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 A B S T R A C T

We consider a nonlinear Dirichlet problem with gradient dependence. The features of this paper 
are twofold: (i) the problem is driven by a general nonlinear nonhomogeneous differential 
operator with Uhlenbeck–Lieberman structure; (ii) the reaction blows-up at the origin and it is 
gradient dependent. Using a topological approach based on fixed point theory, we show that 
for all small values of 𝜆 > 0 there are ‘‘eigenvalues’’ of the problem with smooth corresponding 
eigenfunctions.

1. Introduction

Let 𝛺 ⊆ R𝑁  be a bounded domain with a 𝐶2-boundary 𝜕𝛺. In this paper, we study the following nonlinear eigenvalue problem 
{

−div 𝑎(𝐷𝑢(𝑧)) = 𝜆𝑓 (𝑧, 𝑢(𝑧), 𝐷𝑢(𝑧))  in 𝛺,
𝑢|𝜕𝛺 = 0, 𝑢 > 0, 𝜆 > 0.

(𝜆)

In this problem, 𝑎 ∶ R𝑁 → R𝑁  is a continuous and strictly monotone function (hence 𝑎(⋅) is also maximal monotone), which 
satisfies certain other regularity conditions listed in hypotheses 𝐻0 below. These hypotheses provide a broad analytical framework, 
in which we can fit many operators of interest such as the 𝑝-Laplacian and the (𝑝, 𝑞)-Laplacian. These hypotheses permit the use 
of the global regularity theory (regularity up to the boundary 𝜕𝛺) of Lieberman [1], which makes possible the use of a variety of 
powerful analytical tools (see also [2], [3], [4], [5]).

In the reaction (right-hand side of problem (𝜆)), the singular term is not decoupled from the perturbation, which is the 
case in almost all ‘‘singular’’ papers in the literature, where the reaction is of the form 𝜆[𝑢−𝜂 + 𝑓 (𝑧, 𝑢,𝐷𝑢)] (see Papageorgiou–
Rădulescu–Repovs [6,7] and the references therein). So, the formulation here permits a reaction of the form 𝑔(𝑧, 𝑢,𝐷𝑢)𝑢−𝜂 , where 
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𝑔(𝑧, 𝑥, 𝑦) is a Carathéodory function. The presence of the gradient in the reaction means that the problem (𝜆) is not variational. 
Consequently, our approach will be topological and it uses the fixed point theory. More precisely, we will use the Leray–Schauder 
alternative principle to establish the existence of a smooth solution (eigenfunction) for problem (𝜆), where 𝜆 > 0 is small.

Singular problems with convection were studied by Faraci–Puglisi [8] (semilinear problems driven by the Laplacian) and by Liu–
Motreanu–Zeng [9], Papageorgiou–Rădulescu–Repovs [6], Papageorgiou–Scapellato [10] (equations driven by the 𝑝-Laplacian). We 
also mention the very recent work of Ozturk–Papageorgiou [11], where the problem is driven by a nonlinear, nonhomogeneous 
differential operator, like the one used here. In all the above works, the singular term is decoupled from the perturbation and the 
hypotheses on the perturbation are more restrictive.

2. Hypotheses and auxiliary properties

Let 𝛽 ∈ 𝐶1(0,∞) with 𝛽(𝑡) > 0 for all 𝑡 > 0 and suppose that

0 < 𝑐 ≤ 𝛽′(𝑡)𝑡
𝛽(𝑡)

≤ 𝑐 and 𝑐0𝑡
𝑝−1 ≤ 𝛽(𝑡) ≤ 𝑐1(𝑡𝑠−1 + 𝑡𝑝−1) for all 𝑡 > 0 and some 𝑐0, 𝑐1 > 0, 1 < 𝑠 < 𝑝.

The hypotheses on the function 𝑎 ∶ R𝑁 → R𝑁  are the following:
𝐻0: 𝑎(𝑦) = 𝑎0(|𝑦|)𝑦 for all 𝑦 ∈ R𝑁  with 𝑎0(𝑡) > 0 for all 𝑡 > 0 and
(i) 𝑎0 ∈ 𝐶1(0,∞), (0,∞) ∋ 𝑡 ↦ 𝑎0(𝑡)𝑡 is strictly increasing, 𝑎0(𝑡)𝑡 → 0+ as 𝑡 → 0+ and lim𝑡→0+

𝑎′0(𝑡)𝑡
𝑎0(𝑡)

> −1;
(ii) |∇𝑎(𝑦)| ≤ 𝑐2

𝛽(|𝑦|)
|𝑦|  for all 𝑦 ∈ R𝑁 ⧵ {0}, some 𝑐2 > 0;

(iii) 𝛽(|𝑦|)
|𝑦| |𝜉|2 ≤ (∇𝑎(𝑦)𝜉, 𝜉)R𝑁  for all 𝑦 ∈ R𝑁 ⧵ {0}, all 𝜉 ∈ R𝑁 .

We set 𝐺0(𝑡) = ∫ 𝑡
0 𝑎0(𝑠)𝑠𝑑𝑠, 𝑡 ≥ 0. On account of hypotheses 𝐻0, 𝐺0(⋅) is strictly convex and strictly increasing. We introduce 

𝐺(𝑦) = 𝐺0(|𝑦|) for all 𝑦 ∈ R𝑁 . Evidently, 𝐺(⋅) is differentiable and convex. We have
∇𝐺(𝑦) = 𝐺′

0(|𝑦|)
𝑦
|𝑦|

= 𝑎0(|𝑦|)𝑦 = 𝑎(𝑦) for all 𝑦 ∈ R𝑁 ⧵ {0}, ∇𝐺(0) = 0.

The convexity of 𝐺(⋅) implies that 
𝐺(𝑦) ≤ (𝑎(𝑦), 𝑦)R𝑁 for all 𝑦 ∈ R𝑁 . (1)

Hypotheses 𝐻0 imply the following properties for the function 𝑦 ↦ 𝑎(𝑦) (see Papageorgiou–Rădulescu [12]).

Lemma 1.  If hypotheses 𝐻0 hold, then the following properties are fulfilled:
(a) the function 𝑦 ↦ 𝑎(𝑦) is continuous, strictly monotone (thus, maximal monotone too) and coercive;
(b) |𝑎(𝑦)| ≤ 𝑐3(|𝑦|

𝑠−1 + |𝑦|𝑝−1) for all 𝑦 ∈ R𝑁 , some 𝑐3 > 0;
(c) 𝑐0

𝑝−1 |𝑦|
𝑝 ≤ (𝑎(𝑦), 𝑦)R𝑁  for all 𝑦 ∈ R𝑁 .

Using this lemma and (1), we obtain the following bilateral growth conditions for the primitive 𝐺(⋅): 
𝑐0

𝑝(𝑝 − 1)
|𝑦|𝑝 ≤ 𝐺(𝑦) ≤ 𝑐4(|𝑦|

𝑠 + |𝑦|𝑝) for all 𝑦 ∈ R𝑁 , some 𝑐4 > 0. (2)

The hypotheses on the reaction 𝑓 (𝑧, 𝑥, 𝑦) are the following:
𝐻1: 𝑓 ∶ 𝛺 × (0,∞) × R𝑁 → [0,∞) is a Carathéodory function such that
(i) 0 < 𝛾1 ≤ lim inf𝑥→0+ 𝑓 (𝑧, 𝑥, 𝑦)𝑥𝜂 ≤ lim sup𝑥→0+ 𝑓 (𝑧, 𝑥, 𝑦)𝑥𝜂 ≤ 𝛾2 uniformly for a.a. 𝑧 ∈ 𝛺, all |𝑦| ≤ 𝛿 with 𝛿 > 0;
(ii) 0 ≤ 𝑓 (𝑧, 𝑥, 𝑦) ≤ 𝑎̂(𝑧)[1 + 𝑥−𝜂 + 𝑥𝑟−1 + |𝑦|𝜃−1] for a.a. 𝑧 ∈ 𝛺, all 𝑥 > 0, all 𝑦 ∈ R𝑁 , with 𝑎̂ ∈ 𝐿∞(𝛺), 𝑝 < 𝑟 < 𝑝∗, 𝜃 − 1 < 𝑝 and 

0 < 𝜂 < 1.
In the study of singular problems, a useful tool is the following Hardy inequality (see Papageorgiou–Winkert [13, p. 682]).

Proposition 1.  Let 𝑑(𝑧) = 𝑑(𝑧, 𝜕𝛺) for all 𝑧 ∈ 𝛺. Then
‖

‖

‖

‖

ℎ
𝑑

‖

‖

‖

‖𝑝
≤ 𝑐∗‖𝐷ℎ‖𝑝 for all ℎ ∈ 𝑊 1,𝑝

0 (𝛺), 1 < 𝑝 < ∞, some 𝑐∗ > 0.

Finally, let 𝑉 ∶ 𝑊 1,𝑝
0 (𝛺) → 𝑊 1,𝑝

0 (𝛺)∗ = 𝑊 −1,𝑝′ (𝛺) (𝑝′ = 𝑝∕(𝑝 − 1)) denote the nonlinear operator 

⟨𝑉 (𝑢), ℎ⟩ = ∫𝛺
(𝑎(𝐷𝑢), 𝐷ℎ)R𝑁 𝑑𝑧 for all 𝑢, ℎ ∈ 𝑊 1,𝑝

0 (𝛺). (3)

This operator has the following properties (see [13, p. 665]).

Proposition 2.  The operator 𝑉 (⋅) defined by (3) is bounded (maps bounded sets to bounded sets), continuous, strictly monotone (thus, 
maximal monotone too), coercive and of type (𝑆)+, that is,

‘‘if 𝑢𝑛 ⇀ 𝑢 in 𝑊 1,𝑝
0 (𝛺) and lim sup𝑛→∞⟨𝑉 (𝑢𝑛), 𝑢𝑛 − 𝑢⟩ ≤ 0, then 𝑢𝑛 → 𝑢 in 𝑊 1,𝑝

0 (𝛺)".
2 
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On account of hypothesis 𝐻1(𝑖), we can find 0 < 𝛾̂0 < 𝛾0 and 𝛾1 < 𝛾̂1 such that 

𝛾̂0𝑥
−𝜂 ≤ 𝑓 (𝑧, 𝑥, 𝑦) ≤ 𝛾̂1𝑥

−𝜂 for a.a. 𝑧 ∈ 𝛺, all 0 < 𝑥 ≤ 𝛿, all |𝑦| ≤ 𝛿. (4)

Consider the positive (order) cone 𝐶+ = {𝑢 ∈ 𝐶1
0 (𝛺) ∶ 0 ≤ 𝑢(𝑧) for all 𝑧 ∈ 𝛺}. This cone has a nonempty interior given by 

int 𝐶+ =
{

𝑢 ∈ 𝐶+ ∶ 𝑢(𝑧) > 0 for all 𝑧 ∈ 𝛺, 𝜕𝑢
𝜕𝑛
|

|

|𝜕𝛺
< 0

}

, where 𝑛(⋅) is the outward unit normal on 𝜕𝛺.
We consider the following two purely singular problems: 

− div 𝑎(𝐷𝑢(𝑧)) = 𝜆𝛾̂0𝑢(𝑧)−𝛾 in 𝛺, 𝑢|𝜕𝛺 = 0, 𝜆 > 0, 𝑢 > 0, (5)

− div 𝑎(𝐷𝑦(𝑧)) = 𝜆𝛾̂1𝑦(𝑧)−𝛾 in 𝛺, 𝑦|𝜕𝛺 = 0, 𝜆 > 0, 𝑦 > 0. (6)

Proposition 3.  If hypotheses 𝐻0 hold, then problems (5) and (6) have unique solutions 𝑢𝜆 ∈ int 𝐶+ and 𝑦𝜆 ∈ int 𝐶+ respectively, such 
that 0 ≤ 𝑢𝜆 ≤ 𝑦𝜆 and 𝑦𝜆 → 0 in 𝐶1

0 (𝛺) as 𝜆 → 0+.

Proof.  The existence and uniqueness of the solutions 𝑢𝜆 (for problem (5)) and 𝑦𝜆 (for problem (6)) follow from Papageorgiou–
Rădulescu–Repovs [7, Proposition 11]. □

On account of Proposition  3, we can find 𝜆̂ > 0 such that 
‖𝑦𝜆‖∞ ≤ 𝛿, ‖𝐷𝑢𝜆‖∞, ‖𝐷𝑦𝜆‖∞ ≤ 𝛿 for all 0 < 𝜆 ≤ 𝜆̂. (7)

Then, from (4), we have for all 0 < 𝜆 ≤ 𝜆̂

− div 𝑎(𝐷𝑢𝜆) = 𝜆𝛾̂0𝑢
−𝜂
𝜆 ≤ 𝜆𝑓 (𝑧, 𝑢𝜆, 𝐷𝑢𝜆) in 𝛺, (8)

− div 𝑎(𝐷𝑦𝜆) = 𝜆𝛾̂1𝑦
−𝜂
𝜆 ≥ 𝜆𝑓 (𝑧, 𝑦𝜆, 𝐷𝑦𝜆) in 𝛺. (9)

We introduce the truncation operator 𝜏 ∶ 𝐿𝑝(𝛺) → 𝐿𝑝(𝛺) defined by 

𝜏(𝑧) =

⎧

⎪

⎨

⎪

⎩

𝑢𝜆(𝑧) if 𝑢(𝑧) < 𝑢𝜆(𝑧)
𝑢(𝑧) if 𝑢𝜆(𝑧) ≤ 𝑢(𝑧) ≤ 𝑦𝜆(𝑧)
𝑦𝜆(𝑧) if 𝑦𝜆(𝑧) < 𝑢(𝑧).

(10)

We know (see [13, p. 382]) that for all 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺)

𝐷𝜏(𝑧) =

⎧

⎪

⎨

⎪

⎩

𝐷𝑢𝜆(𝑧) if 𝑢(𝑧) < 𝑢𝜆(𝑧)
𝐷𝑢(𝑧) if 𝑢𝜆(𝑧) ≤ 𝑢(𝑧) ≤ 𝑦𝜆(𝑧)
𝐷𝑦𝜆(𝑧) if 𝑦𝜆(𝑧) < 𝑢(𝑧).

(11)

Therefore 𝜏 ∶ 𝑊 1,𝑝
0 (𝛺) → 𝑊 1,𝑝

0 (𝛺) and it is continuous (see Proposition 4.1 of Ozturk–Papageorgiou [11]).
Let 𝑣 ∈ 𝐶1

0 (𝛺) and consider another auxiliary Dirichlet problem 
{

−div 𝑎(𝐷𝑢(𝑧)) = 𝜆𝑓 (𝑧, 𝜏(𝑣)(𝑧), 𝐷𝜏(𝑣)(𝑧))  in 𝛺,
𝑢|𝜕𝛺 = 0, 𝑢 > 0, 0 < 𝜆 ≤ 𝜆̂.

(12)

Proposition 4.  If hypotheses 𝐻0, 𝐻1 hold and 0 < 𝜆 ≤ 𝜆̂, then problem (12) has a unique solution 𝑘𝜆(𝑣) ∈ int 𝐶+.

Proof.  We rewrite problem (12) as the following equivalent abstract equation
𝑉 𝑢 = 𝜆𝑁𝑓 (𝜏(𝑣)) in 𝑊 1,𝑝

0 (𝛺),

where 𝑁𝑓 (𝑦)(⋅) = 𝑓 (⋅, 𝑦(⋅), 𝐷𝑦(⋅)) for all 𝑦 ∈ 𝑊 1,𝑝
0 (𝛺) (the Nemytskii map corresponding to the function 𝑓 ). By (10), (11), (4) and (7), 

for every ℎ ∈ 𝑊 1,𝑝
0 (𝛺) we have 

|∫𝛺
𝑓 (𝑧, 𝜏(𝑣), 𝐷𝜏(𝑣))ℎ𝑧| ≤ ∫𝑣<𝑢𝜆

𝑓 (𝑧, 𝑢𝜆, 𝐷𝑢𝜆)|ℎ|𝑑𝑧 + ∫𝑢𝜆≤𝑣≤𝑦𝜆
𝑓 (𝑧, 𝑣,𝐷𝑣)|ℎ|𝑑𝑧 + ∫𝑦𝜆<𝑣

𝑓 (𝑧, 𝑦𝜆, 𝐷𝑦𝜆)|ℎ|𝑑𝑧. (13)

Since 𝑢𝜆, 𝑦𝜆 ∈ int 𝐶+, combining Lemma 2.3 of Guo–Webb [14] with Proposition  1, we obtain that 

∫𝑣<𝑢𝜆
𝑓 (𝑧, 𝑢𝜆, 𝐷𝑢𝜆)|ℎ|𝑑𝑧 ≤ 𝑐9‖ℎ‖ for some 𝑐9 > 0 (14)

∫𝑦𝜆<𝑣
𝑓 (𝑧, 𝑦𝜆, 𝐷𝑦𝜆)|ℎ|𝑑𝑧 ≤ 𝑐10‖ℎ‖ for some 𝑐10 > 0. (15)
3 
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Finally, by Hypothesis 𝐻1(𝑖) and since 𝑣 ∈ 𝐶1
0 (𝛺), we have for some 𝑐11, 𝑐12 > 0

∫𝑢𝜆≤𝑣≤𝑦𝜆
𝑓 (𝑧, 𝑣,𝐷𝑣)|ℎ|𝑑𝑧 ≤ 𝑐11[∫𝑢𝜆≤𝑣≤𝑦𝜆

(1 + |𝐷𝑣|𝑝−1)|ℎ|𝑑𝑧 + ∫𝑢𝜆≤𝑣≤𝑦𝜆
𝑢−𝜂𝜆 |ℎ|𝑑𝑧] ≤ 𝑐12‖ℎ‖ . (16)

We return to (13) and use relations (14), (15), (16). Then

|∫𝛺
𝑓 (𝑧, 𝜏(𝑣), 𝐷𝜏(𝑣))ℎ𝑧| ≤ 𝑐13‖ℎ‖ for some 𝑐13 > 0,

hence 𝑁𝑓 (𝜏(𝑣)) ∈ 𝑊 1,𝑝
0 (𝛺)∗∩𝐿𝑠(𝛺) with 𝑠 ∈ [1, 1∕𝜂) (see Lazer–McKenna [15]). From Proposition  2, we know that 𝑉 (⋅) is continuous, 

strictly monotone, coercive, thus surjective (see Papageorgiou–Winkert [13, p. 576]). Therefore we can find 𝑘𝜆(𝑣) ∈ 𝑊 1,𝑝
0 (𝛺) such 

that 𝑉 (𝑘𝜆(𝑣)) = 𝜆𝑁𝑓 (𝜏(𝑣)) in 𝑊 1,𝑝
0 (𝛺)∗. The strict monotonicity of 𝑉 (⋅) implies that this solution is unique. Note that for some 

𝑐14, 𝑐15 > 0 we have
0 ≤ 𝑁𝑓 (𝜏(𝑣)) ≤ 𝑐14𝑢

−𝜂
𝜆 (see (4), (7)) ≤ 𝑐15𝑑

−𝜂 see Guo–Webb[14].
Invoking Theorem 1.7 of Giacomoni–Kumar–Sreenadh [16], he obtain that 𝑘𝜆(𝑣) ∈ 𝐶+ ⧵ {0}, hence 𝑘𝜆(𝑣) ∈ int 𝐶+ (see 
Pucci–Serrin [17, p. 120]). □

We can define the solution map 𝑘𝜆 ∶ 𝐶1
0 (𝛺) → int 𝐶+ for problem (12).

Proposition 5.  If hypotheses 𝐻0, 𝐻1 hold and 0 < 𝜆 ≤ 𝜆̂, then the solution map 𝑘𝜆 ∶ 𝐶1
0 (𝛺) → 𝐶1

0 (𝛺) is compact.

Proof.  We first show the continuity of 𝑘𝜆(⋅). Suppose that 𝑣𝑛 → 𝑣 in 𝐶1
0 (𝛺) as 𝑛 → ∞. Let 𝑢𝑛 = 𝑘𝜆(𝑣𝑛). Then 

𝑉 (𝑢𝑛) = 𝜆𝑁𝑓 (𝜏(𝑣𝑛)) in 𝑊 1,𝑝
0 (𝛺)∗. (17)

Then, by (10) and (11), there exists 𝑐16 > 0 such that
𝑐0

𝑝 − 1
‖𝑢𝑛‖

𝑝 ≤ ∫𝛺
𝜆𝑓 (𝑧, 𝜏(𝑣𝑛), 𝐷𝜏(𝑣𝑛))𝑢𝑛𝑑𝑧 ≤ 𝑐16‖𝑢𝑛‖ for all 𝑛 ∈ N,

hence (𝑢𝑛) ⊂ 𝑊 1,𝑝
0 (𝛺) is bounded. We can assume that 

𝑢𝑛 ⇀ 𝑢 in 𝑊 1,𝑝
0 (𝛺), 𝑢𝑛 → 𝑢 in 𝐿𝑟(𝛺). (18)

On (17) we act with 𝑢𝑛 − 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺), pass to the limit as 𝑛 → ∞ and use (18). Then lim𝑛→∞⟨𝑉 (𝑢𝑛), 𝑢𝑛 − 𝑢⟩ = 0, hence 𝑢𝑛 → 𝑢

in 𝑊 1,𝑝
0 (𝛺) (see Proposition  2). Thus, if we pass to the limit in (17) as 𝑛 → ∞ and we use the continuity of 𝜏(⋅), we obtain that 

𝑉 (𝑢) = 𝜆𝑁𝑓 (𝜏(𝑣)) in 𝑊 1,𝑝
0 (𝛺)∗, thus 𝑢 = 𝑘𝜆(𝑣). We conclude that 𝑘𝜆(𝑣𝑛) → 𝑘𝜆(𝑣) in 𝑊 1,𝑝

0 (𝛺) as 𝑛 → ∞, so 𝑘𝜆 ∶ 𝐶1
0 (𝛺) → 𝐶1

0 (𝛺) is 
continuous.

Let 𝐵 ⊆ 𝐶1
0 (𝛺) be bounded. With the same arguments as above, we show that 𝑘𝜆(𝐵) ⊆ 𝐿∞(𝛺) is bounded. Then Theorem 1.7 of 

Giacomoni–Kumar–Sreenadh [16] implies that

𝑘𝜆(𝐵)
𝐶1
0 (𝛺)

⊆ 𝐶1
0 (𝛺) is compact.

We conclude that the map 𝑘𝜆(⋅) is compact. □

We introduce the set 𝐸𝑘𝜆 = {𝑢 ∈ 𝐶1
0 (𝛺) ∶ 𝑢 = 𝑡𝑘𝜆(𝑢), 0 < 𝑡 < 1}.

Proposition 6.  If hypotheses 𝐻0, 𝐻1 hold and 0 < 𝜆 ≤ 𝜆̂, then 𝐸𝑘𝜆 ⊆ 𝐶1
0 (𝛺) is bounded.

Proof.  Let 𝑢 ∈ 𝐸𝑘𝜆 . We have
1
𝑡
𝑢 = 𝑘𝜆(𝑢) (0 < 𝑡 < 1)

⇒ −div 𝑎( 1
𝑡
𝐷𝑢) = 𝜆𝑓 (𝑧, 𝜏(𝑢), 𝐷𝜏(𝑢)) in 𝛺.

Acting with 𝑢 ∈ 𝑊 1,𝑝
0 (𝛺) and using Lemma  1, we obtain

1
𝑡𝑝−1

𝑐0
𝑝 − 1

‖𝑢‖𝑝 ≤ 𝑐17‖𝑢‖ for some 𝑐17 > 0 (see (10), (11))
⇒ 𝐸𝑘𝜆 ⊆ 𝑊 1,𝑝

0 (𝛺) is bounded.

Then, by Proposition 4 of Papageorgiou–Rădulescu [18], we obtain that 𝐸𝑘𝜆 ⊆ 𝐿∞(𝛺) is bounded. Next, by Theorem 1.7 
of Giacomoni–Kumar–Sreenadh [16] (see also Papageorgiou–Rădulescu [18, Theorem 4]), we conclude that 𝐸𝑘𝜆 ⊆ 𝐶1

0 (𝛺) is 
bounded. □
4 
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3. Case of small perturbations

The following theorem is the main result of this paper and it establishes the existence of solutions to problem (𝜆) in the case 
of small perturbations of the reaction term. In particular, the following property establishes that the nonlinear singular eigenvalue 
problem (𝜆) has a continuous family of eigenvalues. For the definition of eigenvalues in the context of nonlinear eigenvalue problems 
we refer to Fučik–Nečas–Souček–Souček [19, p. 117].

Theorem 1.  If hypotheses 𝐻0 and 𝐻1 hold and 0 < 𝜆 ≤ 𝜆̂, then problem (𝜆) has a solution 𝑢𝜆 ∈ int 𝐶+.

Proof. Propositions  5, 6 and the Leray–Schauder alternative principle (see Papageorgiou–Winkert [13, p. 634]) imply that there 
exists 𝑢𝜆 ∈ 𝑊 1,𝑝

0 (𝛺) such that 𝑢𝜆 = 𝑘𝜆(𝑢𝜆), hence 

⟨𝑉 (𝑢𝜆), ℎ⟩ = ∫𝛺
𝜆𝑓 (𝑧, 𝜏(𝑢𝜆), 𝐷𝜏(𝑢𝜆))ℎ𝑑𝑧 for all ℎ ∈ 𝑊 1,𝑝

0 (𝛺). (19)

In (19) we first use the test function ℎ = (𝑢𝜆 − 𝑦𝜆)+ ∈ 𝑊 1,𝑝
0 (𝛺). Then

⟨𝑉 (𝑢𝜆), (𝑢𝜆 − 𝑦𝜆)+⟩ = ∫𝛺
𝜆𝑓 (𝑧, 𝑦𝜆, 𝐷𝑦𝜆)(𝑢𝜆 − 𝑦𝜆)+𝑑𝑧 (see (9), (10))

≤ ∫𝛺
𝜆𝛾̂1𝑦

−𝜂
𝜆 (𝑢𝜆 − 𝑦𝜆)+𝑑𝑧 = ⟨𝑉 (𝑦𝜆), (𝑢𝜆 − 𝑦𝜆)+⟩ (see Proposition 3).

Thus, by Proposition  2, we deduce that 𝑢𝜆 ≤ 𝑦𝜆.
Similarly, if in (19) we choose the test function ℎ = (𝑢𝜆 − 𝑢𝜆)+, then from (5) and (7), we infer that 𝑢𝜆 ≤ 𝑢𝜆. So, we have proved 

that 𝑢𝜆 ≤ 𝑢𝜆 ≤ 𝑦𝜆, thus 𝑢𝜆 is a solution of (𝜆). The nonlinear regularity theory implies that 𝑢𝜆 ∈ int 𝐶+. □
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