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Abstract: This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchho� type
problems involving the fractional p–Laplacian and critical exponent. As a particular case, we study the fol-
lowing degenerate Kirchho�-type nonlocal problem:

‖u‖(θ−1)p
λ [λ(−∆)spu + V(x)|u|p−2u] = |u|p

*
s−2u + f (x, u) in RN ,

‖u‖λ =

λ ∫∫
R2N

|u(x) − u(y)|p
|x − y|N+ps dxdy +

∫
RN

V(x)|u|pdx

1/p

where (−∆)sp is the fractional p–Laplacian with 0 < s < 1 < p < N/s, p*s = Np/(N − ps) is the critical
fractional Sobolev exponent, λ > 0 is a real parameter, 1 < θ ≤ p*s/p, and f : RN × R → R is a Carathéodory
function satisfying superlinear growth conditions. For θ ∈ (1, p*s/p), by using the concentration compactness
principle in fractional Sobolev spaces, we show that if f (x, t) is odd with respect to t, for any m ∈ N+ there
exists a Λm > 0 such that the above problem has m pairs of solutions for all λ ∈ (0, Λm]. For θ = p*s/p, by
using Krasnoselskii’s genus theory, we get the existence of in�nitely many solutions for the above problem
for λ large enough. The main features, as well as the main di�culties, of this paper are the facts that the
Kirchho� function is zero at zero and the potential function satis�es the critical frequency infx∈R V(x) = 0. In
particular, we also consider that the Kirchho� term satis�es the critical assumption and the nonlinear term
satis�es critical and superlinear growth conditions. To the best of our knowledge, our results are new even
in p–Laplacian case.
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1 Introduction
In this article we concern with existence and multiplicity of solutions for critical Kirchho�–type problems
involving the fractional p–Laplacian. More precisely, we consider

M(‖u‖pλ )[λ(−∆)spu + V(x)|u|p−2u] = |u|p
*
s−2u + f (x, u) in RN , (1.1)

‖u‖λ =

λ ∫∫
R2N

|u(x) − u(y)|p
|x − y|N+ps dxdy +

∫
RN

V(x)|u|pdx

1/p

,

where p*s = Np/(N−sp),N > spwith s ∈ (0, 1), (−∆)sp is the fractional p–Laplacianwhich (up tonormalization
factors) may be de�ned for any x ∈ RN as

(−∆)spφ(x) = 2 lim
δ→0

∫
RN\Bδ(x)

|φ(x) − φ(y)|p−2(φ(x) − φ(y))
|x − y|N+ps dy

for any φ ∈ C∞0 (RN), where Bδ(x) denotes the ball inRN centered at xwith radius δ. For a simple introduction
about the fractional p–Laplacian, we refer to [1] and the references therein.

Furthermore, we always assume M, V and f satisfy the following assumptions:
(M) M ∈ C(R,R) and there exist θ ∈ (1, p*s/p) and 0 < m0 ≤ m1 such that

m0tθ−1 ≤ M(t) ≤ m1tθ−1 for all t ∈ R+
0;

(V) V ∈ C(RN ,R), V(x0) = minx∈RN V(x) = 0 and there exists a constant h > 0 such that the Lebesgue
measure of set Vh = {x ∈ RN : V(x) < h} is �nite; there is ϱ > 0 such that lim|y|→∞ meas({x ∈ Bϱ(y) :
V(x) < c}) = 0 for any c ∈ R+;

(f1) f : RN × R → R is a Carathéodory function and there exists q ∈ (θp, p*s) such that for any ε > 0 there
exists Cε > 0 and

|f (x, ξ )| ≤ θpε|ξ |θp−1 + qCε|ξ |q−1 for a.e. x ∈ RN and all ξ ∈ R;

(f2) There exists q1 > m1θp/m0 such that

q1F(x, ξ ) ≤ f (x, ξ )ξ for all (x, ξ ) ∈ RN ×R,

where F(x, ξ ) =
∫ ξ

0 f (x, τ)dτ, m0 and m1 are the numbers given in (M);
(f3) There exists q2 ∈ (θp, p*s) such that F(x, ξ ) ≥ a0|ξ |q2 for a.e. x ∈ RN and all ξ ∈ R.
Note that condition (V2), which is weaker than the coercivity assumption: V(x) → ∞ as |x| → ∞, was �rst
introduced by Bartsch and Wang in [2] to conquer the lack of compactness.

In the last few years, great attention has been paid to the study of non-local fractional Laplacian prob-
lems involving critical nonlinearities. It is worth mentioning that the semilinear Laplace equation of elliptic
type involving critical exponent was investigated in the crucial paper of Brézis and Nirenberg [3]. After that,
many researchers dedicated to the study of several kinds of elliptic equationswith critical growth in bounded
domains or in the whole space. For example, by variational techniques, Servadei and Valdinoci [4] showed
a Brézis–Nirenberg type result for non-local fractional Laplacian in bounded domains with homogeneous
Dirichlet boundary datum, see also [5] for further discussions. In [6], Ros-Oton and Serra considered nonex-
istence results for nonlocal equations involving critical and supercritical nonlinearities. Autuori and Pucci [7]
obtained a multiplicity result for fractional Laplacian problems in RN by using the mountain pass theorem
and the directmethod in variationalmethods, inwhich one of two superlinear nonlinearities could be critical
or even supercritical.

Indeed, the interest in the study of partial di�erential equations involving the non-local fractional Lapla-
cian goes beyond the mathematical curiosity. This type of non-local operator comes to real world with many
di�erent applications in a quite natural way, such as �nance, ultra-relativistic limits of quantummechanics,
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materials science, water waves, phase transition phenomena, anomalous di�usion, soft thin �lms, minimal
surfaces and game theory, see for example [1, 8, 9] and the references therein. The literature on fractional
Laplace operators and their applications is quite large and interesting, here we just list a few, see [10–12]
and the references therein. For the basic properties of fractional Sobolev spaces and the study of fractional
Laplacian based on variational methods, we refer the readers to [1, 13]. It is worth pointing out that one of
the reasons that forced the rapid expansion of the fractional Laplacian results has been the nonlinear frac-
tional Schrödinger equation, which was proposed by Laskin [14, 15] as a result of expanding the Feynman
path integral, from the Brownian–like to the Lévy–like quantummechanical paths.

In the last decade, the existence and multiplicity of solutions for the Kirchho�–type elliptic equations
with critical exponents have attracted much interest of many scholars. For instance, we refer to [16–18] for
the setting of bounded domains; we collect also some articles, see [19–21] for the context set in the whole
space. In particular, Fiscella and Valdinoci [22] proposed a stationary Kirchho�–type equation whichmodels
the nonlocal aspect of the tension arising from nonlocal measurements of the fractional length of the string.
More precisely, they considered a model as follows:

M

∫∫
R2N

|u(x) − u(y)|2
|x − y|N+2s dxdy

 (−∆)su = λf (x, u) + |u|2
*
s−2u in Ω

u = 0 in RN \ Ω,

(1.2)

where M(γ) = α + βγ for all γ ≥ 0, here α > 0, β ≥ 0. Note that M is this type, problem (1.2) is called non-
degenerate if α > 0 and β ≥ 0, while it is named degenerate if α = 0 and β > 0, see [23] for some physical
motivation about degenerate Kirchho� problems. Formore details about the physical background of the frac-
tional Kirchho�model, we refer to [22, Appendix A]. Afterwards, the fractional Kirchho�–type problems have
been extensively investigated, for example, we refer to [24–27] for some recent results about non-degenerate
Kirchho�–type problems.

In the following, let us recall some existence results about degenerate Kirchho�–type fractional p–
Laplacian problems. By using the mountain pass theorem and Ekeland’s variational principle, Xiang et al.
[28] obtained the existence of two solutions for a nonhomogeneous Kirchho� type problem driven by the
fractional p–Laplacian, where the nonlinearity is convex-concave, see [26] for related results obtained by the
same methods. In [29], Mingqi et al. investigated the existence of in�nitely many solutions for Kirchho� type
fractional p–Laplacian problems, in which the symmetric mountain pass theorem is applied to study the su-
plinear case and the Krasnoselskii’s genus theory is used to consider the sublinear case. In [23], Pucci et al.
studied the existence and multiplicity of entire solutions for a class of fractional p–Laplacian problems of
Kirchho� type via variational methods and topological degree theory. In [30], Mingqi et al. considered the
multiplicity of solutions for a class of quasilinear Kirchho� system involving the fractional p–Laplacian by
using the Nehari manifold method and the symmetric mountain pass theorem. Evidently, the above works
did not involve the critical case. For the critical case, with the help of Kajikiya’s new version of the symmet-
ric mountain pass lemma, the existence of in�nitely many solutions for a critical problem similar to (1.1) is
proved in [31], see [32, 33] for more related results.

However, there are few results in the available literature on problems like problem (1.1). In particular, there
are no result on the multiplicity of solutions for problem (1.1). There is no doubt that we encounter serious
di�culties because of the lack of compactness and of the nonlocal nature of the fractional p–Laplacian. To
overcome the loss of compactness, Xiang et al. [34] extended the concentration compactness principle of
Lions [35] to the setting of fractional p–Laplacian in RN , and used it to get the existence of solutions for the
following critical p–Kirchho� problema + b

∫∫
R2N

|u(x) − u(y)|p
|x − y|N+ps dxdy

(θ−1)
 (−∆)spu(x) = |u(x)|p

*
s−2u(x) + λf (x) in RN ,
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where a ≥ 0, b > 0, θ > 1, λ > 0 is a parameter and f ∈ L
p*s
p*s−1 (RN). In [36], Fiscella and Pucci studied the

following p–Kirchho� problem involving critical Hardy-Sobolev nonlinearity

M(‖u‖p)[(−∆)spu + V(x)|u|p−2u] − |u|
p*s(α)−2u
|x|α = λf (x, u) + g(x, u) in RN ,

where p*s(α) = (N−α)p
N−ps is the critical Hardy-Sobolev exponent with α ∈ [0, ps), f and g are subcritical nonlinear

terms, and V ∈ C(RN ,R) with infx∈RN V(x) ≥ V0 > 0. Moreover, the existence of in�nitely many solutions for
problem (1.1) is investigated, assuming infx∈RN V(x) = 0 and the subcritical nonlinear term f satis�es super-
linear growth condition. In [37], Byeon and Wang �rst studied the asymptotic behavior of positive solutions
to Schrodinger equations under the condition infx∈RN V(x) = 0, which is called critical frequency. In [38], Cao
andNoussair extended the results of Byeon andWang, and studiedmulti-bump standingwaves for nonlinear
Schrödinger equations. In this paper, we follow the ideas of [39–41]. Although the ideas were used before for
other problems, the adaptation of the procedure to our problem is not trivial because of the appearance of
degenerate Kirchho� function and the nonlocal nature of the fractional p–Laplacian. For this, we need more
delicate estimates and computations.

To show our main results, we �rst give some notations. For λ > 0, let Wλ be the closure of C∞0 (RN) with
respect to the norm

‖u‖λ =
(
λ[u]ps,p + ‖u‖pp,V

)1/p
,

where

[u]s,p =

∫∫
R2N

|u(x) − u(y)|p
|x − y|N+ps dxdy

1/p

and

‖u‖p,V =

∫
RN

V(x)|u|pdx

1/p

.

Then (Wλ , ‖ · ‖λ) is a uniformly convex Banach space, see [26] for the details. Moreover, under the condition
(V), for each λ > 0 the embeddingWλ ↪→ W s,p(RN) is continuous. Indeed, for each u ∈ Wλ, we have∫

RN

|u|pdx ≤
∫

{RN :V(x)≥h}

|u|pdx +
∫

{RN :V(x)<h}

|u|pdx

≤ 1
h

∫
{RN :V(x)≥h}

V(x)|u|pdx +
∣∣∣{RN : V(x) < h}

∣∣∣ p*s−pp*s

 ∫
{RN :V(x)<h}

|u|p
*
sdx


p
p*s

≤
(

1
h + |{RN : V(x) < h}|

p*s−p
p*s S−1λ−1

)
‖u‖pλ ,

where S > 0 is de�ned as follows
S = inf

u∈Ds,p(RN )\{0}

[u]ps,p
|u|pp*s

,

where

|u|p*s =

∫
RN

|u|p
*
sdx

1/p*s

.
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Thus,

[u]ps,p + |u|pp ≤
(

1
λ + 1

h + |{RN : V(x) < h}|
p*s−p
p*s S−1λ−1

)
‖u‖pλ .

From this it follows that the embedding Wλ ↪→ W s,p(RN) is continuous. Next we give the de�nition of solu-
tions for problem (1.1).

De�nition 1.1. We say that u ∈ Wλ is a (weak) solution of equation (1.1), if

M
(
‖u‖pλ

)λ ∫∫
R2N

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps (φ(x) − φ(y))dxdy +

∫
RN

V(x)|u|p−2uφdx


=
∫
RN

|u|p
*
s−2uφdx +

∫
RN

f (x, u)φdx,

for any φ ∈ Wλ.

Now we are in a position to state the �rst result of our paper as follows:

Theorem 1.1. Let (M), (V) and (f1)–(f3) hold. Then for any λ > 0, there exists λ* > 0 such that problem (1.1)
has a nontrivial solution uλ for any λ ∈ (0, λ*) which satis�es

λ
∫∫
R2N

|uλ(x) − uλ(y)|p
|x − y|N+ps dxdy +

∫
RN

V(x)|uλ|pdx ≤
(

θpq1
m0q1 − m1θp

) 1
θ

σ
1
θ λ

p*s
p*s−θp , (1.3)

where σ = 1
q1

(
1 − m1

m0

)
+ 1
θp −

1
p*s
. Assume additionally that f (x, t) is odd with respect to t, for any m ∈ N, there

is λm > 0 such that problem (1.1) admits at least m pairs of solutions uλ,i(i = 1, 2, · · · ,m) which satisfy (1.3)
whenever 0 < λ ≤ λm.

The proof of Theorem 1.1 is mainly based on the application of the concentration compactness lemma in
fractional Sobolev spaces developed by Xiang et al. in [34]. We show that the energy functional Iλ associated
to problem (1.1) satis�es (PS)c condition for c > 0 small and λ > 0 small. To get the multiplicity of solutions
for problem (1.1), we �nd a special �nite dimensional subspaces by which we construct su�ciently small
minimax levels. It is worth to point out that the authors in [42] just concerned with the case that M(t) =
a + btθ−1 with a, b > 0, which just focused on the non-degenerate Kirchho� problems, that is M(0) > 0.
Moreover, for the nonlinear term f , our assumption (f1) is more general than (h1) and (h2) in [42].

Finally, we consider the critical case θ = p*s/p. To this aim, we assume the subcritical term f satis�es
following assumptions.
(f4) f : RN ×R→ R is a Carathéodory function and there exists q ∈ (p, p*s) such that for any ε > 0 there exists

Cε > 0 and
|f (x, t)| ≤ pε|t|p−1 + qCε|t|q−1 for a.e. x ∈ RN and all t ∈ R;

(f5) There exists q1 ∈ (p, p*s) such that F(x, t) ≥ a0|t|q1 for a.e. x ∈ RN and all t ∈ R.

Theorem 1.2. Assume that M satis�es (M) with θ = p*s/p and 2 ≤ p < N/s, and f (x, t) is odd with respect
to t and satis�es (f4) − (f5). Then problem (1.1) has in�nitely many pairs distinct solutions in Wλ for all λ >
2pS−p

*
s/p/m0.

For the critical case θ = p*s/p, the method used in Theorem 1.1 seems to be invalid. For this, we will use
Krasnoselskii’s genus theory to prove Theorem 1.2, see also [43] about the application of the same method
to the multiplicity of solutions for a class of fractional Choquard-Kirchho� equations. Furthermore, as usual
for elliptic problems involving critical nonlinearities, we must pay attention to the lack of compactness. To
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overcome this di�culty, we �x parameter λ larger than a suitable threshold. We would like to point out that
the authors in [34] just obtained the existence of two weak solutions for a variant of problem (1.1) by using
Ekeland’s variational principle and the mountain pass theorem. To our best knowledge, this is the �rst time
to consider the existence of in�nitely many solutions for the critical case θ = p*s/p in the study of general
Kirchho� problems.

The rest of our paper is organized as follows. In Section 2, we give the proof of Theorems 1.1. In Section 3,
we consider the critical case θ = p*s/p and obtain the proof of the Theorem 1.2.

2 Proof of Theorem 1.1
In this section, we prove the main result of this paper. In the following, we shortly denote the norm of Lν(RN)
by | · |ν.

Obviously, the energy functional Iλ : Wλ → R associated with problem (1.1)

Iλ(u) = 1
pM (‖u‖pλ ) − 1

p*s

∫
RN

|u|p
*
sdx −

∫
RN

F(x, u)dx

is well de�ned, where M (t) =
∫ t

0 M(τ)dτ. It is easy to verify that as argued in [26], Iλ ∈ C1(Wλ ,R) and its
critical points are solutions of (1.1).

Under our assumptions, we can show that functional has mountain pass geometry.

Lemma 2.1. Assume that (M), (V), and (f1) are satis�ed. Then for each λ ∈ (0, 1) there exist αλ > 0 and ρλ > 0
such that Iλ(u) > 0 for u ∈ Bρλ \ {0}, and Iλ(u) ≥ αλ for all u ∈ Wλ with ‖u‖λ = ρλ. Here Bρλ = {u ∈ Wλ : ‖u‖λ <
ρλ}.

Proof. By (f1), for any ε > 0 there exists Cε > 0 such that

|f (x, t)| ≤ εθp|t|θp−1 + Cεq|t|q−1 for a.e. x ∈ RN and all t ∈ R.

Furthermore, we have

|F(x, t)| ≤ ε|t|θp + Cε|t|q for a.e. x ∈ RN and all t ∈ R.

For any u ∈ Wλ, by (M), Hölder’s inequality and the fractional Sobolev inequality, one has

Iλ(u) ≥ m0
θp ‖u‖

θp
λ −

1
p*s

∫
RN

|u|p
*
sdx − ε

∫
RN

|u|θpdx − Cε
∫
RN

|u|qdx.

Note that by the fractional Sobolev embedding theorem (see [1]), there exists C > 0 such that

|u|θp ≤ C‖u‖λ and |u|q ≤ C‖u‖λ .

Then choosing ε ∈ (0,m0/(2θpCθp)), we have

Iλ(u) ≥ m0
θp ‖u‖

θp
λ −

1
p*s
S−p

*
s/p[u]p

*
s
s,p − εCθp‖u‖θpλ − C

qCε‖u‖qλ

≥
(
m0

2θp −
1
p*s
S−p

*
s/p‖u‖p

*
s−θp
λ − CqCε‖u‖q−θpλ

)
‖u‖θpλ .

Let us de�ne
g(t) := m0

2θp −
1
p*s
S−p

*
s/p tp

*
s−θp − CqCε tq−θp for all t ≥ 0.

Clearly, limt→0+ g(t) = m0/(2θp) > 0, since p*s > θp and q > θp. Taking ρλ := ‖u‖λ small enough such that

1
p*s
S−p

*
s/pρp

*
s−θp
λ + CqCερq−θpλ < m0

2θp ,
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then we have
Iλ(u) ≥ g(ρλ)ρθpλ =: αλ .

Thus we complete the proof.

Lemma 2.2. Under the assumptions of Lemma 2.1, for any �nite dimensional subspace E ⊂ Wλ,

Iλ(u)→ −∞ as u ∈ E, ‖u‖λ →∞.

Proof. By (M) and F(x, t) ≥ 0 for a.e. x ∈ RN and all t ∈ R, we have

Iλ(u) ≤ m1
θp ‖u‖

θp
λ −

1
p*s

∫
RN

|u|p
*
sdx

for all u ∈ E. Note that all norms in a �nite dimensional space are equivalent. Hence there exists CE > 0 such
that |u|p*s ≥ CE‖u‖λ for all u ∈ E. Then,

Iλ(u) ≤ m1
θp ‖u‖

θp
λ − a0C

p*s
E ‖u‖

p*s
λ .

It follows from p*s > θp that Iλ(u)→ −∞ as u ∈ E, ‖u‖λ →∞.

De�nition 2.1. A sequence {un}n ⊂ Wλ is called a (PS)c sequence, if Iλ(un) → c and I′λ(un) → 0. We say Iλ
satis�es (PS)c condition if any (PS)c sequence admits a converging subsequence.

Lemma 2.3. Assume that (M) and (f2) are ful�lled. If {un}n is a (PS)c sequence, then {un}n is bounded in Wλ
and c ≥ 0.

Proof. Since {un}n is a (PS)c sequence, there exists n0 > 0 such that

Iλ(un) − 1
q1
〈I′λ(un), un〉 ≤ c + o(1) + o(1)‖un‖λ for all n ≥ n0, (2.1)

Then, by (M) and (f2), it follows that

Iλ(un) − 1
q1
〈I′λ(un), un〉 ≥

(
m0
θp −

m1
q1

)
‖un‖θpλ .

Hence, it follows from (2.1) and
(
m0/(θp) − m1/q1

)
> 0 that(

m0
θp −

m1
q1

)
‖un‖θpλ ≤ c + o(1) + o(1)‖un‖λ . (2.2)

This, together with
(
m0/(θp) − m1/q1

)
> 0, yields that {un}n is bounded inWλ. Then taking the limit in (2.2),

we deduce that c ≥ 0. This completes the proof of Lemma 2.3.

Lemma 2.4. Assume that (V), (M) and (f1) − (f2) hold. For any λ ∈ (0, 1), Iλ satis�es the (PS)c condition for all

c ∈
(

0, σ(m0λθSθ)
p*s

p*s−θp

)
, where σ =

[
1
q1

(
1 − m1

m0

)
+ 1
θp −

1
p*s

]
.

Proof. Let {un}n be a (PS)c sequence. Then by Lemma 2.3, {un}n is boundedWλ, up to a subsequence, there
exists a nonnegative function u ∈ Wλ such that un ⇀ u in Wλ, un → u in Lσloc for σ ∈ [1, p*s), and un → u
a.e. inRN . By Theorem 2.2 of [34], up to a subsequence, there exists a (at most) countable set J, a non-atomic
measure ζ̃ , points {xj}j∈J ⊂ RN and {ζj}j∈J , {ηj}j∈J ⊂ R+ such that as n →∞∫

RN

|un(x) − un(y)|p
|x − y|N+ps dy ⇀ ζ =

∫
RN

|u(x) − u(y)|p
|x − y|N+ps dy +

∑
j∈J

ζjδxj + ζ̃ (2.3)
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and

|un|p
*
s ⇀ η = |u|p

*
s +
∑
j∈J

ηjδxj (2.4)

in the measure sense, where δxj is the Dirac measure concentrated xj. Moreover,

ηj ≤ S−p
*
s/pζ p

*
s/p

j , ∀j ∈ J, (2.5)

where S > 0 is the best constant of the embedding Ds,p(RN) ↪→ Lp
*
s (RN).

Nextwe prove that J = ∅. Otherwise, suppose that J ≠ ∅, then for �xed j ∈ J and ε > 0, chooseφε,j ∈ C∞0 (RN)
such that

φε,j = 1 for |x − xj| ≤ ε; φε,j = 0 for |x − xj| ≥ 2ε,

and |∇φε,j| ≤ 2/ε. Evidently, φε,jun ∈ Ds.p(RN). Hence it follows from 〈I′λ(un), φε,jun〉 → 0 that

M(‖un‖pλ )

λ〈un , unφε〉s,p +
∫
RN

V(x)|un|pφεdx


=
∫
RN

|un|p
*
sφε,jdx +

∫
RN

f (x, un)φε,jundx + o(1), (2.6)

where

〈un , unφε,j〉s,p = λ
∫∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y))(φε,j(x)un(x) − φε,j(y)un(y))
|x − y|N+ps dxdy.

By using Hölder’s inequality and Lemma 2.3 of [34], we have

lim
ε→0

lim sup
n→∞

∣∣∣∣∣∣M(‖un‖pε )
∫∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y))(φε,j(x) − φε,j(y))un(x)
|x − y|N+ps dxdy

∣∣∣∣∣∣
≤ C lim

ε→0
lim sup
n→∞

∫∫
R2N

|(φε,j(x) − φε,j(y))un(x)|p

|x − y|N+ps dxdy

1/p

= 0. (2.7)

By (2.3), (2.4) and (M), we have

lim
ε→0

lim sup
n→∞

M(‖un‖pλ )

λ ∫∫
R2N

|un(x) − un(y)|p
|x − y|N+ps φε,j(y)dydx +

∫
RN

V(x)|un|pφε,jdx



≥ lim
ε→0

lim
n→∞

m0

λ ∫∫
R2N

|un(x) − un(y)|p
|x − y|N+ps φε,j(y)dxdy

θ
 = m0(λζj)θ , (2.8)

lim
ε→0

lim
n→∞

∫
RN

|un|p
*
sφε,jdx = lim

ε→0

∫
RN

|u|p
*
sφε,jdx + ηj = ηj , (2.9)

and

lim
ε→0

lim
n→∞

∫
RN

f (x, un)φε,jundx = lim
ε→0

∫
RN

f (x, u)φε,judx = 0. (2.10)
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Here we applied the fact that Wλ ↪→ Lνloc(RN) is compact for all ν ∈ [1, p*s). Then we can deduce from (2.6)–
(2.10) that

ηj ≥ m0(λζj)θ .

From the above inequality, together with (2.5), it follows that

ηj ≥ m0λθSθη
θp/p*s
j .

Hence,

ηj ≥ (m0λθSθ)
p*s

p*s−θp . (2.11)

On the other hand, by (2.3) and (2.4), we obtain

c = lim
n→∞

(
Iλ(un) − 1

q1

〈
I′λ(un), un

〉)
≥
(
m0
θp −

m1
q1

)
(λζj)θ +

(
1
q1
− 1
p*s

)
ηj

≥
[

1
q1

(
1 − m1

m0

)
+ 1
θp −

1
p*s

]
(m0λθSθ)

p*s
p*s−θp ,

which is a contradiction. Hence the desired conclusion holds.
Letting R > 0, we de�ne

ζ∞ = lim
R→∞

lim sup
n→∞

∫
{x∈RN :|x|>R}

∫
RN

|un(x) − un(y)|p
|x − y|N+ps dydx,

and

η∞ = lim
R→∞

lim sup
n→∞

∫
{x∈RN :|x|>R}

|un|p
*
sdx.

In view of Theorem 2.4 of [34], ζ∞ and η∞ are well de�ned and satisfy

lim sup
n→∞

∫
RN

∫
RN

|un(x) − un(y)|p
|x − y|N+ps dydx =

∫
RN

dζ + ζ∞, (2.12)

and

lim sup
n→∞

∫
RN

up
*
s
n dx =

∫
RN

dη + η∞. (2.13)

Assume that χR ∈ C∞(RN) satis�es the properties: χR ∈ [0, 1] and χR(x) = 0 for |x| < R, χR(x) = 1 for
|x| > 2R, and |∇χR| ≤ 2/R. By Theorem 2.4 of [34], we have

ζ∞ = lim
R→∞

lim sup
n→∞

∫∫
RN

|un(x) − un(y)|pχR(x)p
|x − y|N+ps dydx (2.14)

and

η∞ = lim
R→∞

lim sup
n→∞

∫
RN

|un(x)χR(x)|p
*
sdx. (2.15)

Moreover, we have

Sηp/p
*
s∞ ≤ ζ∞. (2.16)
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Because ‖un‖p and ‖un‖p
*
s
p*s

are bounded, up to a subsequence, we can assume that ‖un‖p and ‖un‖p
*
s
p*s

are
both convergent. Hence by (2.12) and (2.13), we can obtain

lim
n→∞

‖un‖p =
∫
RN

dζ + ζ∞ (2.17)

and

lim
n→∞

‖un‖p
*
s
p*s

=
∫
RN

dη + η∞. (2.18)

It follows from 〈I′λ(un), χRun〉 → 0 as n →∞ that

M(‖un‖pλ )
[
λ
∫∫
R2N

|un(x) − un(y)|pχR(x)
|x − y|N+ps dxdy +

∫
RN

V(x)|un|pχRdx

+ λ
∫∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y))un(y)(χR(x) − χR(y))
|x − y|N+ps dxdy

]

=
∫
RN

|un|p
*
s χRdx +

∫
RN

f (x, un)unχRdx + o(1). (2.19)

By employing Hölder’s inequality and (2.15) in [34], we get

lim
R→∞

lim sup
n→∞

∫∫
R2N

|un(x) − un(y)|p−2(un(x) − un(y))un(y)(χR(x) − χR(y))
|x − y|N+ps dxdy = 0. (2.20)

Hence we deduce from (2.14), (2.17), (2.19) and (2.20) that

lim
R→∞

lim sup
n→∞

M(‖un‖pλ )
[
λ
∫∫
R2N

|un(x) − un(y)|pχR(x)
|x − y|N+ps dxdy +

∫
RN

V(x)|un|pχRdx
]

≥ m0λθ
∫
RN

dζ + ζ∞

θ−1

lim
R→∞

lim sup
n→∞

 ∫
{x∈RN :|x|>R}

∫
RN

|un(x) − un(y)|p
|x − y|N+ps dydx


≥ m0λθζ θ∞, (2.21)

thanks to the assumption θ > 1. It is easy to see that

lim
R→∞

lim sup
n→∞

∫
RN

f (x, un)unχRdx = lim
R→∞

∫
RN

f (x, u)uχRdx = 0, (2.22)

Thanks to the fact that the embeddingWλ → Lqloc(RN) is compact. Therefore, we conclude from (2.19)–(2.22)
and (2.15) that

m0λθζ θ∞ ≤ η∞,

which together with (2.16) yields

m0λθSθη
θp/p*s∞ ≤ η∞.

This implies that η∞ = 0 or

η∞ ≥ (m0λθSθ)
p*s

p*s−θp . (2.23)
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Assume that (2.23) holds. Then

c = lim
n→∞

(
Iλ(un) − 1

q1
〈I′λ(un), un〉

)

≥ lim
n→∞

[(
m0
θp −

m1
q1

)∫∫
RN

|un(x) − un(y)|p
|x − y|N+ps dxdy

θ

+
(

1
q1
− 1
p*s

)∫
RN

|un|p
*
sdx
]

≥
[

1
q1

(
1 − m1

m0

)
+ 1
θp −

1
p*s

]
(m0λθSθ)

p*s
p*s−θp ,

which is absurd. Hence, we have ν∞ = 0. In view of J = ∅ and (2.18), we have

lim
n→∞

∫
RN

|un|p
*
sdx =

∫
RN

|u|p
*
sdx. (2.24)

Now we show that un → u inWλ. To this aim, we �rst assume that d := infn≥1 ‖un‖λ > 0.
Since 〈I′λ(un) − I′λ(u), un − u〉 → 0, we have

M(‖un‖pλ )〈un , un − u〉 −M(‖u‖pλ )〈u, un − u〉

=
∫
RN

(
|un|p

*
s−2un − |u|p

*
s−2u

)
(un − u)dx + o(1),

where

〈un , un − u〉 := λ〈un , un − u〉s,p +
∫
RN

V(x)|un|p−2un(un − u)dx.

Here we used the following fact:

lim
n→∞

∫
RN

(f (x, un) − f (x, u))(un − u)dx = 0. (2.25)

Nowwe show that (2.25) is true. By Theorem 2.1 of [26], we know that the embeddingWλ ↪→ Lν(RN) is compact
for any ν ∈ [p, p*s). Thus, up to a subsequence, we have un → u in Lν(RN) for any ν ∈ [p, p*s). According to
(f1) and (f2), for any ε > 0 we have

|f (x, t)| ≤ ε|t|θp−1 + Cε|t|q−1

for all (x, t) ∈ RN ×R. Then∣∣∣∣∣∣
∫
RN

(f (x, un) − f (x, u))(un − u)dx

∣∣∣∣∣∣
≤ ε
∫
RN

(|un|θp−1 + |u|θp−1)(un − u)dx + Cε
∫
RN

(|un|q−1 + |u|q−1)(un − u)dx

≤ Cε + Cε(‖un‖q−1
q + ‖u‖q−1

q )‖un − u‖q ,

which implies that

lim
n→∞

∫
RN

(f (x, un) − f (x, u))(un − u)dx = 0.

Thus, we obtain

M(‖un‖pλ )(〈un , un − u〉 − 〈u, un − u〉) + M(‖un‖pλ )〈u, un − u〉 −M(‖u‖pλ )〈u, un − u〉

=
∫
RN

(
|un|p

*
s−2un − |u|p

*
s−2u

)
(un − u)dx + o(1).

Unauthenticated
Download Date | 8/16/19 5:16 PM



Mingqi Xiang et al., Superlinear Schrödinger–Kirchho� type problems | 701

By the boundedness of {un}n and un ⇀ u inWλ, we can deduce that

lim
n→∞

M(‖un‖pλ )〈u, un − u〉 = 0

and

lim
n→∞

M(‖u‖pλ )〈u, un − u〉 = 0.

Hence, we conclude from (2.24) that

lim
n→∞

M(‖un‖pλ ) (〈un , un − u〉 − 〈u, un − u〉) = 0.

This, together with d := infn≥1 ‖un‖ > 0, implies that

lim
n→∞

(〈un , un − u〉 − 〈u, un − u〉) = 0. (2.26)

Let us now recall the well-known inequalities:

|a − b|p ≤


2p
(
|a|p−2a − |b|p−2b

)
· (a − b) for p ≥ 2

1
p − 1

[(
|a|p−2a − |b|p−2b

)
· (a − b)

]p/2
(|a|p + |b|p)(2−p)/2 for 1 < p < 2,

(2.27)

for all a, b ∈ RN .
Similar to the proof of Lemma6 in [26], it is easy to deduce from (2.27) that un → u strongly inWλ as n →∞.
In the end, we consider the case inf

n
‖un‖λ = 0. Then either 0 is an accumulation point of the sequence

{un}n and so there exists a subsequence of {un}n strongly converging to u = 0, or 0 is an isolated point of
the sequence {un}n and so there exists a subsequence, still denoted by {un}n, such that infn ‖un‖ > 0. In the
�rst case we are done, while in the latter case we can proceed as above.

Since the functional Iλ satis�es the (PS)c condition for small c > 0, we will �nd a special �nite dimensional
subspaces by which we construct su�ciently small minimax levels.

By (V), we know that V(x0) = minx∈RN V(x) = 0. Without loss of generality, we assume from now on that
x0 = 0. By means of (M) and (f3), we have

Iλ(u) ≤ m1
θp ‖u‖

θp
λ −

1
p*s

∫
RN

|u|p
*
sdx − a0

∫
RN

|u|q2dx

≤ m1
θp ‖u‖

θp
λ − a0

∫
RN

|u|q2dx

for all u ∈ Wλ. De�ne the functional Φλ : Wλ → R by

Jλ(u) = m1
θp ‖u‖

θp
λ − a0

∫
RN

|u|q2dx.

Then Iλ(u) ≤ Jλ(u) for all u ∈ Wλ. Hence it su�ces to construct small minimax levels for Jλ.
For any δ > 0, one can choose ϕδ ∈ C∞0 (RN) with ‖ϕδ‖q2 = 1 and supp ϕδ ⊂ Brδ (0) such that [ϕδ]ps,p < δ.

Let

eλ = ϕδ

(
λ
− θp*s
N(p*s−θp) x

)
.
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Then supp eλ ⊂ B
λ

θp*s
N(p*s−θp) rδ

(0). Thus, for t ≥ 0, we have

Jλ(teλ) = tθp
θp ‖eλ‖

θp
λ − a0tq2

∫
RN

|eλ|q2dx

= λ
θp*s
p*s−θp tθp 1

θp

[(∫∫
R2N

|ϕδ(x) − ϕδ(y)|p
|x − y|N+ps dxdy

+ λ
(θ−1) p*s

p*s−θp

∫
RN

V
(
λ

θp*s
N(p*s−θp) x

)
|ϕδ|pdx

)θ
− tq2a0

∫
RN

|ϕδ|q2dx
]
.

It follows from λ ∈ (0, 1) and θ > 1 that

Jλ(teλ)

≤ λ
θp*s
p*s−θp tθp 1

θp

[(∫∫
R2N

|ϕδ(x) − ϕδ(y)|p
|x − y|N+ps dxdy +

∫
RN

V(λ
θp*s

N(p*s−θp) x)|ϕδ|pdx
)θ
− a0tq2

∫
RN

|ϕδ|q2dx
]

= λ
θp*s
p*s−θpΦλ(tϕδ),

where Φλ ∈ C1(Wλ ,R) de�ned by

Φλ(u) = 1
θp

(∫∫
R2N

|u(x) − u(y)|p
|x − y|N+ps dxdy +

∫
RN

V(λ
θp*s

N(p*s−θp) x)|u|pdx
)θ
− a0

∫
RN

|u|q2dx

for all u ∈ Wλ. Clearly,

max
t≥0

Φλ(tϕδ) = q − θp
θpq(qa0)

θp
q−θp

(∫∫
R2N

|ϕδ(x) − ϕδ(y)|p
|x − y|N+ps dxdy +

∫
RN

V(λ
θp*s

N(p*s−θp) x)|ϕδ|pdx
) q

q−θp

.

Observe that V(0) = 0 and V ∈ C(RN), then there exists Λδ > 0 such that

0 ≤ V
(
λ

θp*s
N(p*s−θp) x

)
≤ δ
‖ϕδ‖

p
p

for all |x| ≤ rδ and 0 < λ ≤ Λδ. It follows from [ϕδ]ps,p < δ that

max
t≥0

Φλ(tϕδ) ≤ q2 − θp

θpq2(q2a0)
θp

q2−θp
(2δ)

q2
q2−θp .

Furthermore, we have

max
t≥0

Iλ(tϕδ) ≤ q2 − θp

θpq2(q2a0)
θp

q2−θp
(2δ)

q2
q2−θp λ

θp*s
p*s−θp , (2.28)

for all λ ∈ (0, Λδ]. In conclusion, we have the following lemma.

Lemma 2.5. Under the assumptions of Lemma 2.1, there exists Λ > 0 such that for all λ ∈ (0, Λ) there exists
ẽλ ∈ Wλ with ‖ẽλ‖λ > ρλ, Iλ(ẽλ) < 0 and

max
t∈[0,1]

Iλ(tẽλ) < σλ
θp*s
p*s−θp ,

where σ = 1
q1

(
1 − m1

m0

)
+ 1
θp −

1
p*s
.
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Proof. Let δ > 0 small enough such that

q2 − θp

θpq2(q2a0)
θp

q2−θp
(2δ)

q2
q2−θp < σ.

Taking Λ = Λδ and choosing t̃λ > 0 such that t̃λ‖eλ‖λ > ρλ and Iλ(teλ) < 0 for all t ≥ t̃λ. The result follows by
letting ẽλ = t̃λeλ.

Let m ∈ N, we choose m functions ϕiδ ∈ C
∞
0 (RN) such that supp ϕiδ

⋂
supp ϕjδ = ∅ for all 1 ≤ i ≠ j ≤ m, and

‖ϕδ‖q = 1 and [ϕδ]ps,p < δ. Let rmδ > 0 be such that supp ϕiδ ⊂ Brmδ (0) for i = 1, 2, · · · ,m. Set

eiλ = ϕiδ

(
λ
− θp*s
N(p*s−θp) x

)
for all i = 1, 2, · · · ,m,

and
Emλ,δ = span{e1

λ , e
2
λ , · · · , e

m
λ }.

Then for each u =
∑m

i=1 cie
i
λ ∈ E

m
λ,δ, we have∫∫

R2N

|u(x) − u(y)|p
|x − y|N+ps dxdy =

m∑
i=1
|ci|p

∫∫
R2N

|eiλ(x) − eiλ(y)|p

|x − y|N+ps dxdy,

∫
RN

V(x)|u|pdx =
m∑
i=1
|ci|p

∫
RN

V(x)|eiλ|
pdx,

1
p*s

∫
RN

|u|p
*
sdx = 1

p*s

m∑
i=1
|ci|p

*
s

∫
RN

|eiλ|
p*sdx

and ∫
RN

F(x, u)dx =
m∑
i=1

∫
RN

F(x, cieiλ)dx.

Hence,

Iλ(u) =
m∑
i=1

Iλ(cieiλ).

and as above

Iλ(cieiλ) ≤ λ
θp*s

N(p*s−θp) Φλ(cieiλ).

Set
βδ := max{‖ϕiδ‖

p
p : i = 1, 2, · · · ,m},

and choose Λm,δ > 0 such that

V
(
λ
− θp*s
N(p*s−θp) x

)
≤ δ
βδ

for all |x| ≤ rmδ and λ ≤ Λm,δ. As in the proof of Lemma 2.4, we can get

max
u∈Emλ,δ

Iλ(u) ≤ m(q2 − θp)

θpq2(q2a0)
θp

q2−θp
(2δ)

q2
q2−θp λ

θp*s
p*s−θp ,

for all λ ∈ (0, Λm,δ]. Then we have the following lemma.

Lemma 2.6. Under the assumptions of Lemma 2.1, for any m ∈ N there exists Λm > 0 such that for all λ ∈
(0, Λm) there exists m-dimensional subspace Emλ such that

max
u∈Emλ

Iλ(u) < σλ
θp*s
p*s−θp .
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Proof. Choose δ > 0 so small that
q2 − θp

θpq2(q2a0)
θp

q2−θp
(2δ)

q2
q2−θp < σ

and take Emλ = Emλ,δ. The result follows from (2.28) and the de�nition of Emλ,δ.

Proof of Theorem 1.1. According to Lemma 2.5, we choose Λσ > 0 and de�ne

cλ = inf
γ∈Γ

max
t∈[0,1]

Iλ(tẽλ),

where
Γ = {γ ∈ C([0, 1],Wλ) : γ(0) = 0 and γ(1) = ẽλ}.

By Lemma 2.1, we have αλ ≤ cλ < σλθp
*
s/(p*s−θp). In view of Lemma 2.4, we know that Iλ satis�es the (PS)cλ

condition, and there exists uλ ∈ Wλ such that I′λ(uλ) = 0 and Iλ(uλ) = cλ. Thus, uλ is a solution of (1.1).
It follows from I′λ(uλ) = 0 and Iλ(uλ) = cλ that

σλ
θp*s
p*s−θp ≥ Iλ(uλ) = Iλ(uλ) − 1

q1
〈I′(uλ), uλ〉

≥
(
m0
θp −

m1
q1

)
‖uλ‖θλ +

(
1
q1
− 1
p*s

)∫
RN

|uλ|p
*
sdx.

Hence (1.3) holds.
Denote the set of all symmetric (in the sense that −Z = Z) and closed subsets of E by Σ, for each Z ∈ Σ. Let

γ(Z) be the Krasnoselski genus and

i(Z) = min
h∈Γm

γ
(
h(Z)

⋂
∂Bρλ

)
,

where Γm is the set of all odd homeomorphisms h ∈ C(Wλ ,Wλ) and ρλ is the number from Lemma 2.1. Then
i is a version of Benci’s pseudo-index (see [44]). Let

cλj := inf
i(Z)≥j

sup
u∈Z

Iλ(u), 1 ≤ j ≤ m.

Since Iλ(u) ≥ αλ for all u ∈ ∂Bρλ and i(Eλ,m) = dim Eλ,m = m, we have

αλ ≤ cλ1 ≤ · · · ≤ cλm ≤ sup
u∈Eλ,m

Iλ(u) <
[

1
q1

(
1 − m1

m0

)
+ 1
θp −

1
p*s

]
λ

θp*s
p*s−θp .

It follows from Lemma 2.4 that Iλ satis�es the (PS)c condition at all levels cλj (j = 1, 2, · · · ,m). According to
standard critical point theory (see [45]), all cλj are critical values, and then Iλ has at leastm pairs of nontrivial
critical points.

3 Proof of Theorem 1.2
In this section, we consider the existence of in�nitely many solutions of problem (1.1), where the Kirchho�
functionM satis�es (M) with the critical case θ = p*s/p. Let us �rst recall some basic results about Krasnosel-
skii’s genus, which can be found in [45]. Let G be a real Banach space. Set

Γ = {A ⊂ G\{0} : A is compact and A = −A.}

De�nition 3.1. Let A ∈ Γ. The Krasnoselskii genus γ(A) of A is de�ned as being the least positive integer k
such that there is an odd mapping ϕ ∈ C(A,Rk) such that ϕ(x) ≠ 0 for all x ∈ A. If such a k does not exist we
set γ(A) = ∞. Moreover, by de�nition, γ(∅) = 0.
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Lemma 3.1. (see [45]) LetG = RN and ∂Ω be the boundary of an open, symmetric, and bounded subset Ω ⊂ RN

with 0 ∈ Ω. Then γ(∂Ω) = N .

Denote by SN−1 the surface of the unit sphere in RN . Then we can deduce from Lemma 3.1 that γ(SN−1) = N .
We shall use the following theorem to obtain the existence of in�nitely many solutions for (1.1).

Theorem 3.1. (see [46]) Let T ∈ C1(G,R) be an even functional satisfying the (PS) condition. Furthermore,
(1) T is bounded from below and even;
(2) there is a compact set E ∈ Γ such that γ(E) = k and supu∈E T(u) < T(0).
Then T has at least k pairs of distinct critical points and their corresponding critical values are less than T(0).

Lemma 3.2. Assume that s ∈ (0, 1), 2 ≤ p < N/s, θ = p*s/p, p < q < p*s and f satis�es (f4). Then functional Iλ
satis�es the (PS)c conditions in Wλ for all λ > 2pS−p

*
s/p/m0.

Proof. Let {un}n ⊂ Wλ be the (PS)c sequence of functional Iλ, i.e.

Iλ(un)→ c, Iλ(un)→ 0

as n →∞.
By (f4), we have

|F(x, t)| ≤ |t|p + C1|t|q for a.e. x ∈ RN and all t ∈ R.

It follows from (M), (f4), Hölder’s inequality and the fractional Sobolev inequality that

Iλ(u) ≥ m0
θp ‖u‖

θp
λ −

1
p*s

∫
RN

|u|p
*
sdx −

∫
RN

|u|pdx − C1

∫
RN

|u|qdx

≥ m0
θp ‖u‖

θp
λ −

1
p*s
S−

p*s
p λ−1‖u‖p

*
s
λ − C‖u‖

p
λ − C‖u‖

q
λ , (3.1)

for all u ∈ Wλ. When θ = p*s/p, since λ > 2pS−p*s /p
m0

> S−p
*
s /p

p*s
θp
m0

and p < q < p*s, it is easy to see that Iλ is coercive
and bounded from below on Wλ. Hence, {un}n is bounded in Wλ. Then there exist a subsequence of {un}n
(still denoted by {un}n) and u ∈ Wλ such that

un ⇀ u in Wλ and in Lp
*
s (RN),

un → u a.e. in RN ,

|un|p
*
s−2un ⇀ |u|p

*
s−2u in L

p*s
p*s−1 (RN), (3.2)

as n →∞. Similar to the discussion as in Section 2, we have

lim
n→∞

∫
RN

(f (x, un) − f (x, u))(un − u)dx = 0. (3.3)

Let wn = un − u. Then by using similar arguments as in Lemma 3.2 of [4], we get

[un]ps,p = [wn]ps,p + [u]ps,p + o(1). (3.4)

By the celebrated Brézis–Lieb lemma, one has∫
RN

V(x)|wn|pdx =
∫
RN

V(x)|un|pdx −
∫
RN

V(x)|u|pdx + o(1) (3.5)

and ∫
RN

|wn|p
*
sdx =

∫
RN

|un|p
*
sdx −

∫
RN

|u|p
*
sdx + o(1). (3.6)
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Let us now introduce, for simplicity, for all v ∈ Wλ the linear functional L(v) onWλ de�ned by

〈L(v), w〉 = λ
∫∫
R2N

|v(x) − v(y)|p−2(v(x) − v(y))(w(x) − w(y))
|x − y|N+ps dxdy +

∫
RN

V(x)|v|p−2vwdx

for all w ∈ Wλ. The Hölder inequality gives that

∣∣〈L(v), w〉
∣∣ ≤ λ[v]p−1

s,p [w]s,p +

∫
RN

V(x)|v|pdx

(p−1)/p∫
RN

V(x)|w|pdx

1/p

≤

λ[v]p−1
s,p +

∫
RN

V(x)|v|pdx

(p−1)/p
 ‖w‖λ .

Thus, for each v ∈ Wλ, the linear functionalL(v) is continuous onWλ. Hence, the weak convergence of {un}n
inWλ gives that

lim
n→∞
〈L(u), un − u〉 = 0. (3.7)

Without loss of generality, we assume that limn→∞ ‖wn‖λ = η. Since {un}n is a (PS)c sequence, by the bound-
edness of {un}n, (3.3), (3.6) and (3.7), we have

o(1) = 〈I′λ(un) − I′λ(u), un − u〉
= M(‖un‖pλ )〈L(un), un − u〉 −M(‖u‖pλ )〈L(u), un − u〉

−
∫
RN

[f (x, un) − f (x, u)](un − u)dx −
∫
RN

[
|un|p

*
s−2un − |u|p

*
s−2u

]
(un − u)dx

= M(‖un‖pλ )
[
〈L(un), un − u〉 − 〈L(u), un − u〉

]
−
∫
RN

|un − u|p
*
sdx + o(1). (3.8)

Here we use the following fact:

lim
n→∞

∫
RN

|un|p
*
s−2unudx =

∫
RN

|u|p
*
sdx, (3.9)

thanks to (3.2).
It follows from (3.4), (3.5) and (3.8) that

M(‖un − u‖pλ + ‖u‖pλ )
[
〈L(un), un − u〉 − 〈L(u), un − u〉

]
−
∫
RN

|un − u|p
*
sdx = o(1). (3.10)

From the de�nition of S, we get ∫
RN

|wn|p
*
sdx ≤ S−

p*s
p [wn]p

*
s
s,p .

Putting this in (3.10) and using (M) and (2.27) with the case p ≥ 2, we arrive at the inequality

m0(‖un − u‖pλ + ‖u‖pλ )(θ−1)p 1
2p ‖un − u‖

p
λ ≤ S

−p*s/pλ−1‖un − u‖p
*
s
λ + o(1).

Letting n →∞, we have
1

2pm0(ηp + ‖u‖pλ )(θ−1)pηp ≤ S−p
*
s/pλ−1ηp

*
s .

This implies that

m0ηθp ≤ λ−12pS−p
*
s/pηp

*
s . (3.11)

Since θ = p*s/p and 2pS−p
*
s/p/m0 < λ, it follows from (3.11) that η = 0. Thus, un → u inWλ.
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Remark 3.1. It seems that the method used in the proof of Lemma 3.2 could not be applied to the case θ >
p*s/p.

Proof of Theorem 1.2. Denote by {e1, e2, · · · } a basis of Wλ, and for each k ∈ N consider Ek =
span{e1, e2, · · · , ek}, the subspace of Wλ generated by e1, e2, · · · , ek. By assumption p < q < p*s, we know
thatEk can be continuously embedded into Lq(RN). Note that all norms are equivalent on a �nite dimensional
Banach space. Thus there exists a positive C(k) depending on k such that

‖u‖qλ ≤ C(k)
∫
RN

|u|qdx,

for all u ∈ Ek. Then by (M1) and (f5), we deduce

Iλ(u) ≤ m1
p ‖u‖

θp
λ −

1
p*s

∫
RN

|u(x)|p
*
sdx − a0C(k)‖u‖qλ

≤
(
m1
p ‖u‖

θp−q
λ − a0C(k)

)
‖u‖qλ ,

for all u ∈ Ek. Let R be a positive constant such that
m1
p Rθp−q < a0C(k).

Hence, for all 0 < r < R, we get

Iλ(u) ≤ rq
(
m1
p rθp−q − a0C(k)

)
≤ Rq

(
m1
p Rθp−q − a0C(k)

)
< 0 = I(0),

for all u ∈ K := {u ∈ Ek : ‖u‖λ = r}. It follows that

sup
u∈K

Iλ(u) < 0 = Iλ(0).

Clearly, Ek and Rk are isomorphic and K and Sk−1 are homeomorphic. Thus, we conclude that γ(K) = k by
Lemma 3.1. Since f (x, u) is odd with respect to u ∈ R, the functional Iλ is even. Moreover, by (3.1), we know
Iλ is bounded from below and satis�es the (PS)c condition by Lemma 3.2. It follows from Theorem 3.1 that
Iλ has at least k pairs of distinct critical points. The arbitrariness of k yields that Iλ has in�nitely many pairs
distinct critical points inWλ, that is, problem (1.1) has in�nitely many pairs distinct solutions.
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