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Abstract. We consider a nonlinear eigenvalue problem driven by the nonautonomous (p, q)-Laplacian with

unbalanced growth. Using suitable Rayleigh quotients and varational tools, we show that the problem has
a continuous spectrum which is an upper half line and we also show a nonexistence result for a lower half

line.

1. Introduction

In [1] the authors studied a nonlinear eigenvalue problem driven by an anisotropic differential operator
and proved the existence of a continuous spectrum. At the end of the paper, they mentioned as an interesting
research direction, the extension of their work to unbalanced growth problems (double phase equations). In
this paper, we present such an extension.

Let Ω ⊂ RN be a bounded domain with a C2-boundary ∂Ω. We study the following nonlinear eigenvalue
problem {

−∆α
pu(z) − ∆qu(z) = λf(z, u(z)) in Ω,

u|∂Ω = 0, λ ∈ R, 1 < q < p < N.

}
(Pλ)

In this problem α ∈ C0,1(Ω̄), α(z) > 0 for all z ∈ Ω and by ∆α
p we denote the weighted p-Laplacian defined

by ∆α
pu = div(α(z)|Du|p−2Du). We do not assume that min

Ω̄
α > 0. So, the density function

θ(z, t) = α(z)tp + tq, for all z ∈ Ω, all t ≥ 0

associated with the differential operator of (Pλ) has unbalanced growth, namely we have

tq ≤ θ(z, t) ≤ c0(1 + tp) for all z ∈ Ω, all t ≥ 0, some c0 > 0.

So, θ(z, t) is trapped between two different powers of t. This has significant implications on the structure
of the problem. A first implication is that the classical Lebesgue and Sobolev spaces are not suitable to study
problem (Pλ) and we have to pass to generalized Orlicz spaces. A second implication is that for such problems
we do not have a global (up to the boundary) regularity theory and this means that we do not have at our
disposal some powerful tools, which are readily available for balanced growth problems. So, we do not have a
nonlinear Hopf maximum principle, strong comparison results (see Papageorgiou-Rădulescu-Repovs [7]) and
the equivalence of local Sobolev and Hölder minimizers (see Garćıa Azorero-Peral Alonso-Manfredi [3]). This
makes the study of unbalanced growth problems more difficult. Recently, Papageorgiou-Pude lko-Rădulescu
[6], developed the spectral properties of the operator u → −∆α

pu with Dirichlet boundary condition. Using
their results, we are able to establish a continuous spectrum for (Pλ), extending the work of [1] to unbalanced
growth problems. We point out that (H4) in [1], excludes from consideration (p, q)-equations.

2. Mathematical background

The analysis of problem (Pλ) requires the use of generalized Orlicz spaces. For a comprehensive presen-
tation of the theory of these spaces, we refer to the book of Harjulehto-Hästö [4].

Let L0(Ω) be the linear space of all measurable functions u : Ω → R. We identify two such functions
which differ only on a Lebesgue null set. Recall that θ(z, t) = α(z)tp + tq for all z ∈ Ω, all t ≥ 0. The
Lebesgue-Orlicz space Lθ(Ω) is defined by

Lθ(Ω) =

{
u ∈ L0(Ω) : ρθ(u) =

∫
Ω

θ(z, |u|)dz < ∞
}
.
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The integral functional ρθ(·) is known as the modular function corresponding to θ. We equip Lθ(Ω) with
the so-called Luxemburg norm ∥ · ∥θ defined by

∥u∥θ = inf

{
µ > 0 : ρθ

(
u

µ

)
≤ 1

}
.

With this norm, Lθ(Ω) becomes a separable, reflexive Banach space (in fact it is uniformly convex, since
θ(z, ·) is uniformly convex). Using Lθ(Ω), we can define the corresponding Sobolev-Orlicz space W 1,θ(Ω) by

W 1,θ(Ω) =
{
u ∈ Lθ(Ω) : |Du| ∈ Lθ(Ω)

}
.

Here Du denotes the weak gradient of u. We equip W 1,θ(Ω) with the norm ∥ · ∥1,θ defined by

∥u∥1,θ = ∥u∥θ + ∥Du∥θ, for all u ∈ W 1,θ(Ω),

with ∥Du∥θ = ∥|Du|∥θ. Also, let

W 1,θ
0 (Ω) = C∞

c (Ω)
∥·∥1,θ

with C∞
c (Ω) being the space of C∞-functions with compact support. If we assume that p < q∗ = Nq

N−q , then

on W 1,θ
0 (Ω), the Poincaré inequality holds, that is, there exists ĉ = ĉ(Ω) such that ∥u∥θ ≤ ĉ∥Du∥θ, for all u ∈

W 1,θ
0 (Ω) (see [2, Proposition 2.18]). Therefore on W 1,θ

0 (Ω) we can consider the equivalent norm ∥ · ∥ defined

by ∥u∥ = ∥Du∥θ, for all u ∈ W 1,θ
0 (Ω). By ↪→ we denote a continuous embedding and by

c
↪−→ a compact

embedding.

Proposition 1. (a) Lθ(Ω) ↪→ Lr(Ω), W 1,θ
0 (Ω) ↪→ W 1,r

0 (Ω) for all 1 ≤ r ≤ q;

(b) W 1,θ
0 (Ω) ↪→ Lr(Ω) for all 1 ≤ r ≤ q∗, W 1,θ

0 (Ω)
c
↪−→ Lr(Ω) for all 0 ≤ r < q∗;

(c) Lp(Ω) ↪→ Lθ(Ω).

Also there is a close relation between the the modular function ρθ(·) and the norm ∥ · ∥.

Proposition 2. (a) ∥u∥ = µ > 0 ⇔ ρθ

(
Du
µ

)
= 1;

(b) ∥u∥ < 1 (resp. = 1, > 1) ⇔ ρθ(Du) < 1 (resp. = 1, > 1);
(c) ∥u∥ < 1 ⇒ ∥u∥p ≤ ρθ(Du) ≤ ∥u∥q;
(d) ∥u∥ > 1 ⇒ ∥u∥q ≤ ρθ(Du) ≤ ∥u∥p;
(e) ∥u∥ → 0 (resp. → +∞) ⇔ ρθ(Du) → 0 (resp. → +∞).

Let β ∈ L1
loc(Ω). We say that β(·) is a weight function, if β(z) > 0 for a.a. z ∈ Ω. Consider r ∈ (1,∞)

and by | · |N denote the Lebesgue measure on RN . We say that the weight function β(·) belongs to the class
Muckenhoupt Ar (denoted by β ∈ Ar), if the following holds

sup
B

[
1

|B|N

∫
B

β(z)dz

] [
1

|B|N

∫
B

β(z)
1

1−r dz

]r−1

< ∞,

where the supremum is taken over all balls B ⊆ Ω.
Now we introduce our hypotheses on the weight α(·) and the exponents p, q.

H0 : α ∈ C0,1(Ω̄) ∩ Ap, α(z) > 0 for all z ∈ Ω, 1 < q < p < N, p
q < 1 + 1

N .

Remark 1. The last inequality implies that p < q∗.

We set θ0(z, t) = α(z)tp for all z ∈ Ω, all t ≥ 0. We can define the generalized Orlicz spaces Lθ0(Ω) and

W 1,θ0
0 (Ω). They coincide with the weighted spaces Lp(Ω, α) and W 1,p

0 (Ω, α). Moreover, from Papageorgiou-

Rădulescu-Zhang [8, Lemma 2], we know that W 1,θ0
0 (Ω) ↪→ Lθ0(Ω) compactly.

Consider the following nonlinear eigenvalue problem:

−∆α
pu(z) = λ̂α(z)|u(z)|p−2u(z) in Ω, u

∣∣
∂Ω

= 0.

According to [6], the problem has a smallest eigenvalue λ̂α
1 > 0 which satisfies

(1) λ̂α
1 = inf

{
ρθ0(Du)

ρθ0(u)
: u ∈ W 1,θ0

0 (Ω), u ̸= 0

}
= inf {ρθ0(Du) : ρθ0(u) = 1} .

In addition, we have

• λ̂α
1 > 0 is isolated in the spectrum σ̂α

ρ of (−∆α
p ,W

1,θ0
0 (Ω)).

• λ̂α
1 > 0 is simple.
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• The eigenfunctions of λ̂α
1 have fixed sign (see (1)). In fact, this is the only eigenvalue with eigen-

functions of constant sign.

Let û1 be the Lθ0-normalized positive eigenfunction for λ̂α
1 . Then

û1 ∈ W 1,θ0
0 (Ω) ∩ L∞(Ω), ∥û1∥θ0 = 1 and 0 ≺ û1.

Here if u ∈ L0(Ω), then we write 0 ≺ u if for all K ⊆ Ω compact we have 0 < cK ≤ u(z) for a.a. z ∈ K.
Evidently, such a function satisfies 0 < u(z) for a.a. z ∈ Ω.

Our hypotheses on the reaction f(z, x) are the following:

H1 : f : Ω × R → R ia a Carathéodory function such that f(z, 0) = 0 for a.a. z ∈ Ω, 0 < f(z, x)x for
a.a. z ∈ Ω, all x ̸= 0 and there exist τ ∈ (q, p) and ĉ > 0 such that if F (ξ, x) =

∫ x

0
f(z, s)ds, then

F (z, x) ≤ f(z, x)x ≤ ĉα(z)|x|τ for a.a. z ∈ Ω, all x ∈ R.

3. Continuous Spectrum

We introduce the following two quantities

λ∗ = inf

{
1
pρθ0(Du) + 1

q∥Du∥qq∫
Ω
F (z, u)dz

: u ∈ W 1,θ0
0 (Ω), u ̸= 0

}
,(2)

λ∗ = inf

{
ρθ0(Du) + ∥Du∥qq∫

Ω
f(z, u)udz

: u ∈ W 1,θ0
0 (Ω), u ̸= 0

}
.(3)

Proposition 3. If hypotheses H0, H1 hold, then 0 < λ∗
p < λ∗ and there exists ū ∈ W 1,θ0

0 (Ω) \ {0} such that

λ∗ =
ρθ0

(Dū)∫
Ω
f(z,ū)ūdz

.

Proof. Given ε > 0, we can find u ∈ W 1,θ
0 (Ω) \ {0} such that

λ∗ + ε ≥
1
pρθ0(Du) + 1

q∥Du∥qq∫
Ω
F (z, u)dz

(see (2)) >

1
p [ρθ0(Du) + ∥Du∥qq]∫

Ω
F (z, u)dz

(since q < p, u ̸= 0)

>
1

p

ρθ0(Du) + ∥Du∥qq∫
Ω
f(z, u)udz

(see hypotheses H1) >
λ∗

p
(see (3)).

Let ε → 0+ to conclude that λ∗
p < λ∗. Next, let u ∈ W 1,θ

0 (Ω) \ {0} such that

ρθ0(Du) + ∥Du∥qq∫
Ω
f(z, u)udz

≤ λ∗ + 1 (see (3)).

For such a u ∈ W 1,θ
0 (Ω) \ {0}, we have

λ∗ + 1 ≥
ρθ0(Du) + ∥Du∥qq∫

Ω
f(z, u)udz

≥
∥Du∥qq

ĉ
∫
Ω
α(z)|u|τdz

(see hypotheses H1)

≥ c1
∥Du∥qq
∥u∥ττ

for some c1 > 0 (see hypotheses H0)

≥ c2

∥Du∥τ−q
q

for some c2 > 0 (by W 1,q
0 (Ω) ↪→ Lτ (Ω), since q < τ < p < q∗).

It follows that
c2

λ∗ + 1
≤ ∥Du∥τ−q

q .(4)

Let {un}n∈N ⊆ W 1,θ
0 (Ω) \ {0} be a sequence such that

ρθ(Dun)∫
Ω
f(z, un)undz

↓ λ∗ as n → ∞.

We may assume that

ρθ(Dun)∫
Ω
f(z, un)undz

=
ρθ0(Dun) + ∥Dun∥qq∫

Ω
f(z, un)undz

≤ λ∗ + 1 for all n ∈ N

⇒ ρθ(Dun)

ĉ
∫
Ω
α(z)|un|τdz

≤ λ∗ + 1 for all n ∈ N (see hypotheses H1).(5)



4 N. CHORFI, N.S. PAPAGEORGIOU, AND V.D. RĂDULESCU

By Hölder’s inequality with r = p
τ and r′ = p

p−τ ,

(6)

∫
Ω

α(z)|un|τdz =

∫
Ω

α(z)1−
τ
pα(z)

τ
p |un|τdz ≤ c3ρθ0(un)

τ
p for some c3 > 0, all n ∈ N .

Using (6) in (5), we obtain

ρθ(Dun)

c3ρθ0(un)
τ
p
≤ λ∗ + 1 for all n ∈ N,⇒ λ̂α

1

c3
ρθ0(un)1−

τ
p ≤ λ∗ + 1 (see (1)),

⇒ {ρθ0(un)}n∈N ⊆ R+ is bounded (recall that τ < p).(7)

We return to (5) and use (6) and (7) to conclude that {ρθ(Dun)}n∈N ⊆ R+ is bounded, hence {un}n∈N ⊆
W 1,θ

0 (Ω) is bounded (see Proposition 2). So, we may assume that

un
w−→ ū in W 1,θ

0 (Ω), un → ū in Lθ0(Ω) and in Lτ (Ω)(8)

(since W 1,θ
0 (Ω) ↪→ W 1,θ0

0 (Ω)
c
↪−→ Lθ0(Ω) and see Proposition 1).

Suppose that ū = 0. We have

ρθ(Dun) ≤[λ∗ + 1]

∫
Ω

f(z, un)undz for all n ∈ N

≤[λ∗ + 1]ĉ

∫
Ω

α(z)|un|τdz for all n ∈ N (see hypotheses H1)

≤c4ρθ0(un)
τ
p for some c4 > 0, all n ∈ N (see (6))

⇒ ρθ(Dun) → 0 (see (8) and recall ū = 0),⇒ un → 0 in W 1,θ
0 (Ω) as n → ∞,

which contradicts (4). Therefore ū ̸= 0. From (8) and the sequential weak lower semicontinuity of ρθ(·), we

have ρθ(Dū)∫
Ω
f(z,ū)ūdz

≤ λ∗. By (3) and since ū ̸= 0, we conclude that λ∗ = ρθ(Dū)∫
Ω
f(z,ū)ūdz

> 0. □

Proposition 4. If hypotheses H0, H1 hold, then

lim
u→0

1
pρθ0(Du) + 1

q∥Du∥qq∫
Ω
F (z, u)dz

= +∞.

Proof. For u ∈ W 1,θ
0 (Ω) \ {0}, we have

1
pρθ0(Du) + 1

q∥Du∥qq∫
Ω
F (z, u)dz

≥1

p

ρθ0(Du) + ∥Du∥qq∫
Ω
F (z, u)dz

(since q < p) ≥ 1

p

ρθ0(Du) + ∥Du∥qq∫
Ω
f(z, u)udz

(see hypotheses H1)

≥ 1

pc5

∥Du∥qq
∥u∥ττ

for some c5 > 0 (see hypotheses H1)

≥ c6

∥Du∥τ−q
p

for some c6 > 0 (recall that W 1,q
0 (Ω) ↪→ Lτ (Ω)).(9)

If u → 0 in W 1,θ
0 (Ω), then ∥Du∥q → 0 and so from (9) we conclude the proof. □

Proposition 5. If hypotheses H0, H1 hold, then

lim
∥u∥→∞

1
pρθ0(Du) + 1

q∥Du∥qq∫
Ω
F (z, u)dz

= +∞.

Proof. For u ∈ W 1,θ
0 (Ω) \ {0}, we have

1
pρθ0(Du) + 1

q∥Du∥qq∫
Ω
F (z, u)dz

≥ 1

p

ρθ(Du)∫
Ω
f(z, u)udz

≥ 1

pĉ

ρθ(Du)∫
Ω
α(z)|u|τdz

(see hypotheses H1)

=c7
ρθ(Du)∫

Ω
α(z)|u|τdz

(for some c7 > 0) ≥ c7(λ̂α
1 )

τ
p

ρθ(Du)

ρθ0(Du)
τ
p
≥ c7(λ̂α

1 )
τ
p ρθ(Du)1−

τ
p .

Since τ < p and using Proposition 2, we conclude the proof. □

Proposition 6. If hypotheses H0, H1 hold, then there exists û ∈ W 1,θ
0 (Ω) \ {0} such that

λ∗ =

1
pρθ0(Dû) + 1

q∥Dû∥qq∫
Ω
F (z, û)dz

.
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Proof. Consider a sequence {un} ⊆ W 1,θ
0 (Ω) \ {0} such that

1
pρθ0(Dun) + 1

q∥Dun∥qq∫
Ω
F (z, un)dz

↓ λ∗ as n → ∞.(10)

From Proposition 5 it follows that {un} ⊆ W 1,θ
0 (Ω) is bounded. So, we may assume that

un
w−→ û in W 1,θ

0 (Ω), un → û in Lτ (Ω) (see Proposition 1).(11)

Then by (11) and the sequential weak lower semicontinuity of ρθ0(·) and of ∥u∥1,q, we obtain

1
pρθ0(Dû) + 1

q∥Dû∥qq∫
Ω
F (z, û)dz

≤ λ∗.(12)

If we show that û ̸= 0, then on account of (2), we will have equality in (12) and so we are done. By
contradiction, assume that û = 0. From (10) we see that given ε > 0, we can find n0 ∈ N such that

1

p
ρθ0(Dun) +

1

q
∥Dun∥qq ≤ [λ∗ + ε]

∫
Ω

F (z, un)dz ⇒ 1

p
ρθ(Dun) ≤ [λ∗ + ε]

∫
Ω

F (z, un)dz for all n ≥ n0,

⇒ ρθ(Dun) → 0 (see (12) and since û = 0 and F (z, 0) = 0),⇒ un → 0 in W 1,θ
0 (Ω) (see Proposition 2).

But then on account of Proposition 4, we have
1
pρθ0

(Dun)+
1
q ∥Dun∥q

q∫
Ω
F (z,un)dz

→ +∞ as n → +∞, which contradicts

(10). Therefore û ̸= 0 and so from (12) and (2), we conclude the proof. □

Proposition 7. If hypotheses H0, H1 hold and λ > λ∗, then λ is an eigenvalue of problem (Pλ) with

eigenfunctions in W 1,θ
0 (Ω) ∩ L∞(Ω).

Proof. Consider the C1-functional φλ : W 1,θ
0 (Ω) → R defined by φλ(u) = 1

pρθ0(Du)+ 1
q∥Du∥qq−

∫
Ω
λF (z, u)dz.

Since τ < p, a straightforward computation shows that φλ(·) is coercive. Also using Proposition 1, we show
that φλ(·) is sequentially weak lower semicontinuous. So, by the Weierstrass-Tonelli Theorem, we can find

u0 ∈ W 1,θ
0 (Ω) such that φλ(u0) = inf{φλ(u) : u ∈ W 1,θ

0 (Ω)}. Let û ∈ W 1,θ
0 (Ω) \ {0} be the eigenfunction

for λ∗ > 0 produced in Proposition 6. Then φλ(u0) ≤ φλ(û) < 1
pρθ0(Dû) + 1

q∥Dû∥qq − λ∗ ∫
Ω
F (z, û)dz (since

λ > λ∗) = 0 = φλ(0) ⇒ u0 ̸= 0. It follows that

(13) ⟨φ′
λ(u0), h⟩ = 0 for all h ∈ W 1,θ

0 (Ω),⇒ u0 is an eigenfunction for λ,⇒ λ is an eigenvalue.

We show that u0 ∈ L∞(Ω). Let k > 1 and set Uk = {z ∈ Ω : |u(z)| > k}. Let k0 ∈ N be such that

∥(|u0| − k)+∥ ≤ 1 for all k ≥ k0.(14)

In (13) we choose the test function h = (|u0| − k)+ ∈ W 1,θ
0 (Ω). Then

∥(|u0| − k)+∥p ≤ρθ(D(|u0| − k)+) (see (14) and Proposition 2)

=λ

∫
Ω

f(z, u0)(|u0| − k)+dz ≤ λ

∫
Ω

α(z)((|u0| − k)+)τdz (see hypotheses H1).(15)

Let η ∈ (p, q∗) (since p < q∗, see H0). By Proposition 1, χuk
∈ L

η
η−τ (Ω), (|u0| − k)+ ∈ L

η
τ (Ω). Then from

(15) and Hölder’s inequality combined with W 1,θ
0 (Ω) ↪→ Lη(Ω) (cf. Proposition 1), we have

(16) ∥(|u0| − k)+∥p ≤ c10|Uk|
η−τ
η

N ∥(|u0| − k)+∥τ for some c10 > 0 ⇒ ∥(|u0| − k)+∥p−τ ≤ c10|Uk|
η−τ
η

N .

Let m > k. Then

(m− k)τ |Um|
τ
η

N ≤
[∫

Um

((|u0| − k)+)ηdz

] τ
η

≤
[∫

Uk

((|u0| − k)+)ηdz

] τ
η

(since Um ⊆ Uk)

≤c11∥(|u0| − k)+∥τ for some c12 > 0 (since W 1,θ
0 (Ω) ↪→ Lη(Ω))

⇒ (m− k)p−τ |Um|
p−τ
η

N ≤c12∥(|u0| − k)+∥p−τ with c12 ≤ c13|Uk|
η−τ
η

N for some c13 > 0 (see (16)).

Hence (m − k)η|Um|N ≤ c14|Uk|
η−τ
p−τ

N for some c14 > 0. Note that η−τ
p−τ > 1. So, by Lemma B.1 in [5, p.63],

there exists k̂ > k0 large such that |Uk̂|N = 0, hence u0 ∈ L∞(Ω). □

In what follows, V : W 1,θ
0 (Ω) → W 1,θ

0 (Ω)∗ is the nonlinear operator defined by ⟨V (u), h⟩ =
∫
Ω

[a(z)|Du|p−2+

|Du|q−2](Du,Dh)RNdz for all u, h ∈ W 1,θ
0 (Ω).
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Proposition 8. If hypotheses H0, H1 hold and λ ≤ 1
pλ∗, then λ is not an eigenvalue of (Pλ).

Proof. By contradiction, suppose that λ is an eigenvalue. Then we can find uλ ∈ W 1,θ
0 (Ω) ∩ L∞(Ω) \ {0}

such that ⟨V (uλ), h⟩ = λ
∫
Ω
f(z, uλ)hdz for all h ∈ W 1,θ

0 (Ω). Choose h = uλ ∈ W 1,θ
0 (Ω), hence ρθ(Duλ) =

λ
∫
Ω
f(z, uλ)uλdz ≤ 1

pλ∗
∫
Ω
f(z, uλ)uλdz (see hypotheses H0), hence λ∗ ≤ 1

pλ∗, a contradiction, since p > 1.

Thus, λ is not an eigenvalue. □

Summarizing, we can state the following theorem describing the spectrum of (Pλ).

Theorem 1. If hypotheses H0, H1 hold, then

(a) every λ ≥ λ∗ is an eigenvalue of (Pλ) with eigenfunctions in W 1,θ
0 (Ω) ∩ L∞(Ω);

(b) every λ ≤ 1
pλ∗ is not an eigenvalue.

Remark 2. (a) We do not know what can be said about λ ∈ (λ∗
p , λ∗).

(b) If f(z, ·) is odd, then the eigenfunctions have constant sign and we may assume that they are

nonnegative. If in addition we assume that for every ρ > 0, there exists ξ̂ρ > 0 such that for a.a.

z ∈ Ω the function x 7→ f(z, x) + ξ̂ρx
ρ−1 is nondecreasing on [0, ρ], then for every eigenfunction u,

we have 0 ≺ u (see [9, Proposition 2.4]). Thus, we can relax the hypothesis of 0 < f(z, x)x for a.a
z ∈ Ω, all x ̸= 0, as follows: there exists D ⊆ Ω measurable with |D|N > 0 such that f(z, x)x > 0
for all z ∈ D, all x ̸= 0.

(c) In the context of isotropic, balanced growth problems, our result is more general than that of [1]
since it covers the important case of (p, q)−equations and our hypotheses on f(z, x) are more general.
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