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Abstract: This paper concerns the existence and multiplicity of solutions for the Schrédinger-Kirchhoff type
problems involving the fractional p—Laplacian and critical exponent. As a particular case, we study the fol-
lowing degenerate Kirchhoff-type nonlocal problem:

1| VP A2 u + VOO ulP2ul = [ufP?u + f(x, u) in RV,

1/p
llulla = // \u(x) ‘ljvf;)sl dxdy + /V(x)|u|1’dx

RN

where (-4)} is the fractional p-Laplacian with 0 < s < 1 < p < N/s, ps = Np/(N - ps) is the critical
fractional Sobolev exponent, A > 0 is a real parameter, 1 < 0 < ps/p, and f : RN x R — R is a Carathéodory
function satisfying superlinear growth conditions. For 8 € (1, p;/p), by using the concentration compactness
principle in fractional Sobolev spaces, we show that if f(x, t) is odd with respect to t, for any m € N* there
exists a A, > 0 such that the above problem has m pairs of solutions for all A € (0, An]. For 8 = ps/p, by
using Krasnoselskii’s genus theory, we get the existence of infinitely many solutions for the above problem
for A large enough. The main features, as well as the main difficulties, of this paper are the facts that the
Kirchhoff function is zero at zero and the potential function satisfies the critical frequency inf,cg V(x) = 0. In
particular, we also consider that the Kirchhoff term satisfies the critical assumption and the nonlinear term
satisfies critical and superlinear growth conditions. To the best of our knowledge, our results are new even
in p—Laplacian case.
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1 Introduction

In this article we concern with existence and multiplicity of solutions for critical Kirchhoff-type problems
involving the fractional p—Laplacian. More precisely, we consider

M(|Jul)AC-A)pu + V) ulP2u] = P 2u + f(x, u) in RY, (11)
1/p
_ lu(x) - u(y)P p
= (A [ MO xay [ veourax|
R2N RN

where ps = Np/(N-sp), N > spwiths € (0, 1), (-4); is the fractional p-Laplacian which (up to normalization
factors) may be defined for any x € RN as

S o) = 2 1i p() - 9P~ (9(x) - p(¥))
5900 -2)im | s dy

RM\B,(x)

forany ¢ € C3°(RN), where Bg(x) denotes the ball in RN centered at x with radius . For a simple introduction
about the fractional p—Laplacian, we refer to [1] and the references therein.

Furthermore, we always assume M, V and f satisfy the following assumptions:
(M) M € C(R, R) and there exist 8 € (1, ps/p) and 0 < mg < m; such that

mot® < M(t) < mi %! forall t € RS;

(V) V e CRY,R), V(xg) = min, v V(x) = 0 and there exists a constant h > 0 such that the Lebesgue
measure of set V" = {x € RN : V(x) < h} is finite; there is ¢ > 0 such that lim)| ., meas({x € Bo(y) :
V(x) < c}) = 0forany c € R";

(f1) f : RN xR — R s a Carathéodory function and there exists g € (6p, ps) such that for any & > 0 there
exists Ce > 0 and

If(x, &)| < Opelé|%71 + qCe|¢)97! fora.e. x € RN andall & € R;
(f>) There exists g1 > m10p/mg such that

q1F(x, &) < f(x, &)¢& forall (x, &) € RY xR,

where F(x, &) = foff(x, 7)dT, mgy and m; are the numbers given in (M);
(f3) There exists g, € (Op, ps) such that F(x, &) = ao|£|9 fora.e.x € RN and all ¢ € R.
Note that condition (V,), which is weaker than the coercivity assumption: V(x) — oo as |x| — oo, was first
introduced by Bartsch and Wang in [2] to conquer the lack of compactness.

In the last few years, great attention has been paid to the study of non-local fractional Laplacian prob-
lems involving critical nonlinearities. It is worth mentioning that the semilinear Laplace equation of elliptic
type involving critical exponent was investigated in the crucial paper of Brézis and Nirenberg [3]. After that,
many researchers dedicated to the study of several kinds of elliptic equations with critical growth in bounded
domains or in the whole space. For example, by variational techniques, Servadei and Valdinoci [4] showed
a Brézis—Nirenberg type result for non-local fractional Laplacian in bounded domains with homogeneous
Dirichlet boundary datum, see also [5] for further discussions. In [6], Ros-Oton and Serra considered nonex-
istence results for nonlocal equations involving critical and supercritical nonlinearities. Autuori and Pucci [7]
obtained a multiplicity result for fractional Laplacian problems in RY by using the mountain pass theorem
and the direct method in variational methods, in which one of two superlinear nonlinearities could be critical
or even supercritical.

Indeed, the interest in the study of partial differential equations involving the non-local fractional Lapla-
cian goes beyond the mathematical curiosity. This type of non-local operator comes to real world with many
different applications in a quite natural way, such as finance, ultra-relativistic limits of quantum mechanics,

Unauthenticated
Download Date | 8/16/19 5:16 PM



692 —— Minggqi Xiang et al., Superlinear Schrédinger—Kirchhoff type problems DE GRUYTER

materials science, water waves, phase transition phenomena, anomalous diffusion, soft thin films, minimal
surfaces and game theory, see for example [1, 8, 9] and the references therein. The literature on fractional
Laplace operators and their applications is quite large and interesting, here we just list a few, see [10-12]
and the references therein. For the basic properties of fractional Sobolev spaces and the study of fractional
Laplacian based on variational methods, we refer the readers to [1, 13]. It is worth pointing out that one of
the reasons that forced the rapid expansion of the fractional Laplacian results has been the nonlinear frac-
tional Schrédinger equation, which was proposed by Laskin [14, 15] as a result of expanding the Feynman
path integral, from the Brownian-like to the Lévy-like quantum mechanical paths.

In the last decade, the existence and multiplicity of solutions for the Kirchhoff-type elliptic equations
with critical exponents have attracted much interest of many scholars. For instance, we refer to [16—18] for
the setting of bounded domains; we collect also some articles, see [19-21] for the context set in the whole
space. In particular, Fiscella and Valdinoci [22] proposed a stationary Kirchhoff—type equation which models
the nonlocal aspect of the tension arising from nonlocal measurements of the fractional length of the string.
More precisely, they considered a model as follows:

‘N+ZS (12)

// \u(x) u(y)‘zdxdy (-A)°u = Af(x, u) + |u|2;’2u in Q

u= in RN\ Q,
where M(y) = a + By forall y = 0, here @ > 0, 8 = 0. Note that M is this type, problem (1.2) is called non-
degenerate if @ > 0 and B = 0, while it is named degenerate if « = 0 and B > 0, see [23] for some physical
motivation about degenerate Kirchhoff problems. For more details about the physical background of the frac-
tional Kirchhoff model, we refer to [22, Appendix A]. Afterwards, the fractional Kirchhoff-type problems have
been extensively investigated, for example, we refer to [24—27] for some recent results about non-degenerate
Kirchhoff-type problems.

In the following, let us recall some existence results about degenerate Kirchhoff-type fractional p—
Laplacian problems. By using the mountain pass theorem and Ekeland’s variational principle, Xiang et al.
[28] obtained the existence of two solutions for a nonhomogeneous Kirchhoff type problem driven by the
fractional p—Laplacian, where the nonlinearity is convex-concave, see [26] for related results obtained by the
same methods. In [29], Mingqi et al. investigated the existence of infinitely many solutions for Kirchhoff type
fractional p—Laplacian problems, in which the symmetric mountain pass theorem is applied to study the su-
plinear case and the Krasnoselskii’s genus theory is used to consider the sublinear case. In [23], Pucci et al.
studied the existence and multiplicity of entire solutions for a class of fractional p—Laplacian problems of
Kirchhoff type via variational methods and topological degree theory. In [30], Mingqi et al. considered the
multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p—Laplacian by
using the Nehari manifold method and the symmetric mountain pass theorem. Evidently, the above works
did not involve the critical case. For the critical case, with the help of Kajikiya’s new version of the symmet-
ric mountain pass lemma, the existence of infinitely many solutions for a critical problem similar to (1.1) is
proved in [31], see [32, 33] for more related results.

However, there are few results in the available literature on problems like problem (1.1). In particular, there
are no result on the multiplicity of solutions for problem (1.1). There is no doubt that we encounter serious
difficulties because of the lack of compactness and of the nonlocal nature of the fractional p—Laplacian. To
overcome the loss of compactness, Xiang et al. [34] extended the concentration compactness principle of
Lions [35] to the setting of fractional p—Laplacian in RY, and used it to get the existence of solutions for the
following critical p—Kirchhoff problem

(6-1)

a+b // [uC) - uy) P dxdy (-A)pulx) = WGP 2u() + Af() in RY,

|X — ‘N+ps
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pg
wherea = 0,b > 0,0 > 1, A > 0 is a parameter and f € L»-! (RM). In [36], Fiscella and Pucci studied the
following p—Kirchhoff problem involving critical Hardy-Sobolev nonlinearity

P

X2 Lo Af0cw) + g(x,w) inRY,

M(Ju[P)[(-A)5u + VO uP~>ul -

(N-a)p
N-ps

terms, and V ¢ C(RY, R) with inf, cpy V(x) 2 V > 0. Moreovet, the existence of infinitely many solutions for
problem (1.1) is investigated, assuming inf, gy V(x) = 0 and the subcritical nonlinear term f satisfies super-
linear growth condition. In [37], Byeon and Wang first studied the asymptotic behavior of positive solutions
to Schrodinger equations under the condition inf, cpv V(x) = 0, which is called critical frequency. In [38], Cao
and Noussair extended the results of Byeon and Wang, and studied multi-bump standing waves for nonlinear
Schrodinger equations. In this paper, we follow the ideas of [39-41]. Although the ideas were used before for
other problems, the adaptation of the procedure to our problem is not trivial because of the appearance of
degenerate Kirchhoff function and the nonlocal nature of the fractional p—Laplacian. For this, we need more
delicate estimates and computations.

To show our main results, we first give some notations. For A > 0, let W} be the closure of CB"(RN ) with
respect to the norm

where p;(a) = is the critical Hardy-Sobolev exponent with a € [0, ps), f and g are subcritical nonlinear

1/p
ulla = (A8 -+l )

where
1/p
_ [uC) —u@y)P
2
and
1/p
lullpw = | [ veorupax
N
Then (W}, || - ||1) is a uniformly convex Banach space, see [26] for the details. Moreover, under the condition

(V), for each A > 0 the embedding W — W*P(R") is continuous. Indeed, for each u € W,, we have

/|u|pdxs / [uPdx + / [uPdx
RN

{RN:V(x)=h} {RN:V(x)<h}
b
1 vy "
<4 / V0O |ulPdx + ‘{]R{N L V() < hy| % [P dx
{RN:V(x)zh} {RN:V(x)<h}

1 sy
<[ 7+ HRY V0 <hy ST ) Jul,

where S > 0 is defined as follows

p
u
S= in [ ]s’p,
ueDsr®V\{0} [uff.

where .
1/p;

ul: = /|u\psdx
N
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Thus,
14 p 1.1 RN . v h 1’1577:17 -1 p
[ulf p + |ulf < Z+H+|{ :V(x)<h}| rs S flully-

From this it follows that the embedding W) — W*P(RN) is continuous. Next we give the definition of solu-
tions for problem (1.1).

Definition 1.1. We say that u € W, is a (weak) solution of equation (1.1), if

-2 _
”uHP // [u(x) = u@) P~ (ulx) u(Y))(<p(x)—<p(y))dxdy+/V(x)|u|p'2u<pdx

x—y[Nors
RN

= / uPs 2 ugpdx + /f(x, u)pdx,
RN RN
for any ¢ € Wj.
Now we are in a position to state the first result of our paper as follows:

Theorem 1.1. Let (M), (V) and (f1)-(f;) hold. Then for any A > 0, there exists A" > O such that problem (1.1)
has a nontrivial solution u, for any A € (0, A") which satisfies

1
9 ps
/ [u2 () —w &P dxdy+/V(x)|u,1\pdxs (%) oI AT U (1.3)
RN

Cx—y[Nes moq1 - m16p

where 0 = q— (1 - ﬂ) + @ pl Assume additionally that f(x, t) is odd with respect to t, for any m € N, there
is Am > O such that problem (1.1) admits at least m pairs of solutions u, ;(i = 1, 2,--- , m) which satisfy (1.3)

whenever 0 < A < Ap,.

The proof of Theorem 1.1 is mainly based on the application of the concentration compactness lemma in
fractional Sobolev spaces developed by Xiang et al. in [34]. We show that the energy functional I, associated
to problem (1.1) satisfies (PS). condition for ¢ > 0 small and A > 0 small. To get the multiplicity of solutions
for problem (1.1), we find a special finite dimensional subspaces by which we construct sufficiently small
minimax levels. It is worth to point out that the authors in [42] just concerned with the case that M(t) =
a + bt? ! with a, b > 0, which just focused on the non-degenerate Kirchhoff problems, that is M(0) > 0.
Moreover, for the nonlinear term f, our assumption (f;) is more general than (h) and (h,) in [42].

Finally, we consider the critical case 8 = pg/p. To this aim, we assume the subcritical term f satisfies
following assumptions.
(f4) f : RN xR — Ris a Carathéodory function and there exists g € (p, ps) such that for any € > 0 there exists

Ce >0and
If(x, )] < pe|t|P™! + qCe|t|7* fora.e. x € RY andall t € R;

(f5) There exists q; € (p, ps) such that F(x, t) > ao|t|9* fora.e.x € RN and all t € R.

Theorem 1.2. Assume that M satisfies (M) with 6 = p3/p and 2 < p < N/s, and f(x, t) is odd with respect
to t and satisfies (f,) — (f5). Then problem (1.1) has infinitely many pairs distinct solutions in W, for all A >
ZPS‘p;/P/mO.

For the critical case 8 = p;/p, the method used in Theorem 1.1 seems to be invalid. For this, we will use
Krasnoselskii’s genus theory to prove Theorem 1.2, see also [43] about the application of the same method
to the multiplicity of solutions for a class of fractional Choquard-Kirchhoff equations. Furthermore, as usual
for elliptic problems involving critical nonlinearities, we must pay attention to the lack of compactness. To
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overcome this difficulty, we fix parameter A larger than a suitable threshold. We would like to point out that
the authors in [34] just obtained the existence of two weak solutions for a variant of problem (1.1) by using
Ekeland’s variational principle and the mountain pass theorem. To our best knowledge, this is the first time
to consider the existence of infinitely many solutions for the critical case 8 = p;/p in the study of general
Kirchhoff problems.

The rest of our paper is organized as follows. In Section 2, we give the proof of Theorems 1.1. In Section 3,
we consider the critical case 8 = p;/p and obtain the proof of the Theorem 1.2.

2 Proof of Theorem 1.1

In this section, we prove the main result of this paper. In the following, we shortly denote the norm of L"(RN)
Obviously, the energy functional I : W, — R associated with problem (1.1)

L = Ea(up) - L / jufP* dx - / Flx, wdx
p Ds
RN RN

is well defined, where .Z(t) = fot M(t)dr. It is easy to verify that as argued in [26], I; € C'(W,, R) and its
critical points are solutions of (1.1).
Under our assumptions, we can show that functional has mountain pass geometry.

Lemma 2.1. Assume that (M), (V), and (f,) are satisfied. Then for each A € (0, 1) there exist a; > 0 and p, > 0
such that I(u) > O for u € Bp, \ {0}, and I, (u) = a, for allu € W, with ||u||, = py. Here Bp, = {u € Wy : |Ju||; <

pa}-

Proof. By (f1), for any € > 0 there exists C¢ > 0 such that

If(x, )] < €0p|t|%P 1 + Ceq|t|? ! fora.e.x € RY andallt € R.
Furthermore, we have

|F(x, t)| < £|t\9p +Ce|t|? fora.e.x € RN andallt € R.

For any u € W,, by (M), Holder’s inequality and the fractional Sobolev inequality, one has

B > 0 ul ¥ - pi; / |u|P3dx-e/ (% dx - Cg/\u|qu.

RN RN RN
Note that by the fractional Sobolev embedding theorem (see [1]), there exists C > 0 such that
lulgy < Cllullx and |ulq < Cllul|y.

Then choosing € € (0, my/(26pCPP)), we have

m 6 1 N 0, 0
() 2 GT;)IIMHA”—?S PP [, - eC% |[ul| P - CCeljull§
S

ﬂ — i *P;/P p;—@p _rq q-6p Op
2 <29p p;S HuHA C CEHUHA HUH}l .

Let us define 1 ) )
g(t) = 0 2 g PpepitP _ cdc 4470 forall ¢ 2 0.
20p  p;

Clearly, lim;_,o- g(t) = mo/(26p) > 0, since ps > Op and q > Op. Taking p; := ||u||, small enough such that

1 cpi/p pi-bp , ;ap ,q-6p . Mo
7*8 p/\ +C CSpA < @,

S
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then we have
L) = gp )P =: ay.

Thus we complete the proof. O
Lemma 2.2. Under the assumptions of Lemma 2.1, for any finite dimensional subspace E C W,

I\(u) - —oc asu € E, |Jul|y — oe.

Proof. By (M) and F(x, t) > 0 fora.e. x ¢ R¥ and all t € R, we have

mq 0 1 *
L) < ==|ju p——*/udex
op flull 7 |ul
]RN

for all u € E. Note that all norms in a finite dimensional space are equivalent. Hence there exists Cg > 0 such
that |ul,- = Cg||u|, for all u € E. Then,

my, .6 D, X
I(u) < %HHHAP —aoCp llull)°.
It follows from ps > Op that I (u) — —cc as u € E, ||ul|, — oo. O

Definition 2.1. A sequence {un}n C W), is called a (PS). sequence, if I(un) — ¢ and I}(un) — 0. We say I,
satisfies (PS). condition if any (PS). sequence admits a converging subsequence.

Lemma 2.3. Assume that (M) and (f,) are fulfilled. If {un}n is a (PS). sequence, then {un}n is bounded in W,
and c = 0.

Proof. Since {un}n is a (PS). sequence, there exists ng > 0 such that
I(un) - qi(lﬁ(un), Un) < c+0(1) + o(1)||unly foralln = ng, (2.0)
1

Then, by (M) and (f5), it follows that

1., my my op
L(un) - —I(up),un) 2 | — - — ) |lu
)= ) ) > (2 =)

Hence, it follows from (2.1) and (mo/(6p) - m1/q1) > O that

mg m
<67;) - ?;) Huanp < c+o(1) + o(1)||un|;. (2.2
This, together with (mo [/(6p) —my/ ql) > 0, yields that {uy}n is bounded in W;. Then taking the limit in (2.2),
we deduce that ¢ = 0. This completes the proof of Lemma 2.3. O

Lemma 2.4. Assume that (V), (M) and (f1) - (f2) hold. For any A € (0, 1), I, satisfies the (PS). condition for all

i
€ (O, U(mo)lese)vs‘ﬁ’), where 0 = [q—ll (1 - %) + % - i} .

Proof. Let {un}n bea (PS). sequence. Then by Lemma 2.3, {un}» is bounded W), up to a subsequence, there
exists a nonnegative function u € W such that uy, — win Wy, un — uin LIOC foro e [1,p;), and un — u
a.e.in RV, By Theorem 2.2 of [34], up to a subsequence, there exists a (at most) countable set J, a non-atomic
measure {, points {x;};c; C RN and {{j}j¢, {1}je; C R* such thatas n — oo

[un() = un(y)|? un(y)lp /Iu(X) u(y)

|X y‘N+ps \X y|N+ps

dy + Z (j6x; + Z (2.3)

jeJ
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and

un[Ps — 1 = [P+ n;éy, (2.4)
j€J

in the measure sense, where 6y, is the Dirac measure concentrated x;. Moreover,
Ny <SPPI e, 2.5)

where S > 0 is the best constant of the embedding DSP(RY) < LPs(RN).
Next we prove that J = (). Otherwise, suppose that J # , then for fixed j € Jand € > 0, choose ¢, ; € C8°(]RN )
such that

Qe ;=1 for |x - x;| < & @, ;=0 for |x - x| 2 2¢,

and |V, j| < 2/e. Evidently, ¢, jun € DSP(RN). Hence it follows from (I (un), @¢,jun) — O that

M(||un|}) [Mun’ Un@Pe)s,p +/V(X)|unp‘P€dX]

RN

- / un [P e sdx + / £ Un)@ejtindx + 0(1), 26)

RN RN

where

[un() = un() P2 Wn(x) - un()(@e,j(Iun(x) - 9 j(un(y))
(Un, Un@¢ j)s,p = /\R/ZN/ X = y|Nops J / dxdy.

By using Holder’s inequality and Lemma 2.3 of [34], we have

,2 ) _ .
M(Ilunllé’)// [un(x) = un(y) [P~ (un(x) — un(»))(@ej(x) (ps"(y»u"(x)dxdy

lim lim su
£—0 n_>°°p |X — y|N+ps

R2N

1/p
< C lim lim sup (/ |(@e,i 00 ~ @, j)un()P dxdy) =0. 2.7

€30 n—yoo |x — y|N+ps

R2N

By (2.3), (2.4) and (M), we have

— p
Ji i sup M ) {A [[ =l g srayax+ [ V(x)|un|l’<oe,,-dx]
R2N

= y[ers
RN
]
o [un(0) —un(y)P - 0
= lim lim | mo (/1 / W%,,(y)dxdy =mo(A{))”, (2.8)

R2N

i i | o getn = iy | gty = 29
RN RN

and

gl%nlergo/f(x, un)gag,jundx=€h_r>r%)/f(x, u)@, judx = 0. (2.10)

RN RN
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Here we applied the fact that W, — Ly,. (RY) is compact for all v € [1, p;). Then we can deduce from (2.6)—
(2.10) that

nj = mO(A(j)e-
From the above inequality, together with (2.5), it follows that

oo/
n; > mo 2° Senjp/ps_

Hence,

s
nj 2 (meA?s®yri-er . (211)
On the other hand, by (2.3) and (2.4), we obtain

c= nli_}ng<> <I/1(Un) - % (Iy(un), un>>

mo mi 4] 1 1 >
2= -— G+ | — - = |n;
(919 ql)( 2 <q1 pi )l
s
> {i (1 - ﬁ) P i*} (moA?S®)7i-or
q1 mo Op  ps
which is a contradiction. Hence the desired conclusion holds.

Letting R > 0, we define

T |un(X) = un()[?
e fmimey [ R  da
{x€RN:|x|>R} RN

and

Neo = lim lim sup |un|Psdx.
R—oo pnaoo

{x€RN:|x|>R}

In view of Theorem 2.4 of [34], (- and 1. are well defined and satisfy

. lun(x) — un(y)” _
hgl_f::p/ Wdydx = | d{+ (w, (2.12)
RN RN RN
and
lim sup/uﬁ;dx = /dn + Noo- (2.13)
n—oo .
RN RN

Assume that yz € C=(RY) satisfies the properties: yz € [0, 1] and yz(x) = 0 for |x| < R, xg(x) = 1 for
|x| > 2R, and |Vxg| < 2/R. By Theorem 2.4 of [34], we have

L un(x) — un(y)Pxr ()P
o= fm limsu | [ RSN v &
RN
and
Noo = ngl; lim sup/ \un(x))(R(x)\p;dx. (2.15)
n—oo RN
Moreover, we have
SiPlPs < g (2.16)
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Because ||un||” and Huans are bounded, up to a subsequence, we can assume that ||un||” and ||un||p5 are
both convergent. Hence by (2 12) and (2.13), we can obtain

il = [ g+ )
RN
and
: ps _
nh_>n§°Hu"HPZ = /dn + Noo. (2.18)
RN

It follows from (I} (un), Ygun) — 0 as n — oo that

|un(xX) — un(Y)[Pxr(0)
M(Hunl\f\’){)l/ [ dxdy + | V(X)|un|Pyrdx
2N N

n - n p_z n - n n -
+A / [un(x) — un(y)[P~*(u |(;()_ yTNS)/S))u M&rO) -Xr®)) 4, dy
R2N

- / unfPyrex + / £, un)unyrdx + o(1). 2.19)
RN RN

By employing Holder’s inequality and (2.15) in [34], we get
/ |un(%) = un ()P (un(x) = un(¥)un () xrX) - xr )

=y

lim limsup dxdy = 0. (2.20)

R—oe pnosoeo
R2N

Hence we deduce from (2.14), (2.17), (2.19) and (2.20) that

— p
lim 1imsupM(||un||§’)[A / n0) = UnOIXRED) g g / V(x)\un|p)(Rdx]
% n—oo

=y
R2N RN
6-1
0 [un(x) - un ()|
> moA (@/ af+ (x,) lggollinjolip / Wdydx
N {XERN:|x|>R} RN

> moA9¢2, (2.21)

thanks to the assumption 6 > 1. It is easy to see that

—0  n—oo

lim limsup/f(x, Un)UnYgdx = Rlim /f(x, wuyrdx =0, (2.22)
—oc0
N RN

Thanks to the fact that the embedding W — L (RY) is compact. Therefore, we conclude from (2.19)-(2.22)

and (2.15) that

loc

moA°¢2, < Neo,
which together with (2.16) yields
mo/lesgnff/p; < Noos

This implies that 7., = 0 or

s
Noo 2 (moA?s?)yri-on (2.23)
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Assume that (2.23) holds. Then

c= lim (IA(un) - i(-’ﬁ(un), un>)
n—eo q1

6
. mo m |un(x) = un(y)? <1 1 >/ v, ]
> lim — - /2 PPl dxd +—=-= un|Psdx
n—eo [<9p q1> / |x = y|N+ps Y a1 p; [n
RN RN

s
S [i (1 - ﬂ) . l} (moA?8?) 77,
a1 mo/) 6p p;g

which is absurd. Hence, we have v = 0. In view of ] = () and (2.18), we have
lim / |un|p;dx = / |u|p;dx. (2.24)
n—oo
RN RN

Now we show that un, — u in W). To this aim, we first assume that d := inf,.1 ||unl||y > O.
Since (I3 (un) - I} (), un — u) — 0, we have

M([unl ) un, un = )~ M7ty un - w)
= / (\un|p;_2un - |u\p;_2u) (un - wdx + o(1),
RN

where

(Un, Un — u) := A{Un, Un — U)s,p + / V(x)\un|p'2un(un - u)dx.
]RN

Here we used the following fact:

nango /(f(x, Un) — f(x, w)(un — w)dx = 0. (2.25)
RN

Now we show that (2.25) is true. By Theorem 2.1 of [26], we know that the embedding W; < L"(RN)is compact
for any v € [p, ps). Thus, up to a subsequence, we have u, — u in LY(RN) for any v € [p, p3). According to
(f1) and (f>), for any € > O we have

O, B < &t + Celt]T!

for all (x, t) € RN x R. Then
/(f(x, un) - f(x, w))(un — u)dx

<e / (un |7 + )P ) (un - w)dx + Ce / (Jun|97 + [T (un - w)dx
RN RN
-1 -1
< Ce+ Celllunl| 37" + [l &™) |un - ullq,

which implies that

lim /(f(x, un) - f(x, u))(un — u)dx = 0.
]RN

Thus, we obtain
M| un ) Gttn, tn = u) = (14, = 10)) + M) 0ty =~ 11) = MU Z) 1, 2 = w)

= / (|un|p;"2un - \u|p;_2u) (un — u)dx + o(1).

RN
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By the boundedness of {un}n and un — u in Wy, we can deduce that
nlerioM(||un|\ﬁ’)(u, Un-u)=0
and
HIEEOM(|\u\|ﬁ’)(u, un - u) =0.
Hence, we conclude from (2.24) that
nangoM(||un||ﬁ’) ({un, un —u) = (U, un —u)) = 0.
This, together with d := inf,,.1 |jux|| > O, implies that
lim ((un, un — u) — (U, un — u)) = 0. (2.26)
n—oo
Let us now recall the well-known inequalities:

- 2p(|a|"’2a—|b|p’2b)-(a—b) for p=2
a-— < 1

p-1

/2 (2.27)
[(1a2a - |b""2b) - (a- b)}p (laf” + [bP)E P2 for1<p<2,

foralla, b € RN.
Similar to the proof of Lemma 6 in [26], it is easy to deduce from (2.27) that un, — u stronglyin Wy asn — oo.
In the end, we consider the case irnlf |lun|lp = O. Then either 0 is an accumulation point of the sequence
{un}n and so there exists a subsequence of {un}n strongly converging to u = 0, or O is an isolated point of
the sequence {un }» and so there exists a subsequence, still denoted by {un }n, such that infy ||ux| > 0. In the
first case we are done, while in the latter case we can proceed as above. O

Since the functional I, satisfies the (PS). condition for small ¢ > 0, we will find a special finite dimensional
subspaces by which we construct sufficiently small minimax levels.

By (V), we know that V(xo) = min, gy V(x) = 0. Without loss of generality, we assume from now on that
Xo = 0. By means of (M) and (f3), we have

my 0 1 -

N < |l - = / ufPsdx - ao/ |u|? dx
0 A M
p pSRN RN

m op a0
< ull;¥ —a u|dx
RN

for all u € W,. Define the functional @, : W, — R by

m, 0
() = %Huﬂf’ —a0/|u|qzdx.
]RN

Then I (u) < J;(u) for all u € W),. Hence it suffices to construct small minimax levels for J;.
For any & > 0, one can choose ¢ € C3’(RY) with ||¢5]|q, = 1 and supp ¢5 C Br,(0) such that [¢4]5 , < 6.

Let
__ o0
er= (l)& A Nez-ep) x| .
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Then supp e, C B (0). Thus, for t = 0, we have

Gp;

AN@S-6p) s
Jaltey) - ueAn L
RN
917
_ s 1 |¢5(X) ds(y)P
R2N

(0-1)-L5 s 0
+A s /V(AN@§*9P)X)|¢;5|pdx) - taq |¢5|qzdx].
RN

RN

It follows from A € (0, 1) and 6 > 1 that
]A(feA)
p 0py 6
< Aps ep t@pe |:</ ‘¢6|§(X) ‘ﬁfé)s/” dxdy + / V(AN(p;—Gp)X)|¢5‘pdx) _ aotllz / |¢5|42dx]
p RZN y RN ]RN

*
Sps

= A5 @) (tehs),

where @, e C}(W,, R) defined by

u(x) - u@y)lP e i p )’ 0
Dy (u) = @ dedy+ V(AN x)|ulPdx | —ao [ |u|®dx
N ]RN RN

for all u € W,. Clearly,

_ _ p o o
max (1) - L= ([ 1050 o0 axay o [ vt aigspax )
t=0 9pq(qa0)m |X - )/| BN

Observe that V(0) = 0 and V € C(RY), then there exists As > 0 such that

Gp; 6
O0<V | ANes-omx | < 5
sy

forall |x| < r5and O < A < A4. It follows from [¢p4]5 , < & that

max Q)/\(t(pg) < ;OP(ZS) a2~ 914
=0 QPQZ(QZGO)“Z 5

Furthermore, we have

. o;
maxTy(tps) < — 27 (ag)am s, (2.28)
=0 0pq2(q2a0) 2%

forall A € (0, Ag]. In conclusion, we have the following lemma.

Lemma 2.5. Under the assumptions of Lemma 2.1, there exists A > 0 such that for all A € (0, A) there exists
E,\ e W, with HEAHA > Pas IA(EA) < 0and

Gps

max I (tey) < oArsor,
telo,

whereo—%(l—ﬂ)+i—%.
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Proof. Let 6 > 0 small enough such that
‘12;91’91](25)#917 <a.
0pq2(qaa0) =%

Taking A = Az and choosing t; > 0 such that £, |le;||, > py and I (te;) < O for all ¢ > £;. The result follows by
letting e, = t,e;. O

Let m € N, we choose m functions ¢ € C3’(RY) such that supp ¢’ ) supp ¢>’$ =(foralll<i#j<m, and
¢sllg = 1 and [ps]% , < 6. Let r > 0 be such that supp ¢k C Bm(0)fori=1,2,---,m.Set

. s
ey = Ps (A ”(PQ‘GP)X) foralli=1,2,---,m,
and

m 1 2 m
E) s =span{e;, ey, -+, €y }.

Then for each u = "', c;e} € ET's, we have

/ [u0) —u(y)P , dxdy = Z|l|p/ dedy,
R2N

|X y‘N+ps |x—y\N+P5

/v(x)|u|pdx=Zlc~\” [ veoreirax,

i=1

RN
—/|u|psdx— EX \ci|ps/\ei|psdx
S ]RN
and
m .

/F(x, u)dx = Z/F(X, ciey)dx.

K =1y
Hence,

L) = Z Li(cied).
i-1

and as above .
. _Ops .
IA(ciei) < ANws-6p) (DA(C,-ei).

Set
Bs == max{||p5|h:i=1,2,--,m},

__ oo F
VIA Moo x| < —
Bs

forall [x| < r§' and A < A, 5. As in the proof of Lemma 2.4, we can get

and choose A,, 5 > 0 such that

max IA(u) < M(z&)qz OpApS ep
uEFLs GPQZ(Qzao)‘“ %

forall A € (0, Ay, s]. Then we have the following lemma.

Lemma 2.6. Under the assumptions of Lemma 2.1, for any m € N there exists Ay, > O such that for all A €
(0, A) there exists m-dimensional subspace E}' such that

Gp;
max I(u) < gArso,
ueE;"
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Proof. Choose § > 0 so small that
2% nat <o
0pq>(qaao) =%
and take E}' = Ef{‘ 5- The result follows from (2.28) and the definition of E;{’ 5 O

Proof of Theorem 1.1. According to Lemma 2.5, we choose Ay > 0 and define

c; = inf max I,(tey),
yer telo,1]

where
I'={yeC(o,1], W,) : y(0) =0 and y(1) = €,}.

By Lemma 2.1, we have a; < ¢, < oA%:/@:-9P) In view of Lemma 2.4, we know that I, satisfies the (PS).,
condition, and there exists uy € W, such that I} (u;) = 0 and I;(u,) = c,. Thus, u, is a solution of (1.1).
It follows from I} (u,) = 0 and I (u;) = c; that

ors
AT > [ (uy) = Iy(uy) %a’(m), uy)

moy mp P 1 1)/ P
2= -— ) lmli+ | — - = uy [P dx.
<9p q1>\| alla (fh 5 uzl
]RN
Hence (1.3) holds.

Denote the set of all symmetric (in the sense that -Z = Z) and closed subsets of E by X, for each Z ¢ X. Let
y(Z) be the Krasnoselski genus and

i(2) = miny (h(Z) N aBm) ,

where I'y, is the set of all odd homeomorphisms h € C(W,, W;) and p, is the number from Lemma 2.1. Then
i is a version of Benci’s pseudo-index (see [44]). Let

¢y := inf supH(u), 1<j<m.
! i(2)2j uez

Since I (u) = a, for all u € 0By, and i(E} ,) = dim E, ,, = m, we have

ayscy <+-+<scy < sup L)< {i <1—ﬂ) +i— i*} AP?EP.

! " UEEL q1 mo Op  ps
It follows from Lemma 2.4 that I, satisfies the (PS). condition at all levels cy G=1,2,---,m). According to
standard critical point theory (see [45]), all ¢ ), are critical values, and then I, has at least m pairs of nontrivial
critical points. O

3 Proof of Theorem 1.2

In this section, we consider the existence of infinitely many solutions of problem (1.1), where the Kirchhoff
function M satisfies (M) with the critical case 8 = ps/p. Let us first recall some basic results about Krasnosel-
skii’s genus, which can be found in [45]. Let G be a real Banach space. Set

I'={A c §\{0}: Aiscompactand A = -A.}

Definition 3.1. Let A € I'. The Krasnoselskii genus y(A) of A is defined as being the least positive integer k
such that there is an odd mapping ¢ € C(4, RY) such that ¢(x) # 0 forall x € A.If such a k does not exist we
set y(A) = co. Moreover, by definition, y(#) = 0.
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Lemma 3.1. (see[45]) Let G = RN and 00 be the boundary of an open, symmetric, and bounded subset Q ¢ RN
with 0 € Q. Then y(0Q) = N.

Denote by SV~! the surface of the unit sphere in RY. Then we can deduce from Lemma 3.1 that y(SN )= N.
We shall use the following theorem to obtain the existence of infinitely many solutions for (1.1).

Theorem 3.1. (see [46]) Let T € C'(S, R) be an even functional satisfying the (PS) condition. Furthermore,
(1) T is bounded from below and even;

(2) there is a compact set E € I such that y(E) = k and sup,cg T(u) < T(0).

Then T has at least k pairs of distinct critical points and their corresponding critical values are less than T(0).

Lemma 3.2. Assume thats € (0,1),2 <p < N/s, 8 = ps/p, p < q < ps and f satisfies (f,). Then functional I,
satisfies the (PS). conditions in W) for all A > 2PSPsIP Iy,

Proof. Let {un}n C W, be the (PS). sequence of functional I, i.e.
Li(un) — ¢, Ij(un) — 0

asn — oo,
By (f4), we have

|F(x, t)| < |t|P + C1|t|? fora.e.x € RN and all t € R.

It follows from (M), (f4), Holder’s inequality and the fractional Sobolev inequality that

Mmo 0 1 *
L) 2 Oy - L /\u\psdx—/|u|de—61/|u|qu
0 A *
p P J g

|| I *5MA Ml = Cllullf - Cllullf, G

v

forall u € W). When 6 = p;/p, since A > M s ps/,, 91’ candp <q< ps, it is easy to see that I, is coercive

and bounded from below on W),. Hence, {un}n is bounded in W). Then there exist a subsequence of {un}n
(still denoted by {un}n) and u € W such that

un — u in W, andin LPs(RYN),
Up — u a.e.in RN,
|un|Psun — |ufP=?u in L7t (RY), (3.2)

as n — oo, Similar to the discussion as in Section 2, we have

nango/(f(x, un) - f(x, w)(un - w)dx = 0. (3.3)
]RN

Let wn = un — u. Then by using similar arguments as in Lemma 3.2 of [4], we get
[unl§ p = walf p + [l , +o(1). (3.4)

By the celebrated Brézis—Lieb lemma, one has

/V(x)|wn|pdx=/V(x)\un|pdx—/V(x)|u\pdx+o(1) (3.5
RN RN RN
and
/|Wn|p;dx=/\un|p;dx—/\u|p;dx+o(1). (3.6)
RN RN RN
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Let us now introduce, for simplicity, for all v € W), the linear functional £(v) on W, defined by

(L), w) = A / v(x) - V(y)“'()l(/(g'—Nl:ﬁJsf))(W(X) WO gray + / VOO P vwdx

R2N RN

for all w € Wj. The Holder inequality gives that

-1/p 1/p
[(L(V), w)] < A[v]?;,l[w]s,p + / V(x)|v|pdx) / V(x)|w|pdx>

N N

(p-1)/p
< [AVIE, + /V(X)Vde> lwlia-

N

Thus, for each v € W), the linear functional £(v) is continuous on W;. Hence, the weak convergence of {un }n
in W, gives that

lim (L(w), un - u) = 0. 3.7

n—roo

Without loss of generality, we assume that limy—e. ||Wn||y = 1. Since {un }n is a (PS). sequence, by the bound-
edness of {un}n, (3.3), (3.6) and (3.7), we have

0(1) = (Iy(un) - (W), un - u)
= M(|[un| (£ (n), tun = u) = M(|ul}){LW), un - u)

- / [F(x, un) = FO6, w)(un - u)dx - / [|un|p2-2un - |u|v2-2u} (n - u)dx
RN

RN
= M(|Jun|[5) [(L(un), un — u) = (L(u), un - u)] - / lun — u[Psdx + o(1). (3.8)
]RN
Here we use the following fact:
lim / \un|p;_2unudx = / |u\p;dx, (3.9)
n—oo
RN RN

thanks to (3.2).
It follows from (3.4), (3.5) and (3.8) that

M(J|un = ulff + [|ul ) [(Lun), un - u) = (L), un - u)] - / lun — ufPsdx = o(1). (3.10)
RN

From the definition of S, we get
. o .
/|wn|p5dx <SS 7 [wn]gfp.
RN

Putting this in (3.10) and using (M) and (2.27) with the case p > 2, we arrive at the inequality
1

o l[un - u|} < SPPAY Juy - ulks +o(1).

0-1
mo((lun — ull} + |[ul )P
Letting n — oo, we have

1 . e
27m0(np + Hqu\’)(@ l)pnp <S PS/PA 1’1195_
This implies that

moﬂep < A—lzps—pg/pnpz. (3.11)

Since 6 = ps/p and ZpS‘p;/p/mo < A, it follows from (3.11) that n = 0. Thus, un — w in W,. O
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Remark 3.1. It seems that the method used in the proof of Lemma 3.2 could not be applied to the case 6 >
ps/p.

Proof of Theorem 1.2. Denote by {ej,e;,---} a basis of W,, and for each k € N consider &, =
span{ei, ez, -, ey}, the subspace of W, generated by eq, e,, - , ey. By assumption p < g < p;, we know
that &, can be continuously embedded into L4(R"). Note that all norms are equivalent on a finite dimensional
Banach space. Thus there exists a positive C(k) depending on k such that

ulld < C(k)/|u|qu,
RN

forall u € ;. Then by (M;) and (f5), we deduce

1 *
R = Bl - 2 [ 0 dx - aoCOo
SRN

m _
< (fuuuip ‘f—aOC(k)) e,

forall u € &;. Let R be a positive constant such that

M1 ROp-4 ¢ aoC(k).
b
Hence, forall 0 < r < R, we get
q ( M1 _6p—q q { M1 p6p-q _
L) sr (?r - aOC(k)) <R <7R - aoC(k)> <0=17(0),

forallu € K := {u € & : ||ul|p = r}. It follows that

sup I,(u) < 0 = I,(0).
ueX

Clearly, & and R¥ are isomorphic and K and S*~! are homeomorphic. Thus, we conclude that y(X) = k by
Lemma 3.1. Since f(x, u) is odd with respect to u € R, the functional I, is even. Moreover, by (3.1), we know
I, is bounded from below and satisfies the (PS). condition by Lemma 3.2. It follows from Theorem 3.1 that

I; has at least k pairs of distinct critical points. The arbitrariness of k yields that I} has infinitely many pairs
distinct critical points in W), that is, problem (1.1) has infinitely many pairs distinct solutions. O
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