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1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper,
we study the following nonautonomous, Dirichlet (p, q)-equation{

−∆a1
p u(z)−∆a2

q u(z) = f(z, u(z)), in Ω,
u|∂Ω = 0, 1 < q < p.

}
(1.1)

For a ∈ L∞(Ω) and r ∈ (1,∞), by ∆a
r we denote the nonautonomous

r-Laplace differential operator (weighted r-Laplacian) defined by

∆a
ru(z) = div (a(z)|Du|r−2Du).

The interest in the study of this type of problem is twofold. On the one
hand, there are physical motivations, since the double phase operator has
been applied to describe steady-state solutions of reaction-diffusion problems
in biophysics, plasma physics, and chemical reaction analysis. The prototype
equation for these models can be written in the form

ut = ∆a1
p u(z) + ∆a2

q u(z) + f(z, u(z)).

In this framework, the function u generally stands for a concentration,
the term ∆a1

p u(z) + ∆a2
q u(z) corresponds to the diffusion with coefficient

a1(z)|Du|p−2 + a2(z)|Du|q−2, while f(z, u) represents the reaction term re-
lated to source and loss processes; see Cherfils & Il’yasov [4] and Singer [23].
On the other hand, such operators provide a valuable framework for explain-
ing the behavior of highly anisotropic materials whose hardening properties,
which are linked to the exponent governing the propagation of the gradient
variable, differ considerably with the point, where the modulating coefficient
a(z) dictates the geometry of a composite made by two different materials.

Equation in (1.1) is driven by the sum of two such operators with distinct
exponents and possibly distinct weights. The reaction (right-hand side) of
(1.1) is a Carathéodory function f(z, x) (that is, for all x ∈ R, z → f(z, x) is
measurable and for a.a. z ∈ Ω, x→ f(z, x) is continuous). We assume that

asymptotically as x → ±∞, the quotient f(z,x)
|x|p−2x

stays above the principal

eigenvalue λ̂a11 (p) > 0 of (−∆a1
p ,W

1,p
0 (Ω)). We allow only partial interaction

with λ̂a11 (p) > 0 (nonuniform nonresonance). Such a behavior of f(z, x),
makes the energy functional of (1.1) unbounded from below (noncoercive).
In general, the noncoercive case is more delicate than the coercive one, since
the direct method of the calculus of variations is no longer applicable.
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The double-phase problem (1.1) is motivated by numerous models arising
in mathematical physics. For instance, we can refer to the following Born-
Infeld equation [3] that appears in electromagnetism:

−div

(
∇u

(1− 2|∇u|2)1/2

)
= h(u) in Ω.

Indeed, by the Taylor formula, we have for all |x| < 1

(1− x)−1/2 = 1 +
x

2
+

3

2 · 22
x2 +

5!!

3! · 23
x3 + · · ·+ (2n− 3)!!

(n− 1)!2n−1
xn−1 + · · · .

Taking x = 2|∇u|2 and adopting the first order approximation, we obtain
problem (Pλ) for p = 4 and q = 2. Furthermore, the n-th order approxima-
tion problem is driven by the multi-phase differential operator

−∆u−∆4u− 3

2
∆6u− · · · − (2n− 3)!!

(n− 1)!
∆2nu.

We also refer to the following fourth-order relativistic operator

u 7→ div

(
|∇u|2

(1− |∇u|4)3/4
∇u

)
,

which describes large classes of phenomena arising in relativistic quantum
mechanics. Again, by Taylor’s formula, we have

x2(1− x4)−3/4 = x2 +
3x6

4
+

21x10

32
+ · · · .

This shows that the fourth-order relativistic operator can be approximated
by the following autonomous double phase operator

u 7→ ∆4u+
3

4
∆8u.

In problem (1.1), we have the sum of two such operators and so the left-
hand side of problem (1.1) is not homogeneous. In fact, the differential
operator u 7→ −∆a1

p u−∆a2
q u driving problem (1.1) is related to the so-called

“double-phase” integral functional given by

u 7→
∫
Ω
(a1(z)|Du|p + a2(z)|Du|q) dz.

Such functionals were first investigated by Marcellini [12] and Zhikov [24],
in the context of problems of the calculus of variations and of nonlinear elas-
ticity for strongly anisotropic materials. For such problems, there is no global
(that is, up to the boundary) regularity theory. There are only interior regu-
larity results primarily due to Marcellini and coworkers and to Mingione and
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coworkers. We mention the papers of Marcellini [13] and Baroni-Colombo-
Mingione [2] and the references therein. An informative survey of the recent
developments on the subject can be found in Mingione-Rădulescu [14]. The
lack of global regularity theory eliminates from consideration many of the
tools used in the study of balanced (p, q)-equations.

Using variational tools from the critical point theory, together with suit-
able truncation and comparison techniques and critical groups, we show that
problem (1.1) has at least five nontrivial smooth solutions, all with sign infor-
mation(two positive, two negative and a fifth which is nodal(sign changing)).
Such multiplicity results for noncoercive problems, were proved by Papa-
georgiou-Rădulescu [16] (autonomous (p, q)-equations), Liu-Papageorgiou [9,
10] and Papageorgiou-Scapellato [20] (nonautonomous (p, q) -equations). In
the aforementioned works, the reaction f(z, ·) is (p−1)-superlinear and they
produce three solutions without providing sign information for all of them
(see [16, Theorem 4.14]). In contrast here f(z, ·) is (p − 1)-linear as x ±∞
and we generate five nontrivial smooth solutions all with sign information.

2. Mathematical Background and Hypotheses

In the study of (1.1), the main function spaces, are the Sobolev space

W 1,p
0 (Ω) and the Banach space C1

0 (Ω̄) =
{
u ∈ C1(Ω̄) : u|∂Ω = 0

}
. The

Poincaré inequality, implies that on W 1,p
0 (Ω), we can use the equivalent

norm
∥u∥ = ∥Du∥p for all u ∈W 1,p

0 (Ω).

Moreover, the Banach space C1
0 (Ω̄) is ordered with positive (order) cone

C+ =
{
u ∈ C1

0 (Ω̄) : u(z) ≥ 0 for all z ∈ Ω̄
}
.

This cone has a nonempty interior given by

intC+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n
|∂Ω < 0

}
,

where ∂u
∂n = (Du, n)RN with n(·) being the outward unit normal on ∂Ω.

We impose the following conditions on the weight functions a1, a2, H0 :
a1, a2 ∈ C0,1(Ω̄) with 0 < ĉ ≤ a1(z), 0 ≤ a2(z) for all z ∈ Ω̄, a2 ̸≡ 0.

We define the operators

Aa1
p :W 1,p

0 (Ω) →W−1,p′(Ω) =W 1,p
0 (Ω)∗

(
p′ =

p

p− 1

)
,

Aa2
q :W 1,q

0 (Ω) →W−1,q′(Ω) =W 1,q
0 (Ω)∗

(
q′ =

q

q − 1

)
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by setting

⟨Aa1
p (u), h⟩ =

∫
Ω
a1(z)|Du|p−2(Du,Dh)RN dz for all u, h ∈W 1,p

0 (Ω),

⟨Aa2
q (u), h⟩ =

∫
Ω
a2(z)|Du|q−2(Du,Dh)RN dz for all u, h ∈W 1,q

0 (Ω).

Recalling thatW 1,p
0 (Ω) ↪→W 1,q

0 (Ω) (since q < p), we have thatW−1,q′(Ω) ↪→
W−1,p′(Ω) and so we can define the operator

V = Aa1
p +Aa2

q :W 1,p
0 (Ω) →W−1,p′(Ω).

Using the properties of the operators Aa1
p , A

a2
q (see, for example, Gasiński-

Papageorgiou [5, p.279]), we have the following properties for the nonlinear
operator V (·).

Proposition 2.1. The operator V (·) is bounded (maps bounded sets to
bounded sets), continuous, strictly monotone(thus V (·) is maximal mono-
tone), coercive and of type (S)+, that is, it has the following property

“if un
w−→ u in W 1,p

0 (Ω) and lim supn→∞⟨V (un), un−u⟩ ≤ 0, then un → u

in W 1,p
0 (Ω).”

Remark 2.2. Since V (·) is maximal monotone, coercive, it is surjective (see
Papageorgiou-Rădulescu-Repovš [18, p.135]).

For a ∈ C0,1(Ω̄) with 0 < ĉ ≤ a(z) for all z ∈ Ω̄, 1 < r < ∞ and
ϑ ∈ L∞(Ω)\{0}, ϑ(z) ≥ 0 for a.a z ∈ Ω, we consider the following nonlinear
eigenvalue problem{

−∆r
pu(z) = λ̂ϑ(z)|u(z)|r−2u(z), in Ω,

u|∂Ω = 0.

}
(2.1)

From Liu-Papageorgiou [11], we know that (2.1) admits a smallest eigen-

value λ̂a1(r) > 0 which admits the following variational characterization

λ̂a1(r, ϑ) = inf

{∫
Ω a(z)|Du|

r dz∫
Ω ϑ(z)|u|r dz

: u ∈W 1,r
0 (Ω), u ̸= 0

}
. (2.2)

This eigenvalue is isolated, simple (that is, if û, v̂ are eigenfunctions corre-

sponding to λ̂a1(r, ϑ) > 0, then û = µv̂ for some µ ∈ R\{0}). The infimum in

(2.2) is realized on the corresponding one-dimensional eigenspace of λ̂a1(r, ϑ)
and it is clear from (2.2) that the elements of this eigenspace have fixed sign.
By û1(r, θ) we denote the positive, Lr-normalized (that is, ∥û1(r, θ)∥r = 1)

eigenfunction corresponding to λ̂a1(r, ϑ). All eigenfunctions corresponding to
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an eigenvalue λ̂ ̸= λ̂a1(r) are nodal. From the global nonlinear regularity
theory of Lieberman [8], we know that the eigenfunctions of (2.1) belong in
C1
0 (Ω̄). Therefore û1(r, ϑ) ∈ C+\{0} and then the nonlinear Hopf maximum

principle of Pucci-Serrin [22, p.120], implies that û1(r, ϑ) ∈ intC+. As a
function of ϑ(·), the principal eigenvalue has the following strict monotonic-
ity property.

Proposition 2.3. If ϑ1, ϑ2 ∈ L∞(Ω), 0 ≤ ϑ1(z) ≤ ϑ2(z) for a.a z ∈ Ω,

ϑ1 ̸= 0, ϑ1 ̸= ϑ2, then λ̂
a
1(r, ϑ2) < λ̂a1(r, ϑ1). If ϑ(z) = 1 for a.a z ∈ Ω, then

λ̂a1(r, ϑ) = λ̂a1(r).

If u : Ω → R is a measurable function, then we set

u± = max{±u, 0}

and we have u = u+ − u−, |u| = u+ + u− and if u ∈ W 1,p
0 (Ω), then u± ∈

W 1,p
0 (Ω).
Let X be a Banach space and φ ∈ C1(X). We say that φ(·) satisfies the

“C-condition”, if it has the following property:
“Every sequence {un}n∈N ⊆ X such that {φ(un)}n∈N ⊆ R is bounded

and (1 + ∥un∥X)φ′(un) → 0 in X∗ as n→ ∞, admits a strongly convergent
subsequence.”

We introduce the following sets

Kφ = {u ∈ X : φ′(u) = 0}(the critical set of φ(·)),

φc = {u ∈ X : φ(u) ≤ c} for all c ∈ R.
If Y2 ⊆ Y1 ⊆ X and k ∈ N0 = N ∪ {0}, by Hk(Y1, Y2) we denote the k-th
singular homology group for the pair (Y1, Y2) with integer coefficients. If
u ∈ Kφ is isolated and c = φ(u), then the critical groups of φ(·) at u are
defined by

Ck(φ, u) = Hk(φ
c ∩ U,φc ∩ U\{u}) for all k ∈ N0,

where U is a neighborhood of u such that φc ∩U ∩Kφ = {u}. The excision
property of singular homology, implies that this definition is independent of
the choice of the isolating neighborhood U .

Finally, we introduce the hypotheses on the reaction f(z, x).
H1 : f : Ω× R → R is a Carathéodory function such that

(i) for every ρ > 0, there exists a function aρ ∈ L∞(Ω) such that
|f(z, x)| ≤ aρ(z) for a.a. z ∈ Ω, all |x| ≤ ρ;
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(ii) there exist functions ϑ0, ϑ1 ∈ L∞(Ω) such that λ̂a11 (p) ≤ ϑ0(z) for

a.a. z ∈ Ω, ϑ0 ̸≡ λ̂a1(p),

ϑ0(z) ≤ lim inf
x→±∞

f(z, x)

|x|p−2x
≤ lim sup

x→±∞

f(z, x)

|x|p−2x
≤ ϑ1(z)

uniformly for a.a. z ∈ Ω;

(iii) there exist τ ∈ (1, q) and δ > 0 such that 0 < β0 ≤ lim infx→0
f(z,x)
|x|τ−2x

uniformly for a.a. z ∈ Ω, f(z, x)x ≤ τF (z, x) for a.a. z ∈ Ω, all
|x| ≤ δ, with F (z, x) =

∫ x
0 f(z, s) ds;

(iv) there exist µ1, µ2 > 0 and ξ̂ > 0 such that

f(z, µ1) ≤ −β̂ < 0 < β̂ ≤ f(z, µ2)

for a.a. z ∈ Ω and for a.a. z ∈ Ω, the function

x→ f(z, x) + ξ̂|x|p−2x

is nondecreasing on [−µ2, µ1].

Remark 2.4. On account of hypotheses H1(iii), we have f(z, 0) = 0 for a.a.
z ∈ Ω.

3. Solutions of constant sign

First we produce positive solutions. To this end, we introduce the C1-
functional φ+ :W 1,p

0 (Ω) → R defined by

φ+(u) =
1

p

∫
Ω
a1(z)|Du|p dz +

1

q

∫
Ω
a2(z)|Du|q dz −

∫
Ω
F (z, u+) dz

for all u ∈W 1,p
0 (Ω).

Proposition 3.1. If hypotheses H0, H1(i), (iii), (iv) hold, then problem (1.1)
admits a positive solution u0 ∈ intC+, which is a local minimizer of φ+(·).

Proof. We introduce the Carathéodory function g+(z, x) defined by

g+(z, x) =

{
f(z, x+) if x ≤ µ1,

f(z, µ1) if µ1 < x.
(3.1)

We set G+(z, x) =
∫ x
0 g+(z, s) ds and consider the C1-functional ψ+ :

W 1,p
0 (Ω) → R defined by

ψ+(u) =
1

p

∫
Ω
a1(z)|Du|p dz +

1

q

∫
Ω
a2(z)|Du|q dz −

∫
Ω
G+(z, u) dz
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for all u ∈W 1,p
0 (Ω).

From (3.1), it is clear that ψ+(·) is coercive. Also using the Sobolev embed-
ding theorem, we see that ψ+(·) is sequentially weakly lower semicontinuous.

Therefore by theWeierstrass-Tonelli theorem, there exists u0 ∈W 1,p
0 (Ω) such

that

ψ+(u0) = inf
{
ψ+(u) : u ∈W 1,p

0 (Ω)
}
. (3.2)

Hypotheses H1(iii) implies that we can find β1 ∈ (0, β0) and 0 < δ̂ ≤
min{µ1, δ} such that

β1
τ
xτ ≤ F (z, x) for a.a. z ∈ Ω, all 0 ≤ x ≤ δ̂. (3.3)

Let u ∈ intC+ and choose t ∈ (0, 1) small such that

0 ≤ tu(z) ≤ δ̂ for all z ∈ Ω̄. (3.4)

Using (3.3) and (3.4), we obtain

ψ+(tu) ≤
tp

p
∥a1∥∞∥Du∥pp +

tq

q
∥a2∥∞∥Du∥qq −

β1t
τ

τ
∥u∥ττ

≤ c1t
q − c2t

τ for some c1, c2 > 0.(recall t ∈ (0, 1), q < p)

Since τ < q (see hypothesis H1(iii)), we see that by choosing t ∈ (0, 1)
even smaller if necessary, we will have

ψ+(tu) < 0,

⇒ ψ+(u0) < ψ+(0) = 0(see (3.2)),

⇒ u0 ̸= 0.

From (3.2), we have

⟨ψ′
+(u0), h⟩ = 0 for all h ∈W 1,p

0 (Ω)

⇒ ⟨V (u0), h⟩ =
∫
Ω
g+(z, u0)h dz for all h ∈W 1,p

0 (Ω).
(3.5)

In (3.5) first we choose the test function h = −u−0 ∈W 1,p
0 (Ω). We obtain

ĉ∥Du−0 ∥
p
p ≤ 0,

⇒ u0 ≥ 0, u0 ̸= 0.
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Next in (3.5), we choose the test function (u0 − µ1)
+ ∈W 1,p

0 (Ω). Then

⟨V (u0), (u0 − µ1)
+⟩ =

∫
Ω
f(z, µ1)(u0 − µ1)

+ dz

≤ 0 = ⟨V (µ), (u0 − µ1)
+⟩(see hypotheses H1(iv))

Hence

u0 ≤ µ1.

We have proved that

u0 ∈ [0, µ1] =
{
h ∈W 1,p

0 (Ω) : 0 ≤ h(z) ≤ µ1 for a.a. z ∈ Ω
}
, u0 ̸= 0. (3.6)

Then (3.1), (3.5) and (3.6) imply that u0 ∈ W 1,p
0 (Ω) is a positive solu-

tion of (1.1). Theorem 7.1, p.286 of Ladyzhenskaya-Ural’tseva [7] implies
that u0 ∈ L∞(Ω). Subsequently, the global nonlinear regularity theory of
Lieberman [8], implies that u0 ∈ C+\{0}.

Using hypothesis H1(iv), we have

−∆a1
p u0 −∆a2

q u0 + ξ̂up−1
0

= f(z.u0) + ξ̂up−1
0 ≥ 0 in Ω,

⇒ ∆a1
p u0 +∆a1

q u0 ≤ ξ̂up−1
0 in Ω.

Invoking Lemma 1 of Liu-Papageorgiou [10], we infer that

u0 ∈ intC+.

Moreover, we have

−∆a1
p u0 −∆a2

q u0 + ξ̂up−1
0

= f(z, u0) + ξ̂up−1
0

≤ f(z, µ1) + ξ̂µp−1
1 (see (3.6) and hypothesis H1(iv))

≤ −β̂ + ξ̂µp−1
1 (see hypothesis H1(iv))

≤ −∆a1
p µ1 −∆a2

q µ1 + ξ̂µp−1
1 in Ω.

(3.7)

Since β̂ > 0, from (3.7) and Proposition A4 of Papageorgiou-Rădulescu-
Zhang [19], we infer that

u0(z) < µ1 for all z ∈ Ω̄.

Therefore we conclude that

u0 ∈ intC1
0 (Ω̄)[0, µ1] = int {[0, µ1] ∩ C1

0 (Ω̄)}. (3.8)
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From (3.1), we see that

φ+|[0,µ1] = ψ+|[0,µ1],

⇒ u0 ∈ intC+ is a local C1
0 (Ω̄)-minimizer of φ+(·)(see (3.8)),

⇒ u0 ∈ intC+ is a localW 1,p
0 (Ω)-minimizer of φ+(·)

(see [19], Proposition A3).

This completes the proof. □

In the next proposition, we compute the critical groups of φ+(·) at u ≡ 0.

Proposition 3.2. If hypotheses H0, H1(i), (iii) hold, then Ck(φ+, 0) = 0 for
all k ∈ N0.

Proof. Hypotheses H1(i), (iii) imply that we can find c3, c4 > 0 such that

c3x
τ − c4x

p ≤ f(z, x) for a.a. z ∈ Ω, all x ≥ 0. (3.9)

Then for u ∈W 1,p
0 (Ω)\{0} and t ∈ (0, 1], we have

φ+(tu) ≤ c5t
q
[
∥Du∥pp + ∥Du∥qq + ∥u∥pp

]
− c6t

τ∥u∥ττ
for some c5, c6 > 0 (see (3.9)).

Since τ < q, we see that we can find t′ ∈ (0, 1] such that

φ+(tu) < 0 for all t ∈ (0, t′). (3.10)

Let u ∈W 1,p
0 (Ω)\{0}, u ≥ 0, 0 < ∥u∥ ≤ 1, φ+(u) = 0. Then

d

dt
φ+(tu)|t=1

= ⟨φ′
+(u), u⟩(using the chain rule)

=

∫
Ω
a1(z)|Du|p dz +

∫
Ω
a2(z)|Du|q dz −

∫
Ω
f(z, u+)u+ dz

≥
[
1− τ

p

]
ĉ∥Du∥pp −

∫
Ω

[
f(z, u+)u+ − τF (z, u+)

]
dz(since φ+(u) = 0)

≥
[
1− τ

p

]
ĉ∥Du∥pp +

∫
{u+>δ}

[
τF (z, u+)− f(z, u+)u+

]
dz

(see hypothesis H1(iii))

≥ c7∥u∥p − c8∥u∥r for some c7, c8 > 0 with r > p.

Since p < r, for ρ ∈ (0, 1) small, we see that

d

dt
φ+(tu)|t=1 > 0 for all u ∈W 1,p

0 (Ω), 0 < ∥u∥ ≤ ρ, φ+(u) = 0. (3.11)
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We will show that for such a u ∈W 1,p
0 (Ω)\{0}, we have

φ+(tu) ≤ 0 for all t ∈ [0, 1]. (3.12)

Evidently (3.12) is true if t = 0, t = 1. Arguing by contradiction, suppose
that we can find t0 ∈ (0, 1) such that φ+(t0, u) > 0. Recall that φ+(u) = 0.
We set

t∗ = min {t ∈ [t0, 1] : φ+(tu) = 0} > t0 > 0,

⇒ φ+(tu) > 0 for all t ∈ [t0, t
∗).

(3.13)

Set y = t∗u. Then

0 < ∥y∥ = t∗∥u∥ ≤ ∥u∥ ≤ ρ and φ+(y) = 0.

Then according to (3.11), we have

d

dt
φ+(ty)|t=1 > 0. (3.14)

Form (3.13), we have

φ+(y) = φ+(t
∗u) = 0 < φ+(tu) for all t ∈ [t0, t

∗),

⇒ d

dt
φ+(ty)|t=1 = t∗

d

dt
φ+(tu)|t=t∗

= t∗ lim
t→(t∗)−

φ+(tu)

t− t∗
≤ 0.

(3.15)

Comparing (3.14) and (3.15), we have a contradiction. This proves that
relation (3.12) is true.

Let

B̄ρ =
{
u ∈W 1,p

0 (Ω) : ∥u∥ ≤ ρ
}
.

We may assume that Kφ+ is finite (otherwise, since u ∈ Kφ+ ⇒ u ≥ 0, we
see that we already have an infinity of positive solutions of (1.1) which are
smooth by [8] and so we are done). Taking ρ ∈ (0, 1) even smaller, we may
have Kφ+ ∩B̄ρ = {0}. We consider the deformation h+ : [0, 1]×(φ0

+∩B̄ρ) →
φ0
+ ∩ B̄ρ defined by

h+(t, u) = (1− t)u for all t ∈ [0, 1], all u ∈ φ0
+ ∩ B̄ρ (see (3.12)).

It follows that φ0
+ ∩ B̄ρ is contractible.

Consider u ∈ B̄ρ such that φ+(u) > 0. We will show that there exists an
unique t(u) ∈ (0, 1) such that

φ+(t(u)u) = 0. (3.16)



12 L. Cai, N.S. Papageorgiou, V.D. Rădulescu

From (3.10) and Bolzano’s theorem, we know that such t(u) ∈ (0, 1) exists.
We need to show uniqueness. So, suppose we can find 0 < t̂1 = t1(u) < t̂2 =
t2(u) < 1 such that

φ+(t̂1u) = φ+(t̂2u) = 0. (3.17)

From (3.12), we know that

φ+(tt̂2u) ≤ 0 for all 0 ≤ t ≤ 1. (3.18)

Then (3.17) and (3.18), imply that t := t̂1
t̂2

∈ (0, 1) is a maximizer of the

fiber function t→ φ+(tt̂2u). Therefore,

0 =
d

dt
φ+(tt̂2u)|

t=
t̂1
t̂2

=
d

dt
φ+(tt̂1u)|t=1.

(3.19)

Since φ+(t̂1u) = 0(see (3.17)), equality (3.17) contradicts (3.11). This
proves the uniqueness of t(u) ∈ (0, 1) in (3.16).

Thus, we have

φ+(tu) < 0 for all t ∈ (0, t(u)),

and

φ+(tu) > 0 for all t ∈ (t(u), 1].

We introduce the map γ+ : B̄ρ\{0} → (0, 1] defined by

γ+(u) =

{
1 if u ∈ B̄ρ\{0}, φ+(u) < 0,

t(u) if u ∈ B̄ρ\{0}, φ+(u) > 0.
(3.20)

We claim that γ+(·) is continuous. From (3.20), we see that it suffices to
show continuity at u ∈ B̄ρ\{0} with φ+(u) = 0. Therefore, we consider a
sequence {un}n∈N ⊆ B̄ρ\{0} with φ+(un) = 0 for all n ∈ N such that un → u

in W 1,p
0 (Ω). From (3.20), we see that we may assume that φ+(un) > 0 for

all n ∈ N. We argue by contradiction. So, suppose that at least for a
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subsequence, we have

t(un) ≤ t̃ < 1 for all n ∈ N,
⇒ φ+(tun) > 0 for all t ∈ (t̃, 1],

⇒ φ+(tu) ≥ 0 for all t ∈ (t̃, 1],

⇒ φ+(tu) = 0 for all t ∈ (t̃, 1]

(note that φ+(u) = 0 and see (3.12)),

⇒ d

dt
φ+(tu)|t=1 = 0,

which contradicts (3.11). This proves the continuity of γ+(·).
We introduce the deformation η+ : B̄ρ\{0} → (φ0

+ ∩ B̄ρ)\{0} defined by

η+(u) =

{
u if u ∈ B̄ρ\{0}, φ+(u) ≤ 0,

γ+(u)u if u ∈ B̄ρ\{0}, φ+(u) > 0.
(3.21)

On account of the continuity of γ+(·), we have the continuity of η+(·).
From (3.21), we see that

η+|(φ0
+∩B̄ρ)\{0} = id|(φ0

+∩B̄ρ)\{0}.

Hence it follows that (φ0
+ ∩ B̄ρ)\{0} is a retract of B̄ρ\{0} and the lat-

ter is contractible. Therefore (φ0
+ ∩ B̄ρ)\{0} is contractible too. So, from

Papageorgiou-Rădulescu-Repovš [18, p.469], we have

Hk(φ
0
+ ∩ B̄ρ, (φ

0
+ ∩ B̄ρ)\{0}) for all k ∈ N0,

⇒ Ck(φ+, 0) = 0 for all k ∈ N0.

The proof is now complete. □

Remark 3.3. We mention that the first such computation of critical groups
at zero for functionals with a concave term (see hypothesis H1(iii)), was
done by Moroz [15], in the context of semilinear equations driven by the
Laplacian. The hypotheses of Moroz [15] were stronger and required that the
concave term to be global. We mention also Proposition 3.7 of [16].

Proposition 3.4. If hypotheses H0, H1 hold, then the functional φ+(·) sat-
isfies the C-condition.

Proof. Consider a sequence {un}n∈N ⊆W 1,p
0 (Ω) such that {φ+(un)}n∈N ⊆ R

is bounded and

(1 + ∥un∥)φ′
+(un) → 0 inW−1,p′(Ω) as n→ ∞. (3.22)
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From (3.22), we have∣∣∣∣⟨V (un), h⟩ −
∫
Ω
f(z, u+n )h dz

∣∣∣∣ ≤ ϵn∥h∥
1 + ∥un∥

(3.23)

for all h ∈ W 1,p
0 (Ω) with ϵn → 0+. In (3.23), we choose the test function

h = −u−n ∈W 1,p
0 (Ω). Then

ĉ∥Du−n ∥pp ≤ ϵn for all n ∈ N,

⇒ u−n → 0 inW 1,p
0 (Ω) as n→ ∞.

(3.24)

Suppose that {u+n }n∈N ⊆ W 1,p
0 (Ω) is not bounded. By passing to a sub-

sequence if necessary, we may assume that

∥u+n ∥ → ∞. (3.25)

We set yn := u+
n

∥u+
n ∥ , n ∈ N. Then ∥yn∥ = 1, yn ≥ 0 for all n ∈ N. So, we

may assume that

yn
w−→ y inW 1,p

0 (Ω), yn → y in Lp(Ω), y ≥ 0. (3.26)

We multiply (3.23) with 1
∥u+

n ∥p−1
and use (3.24). We obtain

⟨Aa1
p (yn), h⟩+

1

∥u+n ∥p−q
⟨Aa2

q (yn), h⟩ ≤ ϵ′n +

∫
Ω

f(z, u+n )

∥u+n ∥p−1
h dz (3.27)

for all h ∈W 1,p
0 (Ω), all n ∈ N, with ϵ′n → 0+.

Hypotheses H1(i), (ii) imply that

|f(z, x)| ≤ c7
[
1 + |x|p−1

]
for a.a. z ∈ Ω, all x ∈ R, some c7 > 0.

It follows that {
f(·, u+n (·))
∥u+n ∥p−1

}
n∈N

⊆ Lp′(Ω) is bounded.

The reflexivity of Lp′(Ω), the Eberlein-Smulian theorem and hypothesis
H1(ii), imply that

f(·, u+n (·))
∥u+n ∥p−1

w−→ ϑ̂(·)yp−1 in Lp′(Ω), (3.28)

where ϑ̂ ∈ L∞(Ω), ϑ0(z) ≤ ϑ̂(z) ≤ ϑ1(z) for a.a. z ∈ Ω(see Aizicovici-
Papageorgiou-Staicu [1], proof of Proposition 16).
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We return to (3.27) and use the test function h = yn−y ∈W 1,p
0 (Ω). Using

(3.25), (3.26), (3.27), in the limit as n→ ∞, we obtain

lim
n→∞

⟨Aa1
p (yn), yn − y⟩ = 0

⇒ yn → y inW 1,p
0 (Ω), ∥y∥ = 1, y ≥ 0(by the (S)+-property of Aa1

p (·)).
(3.29)

If in (3.27), we pass to the limit as n→ ∞ and use (3.25), (3.28) and (3.29),
we obtain

⟨Aa1
p (y), h⟩ =

∫
Ω
ϑ̂(z)yp−1h dz for all h ∈W 1,p

0 (Ω),

⇒ −∆a1
p y(z) = ϑ(z)y(z)p−1 in Ω, y|∂Ω = 0.

(3.30)

From Proposition 2.3, we have

λ̂a11 (p, ϑ̂) < λ̂a11 (p, λ̂a11 (p)) = 1.

Then from (3.30) and since y ̸= 0(see (3.29)), we infer that y(·) must be
nodal, contradicting (3.26). This proves that

{u+n }n∈N ⊆W 1,p
0 (Ω) is bounded,

⇒ {un}n∈N ⊆W 1,p
0 (Ω) is bounded(see (3.20)).

We may assume that

un → u inW 1,p
0 (Ω), un → u in Lp(Ω). (3.31)

We return to (3.23), choose the test function h = un − u ∈W 1,p
0 (Ω), pass

to the limit as n→ ∞ and use (3.31). Then

lim
n→∞

⟨V (un), un − u⟩ = 0,

⇒ un → u inW 1,p
0 (Ω)(see Proposition 2.1),

⇒ φ+(·) satisfies the C-condition.
This completes the proof. □

We can have a second positive solution distinct from u0.

Proposition 3.5. If hypotheses H0, H1 hold, then problem (1.1) admits a
second positive solution û ∈ intC+, û ̸= u0.

Proof. Recall that without any loss of generality, we assume that Kφ+ is
finite. Let u0 ∈ intC+ be the first positive solution of (1.1) produced in
Proposition 3.1. We know that u0 is a local minimizer of φ+(·). Using
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Theorem 5.7.6 of Papageorgiou-Rădulescu-Repovš [18, p.449], we can find
ρ ∈ (0, 1) small such that

φ+(u0) < inf {φ+(u) : ∥u− u0∥ = ρ} = m+. (3.32)

Hypotheses H1(i), (ii) imply that given ϵ > 0, we can find c8 = c8(ϵ) > 0
such that

ϑ0(z)− ϵ

p
|x|p − c8 ≤ F (z, x) for a.a. z ∈ Ω, all x ∈ R. (3.33)

Let û1 = û1(ρ) ∈ intC+ be the positive principal eigenfunction of

(−∆a1
p ,W

1,p
0 (Ω)) with ∥û1∥p = 1. For t > 0, we have

φ+(tû1) ≤
tp

p

∫
Ω

[
λ̂a11 (p)− ϑ0(z)

]
ûp1 dz +

tp

p
ϵ+

tq

q

∫
Ω
a2(z)|Dû1|q dz + c9

(3.34)
for some c9 > 0(see (3.33)).

Note that

k0 =

∫
Ω

[
ϑ0(z)− λ̂a11 (p)

]
ûp1 dz > 0.

So, if we choose ϵ ∈ (0, k0), then from (3.34), we have

φ+(tû) ≤ − t
p

p
[k0 − ϵ] + c10t

q + c9 for some c10 > 0

= c10t
q − c11t

p + c9 for some c11 > 0,

⇒ φ+(tû1) → −∞ as t→ +∞(recall q < p). (3.35)

From Proposition 3.4, we know that

φ+(·) satisfies the C-condition. (3.36)

From (3.32), (3.35), (3.36) and the mountain pass theorem, we can find

û ∈W 1,p
0 (Ω) such that

û ∈ Kφ+ and m+ ≤ φ+(û). (3.37)

Then we have

⟨φ′
+(û), h⟩ = 0 for all h ∈W 1,p

0 (Ω),

⇒ ⟨V (û), h⟩ =
∫
Ω
f(z, û+)h dz for all h ∈W 1,p

0 (Ω).

We choose the test function h = −û− ∈W 1,p
0 (Ω) and obtain

ĉ∥Dû−∥pp ≤ 0,

⇒ û ≥ 0.
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So, û is a nonnegative solution of (1.1) and as before the nonlinear regu-
larity theory of Lieberman [8] implies that û ∈ C+. Moreover, from (3.32)
and (3.37), we have û ̸= u0. If we show that û ̸= 0, then this is the second
positive solution of (1.1).

We know that û ∈ Kφ+ is of mountain pass type. So, from Theorem 6.5.8,
p. 527, of Papageorgiou-Rădulescu-Repovš [18], we have

C1(φ+, û) ̸= 0. (3.38)

On the other hand, from Proposition 3.4, we know that

Ck(φ+, 0) = 0 for all k ∈ N0. (3.39)

Comparing (3.38) and (3.39), we conclude that û ̸= 0. Hypotheses H1,

imply that for all ρ > 0, we can find ξ̂ρ > 0 such that

f(z, x) + ξ̂ρx
p−1 ≥ 0 for a.a. z ∈ Ω, all 0 ≤ x ≤ ρ.

Let ρ = ∥û∥∞ and ξ̂ρ > 0 as above. Then

−∆a1
p û−∆a2

q û+ ξ̂ρû
p−1 ≥ 0 in Ω,

⇒ û ∈ intC+(see [10]).

The proof is now complete. □

Similarly working on the negative semi-axis, we can generate two negative
solutions

v0, v̂ ∈ −intC+, v0 ̸= v̂.

We can state the following multiplicity theorem for the constant sign so-
lutions of problem (1.1).

Theorem 3.6. If hypotheses H0, H1 hold, then problem (1.1) has at least
four nontrivial smooth constant sign solutions

u0, û ∈ intC+, u0 ̸= û,

v0, v̂ ∈ −intC+, v0 ̸= v̂.

Remark 3.7. The solutions u0 ∈ intC+ and v0 ∈ −int C+ are local min-

imizers of the energy functional φ ∈ C1(W 1,p
0 (Ω)) of problem (1.1) defined

by

φ(u) =
1

p

∫
Ω
a1(z)|Du|p dz +

1

q

∫
Ω
a2(z)|Du|q dz −

∫
Ω
F (z, u) dz

for all u ∈W 1,p
0 (Ω).
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If q = 2, then we can relax hypothesis H1(iii) and assume the existence
of µ1, µ2 > 0 such that

f(z, µ2) ≤ 0 ≤ f(z, µ1) for a.a. z ∈ Ω.

This means that we fit in our framework also reactions satisfying the sign
condition. Note that in this case, the differential operator is described by
the map a : Ω× RN → RN given by

a(z, y) = a1(z)|y|p−2y + a2(z)y for all z ∈ Ω, all y ∈ RN , with 2 < p.

Evidently a(z, ·) ∈ C1(RN ,RN ) and

∇ya(z, y) = |y|p−2

[
a1(z)id + (p− 2)

y ⊗ y

|y|2

]
+ a2(z)id,

⇒ (∇ya(z, y)ξ, ξ)RN ≥ ĉ|ξ|2 for all ξ ∈ RN .

So, we can use the tangency principle of Pucci-Serrin [22, p.35], and deduce
that

−µ2 < v0(z) < 0 < u0(z) < µ1 for all z ∈ Ω.

Therefore, Proposition 3.1 remains valid.
Next we will show that problem (1.1) has a smallest positive solution and

a biggest negative solution (extremal constant sign solutions). In Section 4,
we will use them to generate a nodal (sign changing) solution.

Hypotheses H1(i), (ii), (iii) imply that we can find c12, c13 > 0 such that

c12|x|τ − c13|x|p ≤ f(z, x)x for a.a. z ∈ Ω, all x ∈ R. (3.40)

This unilateral growth condition on f(z, ·), leads to the following auxiliary
Dirichlet problem{

−∆a1
p u−∆a2

q u = c12|u|τ−2u− c13|u|p−2u, in Ω,
u|∂Ω = 0.

}
(3.41)

Reasoning as in the proof of Proposition 3.1 of Liu-Papageorgiou [10], we
obtain the following result.

Proposition 3.8. If hypotheses H0 hold and 1 < τ < q < p, then problem
(3.41) has an unique positive solution ū ∈ intC+ and since the problem is
odd, v̄ = −ū ∈ −intC+ is the unique negative solution of (3.41).

Let S+(resp., S−) be the set of positive (resp., negative) solutions of prob-
lem (1.1). From Theorem 3.6, we know that

∅ ≠ S+ ⊆ intC+ and ∅ ≠ S− ⊆ −intC+.
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Proposition 3.9. If hypotheses H0, H1 hold, then ū ≤ u for all u ∈ S+ and
v ≤ v̄ for all v ∈ S−.

Proof. Let u ∈ S+ ⊆ intC+ and introduce the Carathéodory function
e+(z, x) defined by

e+(z, x) =

{
c12(x

+)τ−1 − c13(x
+)p−1 if x ≤ u(z),

c12u(z)
τ−1 − c13u(z)

p−1 if u(z) < x.
(3.42)

We set E+(z, x) =
∫ x
0 e+(z, s) ds and consider the C1-functional σ+ :

W 1,p
0 (Ω) → R defined by

σ+(u) =
1

p

∫
Ω
a1(z)|Du|p dz +

1

q

∫
Ω
a2(z)|Du|q dz −

∫
Ω
E+(z, u) dz

for all u ∈W 1,p
0 (Ω).

Hypotheses H0 and (3.42), imply that σ+(·) is coercive. Also using the
Sobolev embedding theorem, we see that σ+(·) is sequentially weakly lower
semicontinuous. Therefore by the Weierstrass-Tonelli theorem, we can find
ũ ∈W 1,p

0 (Ω) such that

σ+(ũ) = inf
{
σ+(u) : u ∈W 1,p

0 (Ω)
}
. (3.43)

Since τ < q < p, we infer that

σ+(ũ) < 0 = σ+(0),

⇒ ũ ̸= 0.

From (3.43), we have

⟨σ′+(ũ), h⟩ = 0 for all h ∈W 1,p
0 (Ω),

⇒ ⟨V (ũ), h⟩ =
∫
Ω
e+(z, ũ)h dz for all h ∈W 1,p

0 (Ω).
(3.44)

First we choose the test function h = −ũ− ∈ W 1,p
0 (Ω) and obtain ũ ≥ 0,

ũ ̸= 0. Next in (3.44), we use the test function h(ũ − u)+ ∈ W 1,p
0 (Ω) and



20 L. Cai, N.S. Papageorgiou, V.D. Rădulescu

have

⟨V (ũ), (ũ− u)+⟩

=

∫
Ω

[
c12u

τ−1 − c13u
p−1

]
(ũ− u)+ dz(see (3.42))

≤
∫
Ω
f(z, u)(ũ− u)+ dz(see (3.40))

= ⟨V (u), (ũ− u)+⟩(since u ∈ S+),

⇒ ũ ≤ u(see Proposition 2.1).

We have proved that

ũ ∈ [0, u] =
{
h ∈W 1,p

0 (Ω) : 0 ≤ h(z) ≤ u(z) for a.a. z ∈ Ω
}
, ũ ̸= 0,

⇒ ũ = ū(see (3.42), (3.44), and Proposition 3.8),

⇒ ū ≤ u for all u ∈ S+.

Similarly, we show that

v ≤ v̄ for all v ∈ S−,

which completes the proof. □

Using these bounds, we can generate the extremal constant sign solutions
for problem (1.1).

Proposition 3.10. If hypotheses H0, H1 hold, then problem (1.1) has a
smallest positive solution u∗ ∈ S+, that is, u∗ ≤ u for all u ∈ S+ and a
biggest negative solution v∗ ∈ S−, that is, v ≤ v∗ for all v ∈ S−.

Proof. From Papageorgiou-Rădulescu-Repovš [17], we know that S+ is down-
ward directed, that is, if u1, u2 ∈ S+, then there exists u ∈ S+ such that
u ≤ u1, u ≤ u2. Then invoking Theorem 5.109 of Hu-Papageorgiou [6, p.308],
we can find a decreasing sequence {un}n∈N ⊆ S+ such that

inf S+ = inf
n∈N

un.

We have

⟨V (un), h⟩ =
∫
Ω
f(z, un)h dz for all h ∈W 1,p

0 (Ω), all n ∈ N, (3.45)

ū ≤ un ≤ u1 for all n ∈ N(see Proposition (3.9)). (3.46)
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In (3.45), we choose the test function h = vn ∈W 1,p
0 (Ω). Then

ĉ∥Dun∥pp ≤ c14 for some c14 > 0, all n ∈ N
(see (3.46) and hypotheses H1(i), (ii)),

⇒ {un}n∈N ⊆W 1,p
0 (Ω) is bounded.

We may assume that

un
w−→ u∗ inW

1,p
0 (Ω), un → u∗ in L

p(Ω). (3.47)

In (3.45), we choose the test function h = un − u∗ ∈W 1,p
0 (Ω), pass to the

limit as n→ ∞ and use (3.47). Then

lim
n→∞

⟨V (un), un − u∗⟩ = 0,

⇒ un → u∗ inW
1,p
0 (Ω)(see Proposition 2.1).

(3.48)

If in (3.45), we pass to the limit as n→ ∞ and use (3.48), then

⟨V (u∗), h⟩ =
∫
Ω
f(z, u∗)h dz for all h ∈W 1,p

0 (Ω), ū ≤ u∗,

⇒ u∗ ∈ S+, v∗ = inf S+.

Similarly working with S−, we produce v∗ ∈ S− such that

v ≤ v∗ for all v ∈ S−.

Note that S− is upward directed(that is, if v1, v2 ∈ S−, then there exists
v ∈ S− such that v1 ≤ v, v2 ≤ v). □

4. Nodal Solutions

In this section, using the extremal constant sign solutions u∗ ∈ intC+ and
v∗ ∈ −intC+, we generate a nodal solution. The idea is the following. We
truncate f(z, x) from below at v∗(z) and from above at u∗(z). This way the
corresponding energy functional has nontrivial critical points in the order
interval

[v∗, u∗] =
{
h ∈W 1,p

0 (Ω) : v∗(z) ≤ h(z) ≤ u∗(z) for a.a. z ∈ Ω
}
.

Evidently any such nontrivial critical point distinct from u∗ and v∗, is a
nodal(sign changing) solution of (1.1).

Proposition 4.1. If hypotheses H0, H1 hold, then problem (1.1) admits a
nodal solution y0 ∈ [v∗, u∗] ∩ C1

0 (Ω̄).
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Proof. Implementing the strategy outlined above, we introduce the
Carathéodory function l(z, x) defined by

l(z, x) =


f(z, v∗(z)) if x < v∗(z)

f(z, x) if v∗(z) ≤ x ≤ u∗(z)

f(z, u∗(z) if u∗(z) < x.

(4.1)

Also we introduce the positive and negative truncations of l(z, ·) namely
the Carathéodory functions l±(z, x) := l(z,±x±). We set

L(z, x) =

∫ x

0
l(z, s) ds and L±(z, x) =

∫ x

0
l±(z, s) ds

and consider the C1-functions k, k± :W 1,p
0 (Ω) → R defined by

k(u) =
1

p

∫
Ω
a1(z)|Du|p dz +

1

q

∫
Ω
a2(z)|Du|q dz −

∫
Ω
L(z, u) dz,

k±(u) =
1

p

∫
Ω
a1(z)|Du|p dz +

1

q

∫
Ω
a2(z)|Du|q dz −

∫
Ω
L±(z, u) dz.

From (4.1) and the nonlinear regularity theory of Lieberman [8], we obtain

Kk ⊆ [v∗, u∗] ∩ C1
0 (Ω̄), Kk+ ⊆ [0, u∗] ∩ C+, Kk− ⊆ [v∗, 0] ∩ (−C+).

Exploiting the extremality of u∗, v∗, we infer that

Kk ⊆ [v∗, u∗] ∩ C1
0 (Ω̄), Kk+ = [0, u∗], Kk− = [v∗, 0]. (4.2)

We claim that u∗ and v∗ are local minimizers of k(·). Clearly, k+(·)
is coercive and sequentially weakly lower semicontinuous. So, we can find
ũ∗ ∈W 1,p

0 (Ω) such that

k+(ũ∗) = inf
{
k+(u) : u ∈W 1,p

0 (Ω)
}
. (4.3)

Let u ∈ C+\{0}. Using Proposition 4.1.22 of [18, p.274], we can find
t ∈ (0, 1) small such that

0 ≤ tu(z) ≤ min {u∗(z), δ} for all z ∈ Ω̄.

Using hypothesis H1(iii) and since τ < q < p, we obtain

k+(tu) < 0,

⇒ k+(ũ∗) < 0 = k+(0)(see (4.3)),

⇒ ũ∗ ̸= 0.

(4.4)
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We know that ũ∗ ∈ Kk+(see (4.3)). Hence from (4.2) and (4.4) it follows
that ũ∗ = u∗ ∈ intC+. Note that

k|C+ = k+|C+ .

It follows that u∗ is a local C1
0 (Ω̄)-minimizer of k(·).

⇒ u∗ is a local W 1,p
0 (Ω)-minimizer of k(·)

(see Papageorgiou-Rădulescu-Zhang [19],Proposition A3).

Similarly for v∗ ∈ −intC+, using k−(·). This proves the claim.
The functional k(·) is coercive(see (4.1)). Therefore Proposition 5.1.15,

p. 369, of [18], implies that k(·) satisfies the C-condition. We may assume
without any loss of generality that

k(v∗) ≤ k(u∗) and Kk is finite (see (4.2)).

So, by Theorem 5.7.6 of [18, p.449], we take ρ ∈ (0, ∥v∗∥) small such that

k(v∗) ≤ k(u∗) < inf {k(u) : ∥u− u∗∥ = ρ} . (4.5)

We apply the mountain pass theorem and we find y0 ∈W 1,p
0 (Ω) such that

y0 ∈ Kk ⊆ [v∗, u∗] ∩ C1
0 (Ω̄)(see (4.2)),

y0 ̸∈ {v∗, u∗}(see (4.5)).

We know that

C1(k, y0) ̸= 0(see [18, p.527]). (4.6)

Also since 0 ∈ intC1
0 (Ω̄)[v∗, u∗], using a standard argument involving the

homotopy invariance of critical groups, we show that

Cl(k, 0) = Cl(φ, 0) for all l ∈ N0 (recall φ is the energy of (1.1)),

⇒ Cl(k, 0) = 0 for all l ∈ N0

(by Proposition 3.2 and since Cl(φ, 0) = Cl(φ+, 0) for all l ∈ N0).

(4.7)

Comparing (4.6) and (4.7), we conclude that y0 ̸= 0. So y0 ∈ C1
0 (Ω̄) is a

nodal solution of problem (1.1). □

Remark 4.2. As before if q = 2, using the tangency principle of Pucci-
Serrin [22, p.36], we can say that y0 ∈ intC1

0 (Ω̄)[v∗, u∗].

Finally, we can state the following multiplicity theorem for problem (1.1).
Note that we provide sign information for all solutions produced.
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Theorem 4.3. If hypotheses H0, H1 hold, then problem (1.1) has at least
five nontrivial smooth solutions

u0, û ∈ intC+, u0 ≤ û, u0 ̸= û,

v0, v̂ ∈ −intC+, v̂ ≤ v0, v0 ̸= v̂,

y0 ∈ [v0, u0] ∩ C1
0 (Ω̄) nodal.

Remark 4.4. It will be interesting to extend this work to problems driven
by the double phase differential operator

u→ −∆a
pu−∆qu

with a ∈ C0,1(Ω)\{0}, a(z) ≥ 0 for all z ∈ Ω̄. For such problems there is
no global regularity theory. So, many of the tools used here are no longer
available and we have to come up with different methods and techniques.
A first result in this direction for parametric double phase problem, can be
found in the recent work of Papageorgiou-Zhang-Zhang [21].
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