). Such a behavior of f(z,z),
makes the energy functional of (1.1) unbounded from below (noncoercive).
In general, the noncoercive case is more delicate than the coercive one, since
the direct method of the calculus of variations is no longer applicable.
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The double-phase problem (1.1) is motivated by numerous models arising
in mathematical physics. For instance, we can refer to the following Born-
Infeld equation [3] that appears in electromagnetism:

—div < Vu 1/2> = h(u) in Q.

(1—2[Vul?)
Indeed, by the Taylor formula, we have for all |z| < 1
ey T B Bl o G
(1—x) —1+2+2.22$ tor st t +(n—1)!2”—1x +oee

Taking z = 2|Vu|? and adopting the first order approximation, we obtain
problem (P)) for p =4 and ¢ = 2. Furthermore, the n-th order approxima-
tion problem is driven by the multi-phase differential operator

3 (2n —3)!!
—A'U, — A4'U, — §A6'U, — s — WAQnU.
We also refer to the following fourth-order relativistic operator

Vu|?

—‘ | Vu |,

(1= [Vaff)?/s
which describes large classes of phenomena arising in relativistic quantum
mechanics. Again, by Taylor’s formula, we have
325 n 21210

4 32
This shows that the fourth-order relativistic operator can be approximated
by the following autonomous double phase operator

u»—>div<

x2(1 _ :1:4)73/4 = 72

u— Aqu+ ZAgu.

In problem (1.1), we have the sum of two such operators and so the left-
hand side of problem (1.1) is not homogeneous. In fact, the differential
operator u — —Aftu— AgZ2u driving problem (1.1) is related to the so-called
“double-phase” integral functional given by

uv—>/Q(a1(2)|Du]p+ag(z)]Du\q)dz.

Such functionals were first investigated by Marcellini [12] and Zhikov [24],
in the context of problems of the calculus of variations and of nonlinear elas-
ticity for strongly anisotropic materials. For such problems, there is no global
(that is, up to the boundary) regularity theory. There are only interior regu-
larity results primarily due to Marcellini and coworkers and to Mingione and
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coworkers. We mention the papers of Marcellini [13] and Baroni-Colombo-
Mingione [2] and the references therein. An informative survey of the recent
developments on the subject can be found in Mingione-Radulescu [14]. The
lack of global regularity theory eliminates from consideration many of the
tools used in the study of balanced (p, q)-equations.

Using variational tools from the critical point theory, together with suit-
able truncation and comparison techniques and critical groups, we show that
problem (1.1) has at least five nontrivial smooth solutions, all with sign infor-
mation(two positive, two negative and a fifth which is nodal(sign changing)).
Such multiplicity results for noncoercive problems, were proved by Papa-
georgiou-Radulescu [16] (autonomous (p, g)-equations), Liu-Papageorgiou [9,
10] and Papageorgiou-Scapellato [20] (nonautonomous (p, q) -equations). In
the aforementioned works, the reaction f(z,-) is (p—1)-superlinear and they
produce three solutions without providing sign information for all of them
(see [16, Theorem 4.14]). In contrast here f(z,-) is (p — 1)-linear as z + oo
and we generate five nontrivial smooth solutions all with sign information.

2. MATHEMATICAL BACKGROUND AND HYPOTHESES

In the study of (1.1), the main function spaces, are the Sobolev space
Wol’p(Q) and the Banach space Cj(Q) = {ue C*Q):ulpo =0}. The
Poincaré inequality, implies that on WO1 P(Q)), we can use the equivalent
norm

ul| = | Dull, for all u € WyP(5).
Moreover, the Banach space Cg() is ordered with positive (order) cone
Cy ={ue () :u(z) >0foralzeQ}.
This cone has a nonempty interior given by
0
intCy = {u € Cy:u(z) >0forall z € Q,afubﬂ < 0}7
n
where % = (Du,n)pn~ with n(-) being the outward unit normal on 0f2.
We impose the following conditions on the weight functions ay, as, Hy :
a1,az € COH(Q) with 0 < & < a1(2), 0 < ag(2) for all z € Q, ag Z 0.
We define the operators

A WER(@) - W (@) =Wy (o = 2.

Age @) W (@) = W) (4 = )
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by setting
(ApH(u), h) = / a1(2)|Du|P~2?(Du, Dh)gn dz for all u, h € Wol’p(Q),
Q

(AZ?(u), h) = /Qag(z)\Du|q_2(Du, Dh)pn dz for all u, h € Wol’q(Q).

Recalling that Wol’p(Q) — Wol’q(Q) (since ¢ < p), we have that W17 (Q) —
WP (Q) and so we can define the operator

V= AD 4 AP WP (Q) - W (Q).

Using the properties of the operators A%!, A (see, for example, Gasinski-
Papageorgiou [5, p.279]), we have the following properties for the nonlinear
operator V(-).

Proposition 2.1. The operator V() is bounded (maps bounded sets to
bounded sets), continuous, strictly monotone(thus V (-) is maximal mono-
tone), coercive and of type (S)4, that is, it has the following property

“Gf up > uin Wol’p(Q) and lim sup,,_, o (V (up), up, —u) <0, then u, — u
in WyP(2).”

Remark 2.2. Since V(-) is maximal monotone, coercive, it is surjective (see
Papageorgiou- Radulescu-Repovs [18, p.135]).

For a € C%(Q) with 0 < ¢ < a(z) for all z € Q, 1 < r < oo and
¥ e L>®(Q)\{0}, ¥(z) > 0 for a.a z € Q, we consider the following nonlinear
eigenvalue problem

_AT Y r—2 :
{ Afu(z) = M(2)[u(2)|"“u(z), inQ, } (2.1)
U‘aQ = 0.
From Liu-Papageorgiou [11], we know that (2.1) admits a smallest eigen-
value A{(r) > 0 which admits the following variational characterization

) =i [ B2
fQ Iz)|u|" dz

This eigenvalue is isolated, simple (that is, if @, 0 are eigenfunctions corre-
sponding to A%(r,9) > 0, then @& = b for some px € R\{0}). The infimum in
(2.2) is realized on the corresponding one-dimensional eigenspace of 5\‘11(7*, )
and it is clear from (2.2) that the elements of this eigenspace have fixed sign.
By 11(r,0) we denote the positive, L"-normalized (that is, ||y (r,0)], = 1)
eigenfunction corresponding to 5\‘11(7", ). All eigenfunctions corresponding to

u € W(}”(Q),u;&o}. (2.2)
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an eigenvalue \ # 5\‘11(7“) are nodal. From the global nonlinear regularity
theory of Lieberman [8], we know that the eigenfunctions of (2.1) belong in
C3(Q). Therefore i1 (r, ) € C+\{0} and then the nonlinear Hopf maximum
principle of Pucci-Serrin [22, p.120], implies that a1 (r,¥) € intCy. As a
function of ¥(-), the principal eigenvalue has the following strict monotonic-
ity property.

Proposition 2.3. If 91,02 € L>®(Q), 0 < 91(z) < 92(z) for a.a z € Q,
V1 # 0, 91 # 02, then A{(r,02) < X} (r,v1). If ¥(z) =1 for a.a z € Q, then
AL(r, 9) = Af(r).

If u: Q — R is a measurable function, then we set
ut = max{=+u,0}

and we have u = ut —u”, |u| = ut + = and if u € W, P(Q), then u® €
W, P ().

Let X be a Banach space and ¢ € C1(X). We say that ¢(-) satisfies the
“C-condition”, if it has the following property:

“Every sequence {up}nen € X such that {¢(un)}neny € R is bounded
and (1 + |lun|lx)¢ (un) — 0 in X* as n — oo, admits a strongly convergent
subsequence.”

We introduce the following sets

K, ={u€ X : ¢'(u) = 0}(the critical set of ¢(-)),

e ={ue X :p(u) <c}forallceR.

IfY, CY) € X and k € Ng = NU {0}, by Hi(Y1,Y>2) we denote the k-th
singular homology group for the pair (Y7,Y>2) with integer coefficients. If
u € K, is isolated and ¢ = ¢(u), then the critical groups of ¢(-) at u are
defined by

Cr(p,u) = H(e*NU, p*NU\{u}) for all k € Ny,

where U is a neighborhood of u such that ¢“NU N K, = {u}. The excision
property of singular homology, implies that this definition is independent of
the choice of the isolating neighborhood U.

Finally, we introduce the hypotheses on the reaction f(z,z).

Hy: f: QxR — Risa Carathéodory function such that

(i) for every p > 0, there exists a function a, € L°°(£2) such that
|f(z,2)] < ay(z) for a.a. z € Q, all [z] < p;
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(i) there exist functions 9g,9; € L®() such that A (p) < ¥o(2) for
a.a. z € Q, 99 # A(p),

Yo(z2) < hmlnfL) < lim f(z w; <Y1(2)

r—+o00 ‘x|P 2y x%ioo ’x‘
uniformly for a.a. z € €;
(iii) there exist 7 € (1,¢) and 6 > 0 such that 0 < Sy < liminf, o é‘(fiﬁ)

—cx
uniformly for a.a. z € Q, f(z,2)x < 7F(z,z) for a.a. z € Q, all
2| <0, with F(z,2) = [ f(z,s)ds;

(iv) there exist yu1, 2 > 0 and € > 0 such that
flzym) < =B <0< B < f(z,p)
for a.a. z € ) and for a.a. z € €, the function
= f(z, ) + ElzP 2
is nondecreasing on [—pg, t1].

Remark 2.4. On account of hypotheses Hy(iii), we have f(z,0) =0 for a.a.
z €.

3. SOLUTIONS OF CONSTANT SIGN
First we produce positive solutions. To this end, we introduce the C'-

functional @ : Wy (Q) — R defined by

1 1

oy(u) = / a1(z)|DulP dz + / az(z)|Dul?dz — / F(z,u")dz

b Ja q4.Jo Q
for all u € W, P().
Proposition 3.1. If hypotheses Hy, Hy(1), (iii), (iv) hold, then problem (1.1)
admits a positive solution ug € int Cy, which is a local minimizer of ¢4 (+).

Proof. We introduce the Carathéodory function g4 (z,z) defined by

9+(z,x) = {f(zjzﬁ) o < p,

flzom)  ifpy < . (3.1)

We set Gy(z,2) = [ g+(z,5)ds and consider the C'-functional ¢ :
W, P (Q) — R defined by
1 1
Yy(u) = / a1(z)|DulP dz + / CLQ(Z)|D’LL‘qu—/G+(Z,U) dz
Q q4.Jo Q

p
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for all u € W, P().

From (3.1), it is clear that ¢4 (-) is coercive. Also using the Sobolev embed-
ding theorem, we see that 1, (+) is sequentially weakly lower semicontinuous.
Therefore by the Weierstrass-Tonelli theorem, there exists ug € VVO1 P(Q2) such
that

o (ug) = inf {¢+(u) Lu € ngp(m} . (3.2)

Hypotheses Hj(iii) implies that we can find §; € (0,5y) and 0 < 6 <
min{p;,d} such that

%xT < F(z,z) foraa. zeQ, all 0 <z <. (3.3)
Let u € int C4 and choose t € (0, 1) small such that

0 <tu(z) < 5 for all z € Q. (3.4)
Using (3.3) and (3.4), we obtain

Bit”

T

v 4
Vi (te) < llalloo | Dullp + ~lazlleoll Dullg = == lull7

< c1t? — ¢ot” for some ¢y, co > 0.(recall t € (0,1),q < p)

Since 7 < ¢ (see hypothesis Hj(iii)), we see that by choosing t € (0,1)
even smaller if necessary, we will have
w-i-(tu) < 07
= ¥4 (uo) < ¥4(0) = O(see (3.2)),
= ug # 0.

From (3.2), we have
(! (up), h) = 0 for all h € WyP(Q)

= (V(ug),h) = /Qg+(z,u0)h dz for all h € Wy (Q). (3:5)

In (3.5) first we choose the test function h = —u; € Wol’p(Q). We obtain

¢|| Dug (I < 0,
= ug >0, ug 75 0.
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Next in (3.5), we choose the test function (ug — p1)* € Wol’p(Q). Then

(V(uo), (w0 — un)*) = /Q F(zo ) (o — ) dz

< 0= (V(u), (uo — p1)")(see hypotheses Hi(iv))
Hence
ug < .
We have proved that

up € [0, 1] = {h € WEP(Q): 0 < h(2) < py for aa. 2 € Q} o £ 0. (3.6)

Then (3.1), (3.5) and (3.6) imply that ug € Wol’p(Q) is a positive solu-
tion of (1.1). Theorem 7.1, p.286 of Ladyzhenskaya-Ural’tseva [7] implies
that ug € L>°(€2). Subsequently, the global nonlinear regularity theory of
Lieberman [8], implies that ug € C4\{0}.

Using hypothesis Hj(iv), we have

— AStug — Agug + fug_l
= f(z.up) + éug_l > 01in Q,
= Ajtug + Ag'ug < éug_l in Q.
Invoking Lemma 1 of Liu-Papageorgiou [10], we infer that
ug € int C'.
Moreover, we have
— Ajtug — AZPug + éug_l
= f(z,u0) + Eub !
< flz,m1) + é/ﬁf_l(see (3.6) and hypothesis H; (iv)) (3.7)
< —B+ éu‘?—l (see hypothesis Hj(iv))
< AP — AP pr + é/ﬁf_l in Q.
Since B > 0, from (3.7) and Proposition A4 of Papageorgiou-Radulescu-
Zhang [19], we infer that
ug(2) < py for all z € Q.
Therefore we conclude that

up € intey g [0, ] = int {[0, pn] N G ()} (3.8)
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From (3.1), we see that

O+ lj0,m] = Vo]
= up € int C; is a local Cj(€)-minimizer of ¢, (-)(see (3.8)),

= up € int C is a local W&’p(Q)—minimizer of pi(+)
(see [19], Proposition A3).
This completes the proof. ]

In the next proposition, we compute the critical groups of ¢ (-) at u = 0.

Proposition 3.2. If hypotheses Hy, Hy (i), (iii) hold, then Ci(¢+,0) =0 for
all k € Ny.

Proof. Hypotheses Hj(i), (7i7) imply that we can find c3, ¢4 > 0 such that
c3x” — cgaP < f(z,z) for a.a. z € Q,allz > 0. (3.9)
Then for u € Wol’p(ﬂ)\{O} and t € (0, 1], we have
o (tu) < cst [ Dl + | Dl + ull] = ot ull

for some cs5,c6 > 0 (see (3.9)).
Since T < ¢, we see that we can find ¢ € (0, 1] such that

o4 (tu) < 0 for all t € (0,t). (3.10)
Let u € Wy P (Q)\{0}, u >0, 0 < |Jul| <1, ¢4 (u) = 0. Then

<p+( u),_, = (¢, (u), u)(using the chain rule)
/9(11 \Du|pd2+/a2( )|Du\qdz—/f zou)ut dz
{1 } ¢l Dul|b — /Q [f(z,u")u™ — 7F(2,u™)] dz(since ¢ (u) = 0)

v

> [ _ } él|Dull? + /{u+>5} [FF(z,ut) — fzyut ] de

(see hypothesis Hj(ii7))
> cr7||lul|P = egllul|” for some c7,cg > 0 with r > p.

Since p < r, for p € (0, 1) small, we see that

d
dtgo+(tu)|t 1> 0 for allu € W, P(Q),0 < ||lul| < p,py(u) =0.  (3.11)
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We will show that for such a u € Wol’p(Q)\{O}, we have
o+ (tu) <0 for all t € [0, 1]. (3.12)

Evidently (3.12) is true if ¢t = 0, ¢ = 1. Arguing by contradiction, suppose
that we can find tg € (0,1) such that ¢4 (tg,u) > 0. Recall that ¢4 (u) = 0.
We set

t* = min {¢ € [to, 1] : o4+ (tu) =0} > t9 > 0,
= @4 (tu) > 0 for all t € [to,t").
Set y = t*u. Then

(3.13)

0 <llyll = #"lull < [lu]| < pand i (y) = 0.
Then according to (3.11), we have

d
2P+ (ty)le=1 > 0. (3.14)

Form (3.13), we have
0+ (y) = o+ (t'u) = 0 < @4 (tu) for all t € [tg,t¥),

d . _pd
= $<p+( Yl=1 = £90+( w)|p=- (3.15)

— ot 2 o
t—(t*)— t—1*
Comparing (3.14) and (3.15), we have a contradiction. This proves that
relation (3.12) is true.

Let

By ={ue wyr(©): ull < p}.

We may assume that K, is finite (otherwise, since u € K, = u >0, we
see that we already have an infinity of positive solutions of (1.1) which are
smooth by [8] and so we are done). Taking p € (0,1) even smaller, we may
have K,, NB, = {0}. We consider the deformation hy : [0,1] x (93 NB,) —
go(i N Bp defined by

hi(t,u) = (1 —t)ufor all t € [0,1], allu € ¢ N B, (see (3.12)).

It follows that gogr N Bp is contractible.
Consider u € B, such that ¢4 (u) > 0. We will show that there exists an
unique t(u) € (0,1) such that

o4 (t(u)u) = 0. (3.16)
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From (3.10) and Bolzano’s theorem, we know that such ¢(u) € (0, 1) exists.
We need to show uniqueness. So, suppose we can find 0 < t; = t1(u) < ty =
to(u) < 1 such that

~

o1 (bru) = @4 (fau) = 0. (3.17)

From (3.12), we know that
@y (ttau) <0 for all0 <t < 1. (3.18)

Then (3.17) and (3.18), imply that ¢ := :—; € (0,1) is a maximizer of the
fiber function t — o, (ttou). Therefore,

d .
0=~ o+ (ttau)l _sy
) E (3.19)
= %w(tflu)!t:l-

Since ¢4 (f1u) = 0(see (3.17)), equality (3.17) contradicts (3.11). This
proves the uniqueness of t(u) € (0,1) in (3.16).
Thus, we have

oy (tu) < 0 for all t € (0,t(u)),
and
o4+ (tu) > 0 for all t € (t(u),1].

We introduce the map v : B,\{0} — (0, 1] defined by

() = (3.20

1 if u € B,\{0}, p1(u) <0,
t(u) ifu e B\{0}, 4 (u) > 0.
We claim that 4 () is continuous. From (3.20), we see that it suffices to
show continuity at v € B,\{0} with ¢4 (u) = 0. Therefore, we consider a
sequence {uy }nen € B,\{0} with ¢ (u,) = 0 for all n € N such that u, — u
in Wol’p(ﬂ). From (3.20), we see that we may assume that ¢ (u,) > 0 for
all n € N. We argue by contradiction. So, suppose that at least for a
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subsequence, we have
tup) <t < lforalln €N,
= @4 (tuy,) > 0for all t € (¢, 1],
= @4 (tu) > 0 for all t € (¢,1],
= ¢, (tu) =0 for all t € (¢,1]
(note that ¢y (u) = 0 and see (3.12)),

d
= %SOJr(tU)’t:l =0,

which contradicts (3.11). This proves the continuity of v ().
We introduce the deformation ny : B,\{0} — (¢% N B,)\{0} defined by

N+ (u) = {“ if u € B,\{0}, ¢4 (u) <0,
’ v+(wuifu e By\{0}, ¢4 (u) > 0.

On account of the continuity of v, (-), we have the continuity of n4(-).
From (3.21), we see that

(3.21)

N+l B0y = 14](e8 B, )\ o)

Hence it follows that (¢ N Bp)\{Oi} is a retract of B,\{0} and the lat-
ter is contractible. Therefore (¢% N B,)\{0} is contractible too. So, from
Papageorgiou-Radulescu-Repovs [18, p.469], we have

Hi.(¢% N By, (¢ N B,)\{0}) for all k € Ny,
= Ci(¢+,0) =0 for all k € Ny.

The proof is now complete. O

Remark 3.3. We mention that the first such computation of critical groups
at zero for functionals with a concave term (see hypothesis Hi(iii)), was
done by Moroz [15], in the context of semilinear equations driven by the
Laplacian. The hypotheses of Moroz [15] were stronger and required that the
concave term to be global. We mention also Proposition 3.7 of [16].

Proposition 3.4. If hypotheses Hy, Hy hold, then the functional p(-) sat-
isfies the C-condition.

Proof. Consider a sequence {uy }neny C Wol’p(Q) such that {¢4(un) tney € R
is bounded and

(1 + [Jun]))¢/y(un) — 0 in WL (Q) as n — oo, (3.22)
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From (3.22), we have

’ /f Mhdz

for all b € W,P(Q) with e, — 0F. In (3.23), we choose the test function
h = —u;, € WyP(Q). Then

¢l Duy, || < e for alln € N,

enl|h]

_— 3.23
S T3 T (3.23)

e (3.24)
= u, — 0in Wy (Q2) as n — oo.

Suppose that {u; }nen € W, P(Q) is not bounded. By passing to a sub-
sequence if necessary, we may assume that

[Jub || = oc. (3.25)

We set y,, := ﬁ,n € N. Then |lyn|| =1, yn, > 0 for all n € N. So, we

may assume that

Yn — y in Wl’p(Q),yn —yin LP(Q),y > 0. (3.26)
We multiply (3.23) with W and use (3.24). We obtain
1 f(z u*)
A% (yp), b)Y + ———— (A% (y,),h) <€, + | “——"Lhd 3.27

for all h € WyP(Q), all n € N, with €, — 0F.
Hypotheses Hj(i), (i7) imply that

|f(z,2)] <e7 [L+|z[P7!] for aa. z € Q, allz € R, some c7 > 0.

It follows that

fCug () N
{W’pl}neN C LP (Q) is bounded.

The reflexivity of L' (Q), the Eberlein-Smulian theorem and hypothesis
H,(i7), imply that

cut () W o
) 2yt ), 529

where 9 € L®(Q), 9o(z) < 9(z) < 91(2) for a.a. z € Q(see Aizicovici-
Papageorgiou-Staicu [1], proof of Proposition 16).
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We return to (3.27) and use the test function h =y, —y € ng’p(Q). Using
(3.25), (3.26), (3.27), in the limit as n — oo, we obtain
nh_>H§O<Agl (Un),yn —y) =0
= yn — y in Wy P(Q),|lyll = 1, > 0(by the (S);-property of A% (-)).
(3.29)

If in (3.27), we pass to the limit as n — oo and use (3.25), (3.28) and (3.29),
we obtain

A% (y), h :/ﬁz P=1hdz for all h € WP (Q),
(Ap(y), h) . (2)y 0 () (3.30)

= —AJy(z) = (2)y(2)"" in Q, yloo = 0.
From Proposition 2.3, we have
X (p, 9) < AP (9, AT () = 1.

Then from (3.30) and since y # 0(see (3.29)), we infer that y(-) must be
nodal, contradicting (3.26). This proves that

{ts }nen C Wol’p(Q) is bounded,
= {tn}nen C Wol’p(Q) is bounded (see (3.20)).
We may assume that
U — uin Wy P(Q),u, — uin LP(). (3.31)

We return to (3.23), choose the test function h = u,, — u € Wol’p(Q), pass
to the limit as n — oo and use (3.31). Then

lim (V (up,), up — u) =0,

n—oo

= Uy, — uin Wol’p(Q)(see Proposition 2.1),
= @4 () satisfies the C-condition.

This completes the proof. ]
We can have a second positive solution distinct from wuyg.

Proposition 3.5. If hypotheses Hy, Hy hold, then problem (1.1) admits a
second positive solution u € intCy, U # ug.

Proof. Recall that without any loss of generality, we assume that K, is
finite. Let up € int Cy be the first positive solution of (1.1) produced in
Proposition 3.1. We know that ug is a local minimizer of ¢, (-). Using
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Theorem 5.7.6 of Papageorgiou-Radulescu-Repovs [18, p.449], we can find
p € (0,1) small such that
o4 (u0) < inf {p (u) : lu — uol] = p} = ms. (3.32)
Hypotheses Hj (i), (i4) imply that given € > 0, we can find cg = cg(e) > 0
such that
Jo(z) — €
Tmp —cg < F(z,x) for a.a. z € Q,all z € R. (3.33)

Let 17 = 1u1(p) € int C; be the positive principal eigenfunction of
(=Ag, Wol’p(Q)) with ||@1]|, = 1. For ¢ > 0, we have

. P o . P (A .
wwmé/PW@—%@MW%F6+/@@WWW%H9
D Ja p q.Ja
(3.34)
for some cg > O(see (3.33)).
Note that
ko = / [0() — A2 (p)] i d= > 0.
Q
So, if we choose € € (0, ko), then from (3.34), we have
1P
o4 (tu) < —— [ko — €] + c10t? 4 cg for some c19 > 0
p
= c10t? — c11tP + cg for some c11 > 0,
= @4 (tu;) - —oo as t — +oo(recall g < p). (3.35)

From Proposition 3.4, we know that
¢+ (+) satisfies the C-condition. (3.36)

From (3.32), (3.35), (3.36) and the mountain pass theorem, we can find
e Wol’p(Q) such that

€ Ky, and my < oy (). (3.37)
Then we have
<‘P/+(71)7 h)y =0for all h € Wol’p(Q),

= (V(a),h) = / f(z, a7 hdz for all h € WP ().
Q
We choose the test function h = -4~ € WO1 P(Q)) and obtain

éHDﬁ‘Hg <0,
=u > 0.
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So, 4 is a nonnegative solution of (1.1) and as before the nonlinear regu-
larity theory of Lieberman [8] implies that & € Cy. Moreover, from (3.32)
and (3.37), we have 4 # ug. If we show that @ # 0, then this is the second
positive solution of (1.1).

We know that 4 € K, is of mountain pass type. So, from Theorem 6.5.8,
p. 527, of Papageorgiou-Radulescu-Repovs [18], we have

Ci(p4,a) # 0. (3.38)
On the other hand, from Proposition 3.4, we know that
Ck(p+,0) =0 for all & € Ny. (3.39)

Comparing (3.38) and (3.39), we conclude that @ # 0. Hypotheses Hj,
imply that for all p > 0, we can find £, > 0 such that

f(z,x) + épﬂspfl >0foraa ze€Qalo<axz<p.
Let p = ||i]|lo and €, > 0 as above. Then
— ALY — AL+ E,uP T > 01in Q,
= 4 € int Cy(see [10]).
The proof is now complete. O

Similarly working on the negative semi-axis, we can generate two negative
solutions

vp, ¥ € —int C1, vy # 0.
We can state the following multiplicity theorem for the constant sign so-
lutions of problem (1.1).

Theorem 3.6. If hypotheses Hy, Hy hold, then problem (1.1) has at least
four nontrivial smooth constant sign solutions
up, o € int Cy, ug # 4,
vo, 0 € —int C'y, vg # 0.
Remark 3.7. The solutions ug € int C and vy € —int Cy are local min-
imizers of the energy functional ¢ € Cl(Wol’p(Q)) of problem (1.1) defined
by
1 1
o(u) =— [ a1(2)|DulPdz+ — | aa(z)|Du|?dz — | F(z,u)dz
b Ja q4.Ja Q

for all u € WyP(Q).
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If ¢ = 2, then we can relax hypothesis Hj(iii) and assume the existence
of 1, e > 0 such that
f(z,12) <0< f(z, 1) for a.a. z € Q.

This means that we fit in our framework also reactions satisfying the sign
condition. Note that in this case, the differential operator is described by
the map a : Q x RY — RV given by

a(z,y) = a1(2)|y|P~%y + az(2)y for all z € Q,all y € RY, with 2 < p.

Evidently a(z,-) € CY(RN,RY) and

Yy
lyl?
= (Vya(z, )¢, &)pn > ¢f¢f for all € € RY.

Vya(z,y) = [ylP~? |ar(2)id + (p — 2) + a(2)id,

So, we can use the tangency principle of Pucci-Serrin [22, p.35], and deduce
that

—p2 < vo(z) <0 < wup(z) < py for all z € Q.

Therefore, Proposition 3.1 remains valid.

Next we will show that problem (1.1) has a smallest positive solution and
a biggest negative solution (extremal constant sign solutions). In Section 4,
we will use them to generate a nodal (sign changing) solution.

Hypotheses Hj (i), (i), (¢¢7) imply that we can find c12, c13 > 0 such that

ciolz|” — cislz|? < f(z,2)x for a.a. z € Q,all x € R. (3.40)

This unilateral growth condition on f(z,-), leads to the following auxiliary
Dirichlet problem
_ -2 -2 :
—Aftu — AZ2u = cro|ul"""u — ciz|ulP"7u, in Q, (3.41)
u’aQ =0.
Reasoning as in the proof of Proposition 3.1 of Liu-Papageorgiou [10], we
obtain the following result.

Proposition 3.8. If hypotheses Hy hold and 1 < 7 < q < p, then problem
(3.41) has an unique positive solution u € intCy and since the problem is
odd, v = —u € —intCy is the unique negative solution of (3.41).

Let Sy (resp., S_) be the set of positive (resp., negative) solutions of prob-
lem (1.1). From Theorem 3.6, we know that

0#Sy CintCyand ) #S_ C —int Cy.
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Proposition 3.9. If hypotheses Hy, H1 hold, then u < u for all u € S+ and
v<7v forallveS_.

Proof. Let v € S4 C int C} and introduce the Carathéodory function
e+ (z,x) defined by

ciau(z)" ! — cizu(z)P7tifu(z) < (3.42)

+yr—1 _ He-1 ifr <
e\ (2.7) = {012(:10 ) c13(x™) if v < w(z),
We set Ey(z,2) = [y eq(z,5)ds and consider the C'-functional oy :
W, P () — R defined by

1 1
0+(u):p/Qm(z)\DuV’dz—i-q/Qag(z)|Du]qdz—/QE+(z,u)dz

for all u € W, P().

Hypotheses Hy and (3.42), imply that o (-) is coercive. Also using the
Sobolev embedding theorem, we see that o (-) is sequentially weakly lower
semicontinuous. Therefore by the Weierstrass-Tonelli theorem, we can find
e Wol’p(Q) such that

o4 (@) = inf {U+(u) Lue Wol’p(Q)} . (3.43)

Since 7 < g < p, we infer that

o4 (u) <0=04(0),
= u # 0.

From (3.43), we have

(o' (@), k) = 0 for all h € WyP(),

= (V(a),h) = / er(z,@)hdz for all h € WP (). (3.44)
Q

First we choose the test function h = —u~ € Wol’p(Q) and obtain u > 0,
@ # 0. Next in (3.44), we use the test function h(a — u)t € Wy (Q) and
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have

= [clzuT*1 - clgupfl} (@ —u)t dz(see (3.42))

< / () (0 — u)* da(see (3.40))
= (&(u), (@ —u)T)(since u € ),
= @ < u(see Proposition 2.1).
We have proved that
[0,u] = {h € WHP(Q) 1 0 < h(z) < u(z) for a.a. z € Q} a0,

= u(see (3.42),(3.44), and Proposition 3.8),
u<wuforallueS,.

by

Similarly, we show that
v<vforallvesS_,

which completes the proof. O

Using these bounds, we can generate the extremal constant sign solutions
for problem (1.1).

Proposition 3.10. If hypotheses Hy, Hy hold, then problem (1.1) has a
smallest positive solution u, € S, that is, ux < u for all u € S and a
biggest negative solution v, € S_, that is, v < vy for allv e S_.

Proof. From Papageorgiou-Radulescu-Repovs [17], we know that S is down-
ward directed, that is, if uj,us € Sy, then there exists u € Sy such that
u < up,u < ug. Then invoking Theorem 5.109 of Hu-Papageorgiou [6, p.308],
we can find a decreasing sequence {uy, }neny C Sy such that

inf S5, = ing Up,.
ne

We have
(V(up), h) = / f(z,un)hdz for all h € W, P(2),all n € N, (3.45)
Q

< up, < wuy for all n € N(see Proposition (3.9)). (3.46)
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In (3.45), we choose the test function h = v, € Wol’p(Q). Then

é||DunH§ < c14 for some ¢4 > 0,alln € N
(see (3.46) and hypotheses H (i), (i1)),

= {tn}nenw € WyP(Q) is bounded.
We may assume that
Un 2 Uy 0 Wy P(Q), Uy — Uy in LP(Q). (3.47)

In (3.45), we choose the test function h = u, — u, € Wol’p(Q), pass to the
limit as n — oo and use (3.47). Then

lim (V(up), up — us) =0,

n—oo

L (3.48)
= u, — uy in WP (2)(see Proposition 2.1).
0

If in (3.45), we pass to the limit as n — oo and use (3.48), then

(V(us), h) = / f(z,u)hdz for all h € Wy P(Q), @ < u.,
= Uy € 54, Uf: inf 5.
Similarly working with S_, we produce v, € S_ such that
v<wv,forallveS_.

Note that S_ is upward directed(that is, if v1, vy € S_, then there exists
v € S_ such that v; < wv,vy < w). O

4. NODAL SOLUTIONS

In this section, using the extremal constant sign solutions u, € int Cy and
v € —int C, we generate a nodal solution. The idea is the following. We
truncate f(z,x) from below at v,(z) and from above at u.(z). This way the
corresponding energy functional has nontrivial critical points in the order
interval

[Vs, us] = {h € Wol’p(Q) c0k(2) < h(2) < uy(z) for a.a. z € Q} )

Evidently any such nontrivial critical point distinct from u, and vy, is a
nodal(sign changing) solution of (1.1).

Proposition 4.1. If hypotheses Hy, Hy hold, then problem (1.1) admits a
nodal solution yo € [v«, us] N CE(L).
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Proof. Implementing the strategy outlined above, we introduce the
Carathéodory function I(z, z) defined by

f(z,04(2)) iz < we(2)
l(z,2) =< f(z,2) if v,(2) <z < uy(z) (4.1)
f(zyue(z)  fue(z) <.

Also we introduce the positive and negative truncations of I(z, ) namely
the Carathéodory functions I+ (z,x) := (2, +z%). We set

L(z,x) = /Ow l(z,s)ds and Ly (z,x) = /096 l+(z,s)ds

and consider the C'-functions k, k+ : W, " () — R defined by
1 1
() = / a1(2)| Dul? dz + / as(2)| Dul dz —/ L(zu) dz,
P Ja qa.Jq Q

1 1
ki(u):/al(z)|Du]pdz+/ag(z)|Du]qdz—/Li(z,u) dz.
P Ja q.Jq Q

From (4.1) and the nonlinear regularity theory of Lieberman [8], we obtain
Ky C [vs,ul] N CH(Q), Ki, C[0,u] NCyy Ky C [vs,0]N (—Cyy).
Exploiting the extremality of u,, v4, we infer that
K C [0, u] NCH(Q), Kk, = [0,us], Ki = [vs,0]. (4.2)

We claim that w, and v, are local minimizers of k(-). Clearly, ki (-)
is coercive and sequentially weakly lower semicontinuous. So, we can find
Ux € Wol’p(Q) such that

k(i) = inf {k:+(u) Lue Wg’p(g)} . (4.3)
Let u € C1\{0}. Using Proposition 4.1.22 of [18, p.274], we can find
t € (0,1) small such that
0 < tu(z) < min {u.(2),d} for all z € Q.
Using hypothesis H;(iii) and since 7 < g < p, we obtain
k+(tu) <0,
= ki (ts) < 0= Fk4(0)(see (4.3)), (4.4)
= Uy # 0.
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We know that @, € Ky, (see (4.3)). Hence from (4.2) and (4.4) it follows
that @, = us € int C'y. Note that

k‘C+ = k+‘C+‘
It follows that wu, is a local C§(Q)-minimizer of k(-).

= u, is a local W, (Q)-minimizer of k(-)

(see Papageorgiou-Radulescu-Zhang [19], Proposition A3).

Similarly for v, € —int Cy, using k_(-). This proves the claim.

The functional k(-) is coercive(see (4.1)). Therefore Proposition 5.1.15,
p. 369, of [18], implies that k(-) satisfies the C-condition. We may assume
without any loss of generality that

k(vs) < k(uy) and K}, is finite (see (4.2)).
So, by Theorem 5.7.6 of [18, p.449], we take p € (0, ||v«||) small such that
k(vi) < k(uy) < inf {k(u) : ||u — u|| = p}. (4.5)
We apply the mountain pass theorem and we find yg € VVO1 P(Q) such that
Yo € K C [vs, ue] N CF(Q)(see (4.2)),
Yo & {vs, us }(see (4.5)).

We know that
C1(k,yo) # O(see [18, p.527]). (4.6)

Also since 0 € intcé(ﬁ) [Ux, U], using a standard argument involving the
homotopy invariance of critical groups, we show that

Ci(k,0) = Ci(p,0) for all [ € Ny (recall ¢ is the energy of (1.1)),
= Cy(k,0) =0 for all [ € Ny (4.7)
(by Proposition 3.2 and since Cj(¢,0) = Ci(p,0) for all [ € Ny).

Comparing (4.6) and (4.7), we conclude that yo # 0. So yp € CZ(Q) is a
nodal solution of problem (1.1). O

Remark 4.2. As before if ¢ = 2, using the tangency principle of Pucci-
Serrin [22, p.36], we can say that yo € il (o) [Vsy U]

Finally, we can state the following multiplicity theorem for problem (1.1).
Note that we provide sign information for all solutions produced.
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Theorem 4.3. If hypotheses Hy, Hi hold, then problem (1.1) has at least
five nontrivial smooth solutions

ug, 0 € int C'y, ug < 4, ug # 4,
v,V € —int C4, v < vy, vg # D,
Yo € [vo, o] N CE(Q)  nodal.

Remark 4.4. It will be interesting to extend this work to problems driven
by the double phase differential operator

a
u — —Apu — Aqu

with a € COY(Q)\{0}, a(z) > 0 for all z € Q. For such problems there is
no global regularity theory. So, many of the tools used here are no longer
available and we have to come up with different methods and techniques.
A first result in this direction for parametric double phase problem, can be
found in the recent work of Papageorgiou-Zhang-Zhang [21].
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