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Abstract. In this paper, we investigate a class of variable exponent double phase elliptic inclusion
systems involving anisotropic partial differential operators with logarithmic perturbation as well as

two fully coupled multivalued terms, one of them is defined in the domain and the other is defined

on the boundary, respectively. Firstly, under the suitable coercive conditions, the existence of a
weak solution for the double phase elliptic inclusion systems is verified via applying a surjectivity

theorem concerning multivalued pseudomonotone operators. Then, when the elliptic inclusion system
is considered in non-coercive framework, we employ the sub-supersolution method to establish the
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and super-solutions.
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1. Introduction

This paper is concerned with the existence and compactness properties to the following variable
exponents double phase elliptic inclusion system: Find σ = (σ1, σ2) ∈ K := (K1,K2) such that

(1.1)

{
0 ∈ A1(σ1) + ∂IK1

(σ1) + F1(σ1, σ2) + FΓ1
(σ1, σ2) in W 1,G1(Ω)∗,

0 ∈ A2(σ2) + ∂IK2
(σ2) + F2(σ1, σ2) + FΓ2

(σ1, σ2) in W 1,G2(Ω)∗,

where Ω ⊆ RN (N ≥ 2) is a bounded domain with Lipschitz boundary ∂Ω, for each i = 1, 2 the part Γi

is a relatively open subset of ∂Ω, Γi
0 = ∂Ω\Γi is such that ∂Ω = Γi ∩ Γi

0, for each i = 1, 2 Ki denotes

a closed convex subset to UΓi
0 . Here, we let UΓi

0 be a closed subspace of W 1,Gi(Ω) given as

(1.2) UΓi
0 =

{
σ ∈W 1,Gi(Ω) : σ|Γi

0
= 0

}
,

IKi
stands for the indicate function of Ki, ∂IKi

is the corresponding subdifferential in convex analysis
sense,W 1,Gi(Ω)∗ is the dual space of the Musielak-Orlicz Sobolev spaceW 1,Gi(Ω) (defined in Section 2).
The lower order multivalued operator Fi which depends on the gradient of solutions (called multivalued
convection term) is generated by the corresponding multivalued function fi : Ω × R × R × RN ×
RN → 2R\{∅}, moreover, FΓi

is formulated by the boundary multivalued function fΓi
: Γi ×R×R →

2R\{∅}. Furthermore, the nonlinear and nonhomogeneous partial differential operator Ai : W
1,Gi(Ω) →

W 1,Gi(Ω)∗ given in (1.1) is formulated as

(1.3) Aiv := −div

(
G′
i(x, |∇v|)
|∇v|

∇v
)

for all v ∈W 1,Gi(Ω),

in which the functional Gi : Ω× [0,+∞) → [0,+∞) is defined by

(1.4) Gi(x, t) =
[
tpi(x) + µi(x)t

qi(x)
]
log(e+ αt) for all x ∈ Ω and for all t ∈ [0,+∞)

where pi, qi ∈ C(Ω) fulfilling 1 < pi(x) < N , pi(x) < qi(x), 0 ≤ µi(·) ∈ L1(Ω), α ≥ 0 and e denotes the
Euler constant. Note that Gi possesses unbalanced growth, i.e., for 0 ≤ µi(·) ∈ L∞(Ω) and any ε > 0
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one can find constants s1, s2 > 0 satisfying the following inequalities

tpi(x) ≤ Gi(x, t) ≤ s1t
qi(x)+ε + s2 for a.a. x ∈ Ω, all t ∈ [0,+∞).

Let p∗i and (pi)∗ denote the critical Sobolev exponents of pi with 1 < pi(x) < N for all x ∈ Ω, in
the domain and boundary respectively, which are defined as

(1.5) p∗i (x) :=
Npi(x)

N − pi(x)
and (pi)∗(x) :=

(N − 1)pi(x)

N − pi(x)
.

The basic assumptions with respect to problem (1.1) are imposed blow:

(H0) For each i = 1, 2 fixed, pi, qi ∈ C(Ω) satisfying 1 < pi(x) < N as well as pi(x) < qi(x) < p∗i (x)
for all x ∈ Ω, also, 0 ≤ µi(·) ∈ L∞(Ω).

(H1) For each i = 1, 2 fixed, fi : Ω × R × R × RN × RN → 2R\{∅} and fΓi
: Γi × R × R → 2R\{∅}

are graph measurable functions such that, for a.a. x ∈ Ω, fi(x, ·, ·, ·, ·) : R2N+2 → 2R\{∅} is
upper semicontinuous, and for a.a. x ∈ Γi, fΓi

(x, ·, ·) : R2 → 2R\{∅} is upper semicontinuous.

Moreover, some local growth conditions for fi and fΓi will be made later (see (H2) in Section 3 and
(H3) in Section 4).

One of the main characteristics of problem (1.1) is the presence of the nonlinear and nonhomogeneous
partial differential operator (1.3) with variable exponents and logarithmic perturbation. It can observe
that when α = 0, differential operator (1.3) reduces to the following variable exponents double phase
differential operator:

−div
(
|∇σ|pi(x)−2∇σ + µi(x)|∇σ|qi(x)−2∇σ

)
.

If p, q are two constants, then the above differential operator becomes the classical double phase
differential operator

(1.6) div
(
|∇σ|p−2∇σ + µ(x)|∇σ|q−2∇σ

)
.

which was initially introduced by Zhikov ([56]) who used the corresponding integral functional

(1.7) σ 7→
∫
Ω

(|∇σ|p + µ(x)|∇σ|q) dx.

for studying the complicated mechanical models with respect to strongly anisotropic materials. The
primary advantage of such integral functional is that it can precisely describe the phenomenon that
the energy density changes its ellipticity and growth properties according to the point in the domain.
In fact, we call (1.6) (or its integral functional (1.7)) as double phase operators, because operator (1.3)
exhibits the p growth when µ(x) = 0 and the q growth when µ(x) > 0. On the other hand, Zhikov
[57, 58] found that the double phase operators also demonstrates Lavrentiev’s phenomena, which leads
to some classical method cannot able applied to study double phase problems.

After the work of Zhikov, double phase problem has been becoming a hot-pint and challenging topic,
due to its wide application in physics and engineering, for example, in material science, non-Newton
fluid and population dynamic problems. Therefore, some important and impressive results have been
obtained, for instance, Hästö–Ok [30] established the local C1,α-regularity of local minimizers to the
functional with unbalanced (p, q)-growth condition, and Beck-–Mingione [8] studied nonuniformly el-
liptic problems and proved several regularity results and prior estimates of solutions. As for papers
involving logarithmic double phase operators we refer to Arora–Crespo-Blanco–Winkert [2, 3] and
Vetro–Winkert [49], who dealt with the following the logarithmic double phase type operator

div

(
|∇σ|p(x)−2∇σ + ϑ(x)

[
log(e+ |∇σ|) + |∇σ|

q(x)(e+ |∇σ|)

]
|∇σ|q(x)−2∇σ

)
,

and established existence and multiplicity results of various problems driven by the above operator
under different setting. For more results concerning the research of double phase problems readers
can refer to Baroni–Colombo–Mingione [4, 5], Byun–Ok–Song [10], Fuchs–Mingione [22], Marcellini
[42, 43], Baharouni et al. [6, 7], Benci–D’Avenlia–Fortunato–Pisani [9], Liu–Dai [35], Zeng–Bai–
Gasiński–Winkert [52], Zhang–Zhang–Rădulescu [55], Amoroso et al. [1], Baroni–Colombo–Mingione
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[4], Filippis–Mingione[14], Fuchs–Mingione [22], Ho–Kim–Zhang [31], Marcellini–Papi [38], Moussaoui
et al. [41], Ragusa–Tachikawa [45], Xiang et al. [51], and so on.

Moreover, we mention that the current work is inspired by the following researches. Recently,
Carl–Le–Winkert [12] studied the following nonlinear double phase equations without logarithmic
perturbation

v ∈ K : 0 ∈ Av + ∂IK(v) + F(v) + FΓ(v)

which is driven by the variable exponents double phase operator:

(1.8) Av := div
(
|∇v|p(x)−2∇v + µ(x)|∇v|q(x)−2∇v

)
and established the existence and uniqueness results by utilizing some critical properties for operator
(1.8) given in Crespo-Blanco et al. [13]. After that, Liu–Lu–Vetro [36] extended the results of Carl–
Le–Winkert [12] to following double phase elliptic inclusion:

0 ∈ Bv + ∂IK(v) + F(v) + FΓ(v)

in which B denotes the perturbed nonlinear and nonhomogeneous partial differential operator (intro-
duced by Vetro–Zeng [50]):

(1.9) Bv := −div

(
G′
L(x, |∇v|)
|∇v|

∇v
)

for all v ∈W 1,GL(Ω),

with

(1.10) GL(x, t) = [tp + µ(x)tq] log(e+ t) for all x ∈ Ω, and for all t ∈ [0,+∞).

Therefore, motivated by the above works, we concentrate on the variable exponent double phase elliptic
inclusion systems (1.1), which is a generalization of the above researches. As we know, this is the first
work dealing with double phase inclusion systems with variable exponent, logarithmic perturbation
and convection terms.

The second feature with respect to problem (1.1) is that our problem can be deemed an anisotropic
nonlinear nonlinear obstacle system with bilateral constraints where constraint set Ki is given by

(1.11) Ki =
{
σ ∈W 1,Gi(Ω) : σ(x) ≥ π(x) a.a. in Ω

}
,

where π : Ω → R is a given obstacle function. However, such model is useful for studying various
multi-body contact problems with multivalued and nonsmooth constitutive laws, namely, nonsmooth
and nonconvex elliptic systems which are coupled by several variational inequalities or hemivariational
inequalities (see Stefan [48], Lions [34], Duvaut and Lions [17], Rodrigues [47] and Zeng et al. [52, 53]).

Another challenging of problem (1.1) is that it involves two fully coupled multivalued convection
terms F1 and F2 (defined in the domain Ω), as well as two fully coupled boundary multivalued func-
tions FΓ1

and FΓ2
. Obviously, it is one of difficulty to study problem (1.1) that we have to overcome

the influence of coupled construct. It is well-known that equations with multivalued functions can
be widely applied to a plenty of practical problems, such as frictional contact problems with mul-
tivalued constitutive laws (see for example Panagiotopoulos [42, 43] as well as Carl and Le [11]).
On the other hand, the effect of convection may occur spontaneously in a single or multiphase fluid
flow due to the combined effects of influence of body forces on a fluid (generally gravity and den-
sity) and material heterogeneity, and the convection terms (depending on the gradient of solutions)
could describe the convection effect of different fluids flow well (see for instance, Dupaigne–Ghergu–
Rădulescu [16], El Manouni–Marino–Winkert [18], Faraci–Motreanu–Puglisi [20], Figueiredo–Madeira
[21], Gasiński–Papageorgiou [23], Gasiński–Winkert [24], Guarnotta–Livrea–Winkert [25], Guarnotta
et al. [26, 27, 28], Liu–Motreanu–Zeng [37], Motreanu–Tornatore [39], Motreanu–Vetro–Vetro [40],
Papageorgiou–Rădulescu–Repovš [44], and Rădulescu–Vetro [46]). However, due to the appearance of
the convection term, corresponding problem becomes nonvariational, that is, the standard variational
tools and relevant theory can not be applied to deal with the corresponding energy functionals, so we
have to make use of the nonvariational tools to solve our problem. This is another challenging of the
current paper.
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Finally, we point out that the elliptic inclusion systems (1.1) contain several interesting and chal-
lenging problems as special cases, and some of them have not been studied yet.

Special case 1.1. For i = 1, 2, let Γi = ∂Ω (i.e., Γi
0 = ∅, UΓi

0 =W 1,Gi(Ω)) and Ki is given by (1.11),
then problem (1.1) can be rewritten as the multivalued obstacle Neumann boundary elliptic inclusion
systems:

(1.12)

−div

(
G′
1(x, |∇σ1|)
|∇σ1|

∇σ1
)
+ f1(x, σ1, σ2,∇σ1,∇σ2) ∋ 0 in Ω,

−div

(
G′
2(x, |∇σ2|)
|∇σ2|

∇σ2
)
+ f2(x, σ1, σ2,∇σ1,∇σ2) ∋ 0 in Ω,

σ1(x) ≥ π1(x) in Ω,

σ2(x) ≥ π2(x) in Ω,

− ∂σ1
∂νA1

∈ fΓ1(x, σ1, σ2) on ∂Ω,

− ∂σ2
∂νA2

∈ fΓ2(x, σ1, σ2) on ∂Ω,

in which ν is the outward unit normal on Γi

∂σi
∂νAi

=

(
G′
i(x, |∇σi|)
|∇σi|

∇σi
)
· ν.

Special case 1.2. For i = 1, 2, let Γi = ∂Ω (that is, Γi
0 = ∅, UΓi

0 = W 1,Gi(Ω)) and Ki = W 1,Gi(Ω),
then problem (1.1) can be rewritten as the multivalued Neumann boundary elliptic inclusion systems:

(1.13)

−div

(
G′
1(x, |∇σ1|)
|∇σ1|

∇σ1
)
+ f1(x, σ1, σ2,∇σ1,∇σ2) ∋ 0 in Ω,

−div

(
G′
2(x, |∇σ2|)
|∇σ2|

∇σ2
)
+ f2(x, σ1, σ2,∇σ1,∇σ2) ∋ 0 in Ω,

− ∂σ1
∂νA1

∈ fΓ1(x, σ1, σ2) on ∂Ω,

− ∂σ2
∂νA2

∈ fΓ2(x, σ1, σ2) on ∂Ω.

Special case 1.3. For i = 1, 2, let Γi
0 = ∂Ω (i.e., Γi = ∅, UΓi

0 =W 1,Gi

0 (Ω)) and Ki is given by (1.11),
then problem (1.1) can be rewritten as the multivalued Dirichlet obstacle elliptic inclusion systems:

(1.14)

−div

(
G′
1(x, |∇σ1|)
|∇σ1|

∇σ1
)
+ f1(x, σ1, σ2,∇σ1,∇σ2) ∋ 0 in Ω,

−div

(
G′
2(x, |∇σ2|)
|∇σ2|

∇σ2
)
+ f2(x, σ1, σ2,∇σ1,∇σ2) ∋ 0 in Ω,

σ1(x) ≥ π1(x) in Ω,

σ2(x) ≥ π2(x) in Ω,

σ1(x) = σ2(x) = 0 on ∂Ω.

Special case 1.4. For i = 1, 2, let Γi
0 = ∂Ω (i.e., Γi = ∅ and UΓi

0 = W 1,Gi

0 (Ω)) and Ki = W 1,Gi

0 (Ω),
then problem (1.1) can be rewritten as the multivalued Dirichlet elliptic inclusion systems:

(1.15)

−div

(
G′
1(x, |∇σ1|)
|∇σ1|

∇σ1
)
+ f1(x, σ1, σ2,∇σ1,∇σ2) ∋ 0 in Ω,

−div

(
G′
2(x, |∇σ2|)
|∇σ2|

∇σ2
)
+ f2(x, σ1, σ2,∇σ1,∇σ2) ∋ 0 in Ω,

σ1(x) = σ2(x) = 0 on ∂Ω.
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The remaining sections of this paper are organized as follows. In Section 2, the useful definitions
and results related to the generalized Lebesgue spaces and Musielak-Orlicz spaces generated by double
phase partial differential operator involving logarithmic perturbation (1.3) in variable exponents setting
will be given. Also, we introduce the concepts of weak solutions, sub- and supersolutions to elliptic
inclusion systems (1.1). Under a certain coercive condition, Section 3 is devoted to show the existence of
weak solutions to elliptic inclusion systems (1.1) with the help of a surjectivity theorem of multivalued
pseudomonotone operators. However, when (1.1) is considered in noncoercive framework, the existence
and compactness results could be obtain by employing the sub- and supersolution method and the
theory of nonsmooth analysis, in Section 4. While in Section 5, we make a further discussion for
Special case 1.1, and finally obtain the existence for a solution via constructing suitable sub- and
supersolutions.

2. Preliminaries

In this section, we review some basic notations also some useful results about the variable exponents
Lebesgue space, most of them are given by Diening–Harjulehto–Hästö-Růžička [15], Fan–Zhao [19],
Harjulehto–Hästö [29] and Kováčik–Rákosńık [32]. Also, for some vital and useful properties for the
logarithmic variable exponents double phase operator as well as the corresponding Musielak-Orlicz
Sobolev spaces can be found in [54].

Let Ω ⊆ RN (N ≥ 2) be a bounded domain with Lipschitz boundary ∂Ω, and introduce the notation
C+(Ω) given as

C+(Ω) := {h ∈ C(Ω) : 1 < h(x) for all x ∈ Ω}.
For any r ∈ C+(Ω), we give the definition of r− and r+ as

r− := min
x∈Ω

r(x) and r+ := max
x∈Ω

r(x),

and r′ ∈ C+(Ω) is the conjugate variable exponent for r, namely,

1

r(x)
+

1

r′(x)
= 1 for all x ∈ Ω.

In the sequel, we denote by M(Ω) the space of all measurable functions σ : Ω → R. For r ∈ C+(Ω)
the corresponding variable exponent Lebesgue space is given by

Lr(x)(Ω) =

{
σ ∈M(Ω) :

∫
Ω

|σ|r(x)dx <∞
}
,

the modular function is formulated as follows

ϱr(·)(σ) =

∫
Ω

|σ|r(x)dx for all σ ∈ Lr(x)(Ω) where r ∈ C+(Ω).

It is well-known that Lr(x)(Ω) endowed the Luxemburg norm defined as

∥σ∥r(·) = inf

{
λ > 0 :

∫
Ω

(
|σ|
λ

)r(x)

dx ≤ 1

}
is a separable and reflexive Banach space. Meanwhile, by applying the (N − 1)-dimensional Hausdorff
surface measure, the variable exponent boundary Lebesgue space (Lr(·)(∂Ω), ∥σ∥r(·),∂Ω) can be defined

in a similar way. Moreover, Lr′(x)(Ω) is the dual space of Lr(x)(Ω) and the Hölder type inequality
given blow is valid ∫

Ω

|σv|dx ≤
[
1

r−
+

1

(r′)−

]
∥σ∥r(·)∥v∥r′(·) ≤ 2∥σ∥r(·)∥v∥r′(·)

for all σ ∈ Lr(x)(Ω), all v ∈ Lr′(x)(Ω). Furthermore, if r1, r2 ∈ C+(Ω) satisfying r1(x) ≤ r2(x) for all
x ∈ Ω, then there holds:

Lr2(x)(Ω) ↪→ Lr1(x)(Ω).
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Based on the notations and definitions concerning variable exponent Lebesgue space, the definition
for the variable exponent Sooblev space can be given as follows

W 1,r(·)(Ω) =
{
σ ∈ Lr(x)(Ω) : |∇σ| ∈ Lr(x)(Ω)

}
equipped with the norm

∥σ∥1,r(·) = ∥σ∥r(·) + ∥∇σ∥r(·),
with ∥∇σ∥r(·) = ∥|∇σ|∥r(·). Moreover, we introduce a subspace of W 1,r(·)(Ω), that is,

W
1,r(·)
0 (Ω) = C∞

0 (Ω)
∥·∥1,r(·)

.

Actually, it can show thatW 1,r(·)(Ω) as well asW
1,r(·)
0 (Ω) are separable, reflexive and uniformly convex

Banach spaces. Also, in W
1,r(·)
0 (Ω), the following Poincaré inequality is available

∥σ∥r(·) ≤ c0∥∇σ∥r(·) for all σ ∈W
1,r(·)
0 (Ω),

where the constant c0 > 0. Therefore, the following norms are equivalent in space W
1,r(·)
0 (Ω):

∥σ∥1,r(·),0 = ∥∇σ∥r(·) for all σ ∈W
1,r(·)
0 (Ω).

Next, Let us see the definitions of Musielak-Orlicz Lebesgue and Sobolev spaces generalized by
functionals G1 and G2 (see [54] and Harjulehto-Hästö [29] for more details). Let i = 1, 2, then the
Musielak-Orlicz space LGi(Ω) with respect to functional Gi (given by (1.4)) is formulated as

LGi(Ω) = {σ ∈M(Ω) : ρGi
(σ) < +∞}.

According to [54], we see that under assumptions (H0), Hi is a N -function (refer to [54, Definition 2.7]
for its precise definition), and the modular function associated to Gi is defined by

ρGi
(σ) =

∫
Ω

Gi(x, |σ|)dx for all σ ∈ LGi(Ω),

also, LGi(Ω) endowed with the so-called Luxemburg norm turns out to be a reflexive and separable
Banach space (proved in [54])

∥σ∥Gi = inf
{
λ > 0 : ρGi

(σ
λ

)
≤ 1

}
.

The following proposition indicates the relation between modular ρGi and the Luxemburg norm ∥ · ∥Gi .

Proposition 2.1. [54, Proposition 2.20] Let i = 1, 2, if hypotheses (H0) hold, and modular function
ρGi is formulated by

ρGi
=

∫
Ω

[
|σ|pi(x) + µ(x)|σ|qi(x)

]
log(e+ α|σ|)dx for all σ ∈ LGi(Ω),

then it has

(i) ∥σ∥Gi = λ ⇐⇒ ρGi(
σ
λ ) = 1 with σ ̸= 0;

(ii) ∥σ∥Gi
< 1(resp. = 1, > 1) ⇐⇒ ρGi

(σ) < 1(resp. = 1, > 1);

(iii) ∥σ∥Gi
< 1 =⇒ ∥σ∥q

+
i +1

Gi
≤ ρGi

(σ) ≤ ∥σ∥p
−
i

Gi
;

(iv) ∥σ∥Gi
> 1 =⇒ ∥σ∥p

−
i

Gi
≤ ρGi

(σ) ≤ ∥σ∥q
+
i +1

Gi
;

(v) ∥σn∥Gi
→ 0 ⇐⇒ ρGi

(σn) → 0;
(vi) ∥σn∥Gi → ∞ ⇐⇒ ρGi(σn) → ∞;
(vii) ∥σn∥Gi → 1 ⇐⇒ ρGi(σn) → 1;
(viii) σn → σ ∈ LGi(Ω) =⇒ ρGi

(σn) → ρGi
(σ).

Furthermore, we consider the Musielak-Orlicz Sobolev space W 1,Gi(Ω) formulated by Gi:

W 1,Gi(Ω) =
{
σ ∈ LGi(Ω) : |∇σ| ∈ LGi(Ω)

}
,

endowed with the norm

(2.1) ∥σ∥1,Gi = ∥σ∥Gi + ∥∇σ∥Gi ,
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with ∥∇σ∥Gi
= ∥|∇σ|∥Gi

. Note that W 1,Gi(Ω) is a reflexive and separable Banach space as well (prove

by [54]). Furthermore, we denote the completion of C∞
0 (Ω) inW 1,Gi(Ω) byW 1,Gi

0 (Ω), which is a closed
subspace of W 1,Gi(Ω). Utilizing the Poincaré inequality (given by [54, Proposition 2.23]), we have the

following equivalent norm in W 1,Gi

0 (Ω)

∥σ∥1,Gi,0 = ∥∇σ∥Gi
for all σ ∈W 1,Gi

0 (Ω).

In addition, we define the equivalent norm of space W 1,Gi(Ω), i.e.

∥σ∥ρ̂Gi
:= inf

{
λ > 0 : ρ̂Gi

(σ
λ

)
≤ 1

}
,

in which the modular function is formulated as
(2.2)

ρ̂Gi(σ) =

∫
Ω

(
|∇σ|pi(x) + µ(x)|∇σ|qi(x)

)
log(e+α|∇σ|)dx+

∫
Ω

(
|σ|pi(x) + µ(x)|σ|qi(x)

)
log(e+α|σ|)dx

for σ ∈W 1,Gi(Ω).
The next proposition reveals the relationship of modular ρ̂Gi and norm ∥σ∥ρ̂Gi

which is demonstrated

by [54, Proposition 2.21].

Proposition 2.2. If hypotheses (H0) hold, and ρ̂Gi
is given by (2.2), then for each σ ∈ W 1,Gi(Ω) we

see that

(i) ∥σ∥ρ̂Gi
= λ ⇐⇒ ρ̂Gi

(σλ ) = 1 with σ ̸= 0;

(ii) ∥σ∥ρ̂Gi
< 1(resp. = 1, > 1) ⇐⇒ ρ̂Gi(σ) < 1(resp. = 1, > 1);

(iii) ∥σ∥ρ̂Gi
< 1 =⇒ ∥σ∥q

+
i +1

ρ̂Gi
≤ ρ̂Gi(σ) ≤ ∥σ∥p

−
i

ρ̂Gi
;

(iv) ∥σ∥ρ̂Gi
> 1 =⇒ ∥σ∥p

−
i

ρ̂Gi
≤ ρ̂Gi(σ) ≤ ∥σ∥q

+
i +1

ρ̂Gi
;

(v) ∥σ∥ρ̂Gi
→ 0 ⇐⇒ ρ̂Gi

(σ) → 0;

(vi) ∥σ∥ρ̂Gi
→ ∞ ⇐⇒ ρ̂Gi(σ) → ∞;

(vii) ∥σ∥ρ̂Gi
→ 1 ⇐⇒ ρ̂Gi

(σ) → 1;

(viii) σn → σ in W 1,Gi(Ω) =⇒ ρ̂Gi(σn) → ρ̂Gi(σ).

The following embedding results can be directly found in [54, Propositions 2.22 and 2.23].

Proposition 2.3. For i = 1, 2, if hypotheses (H0) hold, then

(i) LGi(Ω) ↪→ Lri(·)(Ω), W 1,Gi(Ω) ↪→ W 1,ri(·)(Ω), and W 1,Gi

0 (Ω) ↪→ W
1,ri(·)
0 (Ω) for all ri ∈ C(Ω)

such that 1 ≤ ri(x) ≤ pi(x) for all x ∈ Ω;

(ii) W 1,Gi(Ω) ↪→↪→ Lri(·)(Ω) and W 1,Gi

0 (Ω) ↪→↪→ Lri(·)(Ω) for all r ∈ C(Ω) such that 1 ≤ ri(x) <

p∗i (x) for all x ∈ Ω;

(iii) W 1,Gi(Ω) ↪→↪→ Lri(·)(∂Ω) and W 1,Gi

0 (Ω) ↪→↪→ Lri(·)(∂Ω) for all r ∈ C(Ω) such that 1 ≤
ri(x) < (pi)∗(x) for all x ∈ Ω;

(iv) W 1,Gi(Ω) ↪→↪→ LGi(Ω).

Take y+ = max{y, 0} and y− = −min{y, 0} for any y ∈ R, define σ±(·) = [σ(·)]± for any function
σ : Ω → R. According to [54, Proposition 2.24], we infer the following results.

Proposition 2.4. Let σ ∈W 1,Gi(Ω), v ∈W 1,Gi

0 (Ω) and {σn} ⊂W 1,Gi(Ω). If (H0) hold, then we have

(i) ±σ± ∈W 1,Gi(Ω) with ∇(±σ±) = ∇σ1{±σ>0};

(ii) if σn → σ in W 1,Gi(Ω), then ±σ±
n → ±σ± in W 1,Gi(Ω);

(iii) ±v± ∈W 1,Gi

0 (Ω).

In the sequel, we denote by W 1,Gi(Ω)∗ and W 1,Gi

0 (Ω)∗ the dual spaces of W 1,Gi(Ω) and W 1,Gi

0 (Ω),
respectively. For a given Banach space X, let X∗ be the corresponding dual space, we define K (X∗)
as

K (X∗) = {U ⊂ X∗ : U ̸= ∅, U is closed and convex} .
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Definition 2.5. If X is a real reflexive Banach space, X∗ is the dual space of X and ⟨·, ·⟩ denotes
their duality pairing. Then, operator B : X → X∗ is called

(i) completely continuous iff σn ⇀ σ in X implies Bσn → Bσ in X∗.
(ii) to satisfy the (S+)-property if σn ⇀ σ in X and lim supn→∞⟨Bσn, σn − σ⟩ ≤ 0 imply σn → σ

in X.

For i = 1, 2, we define operator Ai : X → X∗ as:

(2.3) ⟨Ai(σi), vi⟩Gi
:=

∫
Ω

G′
i(x, |∇σi|)
|∇σi|

∇σi · ∇vidx,

for all σi, vi ∈ W 1,Gi(Ω), here X = W 1,Gi(Ω) or X = W 1,Gi

0 (Ω) with ⟨·, ·⟩ being the dual pairing
between X and X∗.

Referring to [54], we see that for each i = 1, 2, Ai gets the following properties.

Proposition 2.6. For i = 1, 2, if hypotheses (H1) hold, then Ai (given by (2.3)) is continuous,
bounded, strictly monotone (thus maximal monotone) and satisfies (S+) property.

Next, we recall some important properties for multivalued operators that will be used in the proof
of our main results.

Definition 2.7. Let X be a real reflexive Banach space, X∗ be its dual space and ⟨·, ·⟩ denote their
duality pairing. Then operator B : X → 2X

∗
is called

(i) pseudomonotone iff
(a) the set B(σ) is nonempty, bounded, closed and convex for all σ ∈ X;
(b) B is upper semicontinuous from each finite dimensional subspace of X to the weak topol-

ogy on X∗;
(c) (σn) ⊂ X with σn ⇀ σ, and σ∗

n ∈ B(σn) being such that lim sup⟨σ∗
n, σn − σ⟩ ≤ 0, imply

there exists σ∗(v) ∈ B(σ) such that

lim inf⟨σ∗
n, σn − v⟩ ≥ ⟨σ∗(v), σ − v⟩.

for each element v ∈ X.
(ii) generalized pseudomonotone iff (σn) ⊂ X and (σ∗

n) ⊂ X∗ with σ∗
n ∈ B(σn) being such that

σn ⇀ σ in X, σ∗
n ⇀ σ∗ in X∗ and lim sup⟨σ∗

n, σn − σ⟩ ≤ 0 imply that the element σ∗ lies in
B(σ) and

⟨σ∗
n, σn⟩ → ⟨σ∗, σ⟩.

(iii) coercive iff for σ ∈ X satisfying ∥σ∥X → ∞, there hold

inf{⟨σ∗, σ⟩ : σ∗ ∈ B(σ)}
∥σ∥X

→ +∞.

Remark 2.8. B : X → 2X
∗
being a pseudomonotone implies that B is generalized pseudomonotone.

Moreover, if B is maximal monotone with D(B) = X, we infer that B is pseudomonotone.

The next proposition gives the sufficient conditions to guarantee that a generalized pseudomonotone
multivalued operator becomes a pseudomonotone multivalued operator, see also [11, Proposition 2.18].

Proposition 2.9. If X is a real reflexive Banach space, and operator B : X → 2X
∗
satisfies the

following conditions:

(i) For each σ ∈ X the set B(σ) is a nonempty, closed, and convex in X∗;
(ii) B : X → 2X

∗
is bounded;

(iii) B : X → 2X
∗
is generalized pseudomonotone.

Then operator B : X → 2X
∗
is pseudomonotone.

Assume lj ∈ C(Ω) with (lj)− ≥ 1 for j = 0, 1, · · · ,m. Let F be a function from Ω × Rm into
2R. For each measurable function σ = (σ1, · · · , σm) : Ω → Rm, we consider the multivalued function

Ω ∋ x 7→ F (x, σ1(x), · · · , σm(x)) = F (x, σ(x)) ∈ 2R and denote F̃ (σ) = {v ∈ M(Ω) : v(x) ∈
F (x, σ(x)) for a.a. x ∈ Ω}. The following theorem references [11, Theorem 7.8].
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Theorem 2.10. Assume F satisfies the following conditions:

(i) For a.e. x ∈ Ω, all ξ ∈ Rm, F (x, ξ) is closed and nonempty.
(ii) F is superpositionally measurable, i.e., if σ ∈ [M(Ω)]m, then F (·, σ(·)) : Ω → 2R is measurable.
(iii) For a.e. x ∈ Ω, the function Rm ∋ ξ 7→ F (x, ξ) is Hausdorff upper semicontinuous (h-u.s.c.

for short).
(iv) There exist a ∈ Ll0(·)(Ω) and b > 0 such that

(2.4) |v| ≤ a(x) + b

m∑
i=1

|ξi|
li(x)

l0(x) ,

for a.e. x ∈ Ω, all v ∈ F (x, ξ).

Thus, for each u ∈
∏m

i=1 L
li(·)(Ω), F̃ (σ) is a nonempty and closed subset of Ll0(·)(Ω), and F̃ : σ 7→ F̃ (σ)

is h-u.s.c. from
∏m

i=1 L
li(·)(Ω) to 2L

l0(·)(Ω).

In addition, let BR(0) := {σ ∈ X | ∥σ∥X < R} denote an open ball with center 0 and radius R > 0,
we review the following surjective theorem, see [33, Theorem 2.2].

Theorem 2.11. Assume X is a real reflexive Banach space, F : D(F ) ⊂ X → 2X
∗
is a maximal

monotone operator and G : D(G) = X → 2X
∗
is a bounded multi-valued pseudomonotone operator,

and L ∈ X∗. If there exist σ0 ∈ X and R ≥ ∥σ0∥X satisfying D(F ) ∩BR(0) ̸= ∅ and

⟨ξ + η − L, σ − σ0⟩X∗×X > 0

for all σ ∈ D(F ) with ∥σ∥X = R, all ξ ∈ F (σ) and all η ∈ G(σ), then the following inclusion

F (σ) +G(σ) ∋ L

has a solution in D(F ), namely, F +G is surjective.

Finally, we define the following notations for some sets and function spaces:

K := K1 ×K2,

L := LG1(Ω)× LG2(Ω),

Lr1(·),r2(·)(Ω) := Lr1(·)(Ω)× Lr2(·)(Ω),

Lι1(·),ι2(·)(∂Ω) := Lι1(·)(∂Ω)× Lι2(·)(∂Ω),

W :=W 1,G1(Ω)×W 1,G2(Ω).

Obviously, L, Lr1(·),r2(·)(Ω), Lι1(·),ι2(·)(∂Ω) and W endowed with norms

∥σ∥L = ∥σ∥G1 + ∥σ∥G2 ,

∥σ∥Lr1(·),r2(·)(Ω) = ∥σ∥r1(·) + ∥σ∥r2(·),
∥σ∥Lι1(·),ι2(·)(∂Ω) = ∥σ∥ι1(·),∂Ω + ∥σ∥ι2(·),∂Ω,

∥σ∥W = ∥σ∥1,G1
+ ∥σ∥1,G2

,

respectively, become reflexive and separable Banach spaces. Referring to Proposition 2.2 we get:

(2.5) W ↪→↪→ L, W ↪→↪→ Lp1(·),p2(·)(Ω), W ↪→ Lq1(·),q2(·)(Ω), W ↪→↪→ Lp1(·),p2(·)(∂Ω).

We end this section by introducing the weak solutions, subsolutions and supersoltions of problem
(1.1).

Definition 2.12. A function σ = (σ1, σ2) ∈ K is called a weak solution of problem (1.1), if it fulfills
the following conditions: For i = 1, 2, there exist τi ∈ C(Ω) and θi ∈ C(Γi) with 1 < τi(x) < p∗i (x)

for all x ∈ Ω as well as 1 < θi(x) < (pi)∗(x) for all x ∈ Γi and ηi ∈ Lτ ′
i(·)(Ω), ζi ∈ Lθ′

i(·)(Γi) with
ηi(x) ∈ Fi(σ)(x) := fi(x, σ1(x), σ2(x),∇σ1(x),∇σ2(x)) for a.a. x ∈ Ω and ζi(x) ∈ FΓi

(σ)(x) :=
fΓi

(x, σ1(x), σ2(x)) for a.a. x ∈ Γi are such that:

(2.6)

∫
Ω

G′
1(x, |∇σ1|)
|∇σ1|

∇σ1 · ∇(v1 − σ1)dx+

∫
Ω

η1(v1 − σ1)dx+

∫
Γ1

ζ1(v1 − σ1)dς ≥ 0
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and

(2.7)

∫
Ω

G′
2(x, |∇σ2|)
|∇σ2|

∇σ2 · ∇(v2 − σ2)dx+

∫
Ω

η2(v2 − σ2)dx+

∫
Γ2

ζ2(v2 − σ2)dς ≥ 0

for all (v1, v2) ∈ K.

Note that the boundary integral
∫
Γi
ζi(vi − σi)dς means that∫

Γi

ζi
(
Iθi(·)vi|Γi − Iθi(·)σi|Γi

)
dς,

where Iθi(·) :W 1,Gi(Ω) → Lθi(·)(∂Ω) is the trace operator and Iθi(·)vi|Γi is the restriction of Iθi(·)vi to
Γi.

Definition 2.13. Let i = 1, 2, a function σ = (σ1, σ2) ∈ W is called a subsolution of problem (1.1), if
there exist τi ∈ C(Ω) and θi ∈ C(Γi) with 1 < τi(x) < p∗i (x) for all x ∈ Ω as well as 1 < θi(x) < (pi)∗(x)

for all x ∈ Γi and ηi ∈ Lτ ′
i(·)(Ω), ζi ∈ Lθ′

i(·)(Γi) fulfilling the conditions:

(i) σi ∨Ki ⊂ Ki ;
(ii) η

1
(x) ∈ f1(x, σ1(x), z2(x),∇σ1(x),∇z2(x)) for a.a. x ∈ Ω, ζ

1
(x) ∈ fΓ1

(x, σ1(x), z2(x))

for a.a. x ∈ Γ1 and η
2
(x) ∈ f2(x, z1(x), σ2(x),∇z1(x),∇σ2(x)) for a.a. x ∈ Ω, ζ

2
(x) ∈

fΓ2
(x, z1(x), σ2(x)) for a.a. x ∈ Γ2;

(iii) the inequality holds∫
Ω

G′
1(x, |∇σ1|)
|∇σ1|

∇σ1 · ∇(v1 − σ1)dx+

∫
Ω

η
1
(v1 − σ1)dx+

∫
Γ1

ζ
1
(v1 − σ1)dς

+

∫
Ω

G′
2(x, |∇σ2|)
|∇σ2|

∇σ2 · ∇(v2 − σ2)dx+

∫
Ω

η
2
(v2 − σ2)dx+

∫
Γ2

ζ
2
(v2 − σ2)dς ≥ 0

for all (v1, v2) ∈ (σ1, σ2) ∧ (K1,K2), all (z1, z2) ∈ W satisfying σi ≤ zi ≤ σi.

We point out that if σ = (σ1, σ2) belongs to a nonempty set K = (K1,K2), then σ ∨ K states
σ ∨ k = (σ1 + (k1 − σ2)

+, σ2 + (k2 − σ2)
+) for all k = (k1, k2) ∈ K. Likewise, σ ∧K states σ ∧ k =

(σ1 − (σ1 − k1)
+, σ2 − (σ2 − k2)

+) for all k ∈ K.

Definition 2.14. Let i = 1, 2, a function σ = (σ1, σ2) ∈ W is called a supersolution of problem
(1.1), if there exist τi ∈ C(Ω) and θi ∈ C(Γi) with 1 < τi(x) < p∗i (x) for all x ∈ Ω as well as

1 < θi(x) < (pi)∗(x) for all x ∈ Γi and ηi ∈ Lτ ′
i(·)(Ω), ζi ∈ Lθ′

i(·)(Γi) fulfilling the conditions:

(i) σi ∧Ki ⊂ Ki ;
(ii) η1(x) ∈ f1(x, σ1(x), z2(x),∇σ1(x),∇z2(x)) for a.a. x ∈ Ω, ζ1(x) ∈ fΓ1

(x, σ1(x), z2(x))
for a.a. x ∈ Γ1 and η2(x) ∈ f2(x, z1(x), σ2(x),∇z1(x),∇σ2(x)) for a.a. x ∈ Ω, ζ2(x) ∈
fΓ2

(x, z1(x), σ2(x)) for a.a. x ∈ Γ2;
(iii) the inequality holds∫

Ω

G′
1(x, |∇σ1|)
|∇σ1|

∇σ1 · ∇(v1 − σ1)dx+

∫
Ω

η1(v1 − σ1)dx+

∫
Γ1

ζ1(v1 − σ1)dς

+

∫
Ω

G′
2(x, |∇σ2|)
|∇σ2|

∇σ2 · ∇(v2 − σ2)dx+

∫
Ω

η2(v2 − σ2)dx+

∫
Γ2

ζ2(v2 − σ2)dς ≥ 0

for all (v1, v2) ∈ (σ1, σ2) ∨ (K1,K2), all (z1, z2) ∈ W satisfying σi ≤ zi ≤ σi.

If σ = (σ1, σ2) and σ = (σ1, σ2) is a pair of sub- and supersolution, then we say that the order
interval [σ, σ] = [σ1, σ1]× [σ2, σ2] is a trapping region with

[σi, σi] =
{
σ ∈W 1,Gi(Ω) : σi ≤ σ ≤ σi a.e. in Ω} .



VARIABLE EXPONENT DOUBLE PHASE ELLIPTIC INCLUSION SYSTEMS 11

3. Existence results in coercive setting

In this section, we focus on the situation that problem (1.1) fulfills a mild coercive condition. This
permits us to utilize the surjectivity theorem, Theorem 2.11, for the purpose of showing the existence
of weak solutions.

So, we first make the following assumptions for problem (1.1) :

(H2) For i = 1, 2, one can find ri ∈ C(Ω), ιi ∈ C(Γ) such that 1 < ri(x) < p∗i (x) for a.a. x ∈ Ω, 1 <

ιi(x) < (pi)∗(x) for a.a. x ∈ Γi, β
Ω
i , γi ≥ 0, βΓi

i ≥ 0 and nonnegative functions αΩ
i ∈ Lr′i(·)(Ω),

αΓi
i ∈ Lι′i(·)(Γi) satisfying:

sup{|η1| : η1 ∈ f1(x, y1, y2, φ1, φ2)} ≤ αΩ
1 (x)+β

Ω
1

(
|y1|r1(x)−1 + |y2|

r2(x)

r′1(x)

)
+γ1

(
|φ1|

p1(x)

r′1(x) + |φ2|
p2(x)

r′1(x)

)
,

as well as

sup{|η2| : η2 ∈ f2(x, y1, y2, φ1, φ2)} ≤ αΩ
2 (x)+β

Ω
2

(
|y1|

r1(x)

r′2(x) + |y2|r2(x)−1

)
+γ2

(
|φ1|

p1(x)

r′2(x) + |φ2|
p2(x)

r′2(x)

)
,

for a.a. x ∈ Ω, for all yi ∈ R and for all φi ∈ RN , and

sup{|ζ1| : ζ1 ∈ fΓ1
(x, y1, y2)} ≤ αΓ1

1 (x)+βΓ1
1

(
|y1|ι1(x)−1 + |y2|

ι2(x)

ι′1(x)

)
for a.a. x ∈ Γ1 and all y1, y2 ∈ R,

as well as

sup{|ζ2| : ζ2 ∈ fΓ2
(x, y1, y2)} ≤ αΓ2

2 (x)+βΓ2
2

(
|y1|

ι1(x)

ι′2(x) + |y2|ι2(x)−1

)
for a.a. x ∈ Γ2 and all y1, y2 ∈ R.

In the sequel, for i = 1, 2, we denote by Iri(·) :W 1,Gi(Ω) → Lri(·)(Ω) the embedding operator and de-

note by Iιi(·) :W 1,Gi(Ω) → Lιi(·)(Γi) the trace operator. Taking (H2), Proposition 2.3(ii) and (iii) into
account, we get the compactness of both Iri(·) and Iιi(·). Denote the corresponding adjoint operators

of Iri(·) and Iιi(·) by I∗
ri(·) : Lr′i(·)(Ω) → W 1,Gi(Ω)∗ and I∗

ιi(·) : Lι′i(·)(Γi) → W 1,Gi(Ω)∗, respectively.

Take any (v1, v2) ∈M(Ω)×M(Ω) and φi ∈ [M(Ω)]N with i = 1, 2, we define f̃i(·, v1, v2, φ1, φ2) as the
set of measurable selections of fi(·, v1, v2, φ1, φ2), namely,

f̃i(v1, v2, φ1, φ2) = {ηi ∈M(Ω) : ηi(x) ∈ fi(x, v1(x), v2(x), φ1(x), φ2(x)) for a.a. x ∈ Ω}.

Since assumption (H1) hold, the above set is nonempty. Analogously, for any (v1, v2) ∈M(Γ1)×M(Γ2),
we denote the set of measurable selections of fΓi

(·, v1, v2) by

f̃Γi(v1, v2) = {ζi ∈M(Γi) | ζi(x) ∈ fΓi(x, v1(x), v2(x)) for a.a. x ∈ Γi}.

Similarly, the above set is nonempty thanks for hypotheses (H1). Since (H2) hold true, let i = 1, 2, then

for any vi ∈ Lri(·)(Ω) and φi ∈ [Lpi(·)(Ω)]N we can show that f̃i(v1, v2, φ1, φ2) ⊂ Lr′i(·)(Ω). Likewise,

for any vi ∈ Lιi(·)(Γi), we get f̃Γi
(v1, v2) ⊂ Lι′i(·)(Γi).

Furthermore, let i = 1, 2, under the conditions of (H2), for any (v1, v2,∇v1,∇v2) ∈ Lr1(·)(Ω) ×
Lr2(·)(Ω)×[Lp1(·)(Ω)]N×[Lp2(·)(Ω)]N (resp. (v1, v2) ∈ Lι1(·)(Γ1)×Lι2(·)(Γ2)), we have f̃i(v1, v2,∇v1,∇v2) ⊂
Lr′i(·)(Ω) (resp. f̃Γi(v1, v2) ⊂ Lι′i(·)(Γi)). Now, we defined the following mappings Fi = I∗

ri(·)◦f̃i : W →
2W

1,Gi (Ω)∗ (resp. FΓi
= I∗

ιi(·) ◦ f̃Γi
◦ Iιi(·) : W → 2W

1,Gi (Ω)∗), that is, Fi(v1, v2) = {η̂i ∈ W 1,Gi(Ω)∗ :

η̂i ∈ f̃i(v1, v2,∇v1,∇v2)} (resp. FΓi
(v1, v2) = {ζ̂i ∈W 1,Gi(Ω)∗ : ζ̂i ∈ f̃Γi

(v1, v2)}) where i = 1, 2.
Let A(σ) = (A1(σ1), A2(σ2)) with Ai(i = 1, 2) given by (2.3). According to Proposition 2.6 we see

that A : W → W∗ is continuous, bounded, strictly monotone and of type (S+). In the sequel, define
F = (F1,F2) and FΓ = (FΓ1 ,FΓ2).

Next, we will verify that A + F + FΓ is pseudomonotone, and the proof is motivated by Carl-Le
[11].

Proposition 3.1. Assume hypotheses (H0), (H1) and (H2) are satisfied, then operator A + F + FΓ

turns out to be bounded and pseudomonotone from W into K (W∗).
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Proof. For i = 1, 2, hypotheses (H1) ensure that fi is graph measurable, so f̃i : L
r1(·)(Ω)×Lr2(·)(Ω)×

[Lp1(·)(Ω)]N × [Lp2(·)(Ω)]N → Lr′i(·)(Ω) is well defined. Moreover, since fi is a multivalued upper
semicontinuous function, we deduce that fi(x, σ1, σ2, φ1, φ2) is a closed interval within R, and then

f̃i(σ1, σ2, φ1, φ2) is convex. By applying (H2), we see that for any ηi ∈ f̃i(σ1, σ2, φ1, φ2) and fixed
(σ1, σ2, φ1, φ2) ∈ Lr1(·)(Ω)× Lr2(·)(Ω)× [Lp1(·)(Ω)]N × [Lp2(·)(Ω)]N there holds
(3.1)

sup{|ηi| : ηi ∈ fi(x, y1, y2, φ1, φ2)} ≤ αΩ
i (x) + βΩ

i

(
|y1|r1(x)−1 + |y2|

r2(x)

r′
i
(x)

)
+ γi

(
|φ1|

p1(x)

r′
i
(x) + |φ2|

p2(x)

r′
i
(x)

)
for a.a. x ∈ Ω, thus f̃i(σ1, σ2, φ1, φ2) is bounded in Lr′i(·)(Ω). Let {ηn,i} ⊂ f̃i(σ1, σ2, φ1, φ2) be such

that ηn,i → ηi in L
r′i(·)(Ω) (thus ηn,i → ηi a.a. in Ω), note that ηn,i(x) ∈ fi(x, σ1(x), σ2(x), φ1(x), φ2(x))

for a.a. x ∈ Ω and for all n ∈ N, in addition, fi(x, σ1(x), σ2(x), φ1(x), φ2(x)) is closed in R, then we

know that ηi(x) ∈ fi(x, σ1(x), σ2(x), φ1(x), φ2(x)). Recalling the definition of f̃i(σ1, σ2, φ1, φ2) we can

observe that it is closed. Moreover, we show f̃i : L
r1(·)(Ω)× Lr2(·)(Ω)× [Lp1(·)(Ω)]N × [Lp2(·)(Ω)]N →

Lr′i(·)(Ω) is bounded. Let D be a bounded set in Lr1(·)(Ω)×Lr2(·)(Ω)×[Lp1(·)(Ω)]N×[Lp2(·)(Ω)]N , (3.1)

implies that set f̃i(D) is bounded in Lr′i(·)(Ω), so we get the boundedness of f̃i. Likewise, we deduce

that f̃Γi
(σ1, σ2) is a closed, bounded and convex subset in Lι′i(·)(Γi). Furthermore, f̃Γi

: Lι1(·),ι2(·) →
K(Lι′i(·)(Γi)) is bounded. On these basis, combining the boundedness of Iri(·), I∗

ri(·), Iιi(·) and I∗
ιi(·)

we obtain the boundedness of Fi and FΓi
, thus F and FΓ. Furthermore, using the boundedness of A

given by Proposition 2.6, we infer that A+ F and A+ F + FΓ are bounded.
To demonstrate A + F is pseudomonotone, we first verify the generalized pseudomonotonicity of

A+ F : W → K (W∗). Let {σn} ⊂ W and {σ∗
n} ⊂ W∗ (note that σn = (σn,1, σn,2), σ

∗
n = (σ∗

n,1, σ
∗
n,2))

be such that

(3.2) (σn,1, σn,2)⇀ (σ1, σ2) in W,

(3.3) (σ∗
n1
, σ∗

n2
)⇀ (σ∗

1 , σ
∗
2) in W∗,

(σ∗
n,1, σ

∗
n,2) ∈ (A+ F)(σn,1, σn,2) for all n ∈ N,

and

(3.4) lim sup
n→∞

⟨(σ∗
n,1, σ

∗
n,2), (σn,1, σn,2)− (σ1, σ2)⟩ ≤ 0.

By the definition of generalized pseudomonotone to multivalued operators (recall Definition 2.7(ii)) we
need to verify

(3.5) (σ∗
1 , σ

∗
2) ∈ (A+ F)(σ1, σ2),

and

(3.6) ⟨(σ∗
n,1, σ

∗
n,2), (σn,1, σn,2)⟩ → ⟨(σ∗

1 , σ
∗
2), (σ1, σ2)⟩.

First, for all n ∈ N, let
(3.7) (σ∗

n,1, σ
∗
n,2) = (l∗n,1, l

∗
n,2) + (η∗n,1, η

∗
n,2)

where

(3.8) (l∗n,1, l
∗
n,2) ∈ A(σn,1, σn,2) and (η∗n,1, η

∗
n,2) ∈ F(σn,1, σn,2).

Utilizing the boundedness of {(σn,1, σn,2)} in W together with the boundedness of A,F we get

(3.9) (l∗n,1, l
∗
n,2)⇀ (l∗0,1, l

∗
0,2), (η∗n,1, η

∗
n,2)⇀ (η∗0,1, η

∗
0,2), in W∗,

in the sense of subsequence. Applying (3.3), (3.7) and (3.9) we obtain

(3.10) (σ∗
1 , σ

∗
2) = (l∗0,1, l

∗
0,2) + (η∗0,1, η

∗
0,2).

In addition, recalling the definition of Fi, we can find ηn,i ∈ f̃i(σn,1, σn,2,∇σn,1,∇σn,2) such that
(η∗n,1, η

∗
n,2) = (I∗

r1(·)ηn,1, I
∗
r2(·)ηn,2), for all n ∈ N. Obviously, {(σn,1, σn,2)} is bounded inW, we see that

(σn,1, σn,2,∇σn,1,∇σn,2) is bounded in Lr1(·)(Ω)× Lr2(·)(Ω)× [Lp1(·)(Ω)]N × [Lp2(·)(Ω)]N , along with
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condition (F2) we get the boundedness of {(ηn,1, ηn,2)} in Lr′1(·),r
′
2(·)(Ω). Hence, {(η∗n,1, η∗n,2) : n ∈ N}

can be shown to be a relatively compact set in W∗ because of the compactness of I∗
r1(·) and I∗

r2(·).

Together with the weak convergence of (ηn,1, ηn,2) in (3.9) we see that

(3.11) (η∗n,1, η
∗
n,2) → (η∗0,1, η

∗
0,2) in W∗.

So, ⟨(η∗n,1, η∗n,2), (σn,1, σn,2)− (σ1, σ2)⟩ → 0 as n→ ∞, applying (3.4) we see that

(3.12) lim sup⟨(l∗n,1, l∗n,2), (σn,1, σn,2)− (σ1, σ2)⟩ ≤ 0.

The latter joining with the maximal monotonicity of Ai (recall Theorem 2.6) we see that Ai is gener-
alized pseudomonotone, hence A = (A1, A2) is generalized pseudomonotone. Then, taking (3.2), (3.8),
(3.9) and (3.12) into account and utilizing the (S+)-property as well as generalized pseudomonotonicity
of A we obtain

(3.13) (l0,1, l0,2) ∈ A(σ1, σ2), ⟨(l∗n,1, l∗n,2), (σn,1, σn,2)⟩ → ⟨(l∗0,1, l∗0,2), (σ1, σ2)⟩

and

(3.14) (σn,1, σn,2) → (σ1, σ2) in W.

Therefore, (σn,1, σn,2,∇σn,1,∇σn,2) → (σ1, σ2,∇σ1,∇σ2) in Lr1(·)(Ω) × Lr2(·)(Ω) × [Lp1(·)(Ω)]N ×
[Lp2(·)(Ω)]N . Combining hypotheses (F1), (F2) with Theorem 2.10 we can verify that f̃i(σ1, σ2,∇σ1,∇σ2)
is Hausdorff upper semicontinuous, thus h∗(f̃i(σn,1, σn,2,∇σn,1,∇σn,2), f̃i(σ1, σ2,∇σ1,∇σ2)) → 0. It
follows that

inf
ω∗

1∈f̃1(σn,1,σn,2,∇σn,1,∇σn,2)

ω∗
2∈f̃2(σn,1,σn,2,∇σn,1,∇σn,2)

∥(ηn,1, ηn,2)− (ω∗
1 , ω

∗
2)∥Lr′1(·),r′2(·)(Ω)

→ 0,

where ηn,i ∈ f̃i(σn,1, σn,2,∇σn,1,∇σn,2). Then, for i = 1, 2, we can find {ω∗
n,i} ⊂ f̃i(σn,1, σn,2,∇σn,1,∇σn,2)

fulfilling

(3.15) ∥(ηn,1, ηn,2)− (ω∗
n,1, ω

∗
n,2)∥Lr′1(·),r′2(·)(Ω)

→ 0.

Moreover, since f̃i(σn,1, σn,2,∇σn,1,∇σn,2) is bounded, there exists some (ω∗
0,1, ω

∗
0,2) ∈ Lr′1(·),r

′
2(·)(Ω)

such that

(3.16) (ω∗
n,1, ω

∗
n,2)⇀ (ω∗

0,1, ω
∗
0,2)

in Lr′1(·),r
′
2(·)(Ω). This associating the fact that f̃i(σ1, σ2,∇σ1,∇σ2) is closed and convex (hence weakly

closed) in Lr′i(·)(Ω) implies ω∗
0,i ∈ f̃i(σ1, σ2,∇σ1,∇σ2). Combining (3.15) with (3.16) we get

(ηn,1, ηn,2)⇀ (ω∗
0,1, ω

∗
0,2) in L

r′1(·),r
′
2(·)(Ω).

Using the compactness of I∗
ri(·) again, we have

(η∗n,1, η
∗
n,2) =

(
I∗
r1(·)ηn,1, I

∗
r2(·)ηn,2

)
→

(
I∗
r1(·)ω

∗
0,1, I∗

r2(·)ω
∗
0,2

)
in W∗.

Together with (3.11), there holds

(η∗0,1, η
∗
0,2) =

(
I∗
r1(·)ω

∗
0,1, I∗

r2(·)ω
∗
0,2

)
∈
(
I∗
r1(·)f̃1(σ1, σ2,∇σ1,∇σ2), I

∗
r2(·)f̃2(σ1, σ2,∇σ1,∇σ2)

)
= F(σ1, σ2).

(3.17)

Furthermore, from (3.11) and (3.14) we have

(3.18) ⟨(η∗n,1, η∗n,2), (σn,1, σn,2)⟩ → ⟨(η∗0,1, η∗0,2), (σ1, σ2)⟩.

Taking (3.7), (3.10), (3.13), (3.17) and (3.18) into account we clarify (3.5) and (3.6). So, we obtain that
A+F is a multivalued generalized pseudomonotone operator. Therefore, along with the boundedness
of A+ F we can show it is pseudomonotone. In addition, similar to the proof of [12, Proposition 3.1]
one can prove that FΓ is pseudomontone, hence, A+ F + FΓ is bounded and pseudomonotone. □
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By the pseudomonotonicity of A+F +FΓ, we are going to invoke the surjective theorem Theorem
2.11 for getting the following existence result to elliptic inclusion systems (1.1).

Theorem 3.2. Let (H0), (H1) and (H2) hold true. Suppose the next coercivity condition:

there are σ0 ∈ K and R ≥ ∥σ0∥W satisfying K ∩BR(0) ̸= ∅ and

(3.19) ⟨Au+ η∗ + ζ∗, σ − σ0⟩ > 0,

for all σ ∈ K with ∥σ∥W = R, for all η∗ ∈ F(σ) and for all ζ∗ ∈ FΓ(σ).

Then there exists at least one weak solution (σ1, σ2) ∈ K = (K1,K2) of (1.1).

Proof. According to Proposition 3.1, we get the boundedness and pseudomonotonicity for A+F+FΓ :
W → 2W

∗
. Since set K = (K1,K2) is closed and convex, then mapping ∂IK = (∂IK1

, ∂IK2
) is

maximal monotone from W to 2W
∗
. Hence, invoking Theorem 2.11 we prove that there exists at least

one solution of (1.1) under coercivity condition (3.19). □

The following corollary is a result of Theorem 3.2.

Corollary 3.3. Let hypotheses (H0), (H1) and (H2) be satisfied. Take σ0 ∈ K and suppose the
following coercivity condition:

lim
∥σ∥W→∞

σ∈K

 inf
η∗∈F(σ)
ζ∗∈FΓ(σ)

⟨Aσ + η∗ + ζ∗, σ − σ0⟩

 = ∞,

then (1.1) possesses at least one solution.

4. Existence results in Noncoercive framework

In this section, we concentrate on the existence of a weak solution for problem (1.1) under the
noncoercive framework. To prove that, we will employ the sub and supersolution method associating
the theory of nonsmooth analysis and truncation techniques for obtaining the existence as well as
compactness results of solutions to problem (1.1). In the remaining parts, C stands for a constant that
could change from line to line.

We make the following assumptions.

(H3) Denote by σ = (σ1, σ2) and σ = (σ1, σ2) a pair of subsolution and supersolution for (1.1)
with σi ≤ σi for i = 1, 2. Fixing i = 1, 2, one can find τi ∈ C(Ω), θi ∈ C(Γi) such that
1 < τi(x) < p∗i (x) for a.a. x ∈ Ω, 1 < θi(x) < (pi)∗(x) for a.a. x ∈ Γi, κi ≥ 0 and

gΩi ∈ Lτ ′
i(·)(Ω), gΓi

i ∈ Lθ′
i(·)(Γi) such that

sup{|η1| : η1 ∈ f1(x, y1, y2, φ1, φ2)} ≤ gΩ1 (x) + κ1

(
|φ1|

p1(x)

τ′
1(x) + |φ2|

p2(x)

τ′
1(x)

)
,

sup{|η2| : η2 ∈ f2(x, y1, y2, φ1, φ2)} ≤ gΩ2 (x) + κ2

(
|φ1|

p1(x)

τ′
2(x) + |φ2|

p2(x)

τ′
2(x)

)
,

for a.a. x ∈ Ω, for all yi ∈ [σi, σi] as well as for all φi ∈ RN , also

sup{|ζ1| : ζ1 ∈ fΓ1(x, y1, y2)} ≤ gΓ1
1 (x) or a.a. x ∈ Γ1, all yi ∈ [σi, σi],

sup{|ζ2| : ζ2 ∈ fΓ2
(x, y1, y2)} ≤ gΓ2

2 (x) or a.a. x ∈ Γ2, all yi ∈ [σi, σi].

The following results in this section are stated by the following theorem.

Theorem 4.1. Suppose (H0), (H1), and (H3) hold true. Then, there exists a solution σ = (σ1, σ2) to
problem (1.1) such that

σi ≤ σi ≤ σi in Ω

with i = 1, 2.
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Proof. For any i = 1, 2, let τi, θi, σ and σ satisfy (H3). In the meantime, let τi, θi be the exponents
and η

i
, ζ

i
, ηi, ζi be the functions given in Definitions 2.13 and 2.14 with σ = (σ1, σ2) and σ = (σ1, σ2),

respectively.
Let i = 1, 2, we introduce the following truncation operators Ti :W

1,Gi(Ω) →W 1,Gi(Ω)

(4.1) Ti(σi)(x) =


σi(x) if σi(x) > σi(x),

σi(x) if σi(x) ≤ σi(x) ≤ σi(x),

σi(x) if σi(x) < σi(x),

Ji :W
1,Gi(Ω)× RN → [Lpi(·)(Ω)]N

(4.2) Ji(σi, φi)(x) =


∇σi(x) if σi(x) > σi(x),

φi(x) if σi(x) ≤ σi(x) ≤ σi(x),

∇σi(x) if σi(x) < σi(x),

and J ′
i :W

1,Gi(Ω)× RN → [Lpi(·)(Ω)]N

(4.3) J̃i(σi, φi)(x) =


∇σi(x) if σi(x) ≥ σi(x),

φi(x) if σi(x) < σi(x) < σi(x),

∇σi(x) if σi(x) ≤ σi(x).

For the convenience, we denote Ji(σi, φi)(x) (resp. J̃i(σi, φi)(x)) by Jiφi (resp. J̃iφi) in the sequel.
As before, we mention that η1, η1 ∈ Lτ1(·)(Ω) and ζ1, ζ1 ∈ Lθ1(·)(Γ1) are the functions given in

Definitions 2.13 and 2.14 with σ = (σ1, σ2) and σ = (σ1, σ2) such that η1 ∈ f1(x, σ1, T2σ2,∇σ1, J̃2φ2),

η
1

∈ f1(x, σ1, T2σ2,∇σ1, J̃2φ2) as well as ζ1 ∈ fΓ1(x, σ1, T2σ2), ζ1 ∈ fΓ1(x, σ1, T2σ2). Now, we

construct the following truncation function f01 : Ω× R× R× RN × RN → 2R:
(4.4)

f01 (x, σ1, σ2, φ1, φ2) =



{η1} if σ1 > σ1,

conv[f1(x, σ1, T2σ2,∇σ1, J̃2φ2) ∪ f1(x, σ1, T2σ2, φ1, J̃2φ2)

∪f1(x, σ1, T2σ2, φ1, J2φ2)] if σ1 = σ1,

conv[f1(x, σ1, T2σ2, φ1, J̃2φ2) ∪ f1(x, σ1, T2σ2, φ1, J2φ2)] if σ1 < σ1 < σ1,

conv[f1(x, σ1, T2σ2,∇σ1, J̃2φ2) ∪ f1(x, σ1, T2σ2, φ1, J̃2φ2)

∪f1(x, σ1, T2σ2, φ1, J2φ2)] if σ1 = σ1,

{η
1
} if σ1 < σ1,

where conv(S) is the convex hull of S ⊂ R. and f0Γ1
1 : Ω× R× R → 2R as

(4.5) f0Γ1
(x, σ1, σ2) =


{ζ1} if σ1 > σ1,

fΓ1
(x, σ1, T2σ2) if σ1 ≤ σ1 ≤ σ1,

{ζ
1
} if σ1 < σ1.

Likewise, we can define the truncation functions f02 (x, σ1, σ2, φ1, φ2) and f
0
Γ2
(x, σ1, σ2).

Next, we are going to verify that f0i and f0Γi
satisfy hypotheses (H2). Using the same procedure of to

the proof of [11, Theorem 7.13], one can show f01 is graph measurable as well as f01 (x, σ1, σ2, φ1, φ2) ∈
K(R) for a.e. x ∈ Ω and for all (σ1, σ2, φ1, φ2) ∈ R2N+2. It remains to demonstrate that f01 (x, ·, ·, ·, ·)
is upper semicontinuous for all (σ1, σ2, φ1, φ2) in R2N+2. Let x ∈ Ω be any point fulfilling η1(x) ∈
f1(x, σ1(x), T2σ2(x),∇σ1(x), J̃2φ2(x)) and η

1
(x) ∈ f1(x, σ1(x), T2σ2(x),∇σ1(x), J̃2φ2(x)). Suppose

that V ⊂ R is an open set being such that f01 (x, σ1, σ2, φ1, φ2) ⊂ V. We need to find δ > 0 satisfying:
for (v1, v2, l1, l2) ∈ R2N+2 with |(σ1, σ2, φ1, φ2)− (v1, v2, l1, l2)| < δ, there holds f01 (x, v1, v2, l1, l2) ⊂ V.
By the upper semicontinuity of f1(x, ·, ·, ·, ·) we can select η1 to be the function given in Defini-

tion 2.13 with respect to supersolution σ = (σ1, σ2) satisfying η1 ∈ f1(x, σ1, T2σ2,∇σ1, J̃2φ2) ∩
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f1(x, σ1, T2v2,∇σ1, J̃2l2) if |(σ1, σ2, φ1, φ2) − (v1, v2, l1, l2)| < δ with δ > 0 small enough. Now, we
discuss the following several cases.

• If σ1 > σ1, then f
0
1 (x, σ1, σ2, φ1, φ2) = η(x) ∈ V. Select δ ∈ (0, σ1−σ1(x)), if |(σ1, σ2, φ1, φ2)−

(v1, v2, l1, l2)| < δ we see that v1 > σ1. Hence, f01 (x, v1, v2, l1, l2) = {η(x)} = f01 (x, σ1, σ2, φ1, φ2) ⊂
V. If σ1 < σ1, the proof is similar.

• When σ1 < σ1 < σ1, we have f
0
1 (x, σ1, σ2, φ1, φ2) = conv[f1(x, σ1, T2σ2, φ1, J̃2φ2)∪f1(x, σ1, T2σ2,

φ1, J2φ2)] ⊂ V, so f1(x, σ1, T2σ2, φ1, J̃2φ2) ⊂ V and f1(x, σ1, T2σ2, φ1, J2φ2) ⊂ V. Let δ1 =
min{σ1−σ1, σ1−σ1} > 0. If |(σ1, σ2, φ1, φ2)− (v1, v2, l1, l2)| < δ1, then we have σ1 < v1 < σ1.

Hence, f01 (x, v1, v2, l1, l2) = conv[f1(x, v1, T2v2, l1, J̃2l2)∪f1(x, v1, T2v2, l1, J2l2)]. By the upper
semicontinuity of f1(x, ·, ·, ·, ·), we can find δ2 such that if |(σ1, σ2, φ1, φ2)− (v1, v2, l1, l2)| < δ2
and f1(x, σ1, σ2, φ1, φ2) ⊂ V, then it holds f1(x, v1, v2, l1, l2) ⊂ V. Under the situation that
σ1 < v1 < σ1, we consider some subcases:
(i) If the case σ2 > σ2 happens. Let δ3 ∈ (0, σ2 − σ2) and δ = min{δ1, δ2, δ3}, thus

v2 > σ2. So, it yields |(σ1, T2σ2, φ1, J̃2φ2) − (v1, T2v2, l1, J̃2l2)| = |(σ1, σ2, φ1,∇σ2) −
(v1, σ2, l1,∇σ2)| ≤ |(σ1, σ2, φ1, φ2) − (v1, v2, l1, l2)| < δ ≤ δ2. Similarly, it is valid
|(σ1, T2σ2, φ1, J2φ2)−(v1, T2v2, l1, J2l2)| < δ2. Taking the upper semicontinuity of f1(x, ·, ·, ·, ·)
into account, we get f01 (x, v1, v2, l1, l2) = conv[f1(x, v1, T2v2, l1, J̃2l2)∪f1(x, v1, T2v2, l1, J2l2)] ⊂
V. When σ2 > σ2, the proof is similar.

(ii) Under the assumption σ2 = σ2 = σ2, let δ = min{δ1, δ2}. We could show that v2 = σ2

or v2 > σ2. If v2 = σ2, then one has |(σ1, T2σ2, φ1, J̃2φ2) − (v1, T2v2, l1, J̃2l2)| =
|(σ1, σ2, φ1,∇σ2) − (v1, σ2, l1,∇σ2)| ≤ |(σ1, σ2, φ1, φ2) − (v1, v2, l1, l2)| < δ ≤ δ2, and
|(σ1, T2σ2, φ1, J2φ2)−(v1, T2v2, l1, J2l2)| = |(σ1, σ2, φ1, φ2)−(v1, σ2, l1, l2)| ≤ |(σ1, σ2, φ1, φ2)−
(v1, v2, l1, l2)| < δ2, thus f

0
1 (x, v1, v2, l1, l2) ⊂ V. When v2 > σ2, it implies |(σ1, T2σ2, φ1,

J̃2φ2)−(v1, T2v2, l1, J̃2l2)| = |(σ1, T2σ2, φ1, J̃2φ2)−(v1, T2v2, l1, J2l2)| = |(σ1, σ2, φ1,∇σ2)−
(v1, σ2, l1,∇σ2)| ≤ |(σ1, σ2, φ1, φ2)−(v1, v2, l1, l2)| < δ ≤ δ2, which indicates that f01 (x, v1,
v2, l1, l2) ⊂ V.

(iii) Suppose that σ2 = σ2 > σ2, let δ4 ∈ (0, σ2 − σ2). It could observe that it holds v2 < σ2,
or v2 = σ2 or v2 > σ2. If v2 < σ2, let δ = min{δ1, δ2, δ4}, then |(σ1, σ2, φ1, φ2) −
(v1, v2, l1, l2)| < δ implies v2 > σ2, i.e., |(σ1, T2σ2, φ1, J2φ2) − (v1, T2v2, l1, J̃2l2)| = |(σ1,
T2σ2, φ1, J2φ2)−(v1, T2v2, l1, J2l2)| = |(σ1, σ2, φ1, φ2)−(v1, v2, l1, l2)| = |(σ1, σ2, φ1, φ2)−
(v1, v2, l1, l2)| < δ ≤ δ2. So, f01 (x, v1, v2, l1, l2) ⊂ V. If v2 = σ2, from the proof

of the case (ii), we can see that |(σ1, T2σ2, φ1, J̃2φ2) − (v1, T2v2, l1, J̃2l2)| < δ2 and
|(σ1, T2σ2, φ1, J2φ2)−(v1, T2v2, l1, J2l2)| < δ2, so f

0
1 (x, v1, v2, l1, l2) ⊂ W. Likewise, if v2 >

σ2, then |(σ1, T2σ2, φ1, J̃2φ2)−(v1, T2v2, l1, J̃2l2)| = |(σ1, T2σ2, φ1, J2φ2)−(v1, T2v2, l1, J2l2)| <
δ2. Therefore, f01 (x, v1, v2, l1, l2) ⊂ V. For the case σ2 = σ2 < σ2, the proof is all most
the same.

(iv) If σ2 < σ2 < σ2 is true, then let δ = min{δ1, δ2, σ2 − σ2, σ2 − σ2} and there hold

σ2 < v2 < σ2 and |(σ1, T2σ2, φ1, J̃2φ2) − (v1, T2v2, l1, J̃2l2)| = |(σ1, T2σ2, φ1, J2φ2) −
(v1, T2v2, l1, J2l2)| = |(σ1, σ2, φ1, φ2)−(v1, v2, l1, l2)| < δ ≤ δ2. This means f01 (x, v1, v2, l1, l2) ⊂
V.

• Assume that σ1 = σ1, we know that f01 (x, σ1, σ2, φ1, φ2) = conv[f1(x, σ1, T2σ2,∇σ1, J̃2φ2) ∪
f1(x, σ1, T2σ2, φ1, J̃2φ2) ∪ f1(x, σ1, T2σ2, φ1, J2φ2)]. There hold

(4.6) f1(x, σ1, T2σ2,∇σ1, J̃2φ2) ⊂ V,

(4.7) f1(x, σ1, T2σ2, φ1, J̃2φ2) ⊂ V,
and

(4.8) f1(x, σ1, T2σ2, φ1, J2φ2) ⊂ V.
Then, we consider two subcases, that is, σ1 = σ1(x) = σ1(x) or σ1 = σ1(x) > σ1(x). On
the one hand, if σ1 = σ1(x) = σ1(x), by (4.6), (4.7) and (4.8) along with the upper semi-
continuity of f1(x, ·, ·, ·, ·), employing the same method above one can find δ′ > 0 such that
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|(σ1, σ2, φ1, φ2)−(v1, v2, l1, l2)| < δ′, namely, |(x, σ1, T2σ2,∇σ1, J̃2φ2)−(x, σ1, T2v2,∇σ1, J̃2l2)| <
δ′, |(x, σ1, T2σ2, φ1, J̃2φ2)−(x, v1, T2v2, l1, J̃2l2)| < δ′ and |(x, σ1, T2σ2, φ1, J2φ2)−(x, v1, T2v2, l1, J2l2)| <
δ′. Hence, we have

(4.9) f1(x, σ1, T2v2,∇σ1, J̃2l2) ⊂ V,

(4.10) f1(x, v1, T2v2, l1, J̃2l2) ⊂ V,
and

(4.11) f1(x, v1, T2v2, l1, J2l2) ⊂ V.
Let 0 < δ ≤ δ′ and |(σ1, σ2, φ1, φ2)− (v1, v2, l1, l2)| < δ, if v1 = σ1 = σ1(x) = σ1(x), we deduce

f01 (x, v1, v2, l1, l2) = conv[f1(x, σ1, T2v2,∇σ1, J̃2l2) ∪ f1(x, v1, T2v2, l1, J̃2l2) ∪ f1(x, v1, T2v2, l1,
J2l2)] ⊂ V. If v1 > σ1 = σ1(x), then f

0
1 (x, v1, v2, l1, l2) = η1 ∈ f1(x, σ1, T2v2,∇σ1, J̃2l2) ⊂ V.

However, when v1 < σ1(= σ1), the desired conclusion can be obtained by using the same ways.
On the other hand, if σ1 = σ1(x) > σ1(x), let δ = min{δ′, σ1 − σ1} > 0 and |(σ1, σ2, φ1, φ2)−
(v1, v2, l1, l2)| < δ, we see that v1 > σ1. In this situation, we can see that v1 < σ1, or

v1 = σ1 or v1 > σ1. If v1 < σ1, then f01 (x, v1, v2, l1, l2) = conv[f1(x, v1, T2v2, l1, J̃2l2) ∪
f1(x, v1, T2v2, l1, J2l2)] ⊂ V. If v1 = σ1, we use (4.9) and (4.10) to get f01 (x, v1, v2, l1, l2) =

conv[f1(x, σ1, T2v2, ∇σ1, J2l2) ∪ f1(x, v1, T2v2, l1, J̃2l2) ∪ f1(x, v1, T2v2, l1, J2l2)] ⊂ V. When

v1 > σ1, then f01 (x, v1, v2, l1, l2) = η1 ∈ f1(x, σ1, T2v2,∇σ1, J̃2l2) ⊂ V. Under the condition
σ1 = σ1, it could be proved directly by using the uppermicontinuity of f01 . Likewise, it could
show the upper semicontinuity of f02 , f

0
Γ1

and f0Γ2
.

Additionally, we discuss another truncation function f11 : Ω × R × R × RN × RN → 2R which is
defined by

(4.12) f11 (x, σ1, σ2, φ1, φ2) =


{η1} if σ1 > σ1,

f1(x, σ1, T2σ2, φ1, J2φ2) if σ1 ≤ σ1 ≤ σ1,

{η
1
} if σ1 < σ1.

Also, f12 : Ω × R × R × RN × RN → 2R can be defined in a similar way. Despite f1i is not upper
semicontinuous, however, we could employ the similar arguments given in Theorem 7.13 of [11] to find
that f0i (x, σ1(x), σ2(x),∇σ1(x),∇σ2(x)) = f1i (x, σ1(x), σ2(x),∇σ1(x),∇σ2(x)) for a.a. x ∈ Ω. So, we
can replace f0i (x, σ1(x), σ2(x),∇σ1(x),∇σ2(x)) with f1i (x, σ1(x), σ2(x),∇σ1(x),∇σ2(x)) in the sequel,
and vice-versa.

Invoking conditions (H3), we deduce that

(4.13)

sup{|w| : w ∈ f0i (x, σ1, σ2, φ1, φ2)}

≤gΩi (x) + κi

(
|φ1|

p1(x)

τ′
i
(x) + |φ2|

p2(x)

τ′
i
(x)

)
+ κi

2∑
k=1

(
|∇σk|

pk(x)

τ′
i
(x) + |∇σk|

pk(x)

τ′
i
(x)

)
+ |ηi(x)|+ |η

i
(x)|

≤γΩi (x) + Cκi

(
|φ1|

p1(x)

τ′
i
(x) + |φ2|

p2(x)

τ′
i
(x)

)
for a.a. x ∈ Ω and all (σ1, σ2, φ1, φ2) ∈ R2N+2, with γΩi (x) = gΩi (x)+κi

∑2
k=1

(
|∇σk|

pk(x)

τ′
i
(x) + |∇σk|

pk(x)

τ′
i
(x)

)
+

|ηi(x)|+ |η
i
(x)| which belongs to Lτ ′

i(·)(Ω).
Analogously, there holds

(4.14) sup{|w| : w ∈ f0Γi
(x, σ1, σ2)} ≤ gΓi

i (x) + |ζi(x)|+ |ζ
i
(x)| = γΓi

i (x)

for a.a. x ∈ Γi and for all σi ∈ R, with γΓi
i ∈ Lθ′

i(·)(Γi).
From above, we see that for i = 1, 2, f0i and f0Γi

satisfy (H1) and (H2). Then, we define F0
i (σ) =

I∗
τi(·)f

0
i (x, σ1, σ2, φ1, φ2), and F0

Γi
(σ) = I∗

θi(·)f
0
Γi
(x, σ1, σ2, φ1, φ2)Iθi(·). By the proof of Proposition

3.1, we see that F0 = (F0
1 ,F0

2 ) and F0Γ = (F0
Γ1
,F0

Γ2
) : W → K(W∗) are bounded and pseudomonotone.
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Moreover, for i = 1, 2 we give the truncation-regularization functions bi, di : Ω×R → R formulated
by

(4.15) bi(x, y) =


[y − σi]

qi(x)−1 log(e+ α|y|) if y > σi(x),

0 if σi(x) ≤ y ≤ σi(x),

−[σi − y]qi(x)−1 log(e+ α|y|) if y < σi(x),

and

(4.16) di(x, y) =


[y − σi]

τi(x)−1 if y > σi(x),

0 if σi(x) ≤ y ≤ σi(x),

−[σi − y]τi(x)−1 if y < σi(x).

It is not hard to find a constant c1,i > 0 satisfying

(4.17) |bi(x, y)| ≤ c1,i|y|qi(x)−1 log(e+ α|y|) + c1,i

(
|σi|qi(x)−1 + |σi|qi(x)−1

)
log(e+ α|y|)

for a.a. x ∈ Ω, all y ∈ R. But, from Proposition 2.3, for µi(·) ∈ L∞(Ω) and εi > 0 with qi(·)+εi < p∗i (·)
we see that, for i = 1, 2, W 1,Gi(Ω) ↪→↪→ Lqi(·)+εi(Ω) ↪→ LGi(Ω). Set ϵ = min{ε1, ε2}, we can find
0 < ηϵ < 1 small enough such that for all y ∈ R it holds that

(4.18) log(e+ α|y|) ≤ c2 + Cα|y|ηϵ

with some constant c2 > 0. Moreover, by virtue of σi, σi ∈ W 1,Gi(Ω) and W 1,Gi(Ω) ↪→ Lτi(·)(Ω), we
have

(4.19) |di(x, y)| ≤ ωi(x) + c3,i|y|τi(x)−1,

for a.a. x ∈ Ω, all y ∈ R, with c3,i > 0, ωi ∈ Lτ ′
i(·)(Ω). Furthermore, there holds

(4.20)

∫
Ω

|σi|qi(x) log(e+ α|σi|)dx ≥
∫
Ω

|σi|pi(x) log(e+ α|σi|)dx− Cα|Ω|

for all σi ∈ Lqi(·)(Ω). Therefore, we define the mapping Bi : L
qi(·)+εi(Ω) → L(qi(·)+εi)

′
(Ω) as

(4.21) ⟨Bi(σi), vi⟩ =
∫
Ω

bi(x, σi)vi dx for all σi, vi ∈ Lqi(·)+εi(Ω),

which is continuous and bounded. Along with the fact that Iqi(·) :W 1,Gi(Ω) ↪→ Lqi(·)+εi(Ω) is compact,

we see that I∗
qi(·)BiIqi(·) :W 1,Gi(Ω) →W 1,Gi(Ω)∗ turns out to be bounded and completely continuous,

which indicates the pseudomonotonicity and boundedness.
Similarly, we can define Di : L

τi(·)(Ω) → Lτ ′
i(·)(Ω) as

(4.22) ⟨Di, vi⟩ =
∫
Ω

di(x, σi)vi dx for all σi, vi ∈ Lτi(·)(Ω),

which is also continuous and bounded. Analogously, since Iτi(·) : W 1,Gi(Ω) ↪→ Lτi(·)(Ω) is compact,

we obtain the boundedness and pseudomonotonicity for I∗
τi(·)DiIτi(·) :W 1,Gi(Ω) →W 1,Gi(Ω)∗.

Invoking the same method as in the proof of [36, Theorem 3.4], for zi ∈W 1,Gi fixed, we have

⟨I∗
qi(·)BiIqi(·)(σi), σi − zi⟩ =⟨Bi(σi), σi − zi⟩L(qi(·)+εi)

′
(Ω),Lqi(·)+εi (Ω)

=

∫
Ω

bi(x, σi)(σi − zi)dx

≥a1,i
∫
Ω

Gi(x, |σi|)dx− C, for all σi ∈W 1,Gi(Ω),

(4.23)
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and

⟨I∗
τi(·)DiIτi(·)(σi), σi − zi⟩ =⟨Di(σi), σi⟩Lτ′

i
(·)(Ω),Lτi(·)(Ω)

=

∫
Ω

di(x, σi)(σi − zi)dx

≥a2,i
∫
Ω

|σi|τi(·)dx− C, for all σi ∈W 1,Gi(Ω).

(4.24)

Define λ = (λ1, λ2) with λi > 0(i = 1, 2), then let B(σ) =
(
I∗
q1(·)B1Iq1(·)(σ1), I∗

q2(·)B2Iq2(·)(σ2)
)
and

λD(σ) =
(
λ1I∗

τ1(·)D1Iτ1(·)(σ1), λ2I∗
τ2(·)D2Iτ2(·)(σ2)

)
. We set A(σ) = (A1(σ1), A2(σ2)) with Ai being

given by (2.3). Applying Proposition 2.6, we see that A : W → W∗ is continuous, bounded, strictly
monotone and of type (S+). Moreover, the following representations will be used in the sequel

⟨A(σ), v⟩W =

2∑
i=1

∫
Ω

G′
i(x, |∇σi|)
|∇σi|

∇σi · ∇vidx,

⟨B(σ), v⟩W =

2∑
i=1

∫
Ω

bi(x, σi)vidx,

⟨D(σ), v⟩W =

2∑
i=1

∫
Ω

di(x, σi)vidx.

(4.25)

In what follows, set η(x) = (η1(x), η2(x)) as well as ζ(x) = (ζ1(x), ζ2(x)). Next, for i = 1, 2, let us

focus on the auxiliary variational inequality: find σ = (σ1, σ2) ∈ K = (K1,K2), ηi ∈ Lτ ′
i(·)(Ω), ζi ∈

Lθ′
i(·)(Γi) such that

(4.26)

{
ηi(x) ∈ f0i (x, σ1(x), σ2(x),∇σ1(x),∇σ2(x)) for a.a. x ∈ Ω

ζi(x) ∈ f0Γi
(x, σ1(x), σ2(x),∇σ1(x),∇σ2(x)) for a.a. x ∈ Γi,

and

(4.27)

⟨Aσ, v − σ⟩+
2∑

i=1

∫
Ω

ηi(vi − σi)dx+

2∑
i=1

∫
Γi

ζi(vi − σi)dσ + ⟨B(σ), v⟩+ ⟨λD(σ), v⟩

=

2∑
i=1

∫
Ω

G′
i(x, |∇σi|)
|∇σi|

∇σi · ∇vidx+

2∑
i=1

∫
Ω

ηi(vi − σi)dx+

2∑
i=1

∫
Γi

ζi(vi − σi)dς

+

2∑
i=1

∫
Ω

bi(x, σi)vidx+

2∑
i=1

λi

∫
Ω

di(x, σi)vidx

≥ 0 for all (v1, v2) ∈ K.

The above inequality equals to: find σ ∈ K satisfying〈
Aσ + η̃ + ζ̃ + B(σ) + λD(σ), v − σ

〉
≥ 0 for all v ∈ K,

in which η̃ = (η̃1, η̃2) with η̃i = I∗
τi(·)ηi ∈ F0

i (σ) =
[
I∗
τi(·)f̃

0
i

]
(σ1, σ2,∇σ1,∇σ2) and ζ̃ = (ζ̃1, ζ̃2) with

ζ̃i = I∗
θi(·)ζiIθi(·) ∈ F0

Γi
(σ) =

[
I∗
θi(·)f̃

0
Γi
Iθi(·)

]
(σ1, σ2).

It is clear that solving the variational inequality (4.27) is equivalent to find σ = (σ1, σ2) with
σi ∈ D (∂IKi

), ξ = (ξ1, ξ2) with ξi ∈ ∂IKi
(σi), and

η̃i = I∗
τi(·)ηi ∈ F0

i (σ), ζ̃i = I∗
θi(·)ζiIθi(·) ∈ F0

Γi
(σ)

fulfilling

(4.28) A(σ, ξ, η̃, ζ̃) := Aσ + ξ + η̃ + ζ̃ + B(σ) + λD(σ) = 0 in W∗.
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For each i = 1, 2, ∂IKi
is maximal monotone. Hence, ∂IK = (∂IK1

, ∂IK2
) is maximal monotone

and

A+ F0 + F0Γ + B + λD : W → 2W(Ω)∗

is bounded and pseudomonotone. By using Corollary 3.3, we can establish the existence result under
the following coercive framework: there exists z = (z1, z2) ∈ K such that

(4.29) lim
∥σ∥W→∞

σ∈K

 inf
ξ∈∂IK(σ)
η̃∈F0(σ)

ζ̃∈F0Γ(σ)

〈
A
(
σ, ξ, η̃, ζ̃

)
, σ − z

〉
 = ∞.

For any fixed z ∈ K and all σ ∈ K, there holds ⟨ξ, σ − z⟩ = ⟨ξ1, σ1 − z1⟩+ ⟨ξ2, σ2 − z2⟩ ≥ 0. Since for
any ξi ∈ (∂IKi

) (σi) we have 0 = IKi
(zi)− IKi

(σi) ≥ ⟨ξi, zi − σi⟩. This indicates that (4.29) is valid.
So, we only need to demonstrate that as ∥σ∥W → ∞ with σ ∈ K there holds

(4.30) inf
η̃∈F0(σ)

ζ̃∈F0Γ(σ)

〈
Â
(
σ, η̃, ζ̃

)
, σ − z

〉
→ ∞,

in which

Â(σ, η̃, ζ̃) := Aσ + η̃ + ζ̃ + B(σ) + λD(σ),

and η̃ = (η̃1, η̃2)(resp. ζ̃ = (ζ̃1, ζ̃2)), recalling that η̃i = I∗
τi(·)ηi ∈ F0

i (σ) =
[
I∗
τi(·)f̃

0
i

]
(σ1, σ2,∇σ1∇σ2)(resp. ζ̃i =

I∗
θi(·)ζIθi(·) ∈ F0

Γi
(σ) =

[
I∗
θi(·)f̃

0
Γi
Iθi(·)

]
(σ1, σ2)) with ηi ∈ f̃0i (σ1, σ2)(resp. ζi ∈ f̃0Γi

(σ1, σ2)).

Using (4.13), we infer that for all ηi(x) ∈ f0i (x, σ1, σ2,∇σ1,∇σ2), there holds |ηi| ≤ γΩi (x) +

Cκi

(
|∇σ1|

p1(x)

τ′
i
(x) + |∇σ2|

p2(x)

τ′
i
(x)

)
∈ Lτ ′

i(·)(Ω). This derives from (4.14) that

(4.31)

|⟨η̃, σ − z⟩| =
2∑

i=1

∣∣∣∣∫
Ω

ηi(σi − zi)dx

∣∣∣∣
≤
∫
Ω

(
γΩ1 (x) + Cκ1

|∇σ1|
p1(x)

τ′
1(x) + Cκ1

|∇σ2|
p2(x)

τ′
1(x)

)
(|σ1|+ |z1|) dx

+

∫
Ω

(
γΩ2 (x) + Cκ2 |∇σ1|

p1(x)

τ′
2(x) + Cκ2 |∇σ2|

p2(x)

τ′
2(x)

)
(|σ2|+ |z2|) dx

≤2

2∑
i=1

∫
Ω

ε|∇σi|pi(x)dx+ 2

2∑
i=1

C(ε, κi, τ
′
i)

∫
Ω

|σi|τi(x) + |zi|τi(x)dx

+

2∑
i=1

(∫
Ω

|σi|τi(x)dx+ C(1, τi)

∫
Ω

[
γΩi (x)

]τ ′
i(x) dx+

∫
Ω

γΩi (x)|zi|dx
)

≤
2∑

i=1

(∫
Ω

2ε|∇σi|pi(x) + (2C(ε, κi, τ
′
i) + 1)|σi|τi(x)dx+ Ci

)
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and

(4.32)

∣∣∣〈ζ̃, σ − z
〉∣∣∣ = 2∑

i=1

∣∣∣∣∫
Γi

ζi(σi − zi)dς

∣∣∣∣
≤

2∑
i=1

(∥∥∥γΓi
i

∥∥∥
θ′
i(·),Γi

(
∥σi∥θi(·),Γi

+ ∥zi∥θi(·),Γi

))

≤
2∑

i=1

(
Ci

(
∥σi∥θi(·),Γi

+ 1
))

≤ C(∥σ∥W + 1).

Recall that for i = 1, 2, the potential functional with respect to Ai defined by

Ii(σi) =

∫
Ω

[
|∇σi|pi(x) + µ(x)|∇σi|qi(x)

]
log(e+ α|∇σi|)dx =

∫
Ω

Gi(x, |∇σi|)dx,

is convex and satisfies

(4.33) ⟨Ai(σi), σi − zi⟩ ≥ Ii(σi)− Ii (zi) = Ii(σi)− C.

Taking (4.31)–(4.33) as well as inequality (4.23) into account and selecting λi > 0 such that λi >
a−1
2,i [2C(ε, κi, τ

′
i) + 1], we know that

(4.34)

〈
Aσ + η̃ + ζ̃ + B(σ) + λD(σ), σ − z

〉
≥min {1− 2ε, a1,1, a1,2}

2∑
i=1

∫
Ω

[
(|∇σi|pi(x) + µ(x)|∇σi|qi(x)) log(e+ α|∇σi|)

+(|σi|pi(x) + µ(x)|σi|qi(x)) log(e+ α|σi|)
]
dx− C(∥σ∥W + 1)

=min {1− 2ε, a1,1, a1,2}
2∑

i=1

∫
Ω

Gi(x, |∇σi|) + Gi(x, |σi|)dx− C(∥σ∥W + 1)

for any σ ∈ K, η̃ ∈ F0(σ) and ζ̃ ∈ F0Γ(σ). Furthermore, for i = 1, 2, we introduce operators
Ji :W

1,Gi(Ω) →W 1,Gi(Ω)∗:

(4.35) ⟨Ji(σi), vi⟩ =
∫
Ω

G′
i(x, |∇σi|)
|∇σi|

∇σi · ∇vidx+

∫
Ω

G′
i(x, |σi|)
|σi|

σi · vidx,

for all σi, vi ∈W 1,Gi(Ω). Referring to [54, Proposition 3.5], we know that Ji is coercive, that is,

lim
∥σi∥1,Gi

→∞

1

∥σi∥1,Gi

∫
Ω

Gi(x, |∇σi|) + Gi(x, |σi|)dx = ∞.

This associating (4.34) with ε < 1
2 derives (4.30). Hence, using Corollary 3.3, we can find σ, η and ζ

satisfying (4.26) and (4.27).
Next, we verify that for each i = 1, 2 it holds

(4.36) σi ≤ σ ≤ σi a.a. in Ω.

We, first, show that for any i = 1, 2 it holds σi ≤ σi. Take v = σ ∧ σ := σ − (σ − σ)
+
= ⟨σ1 − (σ1 −

σ1)
+, σ2 − (σ2 − σ2)

+⟩ ∈ K into (4.27), it yields

(4.37)

2∑
i=1

[
−
〈
Ai(σi), (σi − σi)

+
〉
−

∫
Ω

ηi (σi − σi)
+
dx−

∫
Γi

ζi (σi − σi)
+
dς

−
∫
Ω

[bi(x, σi) + λidi(x, σi)] (σi − σi)
+
dx

]
≥ 0.
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Then, there exist functions ηi ∈ Lτ ′
i(·)(Ω) and ζi ∈ Lθ′

i(·)(Γi) fulfilling assumptions (i)-(iii) of Definition

2.14. Taking v = σ + (σ − σ)
+
= σ ∨ σ ∈ σ ∨K into (iii) of Definition 2.14, we obtain

(4.38)

2∑
i=1

[〈
Aiσi, (σi − σi)

+
〉
+

∫
Ω

ηi (σi − σi)
+
dx+

∫
Γi

ζi (σi − σi)
+
dς

]
≥ 0.

Adding inequalities (4.37) and (4.38), one has

2∑
i=1

[〈
−Aiσi +Aiσi, (σi − σi)

+
〉
−

∫
Ω

(ηi − ηi) (σi − σi)
+
dx−

∫
Γi

(
ζi − ζi

)
(σi − σi)

+
dς

−
∫
Ω

[bi(x, σi) + λidi(x, σi)] (σi − σi)
+
dx

]
≥ 0.

Since for every i = 1, 2, Ai is strictly monotone, then〈
Aiσi −Aiσi, (σi − σi)

+
〉

=

∫
{x∈Ω :σi(x)≥σi(x)}

(
G′
i(x, |∇σi|)
|∇σi|

∇σi −
G′
i(x, |∇σi|)
|∇σi|

∇σi

)
· ∇ (σi − σi) dx ≥ 0.

Note that ∫
Ω

(ηi − ηi) (σi − σi)
+
dx

=

∫
{x∈Ω :σi(x)≥σi(x)}

(ηi − ηi) (σi − σi)
+
dx

=

∫
{x∈Ω :σi(x)≥σi(x)}

(ηi − ηi) (σi − σi)
+
dx

=0,

we infer ∫
Γi

(
ζi − ζi

)
(σi − σi)

+
dς

=

∫
{x∈Ω :σi(x)≥σi(x)}

(
ζi − ζi

)
(σi − σi)

+
dς

=

∫
{x∈Ω :σi(x)≥σi(x)}

(
ζi − ζi

)
(σi − σi)

+
dς

=0.

The inequalities above say that

0 ≤−
2∑

i=1

∫
Ω

[bi(x, σi) + λidi(x, σi)] (σi − σi)
+
dx

=−
2∑

i=1

∫
{x∈Ω :σi(x)>σi(x)}

[bi(x, σi) + λidi(x, σi)] (σi − σi) dx.

By (4.15) and (4.16), if σ(x) > σi(x), then it derives

bi(x, σi(x)) = [σi(x)− σi(x)]
qi(x)−1 log (e+ α|σi(x)|) ,

and

di(x, σi(x)) = [σi(x)− σi(x)]
τi(x)−1.
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Hence

(4.39)

0 ≤−
2∑

i=1

∫
{x∈Ω :σi(x)>σi(x)}

|σi(x)− σi(x)|qi(x)−1
[σi(x)− σi(x)] log(e+ α|σi(x)|) dx

−
2∑

i=1

λi

∫
{x∈Ω :σi(x)>σi(x)}

|σi(x)− σi(x)|τi(x)−1 [σi(x)− σi(x)] dx.

But, if σi(x) > σi(x), we have σi(x)− σi(x) > 0, also, log(e+α|σi(x)|) > 0. Recalling the fact λi > 0,
we can see that inequality (4.39) indicates that the measure of {x ∈ Ω : σi(x) > σi(x)} equals 0, hence
σi(x) ≤ σi(x) for a.a. x ∈ Ω. Analogously, the left side of inequality (4.36) holds true.

Inequalities (4.36) indicates σi ≤ σi ≤ σi a.a. in Ω∪Γi, bi(·, σi) = 0 in Ω, f0i (x, σ1(x), σ2(x),∇σ1,∇σ2) =
fi(x, σ1(x), σ2(x),∇σ1,∇σ2) for a.a. x ∈ Ω, and f0Γi

(x, σ1(x), σ2(x)) = fΓi
(x, σ1(x), σ2(x)) for a.a.

x ∈ Γi. Thus, σ is proved to be a weak solution to (1.1). □

Moreover, invoking the same arguments as in the proof of [12, Theorem 1.9] we get the compactness
of solution set of (1.1).

Theorem 4.2. If (H0), (H1) and (H3) hold. Denote by S the solution set of (1.1) between σ and σ,
then

(i) S ⊂ [σ, σ] is compact in W.
(ii) if the lattice conditions hold true

(4.40) S ∧K ⊂ K and S ∨K ⊂ K,

then each σ ∈ S is both a subsolution and a supersolution of (1.1).

5. A further discussion for Special case 1.1

This section is aimed at establishing the existence of a weak solution for Special cases 1.1 to 1.4 by
constructing suitable sub-supersolutions. We only show the existence result for Special case 1.1, since
the corresponding results for Special cases 1.2 to 1.4 could be proved by the similar ways.

If (H1) and (H2) hold true, we can reformulate multivalued functions fi and fΓi as

(5.1) fi(x, y1, y2, φ1, φ2) = [fia(x, y1, y2, φ1, φ2), fib(x, y1, y2, φ1, φ2)]

for all (x, y1, y2, φ1, φ2) ∈ Ω× R× R× RN × RN , and

(5.2) fΓi(x, y1, y2) = [fΓi,a(x, y1, y2), fΓi,b(x, y1, y2)]

for all (x, y1, y2) ∈ Γi×R×R, where for each i = 1, 2 functions fia(x, y1, y2, φ1, φ2), fib(x, y1, y2, φ1, φ2),
fΓi,a(x, y1, y2), fΓi,b(x, y1, y2) are single-valued functions. Thanks for (H1), if x 7→ σ(x) and x 7→
∇σ(x) are measurable, we see that for each i = 1, 2, x 7→ fia(x, σ1(x), σ2(x),∇σ1(x),∇σ2(x)),
x 7→ fib(x, σ1(x), σ2(x),∇σ1(x),∇σ2(x)), x 7→ fΓi,a(x, σ1(x), σ2(x)), x 7→ fΓi,b(x, σ1(x), σ2(x)), i = 1, 2
are measurable. Also, (y1, y2, φ1, φ2) 7→ fia(y1, y2, φ1, φ2), (y1, y2) 7→ fΓi,a(x, y1, y2) are lower semi-
continuous, (y1, y2, φ1, φ2) 7→ fib(x, y1, y2, φ1, φ2), (y1, y2) 7→ fΓi,b(x, y1, y2) are upper semicontinuous.

We suppose that the obstacle functions ϕ = (ϕ1, ϕ2), multivalued functions fi : Ω×R×R×RN ×RN

as well as fΓi : Γi × R× R enjoy the following condition.

(Hϕ) Assume that ϕ = (ϕ1, ϕ2) ∈ W and one can find cϕ > 0 satisfying

ϕi(x) ≤ cϕ,

for a.a. x ∈ Ω.
(Hf) There exist hi, ji ∈ R such that hi ≤ ji, ji ≥ cϕ, and

(5.3)

f1a(x, h1, y2, 0, φ2) ≤ 0, f1b(x, j1, y2, 0, φ2) ≥ 0, for a.a. x ∈ Ω,

f2a(x, y1, h2, φ1, 0) ≤ 0, f2b(x, y1, j2, φ1, 0) ≥ 0, for a.a. x ∈ Ω,

fΓ1,a(x, h1, y2) ≤ 0, fΓ1,b(x, j1, y2) ≥ 0, for a.a. x ∈ Γ1,

fΓ2,a(x, y1, h2) ≤ 0, fΓ2,b(x, y1, j2) ≥ 0, for a.a. x ∈ Γ2,
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for all (y1, y2) ∈ [h1, j1]× [h2, j2], all φi ∈ RN .

In Special case (1.12), Ki is given by

Ki =
{
σi ∈W 1,Gi(Ω) : σi(x) ≥ ϕi(x) a.a. in Ω

}
.

We are ready to show the following existence result to Special case (1.12).

Theorem 5.1. If (H0), (H1) and (Hf) hold. Assume that (H3) holds with σi := hi and σi := ji for
i = 1, 2. Then, for i = 1, 2, there exists at least a weak solution σ = (σ1, σ2) of problem (1.12) fulfilling
hi ≤ σi ≤ ji in Ω.

Proof. This theorem will be proved via Theorem 4.1, so we first construct a pair of sub-supersolutions
to (1.12). Set σi := hi and σi := ji, we claim that σ is a subsolution of (1.12), in the same time, σ is
a supersolution of (1.12). Since hypotheses (Hf) are satisfied, it is easy to see that σi ≤ σi. Firstly,
we are going to check conditions (i)-(iii) of Definition 2.13 to show that σ := (h1, h2) is a subsolution
for (1.12).

• For (i), by the definition of Ki we have hi ∨Ki ⊂ Ki for i = 1, 2.
• With respect to (ii), let η

1
(x) := f1a(x, h1, y2, 0, φ2), η2(x) := f2a(x, y1, h2, φ1, 0) and ζ1(x) :=

fΓ1,a(x, h1, y2), ζ2(x) := fΓ2,a(x, y1, h2), we see that η
1
(x) ∈ f1(x, h1, y2, 0, φ2), η2(x) ∈

f2(x, y1, h2, φ1, 0), ζ1(x) ∈ fΓ1
(x, h1, y2), ζ2(x) ∈ fΓ2

(x, y1, h2) and η
i
∈ Lr′i(·)(Ω), ζ

i
∈

Lι′i(·)(Γi) with 1 < ri(·) < p∗i (·) and 1 < ιi(·) < (pi)∗(·).
• As (iii), we need to verify that for each i = 1, 2 fixed, the following inequality

(5.4)

2∑
i=1

[
⟨Ai(hi), vi − hi⟩+

∫
Ω

η
i
(vi − hi) dx+

∫
Γi

ζ
i
(vi − hi) dς

]
≥ 0 for all vi ∈ hi ∧Ki,

where

⟨Aiσi, vi − σi⟩ =
∫
Ω

G′
i(x, |∇σi|)
|∇σi|

∇σi · ∇ (vi − σi) dx for all σi ∈W 1,Gi(Ω).

Because vi ∈ hi ∧Ki means vi = hi ∧ ψi = hi − (hi − ψi)
+

for any ψi ∈ Ki, we use the fact
∇hi = 0 to rewrite inequality (5.4) to the following one

(5.5)

2∑
i=1

[∫
Ω

η
i
(hi − ψi)

+
dx+

∫
Γi

ζ
i
(hi − ψi)

+
dς

]
≤ 0 for all ψi ∈ Ki.

Owing to (hi − ψi)
+ ∈

{
vi ∈W 1,Gi(Ω) : vi ≥ 0

}
, η

1
= f1a (·, h1, y2, 0, φ2) , η2 = f2a (·, y1, h2, φ1, 0),

and ζ
1
= fΓ1,a (·, h1, y2) , ζ2 = fΓ2,a (·, y1, h2), it could utilize (Hf) to find∫

Ω

f1a (x, h1, y2, 0, φ2) v1 dx+

∫
Ω

f2a (x, y1, h2, φ1, 0) v2 dx

+

∫
Γ1

fΓ1,a (x, h1, y2) v1 dς +

∫
Γ2

fΓ2,a (x, y1, h2) v2 dς ≤ 0,

for all v = (v1, v2) ∈ W with v ≥ 0, thus, (5.5) is verified.

This indicates that σ := (h1, h2) is a subsolution of (1.12).
Secondly, by checking the conditions of Definition 2.13 we verify that σ = (j1, j2) is a supersolution

of (1.12).

• For (i), thanks to ji ≥ cϕ ≥ ϕi(x) (that is, ji ∧Ki ⊂ Ki).

• With respect to (ii), let η1(x) := f1b(x, h1, y2, 0, φ2), η2(x) := f2b(x, y1, h2, φ1, 0) and ζ1(x) :=
fΓ1,b(x, h1, y2), ζ2(x) := fΓ2,b(x, y1, h2), then η1(x) ∈ f1(x, h1, y2, 0, φ2), η2(x) ∈ f2(x, y1, h2, φ1, 0),

ζ1(x) ∈ fΓ1
(x, h1, y2), ζ2(x) ∈ fΓ2

(x, y1, h2) and ηi ∈ Lr′i(·)(Ω), ζi ∈ Lι′i(·)(Γi) with 1 < ri(·) <
p∗i (·) and 1 < ιi(·) < (pi)∗(·).



VARIABLE EXPONENT DOUBLE PHASE ELLIPTIC INCLUSION SYSTEMS 25

• As (iii), we need to show that for i = 1, 2 fixed the inequality is available

(5.6)

2∑
i=1

[
⟨Ai(ji), vi − ji⟩+

∫
Ω

ηi(vi − ji)dx+

∫
Γi

ζi(vi − ji)dς

]
≥ 0 for all vi ∈ σi ∨Ki.

Indeed, for any vi ∈ ji ∨Ki it has vi = ji ∨ ψi = ji + (ψi − ji)
+, ψi ∈ Ki, and ∇ji = 0, then

(5.6) is equivalent to

(5.7)

2∑
i=1

[∫
Ω

ηi(ψi − ji)
+dx+

∫
Γi

ζi(ψi − ji)
+dς

]
≥ 0 for all ψi ∈ Ki.

Due to (ψi − ji)
+ ∈

{
vi ∈W 1,Gi(Ω) : vi ≥ 0

}
, it uses (Hf) to get∫

Ω

f1b (x, h1, y2, 0, φ2) v1 dx+

∫
Ω

f2b (x, y1, h2, φ1, 0) v2 dx

+

∫
Γ1

fΓ1,b (x, h1, y2) v1 dς +

∫
Γ2

fΓ2,b (x, y1, h2) v2 dς ≥ 0,

for all v = (v1, v2) ∈ W with v ≥ 0, which implies (5.7).

This leads to that σ = (j1, j2) is a supersolution of (1.12). Invoking Theorem 4.1, we show the
solvability of (1.12). □

Recalling the definition of K, we see that K satisfies the lattice condition (4.40). Therefore, it could
apply Theorem 4.2 to get the following results.

Corollary 5.2. Assume that the the same hypotheses of Theorem 5.1 are satisfied, then the solution
set S of (1.12) is compact in W.

Motivated by [25, Theorem 4.2], indeed, we can find more solutions to problem (1.12) by strength-
ening the hypotheses (Hf), that is, we make the following assumptions.

(Hf)’ For all n ∈ N and i = 1, 2, let h
(n)
i , j

(n)
i ∈ R be such that j

(n)
i ≥ cϕ,

(5.8) either h
(n)
i ≤ j

(n)
i < h

(n+1)
i or j

(n+1)
i < h

(n)
i ≤ j

(n)
i

and

(5.9)

f1a(x, h
(n)
1 , y2, 0, φ2) ≤ 0, f1b(x, j

(n)
1 , y2, 0, φ2) ≥ 0, for a.a. x ∈ Ω,

f2a(x, y1, h
(n)
2 , φ1, 0) ≤ 0, f2b(x, y1, j

(n)
2 , φ1, 0) ≥ 0, for a.a. x ∈ Ω,

fΓ1,a(x, h
(n)
1 , y2) ≤ 0, fΓ1,b(x, j

(n)
1 , y2) ≥ 0, for a.a. x ∈ Γ1,

fΓ2,a(x, y1, h
(n)
2 ) ≤ 0, fΓ2,b(x, y1, j

(n)
2 ) ≥ 0, for a.a. x ∈ Γ2,

for all (y1, y2) ∈ [h
(n)
1 , j

(n)
1 ]× [h

(n)
2 , j

(n)
2 ], all φi ∈ RN and all n ∈ N.

From [25, Theorem 4.2], we can get the following theorem.

Theorem 5.3. If (H0), (H1) and (Hf)’ hold true. Let (H3) hold for a.a. x ∈ Ω, for all yi ∈ [h
(n)
i , j

(n)
i ]

and for all φi ∈ RN with i = 1, 2. Then there exists a sequence of weak solutions σ(n) = (σ
(n)
1 , σ

(n)
2 ) to

problem (1.1) satisfying σ
(n)
i < σ

(n+1)
i (resp. σ

(n+1)
i < σ

(n)
i ) if j

(n)
i < h

(n+1)
i (resp. j

(n+1)
i < h

(n)
i ) for

all n ∈ N with i = 1, 2.

Proof. Utilizing Theorem 5.1 with hi = h
(n)
i and ji = j

(n)
i for all n ∈ N, we can find solutions

σ(n) = (σ
(n)
1 , σ

(n)
2 ) of (1.12) fulfilling h

(n)
i ≤ σ

(n)
i ≤ j

(n)
i with i = 1, 2 and n ∈ N. Moreover, by (Hf)’,

there hold σ
(n)
i ≤ j

(n)
i < h

(n+1)
i ≤ σ

(n+1)
i for a.a. x ∈ Ω if j

(n)
i < h

(n+1)
i . Similarly, we can proof the

results under the case that j
(n+1)
i < h

(n)
i . □
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In fact, there are a large of functions that satisfy the corresponding hypotheses in this paper. We
end this section to provide the following example for function f1, f2, fΓ1

and fΓ2
, more precisely, we

have the following example.

Example 5.4. Consider the following mutilvalued functions:

f1(x, y1, y2, φ1, φ2) = P1(y1) +
1

2
P2(y2) + c1|φ1|p1(x)−1 +

1

2
P2(|φ2|),

f2(x, y1, y2, φ1, φ2) =
1

2
P1(y1) + P2(y2) +

1

2
P1(|φ1|) + c2|φ2|p2(x)−1,

fΓ1
(x, y1, y2) = P1(y1) +

1

2
P2(y2) + u1(x),

fΓ2
(x, y1, y2) =

1

2
P1(y1) + P2(y2) + u2(x),

where P1, P2 : R → R are given by

(5.10) P1(y) =


[−2,−1] y = 4m− 1

2(y − 4m) y ∈ (4m− 1, 4m+ 1)

[1, 2] y = 4m+ 1

−y + 4m+ 2 y ∈ (4m+ 1, 4m+ 3) m ∈ Z,

and

(5.11) P2(y) =


[−2,−1] y = 4m− 2

2(y − 4m+ 1) y ∈ (4m− 2, 4m)

[1, 2] y = 4m

−y + 4m+ 1 y ∈ (4m, 4m+ 2) m ∈ Z,

ci > 0 and ui ∈ L∞(Γi) fulfilling |ui(x)| ≤ 1
2 for a.e. x ∈ Γi for i = 1, 2.

Note that for i = 1, 2, the multivalued functions fi and fΓi fulfill hypotheses (H1) and (H3).

Moreover, if we take h
(n)
1 = −1 + 4n, j

(n)
1 = 1 + 4n, h

(n)
2 = −2 + 4n and j

(n)
2 = 4n then the above

functions satisfy hypotheses (Hf)’ (so, they fulfill (Hf) as well).
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