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MSC: We consider a nonlinear Dirichlet problem with gradient dependence. The features of this paper
primary 35J60 are twofold: (i) the problem is driven by a general nonlinear nonhomogeneous differential
secondary 35A23 operator with Uhlenbeck-Lieberman structure; (ii) the reaction blows-up at the origin and it is
35B65 gradient dependent. Using a topological approach based on fixed point theory, we show that
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1. Introduction
Let 2 C RY be a bounded domain with a C2-boundary 4. In this paper, we study the following nonlinear eigenvalue problem

{ —diva(Du(z)) = Af(z,u(z), Du(z)) in £, @)

Ulgo =0, u>0,1>0.

In this problem, a : R¥ — RV is a continuous and strictly monotone function (hence a(-) is also maximal monotone), which
satisfies certain other regularity conditions listed in hypotheses H,, below. These hypotheses provide a broad analytical framework,
in which we can fit many operators of interest such as the p-Laplacian and the (p, g)-Laplacian. These hypotheses permit the use
of the global regularity theory (regularity up to the boundary 0£2) of Lieberman [1], which makes possible the use of a variety of
powerful analytical tools (see also [2], [3], [4], [5]).

In the reaction (right-hand side of problem (P,)), the singular term is not decoupled from the perturbation, which is the
case in almost all “singular” papers in the literature, where the reaction is of the form A[u™" + f(z,u, Du)] (see Papageorgiou—
Radulescu-Repovs [6,7] and the references therein). So, the formulation here permits a reaction of the form g(z,u, Du)u™", where
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g(z,x,y) is a Carathéodory function. The presence of the gradient in the reaction means that the problem (?,) is not variational.
Consequently, our approach will be topological and it uses the fixed point theory. More precisely, we will use the Leray-Schauder
alternative principle to establish the existence of a smooth solution (eigenfunction) for problem (P,), where 4 > 0 is small.

Singular problems with convection were studied by Faraci—Puglisi [8] (semilinear problems driven by the Laplacian) and by Liu-
Motreanu-Zeng [9], Papageorgiou-Radulescu-Repovs [6], Papageorgiou-Scapellato [10] (equations driven by the p-Laplacian). We
also mention the very recent work of Ozturk-Papageorgiou [11], where the problem is driven by a nonlinear, nonhomogeneous
differential operator, like the one used here. In all the above works, the singular term is decoupled from the perturbation and the
hypotheses on the perturbation are more restrictive.

2. Hypotheses and auxiliary properties

Let g € C'(0, o) with g(z) > 0 for all t > 0 and suppose that
B ot

0<c< ol < é¢and cyt?! < f(t) < c; (™' + 1771 for all ¢ > 0 and some ¢, ¢; >0, 1 < s < p.

The hypotheses on the function a : RY — RV are the following:

Hy: a(y) = ay(|y|)y for all y € RN with ay(¢) > 0 for all # > 0 and
!
(i) ap € C1(0, ), (0,00) D t = ay(D)t is strictly increasing, ay(t)t — 0% as t — 0 and lim,_ ¢+ ‘;L(t:; > —1;
0

(i) |Va(y)| < cz%yll) for all y € RN \ {0}, some ¢, > 0;

(iii) %mz < (Va)&, Egn for all y € RV \ {0}, all £ € RN,
We set Gy(t) = for ag(s)sds, t > 0. On account of hypotheses H, Gy(-) is strictly convex and strictly increasing. We introduce
G(y) = Gy(ly]) for all y € RM. Evidently, G(-) is differentiable and convex. We have

VG() = G(IyD— = ag(Iy))y = a(y) for all y € RN \ {0}, VG(0) = 0.

[yl
The convexity of G(-) implies that
G(y) < (a(y), g for all y € RN, a

Hypotheses H,, imply the following properties for the function y — a(y) (see Papageorgiou-Rddulescu [12]).

Lemma 1. If hypotheses H, hold, then the following properties are fulfilled:
(a) the function y — a(y) is continuous, strictly monotone (thus, maximal monotone too) and coercive;
®) la)| < c3(IyI*~1 + |y|P7Y) for all y € RN, some ¢; > 0;
©) ]%l,\’lp < (a(y),y)gn for all y e RN,

Using this lemma and (1), we obtain the following bilateral growth conditions for the primitive G(-):
o

pip—1

The hypotheses on the reaction f(z, x, y) are the following:

H: f: 2x(0,00) x RN — [0, 0) is a Carathéodory function such that

1) 0 <y, <liminf,_ g+ f(z,x, y)x" < limsup,_ g+ f(z,x, y)x" <y, uniformly for a.a. z € @, all |y| < 6 with 6 > 0;

(i) 0 < f(z,x,3) < a@[1 +x"+ x4+ |y® ] foraa ze @, all x>0, all ye RN, with 4 € L®(Q), p<r <p*, 6 —1< pand

O<np<l.
In the study of singular problems, a useful tool is the following Hardy inequality (see Papageorgiou-Winkert [13, p. 682]).

Y17 < G() < ey(Iyl* + |yl?) for all y € RN, some ¢, > 0. @)

Proposition 1. Let d(z) = d(z,0%) for dll z € Q. Then
F
d

Finally, let V : WOI’” Q) - Wol’p (@) =W~ (Q) (¢/ = p/(p— 1)) denote the nonlinear operator

< c*||Dhll, for all h € Wy *(2), 1 < p < o, some c* > 0.
p

V@), hy = / (a(Du), Dh)gy dz for all u, h € W, (£2). 3)
Q

This operator has the following properties (see [13, p. 665]).

Proposition 2. The operator V (-) defined by (3) is bounded (maps bounded sets to bounded sets), continuous, strictly monotone (thus,
maximal monotone too), coercive and of type (S),, that is,

“if u, = uin W, () and limsup, o, (V (). u, —u) < 0, then u, — u in W,""(Q)".



A. Alsaedi et al. Applied Mathematics Letters 176 (2026) 109860

On account of hypothesis H, (i), we can find 0 < 7, < 7, and y; < 7; such that
Jox T < fz,x,y) <§x"foraa zeR,all 0<x <4, all [y <é. 4

Consider the positive (order) cone C, = {u € C(; (Q) : 0 < u(z) for all z € Q}. This cone has a nonempty interior given by
intC, =queC, :uz)>0forall ze Q, g—'; 0 < 0 ¢, where n(-) is the outward unit normal on 9.
We consider the following two purely singular problems:

—diva(Du(z)) = Ajou(z)™" in 2, ulyo =0, 1 >0, u>0, 5)

—diva(Dy(z)) = A7,¥(z2)77 in 2, yl3o =0, 1>0, y>0. (6)

Proposition 3. If hypotheses H, hold, then problems (5) and (6) have unique solutions u; € int C, and y, € int C, respectively, such
that 0 <, <y, andy, - 0 in C;(2) as 4 — O*.

Proof. The existence and uniqueness of the solutions u, (for problem (5)) and y, (for problem (6)) follow from Papageorgiou—
Radulescu-Repovs [7, Proposition 11]. [
On account of Proposition 3, we can find A > 0 such that
[Filleo < 6. 11D;llco. 1DF;lleo < 6 for all 0 < 2 < 4. @
Then, from (4), we have forall0 < A < 1

~ diva(Diiy) = A9y, < Af (2.4, Dii;) in £, ®)

—diva(Dy,) = 1771?;" > Af(z,y,;, Dy,) in Q. ©
We introduce the truncation operator % : LP(Q2) — LP(£2) defined by

u,(z) if u(z) <uy(z)
#(z) =9 u(z) ifu(z) <u(z) <y,(2) (10)
¥,(2) if 3,(2) < u(z).

We know (see [13, p. 382]) that for all u € WOI’” Q)

Du,(z) if u(z) < uy(z)
D#(z) =4 Du(z) ifu,(z) <u(z) <y,;(z) an
Dy,;(z) if y,(z) < u(z).

Therefore 7 : Wol"’ Q) - Wol"’ (£2) and it is continuous (see Proposition 4.1 of Ozturk-Papageorgiou [11]).
Letv e Cé (R2) and consider another auxiliary Dirichlet problem

{ —div a(Du(z)) = Af(z, f(vA)(z), D%(v)(z)) in L, 12)

Ulgo =0, u>0,0< A< A
Proposition 4. If hypotheses H, H, hold and 0 < A < A, then problem (12) has a unique solution k,(v) € int C,.

Proof. We rewrite problem (12) as the following equivalent abstract equation
Vu= AN (i(v) in W, (&),

where N,(y)(-) = f(-, y(-), Dy(-)) for all y € Wol'” () (the Nemytskii map corresponding to the function f). By (10), (11), (4) and (7),
for every h € Wol’p () we have

u)<v<y;

y<v

|/f(z,€'(u), Dz(v))hz| < f(z,uy, DEA)|h|dz+/ f(z,v, Dv)|h|dz+/ f(z,y,, Dy;)|hldz. 13)
Q

v<iiy

Since u,, y, € int C,, combining Lemma 2.3 of Guo-Webb [14] with Proposition 1, we obtain that

f(z,uy, Duy)|hldz < col|h|| for some cy > 0 (14)
v<uy
/ f(z,7,, Dy))|hldz < ¢ollh|| for some ¢, > 0. (15)
Yai<v
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Finally, by Hypothesis H,(i) and since v € Cé (Q), we have for some cp,¢12 >0

1+ |Dv|”_l)|h|dz+/ ﬁ;"lhldz] <cppllall. (16)

u; SUSy,

/ f(z,v, Dv)|hldz < ¢y [
uy<v<y,

uy<v<y,
We return to (13) and use relations (14), (15), (16). Then

|/ f(z,%(v), DE(v))hz| < ci5]|h|| for some ¢35 > 0,
Q

hence N r(Z) € WOI”’ (Q)*nL*(2) with s € [1, 1/) (see Lazer-McKenna [15]). From Proposition 2, we know that V(-) is continuous,
strictly monotone, coercive, thus surjective (see Papageorgiou-Winkert [13, p. 576]). Therefore we can find k,(v) € WOI"7 (£2) such
that V(k,;(v)) = AN (i(v)) in VVOI"’ (2)*. The strict monotonicity of V(-) implies that this solution is unique. Note that for some
14, €15 > 0 we have

0 < N,(2(v) < e, (see (4), (7)) < ¢;5d ™" see Guo-Webb[14].

Invoking Theorem 1.7 of Giacomoni-Kumar-Sreenadh [16], he obtain that k,(v) € C, \ {0}, hence k;(v) € intC, (see
Pucci-Serrin [17, p. 120]). [

We can define the solution map k; : C({ (5) — int C, for problem (12).
Proposition 5. If hypotheses H,, H, hold and 0 < 4 < ], then the solution map k 2t C(g Q) - C(g (Q) is compact.

Proof. We first show the continuity of k,(-). Suppose that v, — v in C(; (Q) as n > oo. Let u, = k,(v,). Then
Vu, = ANf('E(vn)) in VVJ”’(Q)*. a7

Then, by (10) and (11), there exists ¢4 > 0 such that

C

01 llu, 1P < / Af (2, 2(v,), DE(w))u,dz < cglu,|| for all n € N,
Q

hence (u,) C WO1 ?(£2) is bounded. We can assume that
w, = uin W, ""(Q), u, - uin L'(&Q). (18)

On (17) we act with u, —u € WOI"”(Q), pass to the limit as n — oo and use (18). Then lim,_,(V (u,),u, — u) = 0, hence u, — u
in WOI"’ (£) (see Proposition 2). Thus, if we pass to the limit in (17) as n —» oo and we use the continuity of #(-), we obtain that
V() = AN ;(£(v)) in WO”’(.Q)*, thus u = k,(v). We conclude that k,(v,) — k,(v) in VVOI”’(Q) asn — oo, s0 k; : cé(ﬁ) - cé(ﬁ) is
continuous.

Let BC C(g (2) be bounded. With the same arguments as above, we show that k,;(B) C L*®(£2) is bounded. Then Theorem 1.7 of
Giacomoni-Kumar—Sreenadh [16] implies that

——C) (@) 15 s
k,(B) € C,,(£2) is compact.
We conclude that the map k,(-) is compact. []

We introduce the set Ey, = {u € C}(Q) : u=tk;w), 0<t<1}.
Proposition 6. If hypotheses Hy, H, hold and 0 < A < 4, then E, € Cé (Q) is bounded.

Proof. Letu € E;,. We have

%u:ki(u)(0<t<l)

= —div a(% Du) = Af(z,%(u), Df(u)) in Q.

Acting with u € Wol’p () and using Lemma 1, we obtain
1%

=1 p—1

> E, C Wol"’(_Q) is bounded.

[lu|l” < ¢7]lu|| for some ¢;; > 0 (see (10), (11))

Then, by Proposition 4 of Papageorgiou-Radulescu [18], we obtain that E,, C L*(£2) is bounded. Next, by Theorem 1.7
of Giacomoni-Kumar-Sreenadh [16] (see also Papageorgiou-Rédulescu [18, Theorem 4]), we conclude that E,, < Cé(ﬁ) is
bounded. [
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3. Case of small perturbations

The following theorem is the main result of this paper and it establishes the existence of solutions to problem (7)) in the case
of small perturbations of the reaction term. In particular, the following property establishes that the nonlinear singular eigenvalue
problem (P,) has a continuous family of eigenvalues. For the definition of eigenvalues in the context of nonlinear eigenvalue problems
we refer to Fucik—-Necas-Soucek-Soucek [19, p. 117].

Theorem 1. If hypotheses H, and H, hold and 0 < A < A, then problem (P,) has a solution u, € int C,.

Proof. Propositions 5, 6 and the Leray—Schauder alternative principle (see Papageorgiou-Winkert [13, p. 634]) imply that there
exists u, € Wol"’ (£2) such that u; = k,(u;), hence

(V(uy), h) = / Af (2. #(u;). Di(uy))hdz for all h € WP (). (19)
Q

In (19) we first use the test function & = (u, —y,)* € Wol”’ (). Then

V(uy), W, — J_/,l)+> = / Af(z,3;, Dy )u; — §1)+dz (see (9), (10))
Q

< / ANy, M, =y dz = (V(3,), (u; —¥,)*) (see Proposition 3).
Q

Thus, by Proposition 2, we deduce that u; <7y,.
Similarly, if in (19) we choose the test function 7 = (u; —u,)*, then from (5) and (7), we infer that u; < u,. So, we have proved
that u; <u,; <Y,, thus u, is a solution of (P,). The nonlinear regularity theory implies that u; e int C,. [

Acknowledgments

This Project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia under
grant no. DRP-17-130-2025. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Data availability

No data was used for the research described in the article.

References

[1]

[2]

[3]

[4]
[5]
[6]

[71

[91

[10]
[11]
[12]
[13]
[14]

[15]
[16]

[17]
[18]
[19]

G.M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations, Comm. Partial Differential
Equations 16 (1991) 311-361.

V. Benci, P. D’Avenia, D. Fortunato, L. Pisani, Solitons in several space dimensions: Derrick’s problem and infinitely many solutions, Arch. Ration. Mech.
Anal. 154 (4) (2000) 297-324.

L. Cherfils, Y. II’'yasov, On the stationary solutions of generalized reaction diffusion equations with p&g-Laplacian, Commun. Pure Appl. Anal. 4 (1) (2005)
9-22.

T. Roubicek, Nonlinear Partial Differential Equations with Applications, Birkhduser, Basel, 2013.

K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems, Acta Math. 138 (3-4) (1977) 219-240.

N.S. Papageorgiou, V.D. Radulescu, D.D. Repovs, Positive solutions for nonlinear Neumann problems with singular terms and convection, J. Math. Pures
Appl. 136 (2020) 1-21.

N.S. Papageorgiou, V.D. Radulescu, D.D. Repovs, Nonlinear nonhomogeneous singular problems, Calc. Var. Partial Differential Equations 59 (9) (2020).
F. Faraci, D. Puglisi, A singular semilinear problem with dependence on the gradient, J. Differential Equations 260 (4) (2016) 3327-3349.

Z. Liu, D. Motreanu, S. Zeng, Positive solutions for nonlinear singular elliptic equations of p-Laplacian type with dependence on the gradient, Calc. Var.
Partial Differential Equations 58 (1) (2019) 22, Paper No. 28.

N.S. Papageorgiou, A. Scapellato, Nonlinear singular problems with convection, J. Differential Equations 296 (2021) 493-511.

E. Ozturk, N.S. Papageorgiou, Nonhomogeneous singular problems with convection, J. Fixed Point Theory Appl. 26 (4) (2024) 14, Paper No. 62.

N.S. Papageorgiou, V.D. Rédulescu, Coercive and noncoercive nonlinear Neumann problems with indefinite potential, Forum Math. 28 (3) (2016) 545-571.
N.S. Papageorgiou, P. Winkert, Applied Nonlinear Functional Analysis, De Gruyter, Berlin, 2024.

Z.M. Guo, J.R.L. Webb, Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large, Proc. Roy. Soc. Edinburgh Sect. A
124 (1994) 189-198.

A.C. Lazer, P.J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (3) (1991) 721-730.

J. Giacomoni, D. Kumar, K. Sreenadh, Sobolev and Holder regularity results for some singular nonhomogeneous quasilinear problems, Calc. Var. Partial
Differential Equations 60 (3) (2021) 33, Paper No. 121.

P. Pucci, J. Serrin, The Maximum Principle, Birkh&user, Basel, 2007.

N.S. Papageorgiou, V.D. Radulescu, Some useful tools in the study of nonlinear elliptic problems, Expo. Math. 42 (6) (2024) 27, Paper No. 125616.

S. Fucik, J. Necas, J. Soucek, V. Soucek, Spectral Analysis of Nonlinear Operators, in: Lecture Notes in Mathematics, vol. 346, Springer-Verlag, Berlin-New
York, 1973.


http://refhub.elsevier.com/S0893-9659(25)00410-0/sb1
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb1
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb1
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb2
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb2
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb2
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb3
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb3
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb3
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb4
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb5
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb6
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb6
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb6
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb7
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb8
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb9
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb9
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb9
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb10
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb11
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb12
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb13
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb14
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb14
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb14
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb15
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb16
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb16
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb16
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb17
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb18
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb19
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb19
http://refhub.elsevier.com/S0893-9659(25)00410-0/sb19

	Small perturbations of convective singular eigenvalue problems
	Introduction
	Hypotheses and auxiliary properties
	Case of small perturbations
	Acknowledgments
	Data availability
	References


