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Abstract:We consider the following Choquard equation:{{{{{{{−∆u = (∫Ω
|u(y)|2∗μ|x − y|μ dy)|u|2∗μ−2u in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in ℝN (N ≥ 3), 2∗μ = 2N−μ
N−2 . This paper is concerned with the existence

of a positive high-energy solution of the above problem in an annular-type domain when the inner hole is
sufficiently small.
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1 Introduction
In this paper, we study the existence of a positive solution of the Choquard equation. More precisely, we
consider the problem {{{{{{{−∆u = (∫Ω

|u(y)|2∗μ|x − y|μ dy)|u|2∗μ−2u in Ω,

u = 0 on ∂Ω,

(P)

where Ω is a smooth bounded domain inℝN(N ≥ 3), 2∗μ = 2N−μ
N−2 , 0 < μ < N.

The work on elliptic equations involving critical Sobolev exponent over non-contractible domains was
initiated by J.-M. Coron in 1983. Indeed, Coron [10] proved the existence of a positive solution of the following
critical elliptic problem {{{{{{{

−∆u = u N+2
N−2 in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(Q)

*Corresponding author: Vicențiu D. Rădulescu, School of Mathematical Sciences, University of Electronic Science and
Technology of China, Chengdu 611731, Sichuan, P. R. China; and Department of Mathematics, University of Craiova, 200585
Craiova, Romania; and Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059
Kraków, Poland, e-mail: radulescu@inf.ucv.ro. http://orcid.org/0000-0003-4615-5537
Divya Goel, K. Sreenadh, Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khaz, New Delhi-110016,
India, e-mail: divyagoel2511@gmail.com, sreenadh@maths.iitd.ac.in

Brought to you by | De Gruyter / TCS
Authenticated

Download Date | 1/27/20 9:52 AM



142 | D. Goel et al., Coron Problem for Nonlocal Equations Involving Choquard Nonlinearity

where Ω is a smooth bounded domain in ℝN and satisfies the following conditions: there exist constants
0 < R1 < R2 < ∞ such that{x ∈ ℝN : R1 < |x| < R2} ⊂ Ω, {x ∈ ℝN : |x| < R1} ⊈ Ω. (1.1)

Later on, Bahri and Coron [1] proved that if there exists a positive integer d such that Hd(Ω,ℤ2) ̸= 0 (where
Hd(Ω,ℤ2) the homology of dimension d of Ω withℤ2 coefficients), then problem (Q) has a positive solution.

Benci and Cerami [4] considered the equation{{{{{{{
−∆u + λu = up−1 in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(1.2)

where Ω ⊂ ℝN ,N ≥ 3, is a smooth bounded domain and 2 < p < 2∗, λ ∈ ℝ+ ∪ {0}.With the help of Ljusternik–
Schnirelmann theory, Benci and Cerami showed that there exists a function λ : (2, 2∗) → ℝ+ ∪ {0} such that
for all λ ≥ λ(p), problem (1.2) has at least cat(Ω) distinct solutions. We cite [3, 5, 6, 11, 23, 27, 33, 37] and
the references therein for the work on the existence of solutions over a non-contractible domain.

We recall that the Choquard equation (1.3) was first introduced in the pioneering work of Fröhlich [13]
and Pekar [30] for the modeling of quantum polaron:− ∆u + u = ( 1|x| ∗ |u|2)u inℝ3. (1.3)

As pointed out by Fröhlich [13] and Pekar, this model corresponds to the study of free electrons in an ionic
lattice interact with phonons associated to deformations of the lattice or with the polarization that it creates
on the medium (interaction of an electron with its own hole). In the approximation to Hartree–Fock theory
of one component plasma, Choquard used equation (1.3) to describe an electron trapped in its own hole.

The Choquard equation is also known as the Schrödinger–Newton equation in models coupling the
Schrödinger equation of quantum physics together with nonrelativistic Newtonian gravity. The equation can
also be derived from the Einstein–Klein–Gordon and Einstein–Dirac system. Such a model was proposed for
boson stars and for the collapse of galaxy fluctuations of scalar field darkmatter. We refer for details to Elgart
and Schlein [12], Giulini and Großardt [17], Jones [19], and Schunck and Mielke [34]. Penrose [31, 32] pro-
posed equation (1.3) as a model of self-gravitating matter in which quantum state reduction was understood
as a gravitational phenomenon.

As pointed out by Lieb [20], Choquard used equation (1.3) to study steady states of the one component
plasma approximation in the Hartree–Fock theory. Classification of solutions of (1.3) was first studied by
Ma and Zhao [22]. For a broad survey of Choquard equations we refer to Moroz and Van Schaftingen [26]
and references therein. We also refer to Battaglia and Van Schaftingen [2], Cassani and Zhang [9], Mingqi,
Rădulescu and Zhang [25], and Seok [35] as recent relevant contributions to the study of Choquard-type
problems.

Recently, Gao and Yang [16] studied the Brezis–Nirenberg-type result for the following problem:{{{{{{{−∆u = λu + (∫Ω
|u(y)|2∗μ|x − y|μ dy)|u|2∗μ−2u in Ω,

u = 0 on ∂Ω,

(1.4)

where 0 < λ, 0 < μ < N, 2∗μ = 2N−μ
N−2 , Ω is a smooth bounded domain in ℝN and 2∗μ is the critical exponent in

the sense of the Hardy–Littlewood–Sobolev inequality (2.1). They proved the Pohozaev identity for equation
(1.4) and used variationalmethods and theminimizers of the best constant SH,L (defined in (2.3)) to show the
existence, non-existence of solution depending on the range of λ. We cite [14, 15] for the Choquard equation
with critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality. However, the existence and
multiplicity of solutions of nonlocal equations over non-contractible domains is still an openquestion. There-
fore, it is essential to study the existence of a positive solution of elliptic equations involving convolution-type
nonlinearity in non-contractible domains.

Inspiring by these results, we study in the present article the Coron problem for problem (P). More pre-
cisely, we show the existence of a high-energy positive solution in a non-contractible bounded domain par-
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ticularly an annulus when the inner hole is sufficiently small. The functional associated with (P) is not C2
when μ > min{4, N} and this makes problem (P) more challenging.

In order to achieve the desired aimwe first prove the non-existence result using the Pohozaev identity for
Choquard equation onℝN+ . We also prove the global compactness lemma for Choquard equation in bounded
domains. In case of μ = 0, such a lemma has been proved by Struwe [36] and later generalized to the p-
Laplacian case by Mercuri and Willem [24]. In case of 0 < μ < N, the method of defining Lévy concentration
function is not useful. In the present article we gave the proof of global compactness Lemma 4.5 by introduc-
ing the notion of Morrey spaces. Finally, by using the concentration-compactness principle together with the
deformation lemma, we prove the existence of high-energy positive solution. To the best of our knowledge,
there is no work on Coron’s problem for Choquard equation.

We now state the main result of this paper.

Theorem 1.1. Assume that Ω is a bounded domain in ℝN satisfying condition (1.1). If R2R1 is sufficiently large,
then problem (P) admits a positive high-energy solution.

Turning to the layout of the paper, in Section2we assemble notations and preliminary results. In Section3,we
give the classification of all nonnegative solutions of Choquard equation. In Section4, we analyze the Palais–
Smale sequences. In Section5, we prove our main result Theorem 1.1. We refer to the recent monograph by
Papageorgiou, Rădulescu and Repovš [29] for some of the basic analytic tools used in this paper.

2 Preliminary Results
This section is devoted to the variational formulation, Pohozaev identity and non-existence result. The outset
of the variational framework starts from the followingHardy–Littlewood–Sobolev inequality.We refer to Lieb
and Loss [21] for more details.

Proposition 2.1. Let t, r > 1 and 0 < μ < N with 1
t + μN + 1r = 2, f ∈ Lt(ℝN) and h ∈ Lr(ℝN). There exists a sharp

constant C(t, r, μ, N) independent of f, h such that∫
ℝN

∫
ℝN

f(x)h(y)|x − y|μ dx dy ≤ C(t, r, μ, N)‖f‖Lt‖h‖Lr . (2.1)

If t = r = 2N
2N−μ , then

C(t, r, μ, N) = C(N, μ) = π μ
2
Γ(N2 − μ2 )
Γ(N − μ2 ) {Γ(N2 )Γ( μ2 ) }−1+ μN .

Equality holds in (2.1) if and only if fh ≡ constant and
h(x) = A(γ2 + |x − a|2) 2N−μ2

for some A ∈ ℂ, 0 ̸= γ ∈ ℝ and a ∈ ℝN .
We consider the following functional space:

D1,2(ℝN) := {u ∈ L2∗ (ℝN) : ∇u ∈ L2(ℝN)},
endowed with the norm defined as ‖u‖ := ( ∫

ℝN

|∇u|2 dx) 1
2

.

The space D1,2
0 (Ω) is defined as the closure of C∞c (Ω) in D1,2(ℝN).

Definition 2.2. A function u ∈ D1,2
0 (Ω) is said to be a solution of (P) if u satisfies∫

Ω

∇u∇ϕ dx + ∫
Ω

∫
Ω

|u(x)|2∗μ |u(y)|2∗μ−2u(y)ϕ(y)|x − y|μ dx dy for all ϕ ∈ D1,2
0 (Ω).
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Notation. We define u+ = max(u, 0) and u− = max(−u, 0) for all u ∈ D1,2(ℝN). Moreover, we setℝN+ := {x ∈ ℝN : xN > 0}
and we denote by ∗ the standard convolution operator.
Consider functionals I : D1,2

0 (Ω) → ℝ and I∞ : D1,2(ℝN) → ℝ given by
I(u) = 12 ∫

Ω

|∇u|2 dx − 1
2 ⋅ 2∗μ ∫

Ω

∫
Ω

|u+(x)|2∗μ |u+(y)|2∗μ|x − y|μ dx dy, u ∈ D1,2
0 (Ω),

I∞(u) = 12 ∫
ℝN

|∇u|2 dx 1
2 ⋅ 2∗μ ∫

ℝN

∫
ℝN

|u+(x)|2∗μ |u+(y)|2∗μ|x − y|μ dx dy, u ∈ D1,2(ℝN).
By the Hardy–Littlewood–Sobolev inequality, we have( ∫

ℝN

∫
ℝN

|u(x)|2∗μ |u(y)|2∗μ|x − y|μ dx dy) 1
2∗μ ≤ C(N, μ) 2N−μN−2 ‖u‖2L2∗ ,

where 2∗ = 2N
N−2 . This implies that I ∈ C1(D1,2

0 (Ω),ℝ) and I∞ ∈ C1(D1,2(ℝN),ℝ). The best constant for the
embedding D1,2(ℝN) into L2∗ (ℝN) is defined as

S = inf
u∈D1,2(ℝN )\{0}

{ ∫
ℝN

|∇u|2 dx : ∫
RN

|u|2∗ dx = 1}. (2.2)

Consequently, we define

SH,L = inf
u∈D1,2(ℝN )\{0}

{ ∫
ℝN

|∇u|2 dx : ∫
ℝN

∫
ℝN

|u(x)|2∗μ |u(y)|2∗μ|x − y|μ dx dy = 1}. (2.3)

It was established by Talenti [38] that the best constant S is achieved if and only if u is of the form( t
t2 + |x − (1 − t)σ|2 ) N−22 for σ ∈ Σ := {x ∈ ℝN : |x| = 1} and t ∈ (0, 1].

Properties of the best constant SH,L were established by Gao and Yang [16]. We recall the following
property.

Lemma 2.3. The constant SH,L defined in (2.3) is achieved if and only if

u = C( b
b2 + |x − a|2 ) N−22 ,

where C > 0 is a fixed constant, a ∈ ℝN and b ∈ (0,∞) are parameters. Moreover,
SH,L = S

C(N, μ) N−22N−μ ,
where S is defined as in (2.2).

The following property was established in [16].

Lemma 2.4. If N ≥ 3 and 0 < μ < N, then‖ ⋅ ‖NL := ( ∫
ℝN

∫
ℝN

| ⋅ |2∗μ | ⋅ |2∗μ|x − y|μ dx dy) 1
2⋅2∗μ

defines a norm on L2∗ (ℝN).
Remark 2.5. If we define

SA = inf
u∈D1,2(ℝN )\{0}

{ ∫
ℝN

|∇u|2 dx : ∫
ℝN

∫
ℝN

|u+(x)|2∗μ |u+(y)|2∗μ|x − y|μ dx dy = 1},
then SA = SH,L.
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Proposition 2.6. Let u ∈ D1,2
0 (Ω) be an arbitrary solution of the problem{{{{{{{−∆u = (∫Ω

|u+(y)|2∗μ|x − y|μ dy)|u+|2∗μ−1 in Ω,

u = 0 on ∂Ω.

(2.4)

Then
I(u) ≥ 12(N − μ + 22N − μ )S 2N−μ

N−μ+2
H,L =: β.

Moreover, the same conclusion holds for the solution u ∈ D1,2(ℝN) of−∆u = ( ∫
ℝN

|u+(y)|2∗μ|x − y|μ dy)|u+|2∗μ−1 inℝN .
Proof. If u is a solution of (2.4), then testing (2.4) with u+ and u− yields∫

Ω

|∇u+|2 dx = ∫
Ω

∫
Ω

|u+(x)|2∗μ |u+(y)|2∗μ|x − y|μ dx dy and ∫
Ω

|∇u−|2 dx = 0 a.e. on Ω.

It follows that (SA) 2∗μ
2∗μ−1 ≤ ∫

Ω

∫
Ω

|u+(x)|2∗μ |u+(y)|2∗μ|x − y|μ dx dy = ∫
Ω

|∇u+|2 dx = ∫
Ω

|∇u|2 dx.
We obtain

I(u) ≥ (12 − 1
2 ⋅ 2∗μ )(SA) 2∗μ

2∗μ−1 = 12(N − μ + 22N − μ )S 2N−μ
N−μ+2
H,L .

The proof is now complete.

Lemma 2.7 (Pohozaev Identity). Let N ≥ 3 and assume that u ∈ D1,2
0 (ℝN+ ) solves− ∆u = ( ∫

ℝN+
|u+(y)|2∗μ|x − y|μ dy)|u+|2∗μ−1 inℝN+ . (2.5)

Then the following equality holds:

1
2 ∫
∂ℝN+
(x − x0) ⋅ ν|∇u|2dS + N − 22 ∫

ℝN+
|∇u|2 dx = 2N − μ2 ⋅ 2∗μ ∫

ℝN+
∫
ℝN+
|u+(x)|2∗μ |u+(y)|2∗μ|x − y|μ dx dy,

where ν is the unit outward normal to ∂Ω and x0 = (0, 0, . . . , 1).
Proof. First observe that any solution of problem (2.5) is nonnegative. This implies∇u = ∇u+ a.e. onℝN+ .
Extending u = 0 in ℝN \ ℝN+ , we have u ∈ W2,2

loc (ℝN) (see Lemma 3.1). Now fix φ ∈ C1c (ℝN) such that φ = 1
on B1. Let the function φλ ∈ D1,2(ℝN) be defined for λ ∈ (0,∞) and x ∈ ℝN by φλ(x) = φ(λx). Multiply-
ing (2.5) with ((x − x0) ⋅ ∇u)φλ and integrating overℝN+ , we obtain∫
ℝN+
(−∆u)((x − x0) ⋅ ∇u)φλ(x) dx = ∫

ℝN+
( ∫
ℝN+
|u+(y)|2∗μ|x − y|μ dy)|u+|2∗μ−1((x − x0) ⋅ ∇u)φλ dx

= ∫
ℝN+
∇((x − x0) ∫

ℝN+
( |u+(y)|2∗μ|x − y|μ dy)|u+(x)|2∗μ−1φλ(x)u(x)) dx

− ∫
ℝN+
u(x)∇((x − x0) ∫

ℝN+
( |u+(y)|2∗μ|x − y|μ dy)|u+(x)|2∗μ−1φλ(x)) dx. (2.6)
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Using the divergence theorem on the right-hand side of (2.6), we obtain∫
ℝN+
(−∆u)((x − x0) ⋅ ∇u)φλ(x) dx = ∫

ℝN+
( ∫
ℝN+
|u+(y)|2∗μ|x − y|μ dy)|u+|2∗μ−1((x − x0) ⋅ ∇u)φλ dx

= − ∫
ℝN+
u(x)∇((x − x0) ∫

ℝN+
( |u+(y)|2∗μ|x − y|μ dy)|u+(x)|2∗μ−1φλ(x)) dx. (2.7)

Now consider the integral∫
ℝN+
u(x)∇((x − x0) ∫

ℝN+
( |u+(y)|2∗μ|x − y|μ dy)|u+(x)|2∗μ−1φλ(x)) dx

= ∫
ℝN+
Nu(x)( ∫

ℝN+
|u+(y)|2∗μ|x − y|μ dy)|u+(x)|2∗μ−1φλ(x) dx

+ ∫
ℝN+
(2∗μ − 1)u(x)( ∫

ℝN+
|u+(y)|2∗μ|x − y|μ dy)|u+(x)|2∗μ−2φλ(x)(∇u ⋅ (x − x0)) dx

− μ ∫
ℝN+
u(x)φλ(x)( ∫

ℝN+
|u+(y)|2∗μ (x − x0) ⋅ (x − y)|x − y|μ+2 dy)|u+(x)|2∗μ−1 dx

+ λ ∫
ℝN+
∫
ℝN+
|u+(y)|2∗μ |u+(x)|2∗μ|x − y|μ (x − x0) ⋅ ∇φ(λx) dx dy. (2.8)

Taking into account (2.7) and (2.8), we have

2∗μ ∫
ℝN+
(x − x0) ⋅ ∇u(x)( ∫

ℝN+
|u+(y)|2∗μ|x − y|μ dy)|u+(x)|2∗μ−1φλ(x) dx

= −N ∫
ℝN+
u(x)( ∫

ℝN+
|u+(y)|2∗μ|x − y|μ dy)|u+(x)|2∗μ−1φλ(x) dx

+ μ ∫
ℝN+
u(x)φλ(x)( ∫

ℝN+
|u+(y)|2∗μ (x − x0).(x − y)|x − y|μ+2 dy)|u+(x)|2∗μ−1 dx

− λ ∫
ℝN+
∫
ℝN+
|u+(y)|2∗μ |u+(x)|2∗μ|x − y|μ (x − x0) ⋅ ∇φ(λx) dx dy. (2.9)

Now, interchanging the role of x and y in (2.9) and combining the resultant equation with (2.9), we deduce
that ∫

ℝN+
(x − x0) ⋅ ∇u(x) ∫

ℝN+
( |u+(y)|2∗μ|x − y|μ dy)|u+(x)|2∗μ−1φλ(x) dx

= μ − 2N2 ⋅ 2∗μ ∫
ℝN+
∫
ℝN+
|u+(y)|2∗μ |u+(x)|2∗μ|x − y|μ φλ(x) dx dy

− λ2∗μ ∫
ℝN+
∫
ℝN+
|u+(y)|2∗μ |u+(x)|2∗μ|x − y|μ (x − x0) ⋅ ∇φ(λx) dx dy.

Passing to the limit as λ → 0 and using the dominated convergence theorem, we obtain that∫
ℝN+
(x − x0) ⋅ ∇u(x)( ∫

ℝN+
|u+(y)|2∗μ|x − y|μ dy)|u+(x)|2∗μ−1 dx = μ − 2N2 ⋅ 2∗μ ∫

ℝN+
∫
ℝN+
|u+(y)|2∗μ |u+(x)|2∗μ|x − y|μ dx dy. (2.10)
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It is easily seen that

∆u((x − x0) ⋅ ∇u)φλ = div(∇uφλ(x − x0) ⋅ ∇u) − φλ|∇u|2 − φλ(x − x0) ⋅ ∇( |∇u|22 )− λ((x − x0) ⋅ ∇u)(∇φ(λx) ⋅ ∇u)= div((∇u(x − x0) ⋅ ∇u − (x − x0) |∇u|22 )φλ) + N − 22 φλ|∇u|2+ λ |∇u|22 ((x − x0) ⋅ ∇φ(λx)) − λ((x − x0) ⋅ ∇u)(∇φ(λx) ⋅ ∇u).
Now, integrating by parts we obtain∫

ℝN+
(∆u)((x − x0) ⋅ ∇u)φλ dx = ∫

∂ℝN+
(∇u(x − x0) ⋅ ∇u − (x − x0) |∇u|22 )φλ ⋅ ν dS+ N − 22 ∫

ℝN+
φλ|∇u|2 dx − ∫

ℝN+
λ |∇u|22 ((x − x0) ⋅ ∇φ(λx)) dx− ∫

ℝN+
λ((x − x0) ⋅ ∇u)(∇φ(λx) ⋅ ∇u) dx.

Noticing that ∇u = (∇u ⋅ ν)ν on ∂ℝN+ and employing dominated convergence theorem for λ → 0, we get that∫
ℝN+
(∆u)((x − x0) ⋅ ∇u) = 12 ∫

∂ℝN+
|∇u|2(x − x0) ⋅ ν dS + N − 22 ∫

ℝN+
|∇u|2 dx. (2.11)

From equation (2.6), (2.10) and (2.11) we have our desired result.

We can now deduce the following Liouville-type theorem.

Theorem 2.8. Let N ≥ 3 and let u ∈ D1,2
0 (ℝN+ ) be any solution of− ∆u = ( ∫
ℝN+
|u+(y)|2∗μ|x − y|μ dy)|u+|2∗μ−1 inℝN+ . (2.12)

Then u ≡ 0 onℝN+ .
Proof. If u is a solution of (2.12), then∫

ℝN+
∇u ⋅ ∇ϕ dx − ∫

ℝN+
∫
ℝN+
|u+(x)|2∗μ |u+(y)|2∗μ−1ϕ(y)|x − y|μ dx dy for all ϕ ∈ D1,2

0 (ℝN+ ).
Taking ϕ = u− we obtain u− = 0 a.e. on ℝN . This implies that u is a nonnegative solution of (2.12). Now, by
Lemma 2.7 we have ∫

∂ℝN+
|∇u|2(x − x0) ⋅ ν dS = 0.

But (x − x0) ⋅ ν > 0 for x ∈ ∂ℝN+ . Since u is a nontrivial solution,we get a contradiction from theHopf boundary
point lemma. Hence, u ≡ 0 onℝN+ .
3 Classification of Solutions
In this section we will discuss the regularity and classification of nonnegative solutions of the following
equation: − ∆u = (|x|μ−N ∗ |u|p)|u|p−2u inℝN , (3.1)
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where p := N+μN−2 and 0 < μ < N. Consider the following integral system of equations:{{{{{{{{{{{{{
u(x) = ∫

ℝN

up−1(y)v(y)|x − y|N−2 dy, u ≥ 0 inℝN ,
v(x) = ∫

ℝN

up(y)|x − y|N−μ dy, v ≥ 0 inℝN . (3.2)

We note that if u ∈ D1,2(ℝN), then (u, v) ∈ L 2N
N−2 (ℝN) × L 2N

N−μ (ℝN).
First we will discuss the regularity of nonnegative solutions of (3.1). In this regard, we will prove the

following auxiliary result.

Lemma 3.1. Let u ∈ D1,2(ℝN) be a nonnegative solutions of (3.1). Then u ∈ W2,s
loc (ℝN) for all 1 ≤ s < ∞.

Proof. Let u ∈ D1,2(ℝN) be a nonnegative solution of (3.1). Now following the same approach as in proof
of [18, Lemma 3.1], we have (u, v) ∈ Lr(ℝN) × Ls(ℝN) for all 1 < r, s < ∞. In particular, up ∈ L N

μ (ℝN), and
now using the boundedness of Riesz potential operator, we have |x|μ−N ∗ up ∈ L∞(ℝN). Thus, from (3.1),
we have |−∆u| ≤ C|u|p−1.
By the classical elliptic regularity theory for subcritical problems in local bounded domains, we have
u ∈ W2,s

loc (ℝN) for any 1 ≤ s < ∞.
Next, we will discuss the classification of all positive solutions of the following system:{{{{{{{{{{{{{{{

u(x) = ∫
ℝN

ua(y)vb(y)|x − y|N−α dy, u > 0 inℝN ,
v(x) = ∫

ℝN

uc(y)vd(y)|x − y|N−β dy, v > 0 inℝN , (3.3)

where a ≥ 0, b, c, d ∈ {0} ∪ [1,∞), 0 < α, β < N.
Let (u, v) ∈ Lq1 (ℝN) × Lq2 (ℝN) be a solution of (3.3). Now for all λ ∈ ℝ, we define

Tλ := {(x1, x2, . . . , xn) ∈ ℝN : x1 = λ}
as the moving plane. Let

xλ := (2λ − x1, x2, . . . , xn),
let

Σλ := {(x1, x2, . . . , xn) ∈ ℝN : x1 < λ}
and let

Σ󸀠λ := {(x1, x2, . . . , xn) ∈ ℝN : x1 ≥ λ}
be the reflection of Σλ about the plane Tλ. Moreover, define uλ(y) := u(yλ) and vλ(y) = v(yλ). Immediately, we
have the following property whose proof is just an elementary computation.

Lemma 3.2. Assume that (u, v) is a positive pair of solution of (3.3). Then{{{{{{{{{{{{{
u(yλ) − u(y) = ∫

Σλ

( 1|y − x|N−α − 1|yα − x|N−α )[ua(xλ)vb(xλ) − ua(x)vb(x)] dx,
v(yλ) − v(y) = ∫

Σλ

( 1|y − x|N−β − 1|yα − x|N−β )[uc(xλ)vd(xλ) − uc(x)vd(x)] dx.
Lemma 3.3. There exists η > 0 such that for all λ < −η,

u(yλ) ≥ u(y), v(yλ) ≥ v(y) for all y ∈ Σλ .
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Proof. Define Σuλ := {y ∈ Σλ : u(y) > uλ(y)}, Σvλ := {y ∈ Σλ : v(y) > vλ(y)}. By Lemma 3.2, we obtain

u(yλ) − u(y) = ∫
Σλ

( 1|y − x|N−α − 1|yλ − x|N−α )[ua(xλ)vb(xλ) − ua(x)vb(x)] dx≤ ∫
Σλ

( 1|y − x|N−α − 1|yλ − x|N−α )[uaλ (vb − vbλ )+ + vb(ua − uaλ )+] dx≤ ∫
Σλ

1|y − x|N−α [uaλ (vb − vbλ )+ + vb(ua − uaλ )+] dx.
By the Hardy–Littlewood–Sobolev inequality, we obtain‖u − uλ‖Lq1 (Σuλ ) ≤ ‖u − uλ‖Lq1 (Σλ)≤ C‖uaλ (vb − vbλ )+ + vb(ua − uaλ )+‖Lr(Σλ)≤ C‖uaλ (vb − vbλ )‖Lr(Σvλ) + ‖vb(ua − uaλ )‖Lr(Σuλ ),
where r = Nq1

N+αq1 . Now if a, b > 1, then by Hölder’s inequality, we get‖u − uλ‖Lq1 (Σuλ ) ≤ C‖uaλ vb−1(v − vλ)‖Lr(Σvλ) + C‖vbua−1(u − uλ)‖Lr(Σuλ )≤ C‖uλ‖aLq1 (Σvλ)‖vb−1(v − vλ)‖Ls(Σvλ) + C‖v‖bLq2 (Σuλ )‖ua−1(u − uλ)‖Lt(Σuλ )≤ C‖uλ‖aLq1 (Σ󸀠λ)‖v‖b−1Lq2 (Σvλ)
‖v − vλ‖Lq2 (Σvλ) + C‖v‖bLq2 (Σλ)‖u‖a−1Lq1 (Σuλ )

‖u − uλ‖Lq1 (Σuλ ), (3.4)

and if 0 < a < 1, b > 1, then we have‖u − uλ‖Lq1 (Σuλ ) ≤ C‖uaλ vb−1(v − vλ)‖Lr(Σvλ) + C‖vb(u − uλ)a‖Lr(Σuλ )≤ C‖uλ‖aLq1 (Σvλ)‖vb−1(v − vλ)‖Ls(Σvλ) + C‖v‖bLq2 (Σuλ )‖u − uλ‖aLq1 (Σuλ )≤ C‖uλ‖aLq1 (Σ󸀠λ)‖v‖b−1Lq2 (Σvλ)
‖v − vλ‖Lq2 (Σvλ) + C‖v‖bLq2 (Σλ)‖u − uλ‖Lq1 (Σuλ ), (3.5)

where
s = rq1

q1 − ar , t = rq2
q2 − br = q1r and b

q2
+ a − 1

q1
= α
N
.

Similarly, for c, d > 1 we have‖v − vλ‖Lq2 (Σvλ) ≤ C‖v‖dLq2 (Σ󸀠λ)‖u‖c−1Lq1 (Σuλ )
‖u − uλ‖Lq1 (Σuλ ) + C‖u‖cLq1 (Σλ)‖v‖d−1Lq2 (Σvλ)

‖v − vλ‖Lq2 (Σvλ), (3.6)

where q1 and q2 are positive constant such that d−1q2 + c
q1 = β

N . Taking into account (3.4), (3.5) and (3.6), for
all λ ∈ ℝ we have‖u − uλ‖Lq1 (Σuλ ) ≤ { C‖v‖dLq2 (Σ󸀠λ)‖u‖c−1Lq1 (Σuλ )

1 − C‖u‖cLq1 (Σλ)‖v‖d−1Lq2 (Σvλ)
‖uλ‖aLq1 (Σ󸀠λ)‖v‖b−1Lq2 (Σvλ)

+ C‖v‖bLq2 (Σλ)‖u‖a−1Lq1 (Σuλ )
}‖u − uλ‖Lq1 (Σuλ ).

Using the fact that (u, v) ∈ Lq1 (ℝN) × Lq2 (ℝN), we can choose η > 0 sufficiently large such that for all λ < −η.
C‖v‖dLq2 (Σ󸀠λ)‖u‖c−1Lq1 (Σuλ )

1 − C‖u‖cLq1 (Σλ)‖v‖d−1Lq2 (Σvλ)
‖uλ‖aLq1 (Σ󸀠λ)‖v‖b−1Lq2 (Σvλ)

+ C‖v‖bLq2 (Σλ)‖u‖a−1Lq1 (Σuλ )
≤ 12 .

It follows that ‖u − uλ‖Lq1 (Σuλ ) = 0 and hence Σuλ must be measure zero and empty when λ < −η. In the sim-
ilar manner, Σvλ must be of measure zero and empty when λ < −η. For all other cases, the proof follows
analogously. This concludes the proof of the lemma.

Nowusing the sameassertions andarguments as inHuang, Li andWang [18] in combinationwithLemma3.3,
we have the following theorem.

Theorem 3.4. Assume that a ≥ 0, b, c, d ∈ {0} ∪ [1,∞), 0 < α, β < N and (u, v) ∈ Lq1 (ℝN) × Lq2 (ℝN) is a pair
of positive solutions of (3.3) with q1 and q2 satisfying

q1, q2 > 1, b
q2
+ a − 1

q1
= α
N
, c

q1
+ d − 1

q2
= β
N
.
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Then (u, v) is radially symmetric and monotone decreasing about some point inℝN . Moreover, if
b = 1

N − β [(N + α) − a(N − α)], c = 1
N − α [(N + β) − d(N − β)],

then (u, v)must be of the form
u(x) = ( d1

e1 + |x − x1|2 ) N−α2 , v(x) = ( d2
e2 + |x − x2|2 ) N−β2

for some constants d1, d2, e1, e2 > 0 and some x1, x2 ∈ ℝN .
As an immediate corollary, we have the following result on radial symmetry of nonnegative solutions of (3.1).

Corollary 3.5. Every nonnegative solution u ∈ D1,2(ℝN) of equation (3.1) is radially symmetric, monotone
decreasing and of the form

u(x) = ( c1
c2 + |x − x0|2 ) N−22

for some constants c1, c2 > 0 and some x0 ∈ ℝN .
Proof. Let u be anynonnegative solution of equation (3.1). Thenby Lemma3.1,wehave u ∈ W2,s

loc (ℝN) for any
1 ≤ s < ∞. Hence, by the strongmaximumprinciple,wehave that u is a positive function inℝN . It implies that(u, v) ∈ L 2N

N−2 (ℝN) × L 2N
N−μ (ℝN) is a positive solution of the integral system (3.2). Now employing Theorem 3.4

for α = 2, a = p − 1, b = 1, β = μ, c = p, d = 0 and using the fact u ∈ D1,2(ℝN), that is, u ∈ L 2N
N−2 (ℝN) and

v ∈ L 2N
N−μ (ℝN), we have the desired result.

4 Palais–Smale Analysis
Lemma 4.1. Let un ⇀ u be weakly convergent in D1,2(ℝN) and un → u a.e. onℝN . Then(|x|−μ ∗ |(un)+|2∗μ )|(un)+|2∗μ−2(un)+ − (|x|−μ ∗ |(un − u)+|2∗μ )|(un − u)+|2∗μ−2(un − u)+→ (|x|−μ ∗ |u+|2∗μ )|u+|2∗μ−2u+ in (D1,2(ℝN))󸀠. (4.1)

Proof. Since un ⇀ uweakly inD1,2(ℝN), there existsM > 0 such that ‖un‖ < M for all n ∈ ℕ. Letϕ ∈ D1,2(ℝN)
and

I = ∫
ℝN

[(|x|−μ ∗ |(un)+|2∗μ )|(un)+|2∗μ−2(un)+(|x|−μ ∗ |(un − u)+|2∗μ )|(un − u)+|2∗μ−2(un − u)+]ϕ dx.
Then I = I1 + I2 + I3 − 2I4, where

I1 = ∫
ℝN

(|x|−μ ∗ (|(un)+|2∗μ − |(un − u)+|2∗μ ))(|(un)+|2∗μ−2(un)+ − |(un − u)+|2∗μ−2(un − u)+)ϕ dx,
I2 = ∫
ℝN

(|x|−μ ∗ |(un)+|2∗μ )|(un − u)+|2∗μ−2(un − u)+ϕ dx,
I3 = ∫
ℝN

(|x|−μ ∗ |(un − u)+|2∗μ )|(un)+|2∗μ−2(un)+ϕ dx,
I4 = ∫
ℝN

(|x|−μ ∗ |(un − u)+|2∗μ )|(un − u)+|2∗μ−2(un − u)+ϕ dx.
Claim 1. We have

lim
n→∞

I1 = ∫
ℝN

(|x|−μ ∗ |u+|2∗μ )|u+|2∗μ−2u+ϕ dx.
Similar to the proof of the Brezis–Lieb lemma [8] we have|(un)+|2∗μ − |(un − u)+|2∗μ → |u+|2∗μ in L

2N
2N−μ (ℝN) as n →∞.
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Since the Hardy–Littlewood–Sobolev inequality implies that the Riesz potential defines a linear continuous
map from L

2N
2N−μ (ℝN) to L 2N

μ (ℝN), we get|x|−μ ∗ (|(un)+|2∗μ − |(un − u)+|2∗μ ) → |x|−μ ∗ |u+|2∗μ strongly in L
2N
μ (ℝN) as n →∞. (4.2)

Since both |(un)+|2∗μ−2(un)+ϕ⇀|u+|2∗μ−2u+ϕ and |(un −u)+|2∗μ−2(un −u)+ϕ⇀ 0 converge weakly in L
2N

2N−μ (ℝN),
we obtain |(un)+|2∗μ−2(un)+ϕ − |(un − u)+|2∗μ−2(un − u)+ϕ ⇀ |u+|2∗μ−2u+ϕ (4.3)

weakly in L
2N

2N−μ (ℝN). Thus, Claim 1 follows from (4.2) and (4.3).

Claim 2. We have limn→∞ I2 = 0.
Since |(un)+|2∗μ ⇀ |(u)+|2∗μ weakly in L 2N

2N−μ (ℝN), by the Hardy–Littlewood–Sobolev inequality (2.1) we have|x|−μ ∗ |(un)+|2∗μ ⇀ |x|−μ ∗ |u+|2∗μ weakly in L
2N
μ (ℝN). (4.4)

We observe that |(un − u)+|2∗μ−2(un − u)+ϕ → 0 a.e. inℝN
and for any open subset U ⊂ ℝN , we have∫

U

󵄨󵄨󵄨󵄨|(un − u)+|2∗μ−2(un − u)+ϕ󵄨󵄨󵄨󵄨 2N2N−μ dx ≤ (∫
U

|(un − u)+|2∗ dx) N−μ+22N−μ (∫
U

|ϕ|2∗ dx) N−2
2N−μ

≤ ‖un‖2∗(2∗μ−1)(∫
U

|ϕ|2∗ dx) N−2
2N−μ

≤ M(∫
U

|ϕ|2∗ dx) N−2
2N−μ

.

This implies that {󵄨󵄨󵄨󵄨|(un − u)+|2∗μ−2(un − u)+ϕ󵄨󵄨󵄨󵄨 2N2N−μ }n is equi-integrable in L1(ℝN). Hence, by the Vitali conver-
gence theorem we get that |(un − u)+|2∗μ−2(un − u)+ϕ → 0 strongly in L

2N
2N−μ (ℝN).

This fact together with (4.4) completes the proof of Claim 2.

Claim 3. We have limn→∞ I3 = 0.
Similar to the proof of Claim 2, we have|x|−μ ∗ |(un − u)+|2∗μ ⇀ 0 weakly in L

2N
μ (ℝN)

and |(un)+|2∗μ−2(un)+ϕ → |u+|2∗μ−2u+ϕ strongly in L
2N

2N−μ (ℝN).
Thus, Claim 3 follows.

Claim 4. We have limn→∞ I4 = 0.
Similar to the proof of Claim 2, we have|x|−μ ∗ |(un − u)+|2∗μ ⇀ 0 weakly in L

2N
μ (ℝN)

and |(un − u)+|2∗μ−2(un − u)+ϕ → 0 strongly in L
2N

2N−μ (ℝN).
Thus, Claim 4 follows. Hence

I → ∫
ℝN

(|x|−μ ∗ |u+|2∗μ )|u+|2∗μ−2u+ϕ dx,
that is, (4.1) holds.
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Lemma 4.2. If un ⇀ u weakly in D1,2
0 (Ω), un → u a.e. on Ω, I(un) → c, I󸀠(un) → 0 in (D1,2

0 (Ω))󸀠, then I󸀠(u) = 0
and vn := un − u satisfies‖vn‖2 = ‖un‖2 − ‖u‖2 + o(1), I∞(vn) → c − I(u) and I󸀠∞(vn) → 0 in (D1,2

0 (Ω))󸀠.
Proof. Let us prove the following:

Claim. We have I󸀠(u) = 0.
Note that

un ⇀ u weakly in D1,2
0 (Ω) 󳨐⇒ |(un)+|2∗μ ⇀ |u+|2∗μ weakly in L 2N

2N−μ (Ω).
Since Riesz potential is a linear continuous map from L

2N
2N−μ (Ω) to L 2N

μ (Ω), we obtain that∫
Ω

|(un)+(y)|2∗μ|x − y|μ dy ⇀ ∫
Ω

|u+(y)|2∗μ|x − y|μ dy weakly in L
2N
μ (Ω).

Also, |(un)+|2∗μ−2(un)+ ⇀ |u+|2∗μ−2u+ weakly in L 2N
N−μ+2 (Ω). Combining these facts, we have(∫

Ω

|(un)+(y)|2∗μ|x − y|μ dy)|(un)+|2∗μ−2(un)+ ⇀ (∫
Ω

|u+(y)|2∗μ|x − y|μ dy)|u+|2∗μ−2u+ weakly in L
2N
N+2 (Ω).

This implies for any ϕ ∈ D1,2
0 (Ω), we have∫

Ω

∫
Ω

|(un)+(x)|2∗μ |(un)+(y)|2∗μ−2(un)+(y)ϕ(y)|x − y|μ dx dy → ∫
Ω

∫
Ω

|u+(x)|2∗μ |u+(y)|2∗μ−2u+(y)ϕ(y)|x − y|μ dx dy. (4.5)

Now, for ϕ ∈ D1,2
0 (Ω) consider⟨I󸀠(un) − I󸀠(u), ϕ⟩ = ∫

Ω

∇un .∇ϕ dx − ∫
Ω

∫
Ω

|(un)+(x)|2∗μ |(un)+(y)|2∗μ−2(un)+ϕ(y)|x − y|μ dx dy

− ∫
Ω

∇u.∇ϕ dx + ∫
Ω

∫
Ω

|u+(x)|2∗μ |u+(y)|2∗μ−2u+ϕ(y)|x − y|μ dx dy.

By using (4.5) and the fact that un ⇀ u weakly in D1,2
0 (Ω), the claim follows. By the Brezis–Lieb lemma (see

[8, 16]) we have

I∞(vn) = 12 ‖un‖2 − 12 ‖u‖2 − 1
2 ⋅ 2∗μ ∫

Ω

∫
Ω

|(un − u)+(x)|2∗μ |(un − u)+(y)|2∗μ|x − y|μ dx dy + o(1)
= 12 ‖un‖2 − 1

2 ⋅ 2∗μ ∫
Ω

∫
Ω

|(un)+(x)|2∗μ |(un)+(y)|2∗μ|x − y|μ dx dy

− 12 ‖u‖2 + 1
2 ⋅ 2∗μ ∫

Ω

∫
Ω

|u+(x)|2∗μ |u+(y)|2∗μ|x − y|μ dx dy + o(1)= I(un) − I(u) + o(1) → c − I(u).
Now we will show that I󸀠∞(vn) → 0 in (D1,2

0 (Ω))󸀠. By Lemma 4.1, for any ϕ ∈ D1,2
0 (Ω),⟨I󸀠∞(vn), ϕ⟩ = ⟨I󸀠(vn), ϕ⟩ = ⟨I󸀠(un), ϕ⟩ − ⟨I󸀠(u), ϕ⟩ + o(1) → 0.

This implies I󸀠∞(vn) → 0 in (D1,2
0 (Ω))󸀠.

Lemma 4.3. Let {yn} ⊂ Ω and {λn} ⊂ (0,∞) be such that 1
λn dist(yn , ∂Ω) → ∞. Assume the sequence {un} and

the rescaled sequence
fn(x) = λ N−2

2
n un(λnx + yn)

is such that fn ⇀ f weakly in D1,2(ℝN), fn → f a.e. on ℝN , I∞(un) → c, I󸀠∞(un) → 0 in (D1,2
0 (Ω))󸀠. Then

I󸀠∞(f) = 0. Also, the sequence
zn(x) = un(x) − λ 2−N

2
n f( x − ynλn

)
satisfies ‖zn‖2 = ‖un‖2 − ‖f‖2 + o(1), I∞(zn) → c − I∞(f) and I󸀠∞(zn) → 0 in (D1,2

0 (Ω))󸀠.
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Proof. For ϕ ∈ C∞c (ℝN) define ϕn(x) := λ 2−N
2
n ϕ( x−ynλn ). If ϕ ∈ C∞c (Bk), then for large n, ϕn ∈ C∞c (Ω). It implies⟨I󸀠∞(fn), ϕ⟩ = ⟨I󸀠∞(un), ϕn⟩ ≤ ‖I󸀠∞(un)‖‖ϕn‖ = ‖I󸀠∞(un)‖‖ϕ‖ → 0.

Hence, I󸀠∞(fn) → 0 as n →∞ in (D1,2
0 (Bk))󸀠 for each k.

Claim. We have I󸀠∞(f) = 0.
Since ϕ ∈ C∞c (ℝN), we obtain ϕ ∈ C∞c (Bk) for some k. Now, using the fact 1

λn dist(yn , ∂Ω) → ∞, I󸀠∞(fn) → 0
in (D1,2

0 (Bk))󸀠 and following the steps of Claim of Lemma 4.2, we have ⟨I󸀠∞(fn) − I󸀠∞(f), ϕ⟩ → 0, that is, the
claim holds. By the Brezis–Lieb lemma (see [8, 16]),

I∞(zn) = I∞(fn − f) = I∞(un) − I∞(f) + o(1) → c − I∞(f).
As fn ⇀ f weakly in D1,2(ℝN), we obtain‖zn‖2 = ∫

ℝN

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∇un(x) − λ −N
2
n ∇f( x − ynλn

)󵄨󵄨󵄨󵄨󵄨󵄨󵄨2 dx = ‖un‖2 − ‖f‖2 + o(1).
By Lemma 4.1, for any ϕ ∈ D1,2

0 (Ω), we have⟨I󸀠∞(zn), ϕ⟩ = ⟨I󸀠∞(un) − I󸀠∞(λ 2−N
2
n f( . − ynλn

)), ϕ⟩ + o(1) = ⟨I󸀠∞(un), ϕ⟩ + o(1) = o(1).
This implies I󸀠∞(zn) → 0 in (D1,2

0 (Ω))󸀠.
Before proving the global compactness lemma for the Choquard equation, we will define the well-known
Morrey spaces.

Definition 4.4. A measurable function u : ℝN → ℝ belongs to Morrey space Lr,γ(ℝN), with r ∈ [1,∞) and
γ ∈ [0, N], if and only if ‖u‖r

Lr,γ(ℝN ) := sup
R>0, x∈ℝN

Rγ−N ∫
B(x,R)

|u|r dy < ∞.
By Hölder’s inequality, we have L2∗ (ℝN) 󳨅→ L2,N−2(ℝN).
Lemma 4.5 (Global Compactness Lemma). Let {un}n∈ℕ ⊂ D1,2

0 (Ω) be such that I(un) → c, I󸀠(un) → 0. Then
passing if necessary to a subsequence, there exists a solution v0 ∈ D1,2

0 (Ω) of− ∆u = (∫
Ω

|u+(y)|2∗μ|x − y|μ dy)|u+|2∗μ−1 in Ω (4.6)

and (possibly) k ∈ ℕ ∪ {0}, nontrivial solutions {v1, v2, . . . , vk} of− ∆u = (|x|−μ ∗ |u+|2∗μ )|u+|2∗μ−1 inℝN (4.7)

with vi ∈ D1,2(ℝN) and k sequences {yin}n∈ℕ ⊂ ℝN and {λin}n∈ℕ ⊂ ℝ+, i = 1, 2, . . . , k, satisfying
1
λin

dist(yin , ∂Ω) → ∞ and
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩un − v0 − k∑

i=1
(λin) 2−N2 vi( . − yinλin

)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 → 0, n →∞,
‖un‖2 → k∑

i=0
‖vi‖2, n →∞, I(v0) + k∑

i=1
I∞(vi) = c. (4.8)

Proof. We divide the proof into several steps.

Step 1. By coercivity of the functional I, we get {un} is a bounded sequence in D1,2
0 (Ω). It implies that there

exists a v0 ∈ D1,2
0 (Ω) such that un ⇀ v0 weakly in D1,2

0 (Ω), un → v0 a.e. on Ω. By Lemma 4.2, I󸀠(v0) = 0. Set
u1n = un − v0. Then‖u1n‖2 = ‖un‖2 − ‖v0‖2 + o(1), I∞(u1n) → c − I(v0) and I󸀠∞(u1n) → 0 in (D1,2

0 (Ω))󸀠. (4.9)

Moreover, there exists a constant M1 > 0 such that ‖u1n‖ < M1 for all n ∈ ℕ.
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Step 2. If ∫
Ω

∫
Ω

|(u1n)+(x)|2∗μ |(u1n)+(y)|2∗μ|x − y|μ dx dy → 0,

then using the fact that I󸀠(un) → 0, it follows that u1n → 0 in D1,2
0 (Ω) and we are done. If∫

Ω

∫
Ω

|(u1n)+(x)|2∗μ |(u1n)+(y)|2∗μ|x − y|μ dx dy 󴀀󴀂󴀠 0,
then we may assume that ∫

Ω

∫
Ω

|(u1n)+(x)|2∗μ |(u1n)+(y)|2∗μ|x − y|μ dx dy > δ for some δ > 0.
This together with the Hardy–Littlewood–Sobolev inequality gives ‖u1n‖L2∗ > δ1 for all n and for an appropri-
ate constant δ1 > 0. Taking into account that u1n is a bounded sequence in L2∗ (ℝN), L2∗ (ℝN) 󳨅→ L2,N−2(ℝN),
and [28, Theorem 2], we obtain

c2 < ‖u1n‖L2,N−2(ℝN ) < c1 for all n.

Thus, there exists a positive constant C0 such that for all n, we have

C0 < ‖u1n‖L2,N−2(ℝN ) < C−10 . (4.10)

Now employing the definition of Morrey spaces and (4.10), for each n ∈ ℕ there exists {y1n , λ1n} ∈ ℝN × ℝ+
such that

0 < Ĉ0 < ‖u1n‖2Lr,γ(ℝN ) − C202n < (λ1n)−2 ∫
B(y1n ,λ1n)

|u1n|2 dy
for some suitable positive constant Ĉ0. Now, define

f 1n (x) := (λ1n) N−22 u1n(λ1nx + y1n).
Since ‖f 1n ‖ = ‖u1n‖, we have ‖f 1n ‖ < M1 for all n ∈ ℕ and we can assume that f 1n ⇀ v1 weakly in D1,2(ℝN) and
f 1n → v1 a.e. onℝN . Moreover,∫

B(0,1)

|f 1n |2 dx = (λ1n)N−2 ∫
B(0,1)

|u1n(λ1nx + y1n)|2 dx = (λ1n)−2 ∫
B(y1n ,λ1n)

|u1n(y)|2 dy > Ĉ0 > 0.
Since, D1,2(ℝN) 󳨅→ L2loc(ℝN) is compact, we have ∫B(0,1) |v1|2 dx > Ĉ0 > 0. It implies that v1 ̸= 0.
Step 3. We claim that λn → 0 and y1n → y0 ∈ Ω. Let if possible λn →∞. As {u1n} is a bounded sequence
in D1,2

0 (Ω), it implies {u1n} is a bounded sequence in L2(Ω). Thus, if we define Ωn = Ω−y1n
λ1n

, then∫
Ωn

|f 1n |2 dx = 1(λ1n)2 ∫Ω |u1n|2 dx ≤ Cλ2n → 0.

Contrary to this, using Fatou’s lemma, we have

0 = lim inf
n→∞
∫
Ωn

|f 1n |2 dx ≥ ∫
Ωn

|v1|2 dx.
This means that v ≡ 0, which is not possible by Step 2. Hence {λ1n} is bounded in ℝ, that is, there exists
0 ≤ λ10 ∈ ℝ such that λ1n → λ10 as n →∞. If |y1n| → ∞, then for any x ∈ Ω and large n, λnx + yn ̸∈ Ω. Since
un ∈ D1,2

0 (Ω), it follows that u1n(λnx + yn) = 0 for all x ∈ Ω, which yields a contradiction to the assumption‖un‖2⋅2∗μNL > δ > 0.
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Therefore, y1n is bounded, it implies that y1n → y10 ∈ ℝN . Now let if possible λ1n → λ10 > 0. Then
Ωn → Ω − y10

λ10
= Ω0 ̸= ℝN .

Hence using the fact that u1n ⇀ 0weakly in D1,2
0 (Ω), we have f 1n ⇀ 0weakly in D1,2(ℝN)which is not possible

since by Step 2, v1 ̸= 0. This implies λ1n → 0. Arguing by contradiction, we assume that

y10 ̸∈ Ω. (4.11)

In view of the fact that λ1nx + y1n → y10 for all x ∈ Ω as n →∞. Now using (4.11), we have λ1nx + y1n ̸∈ Ω for all
x ∈ Ω and n large enough. It implies that u1n(λ1nx + y1n) = 0 for n large enough,which is not possible. Therefore,
y10 ∈ Ω. This completes the proof of claim and Step 3.

Step 4: Assume that
lim
n→∞

1
λ1n

dist(y1n , ∂Ω) → α < ∞.
Then v1 is a solution of (2.12) and by Theorem 2.8 we have v1 ≡ 0, which is not possible. Therefore,

1
λ1n

dist(y1n , ∂Ω) → ∞ as n →∞.
Thus by (4.9) and Lemma 4.3, we have I󸀠∞(v1) = 0 and the sequence

u2n(x) = u1n(x) − λ 2−N
2
n v1( x − ynλn

)
satisfies

I∞(u2n) → c − I∞(v0) − I∞(v1) and I󸀠∞(u2n) → 0 in (D1,2
0 (Ω))󸀠.

By Proposition 2.6, we have I∞(v1) ≥ β. So, iterating the above procedure, we can construct sequences{vi}, {λin}, {f in} and after k iterations we obtain
I∞(uk+1n ) < I(un) − I(v0) − k∑

i=1
I∞(vi) ≤ I(un) − I(v0) − kβ.

As the laterwill benegative for large k, the inductionprocess terminates after some index k ≥ 0. Consequently,
we get k sequences {yin}n ⊂ Ω and {λin}n ⊂ ℝ+, satisfying (4.8).
Definition 4.6. We say that I satisfies the Palais–Smale condition at c if for any sequence uk ∈ D1,2

0 (Ω) such
that I(uk) → c and I󸀠(uk) → 0 there exists a subsequence that converges strongly in D1,2

0 (Ω).
Lemma 4.7. The functional I satisfies the Palais–Smale condition for any c ∈ (β, 2β), where

β = 12(N − μ + 22N − μ )S 2N−μ
N−μ+2
H,L .

Proof. For some c ∈ (β, 2β), we assume that there exists {un} ∈ D1,2
0 (Ω) such that

I(un) → c, I󸀠(un) → 0 in (D1,2
0 (Ω))󸀠.

By Lemma 4.5, passing to a subsequence (if necessary), there exists a solution v0 ∈ D1,2
0 (Ω) of (4.6) and

k ∈ ℕ ∪ {0}, nontrivial solutions {v1, v2, . . . , vk} of (4.7) with vi ∈ D1,2(ℝN) and k sequences {yin}n ⊂ ℝN
and {λin}n ⊂ ℝ+ satisfying (4.8). Now, by equation (4.8) and Proposition 2.6 we have kβ ≤ c < 2β. This
implies k ≤ 1.

If k = 0, compactness holds and we are done. If k = 1, then we have two possibilities: either v0 ̸≡ 0 or
v0 ≡ 0. If v0 ̸≡ 0, since I(v0) ≥ β and by [16, Lemma 1.3], β is never achieved on bounded domain, we have
I(v0) > β and this is not possible. If v0 ≡ 0, then by Theorem 2.8, I∞(v1) = c and v1 is a nonnegative solution
of (4.7).

Next, by Corollary 3.5, we deduce that v1 is radially symmetric, monotonically deceasing and of the form
v1(x) = ( a

b+|x−x0|2 ) N−22 , for some constants a, b > 0 and some x0 ∈ ℝN . Therefore by Lemma 2.3, we conclude
that SH,L is achieved by v1. It follows that I∞(v1) = β, which is a contradiction since I∞(v1) = c > β.

Brought to you by | De Gruyter / TCS
Authenticated

Download Date | 1/27/20 9:52 AM



156 | D. Goel et al., Coron Problem for Nonlocal Equations Involving Choquard Nonlinearity

5 Proof of Theorem 1.1
To prove Theorem 1.1, we shall first establish some auxiliary results.

Let R1, R2 be the radii of the annulus as in Theorem1.1.Without loss of generality,we can assume x0 = 0,
R1 = 1

4R , R2 = 4R, where R > 0 will be chosen sufficiently large. Consider the family of functions

uσt (x) := S (N−μ)(2−N)
4(N−μ+2) C(N, μ) 2−N

2(N−μ+2) ( 1 − t(1 − t)2 + |x − tσ|2 ) N−22 ∈ D1,2(ℝN),
where σ ∈ Σ := {x ∈ ℝN : |x| = 1}, t ∈ [0, 1). Note that if t → 1, then uσt concentrates at σ. Also, if t → 0 then

uσt → u0 := S (N−μ)(2−N)
4(N−μ+2) C(N, μ) 2−N

2(N−μ+2) ( 1
1 + |x|2 ) N−22 .

Now, define υ ∈ C∞c (Ω) such that 0 ≤ υ ≤ 1 on Ω and

υ(x) = {{{1, 1
2 < |x| < 2,

0, |x| > 4, |x| < 1
4 .

Subsequently, we can define

υR(x) = {{{{{{{
υ(Rx), 0 < |x| < 1

2R ,
1, 1

2R ≤ |x| ≤ R,
υ( xR ), |x| ≥ R.

We now define
gσt (x) = uσt (x)υR(x) ∈ D1,2

0 (Ω), g0(x) = u0(x)υR(x).
We establish the following auxiliary result.

Lemma 5.1. Let σ ∈ Σ and t ∈ (0, 1]. Then the following holds:
(i) ‖uσt ‖ = ‖u0‖,
(ii) ‖(uσt )+‖NL = ‖(u0)+‖NL,
(iii) ‖uσt ‖2 = SH,L‖(uσt )+‖2NL,
(iv) limR→∞ supσ∈Σ,t∈[0,1) ‖gσt − uσt ‖ = 0,
(v) limR→∞ supσ∈Σ,t∈[0,1) ‖gσt ‖2⋅2∗μNL = ‖uσt ‖2⋅2∗μNL .

Proof. By trivial transformations, we can get first two properties uσt and since uσt is a minimizer of SH,L
therefore, third ones holds.

We have ∫
ℝN

|∇gσt − ∇uσt |2 dx ≤ 2 ∫
ℝN

|uσt (x)∇υR(x)|2 dx + 2 ∫
ℝN

|∇uσt (x)υR(x) − ∇uσt (x)|2 dx
≤ C(R2 ∫

B 1
2R

|uσt (x)|2 dx + ∫
B 1

2R

|∇uσt (x)|2 dx)
+ C( 1

R2
∫

B4R\B2R

|uσt (x)|2 dx + ∫
ℝN\B2R

|∇uσt (x)|2 dx), (5.1)

where Bα is a ball of radius α and center 0.
From the definition of uσt , we have

R2 ∫
B 1

2R

|uσt (x)|2 dx ≤ CR2 ∫
B 1

2R

dx ≤ C
RN−2

,

∫
B 1

2R

|∇uσt (x)|2 dx ≤ C ∫
B 1

2R

|x − tσ| dx ≤ C ∫
B 1

2R

dx ≤ C
RN

,
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and
1
R2
∫

B4R\B2R

|uσt (x)|2 dx ≤ C
R2
∫

B4R\B2R

1|x|2N−4 dx ≤ C
RN−2

,

∫
ℝN\B2R

|∇uσt (x)|2 dx ≤ C ∫
ℝN\B2R

1|x|2N−2 dx ≤ C
RN−2

.

Therefore, from (5.1) if R →∞, we get supσ∈Σ,t∈(0,1] ‖gσt − uσt ‖ → 0.
Next, we shall prove that

lim
R→∞

sup
σ∈Σ,t∈(0,1]

‖gσt ‖2⋅2∗μNL = ‖uσt ‖2⋅2∗μNL .

Consider ‖gσt ‖2⋅2∗μNL − ‖uσt ‖2⋅2∗μNL = ∫
ℝN

∫
ℝN

(υ2∗μR (x)υ2∗μR (y) − 1)|uσt (x)|2∗μ |uσt (y)|2∗μ|x − y|μ dx dy ≤ C 5∑
i=1
Ji ,

where

J1 = ∫
B2R\B 1

2R

∫
B 1

2R

|uσt (x)|2∗μ |uσt (y)|2∗μ|x − y|μ dx dy, J2 = ∫
B2R\B 1

2R

∫
ℝN\B2R

|uσt (x)|2∗μ |uσt (y)|2∗μ|x − y|μ dx dy,

J3 = ∫
B 1

2R

∫
B 1

2R

|uσt (x)|2∗μ |uσt (y)|2∗μ|x − y|μ dx dy, J4 = ∫
B 1

2R

∫
ℝN\B2R

|uσt (x)|2∗μ |uσt (y)|2∗μ|x − y|μ dx dy,

J5 = ∫
ℝN\B2R

∫
ℝN\B2R

|uσt (x)|2∗μ |uσt (y)|2∗μ|x − y|μ dx dy.

By the Hardy–Littlewood–Sobolev inequality, we have the following estimates:

J1 ≤ C(N, μ)( ∫
B 1

2R

(1 − t)N dx((1 − t)2 + |x − tσ|2)N ) 2N−μ
2N ( ∫

B2R\B 1
2R

(1 − t)N dx((1 − t)2 + |x − tσ|2)N ) 2N−μ
2N

≤ C( ∫
B 1

2R

(1 − t)N−2 dx) 2N−μ
2N ≤ C( 12R) 2N−μ2

,

J2 ≤ C(N, μ)( ∫
B2R\B 1

2R

(1 − t)N dx((1 − t)2 + |x − tσ|2)N ) 2N−μ
2N ( ∫
ℝN\B2R

(1 − t)N dx((1 − t)2 + |x − tσ|2)N ) 2N−μ
2N

≤ C( ∫
ℝN\B2R

dx|x − tσ|2N ) 2N−μ
2N ≤ C( ∫

|y+tσ|≥2R

dy|y|2N ) 2N−μ
2N ≤ C( ∫

|y|≥2R−1

dy|y|2N ) 2N−μ
2N

≤ C( 1
2R − 1) 2N−μ2

,

J3 ≤ C(N, μ)( ∫
B 1

2R

(1 − t)N dx((1 − t)2 + |x − tσ|2)N ) 2N−μ
N ≤ C( ∫

B 1
2R

(1 − t)N−2 dx) 2N−μ
N ≤ C( 12R)2N−μ .

Using the same estimates as above, we can easily obtain

J4 ≤ C( 12R) 2N−μ2
and J5 ≤ C( 1

2R − 1)2N−μ .
This implies that

sup
σ∈Σ, t∈[0,1)

(‖gσt ‖2⋅2∗μNL − ‖uσt ‖2⋅2∗μNL ) → 0 as R →∞
and completes the proof.
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In order to proceed further we define the manifoldM and the functions G : M→ ℝN as follows:
M = {u ∈ D1,2

0 (Ω) : ∫
Ω

∫
Ω

|u+(x)|2∗μ |u+(y)|2∗μ|x − y|μ dx dy = 1} and G(u) = ∫
Ω

x|∇u|2 dx.
We also define SH,L(u, Ω) : D1,2

0 (Ω) \ {0} → ℝ, SH,L : D1,2(ℝN) \ {0} → ℝ and τ : D1,2
0 (Ω) → ℝ as

SH,L(u, Ω) = ∫Ω |∇u|2 dx(∫Ω ∫Ω |u+(x)|2∗μ |u+(y)|2∗μ|x−y|μ dx dy) 12∗μ ,
SH,L(u) = ∫ℝN |∇u|2 dx‖u+‖2NL ,

τ(u) = (∫
Ω

∫
Ω

|u+(x)|2∗μ |u+(y)|2∗μ|x − y|μ dx dy) 1
2∗μ
.

Proposition 5.2. If SH,L( ⋅ , Ω) ∈ C1(D1,2
0 (Ω) \ {0}) and S󸀠H,L(u, Ω) = 0 for u ∈ D1,2

0 (Ω), then one has I󸀠(λu) = 0
for some λ > 0.
Proof. Let w ∈ D1,2

0 (Ω). Then⟨S󸀠H,L(u, Ω), w⟩ = 2τ(u) ∫Ω ∇u.∇w dx − 2‖u‖2τ(u)1−2∗μ ∫Ω ∫Ω |u+(x)|2∗μ |u+(y)|2∗μ−2u+(y)w(y)|x−y|μ dx dy
τ(u)2 .

As S󸀠H,L(u, Ω)(w) = 0, it implies

τ(u) ∫
Ω

∇u.∇w dx = ‖u‖2τ(u)1−2∗μ ∫
Ω

∫
Ω

|u+(x)|2∗μ |u+(y)|2∗μ−2u+(y)w(y)|x − y|μ dx dy,

that is, ∫
Ω

∇u.∇w dx = ‖u‖2 ∫Ω ∫Ω |u+(x)|2∗μ |u+(y)|2∗μ−2u+(y)w(y)|x−y|μ dx dy∫Ω ∫Ω |u+(x)|2∗μ |u+(y)|2∗μ|x−y|μ dx dy
.

Therefore, if we choose

λ2(2
∗
μ−1) = ‖u‖2∫Ω ∫Ω |u+(x)|2∗μ |u+(y)|2∗μ|x−y|μ dx dy

,

then we get I󸀠(λu) = 0.
Proposition 5.3. Let {vn} ⊂M be a Palais–Smale sequence for SH,L( ⋅ , Ω) at level c. Then the sequence {un}
given by

un = λnvn , λn = (SH,L(vn , Ω)) N−2
2(N−μ+2)

is a Palais–Smale sequence for I at level N−μ+2
2(2N−μ) c

2N−μ
N−μ+2 .

Proof. By the calculations of Proposition 5.2 for any w ∈ D1,2
0 (Ω), we have

1
2 ⟨S󸀠H,L(vn , Ω), w⟩ = ∫

Ω

∇vn .∇w dx − λ2(2∗μ−1)n ∫
Ω

∫
Ω

|(vn)+(x)|2∗μ |(vn)+(y)|2∗μ−2(vn)+(y)w(y)|x − y|μ dx dy.

Now by multiplying the above equation by λn for any w ∈ D1,2
0 (Ω), we obtain⟨I󸀠(un), w⟩ = ∫

Ω

∇un .∇w dx − ∫
Ω

∫
Ω

|(un)+(x)|2∗μ |(un)+(y)|2∗μ−2(un)+(y)w(y)|x − y|μ dx dy.

Since vn ∈M, it follows that λ2(2∗μ−1) = ‖vn‖2 = SH,L(vn , Ω), that is,
λn = SH,L(vn , Ω) N−2

2(N−μ+2) .
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From SH,L(vn , Ω) = c + o(1) we get λn is bounded. In particular, it follows that ⟨I󸀠(λnvn), w⟩ → 0 as n →∞.
Also, we have un is bounded and this yields

o(1) = ⟨I󸀠(un), un⟩ = ‖un‖2 − ∫
Ω

∫
Ω

|(un)+(x)|2∗μ |(un)+(y)|2∗μ|x − y|μ dx dy.

All the above facts imply that

lim
n→∞

I(un) = N − μ + 22(2N − μ) limn→∞
λ
2⋅2∗μ
n = N − μ + 22(2N − μ) c 2N−μ

N−μ+2 .
Remark 5.4. Since we proved that I satisfies the Palais–Smale condition in (β, 2β), it follows that SH,L( ⋅ , Ω)
satisfies the Palais–Smale condition in (SH,L , 2 N−μ+2

2N−μ SH,L) by using Proposition 5.2.
Lemma 5.5. If f σt (x) := gσt (x)

‖gσt ‖NL
and f0(x) := g0(x)

‖g0‖NL , then

lim
R→∞

SH,L(f σt , Ω) = SH,L(uσt ) = SH,L
uniformly with respect to σ ∈ Σ and t ∈ [0, 1).
Proof. This is a trivial consequence of Lemma 5.1.

In particular, if R > 1 sufficiently large, then we can achieve that

sup
σ,t
(f σt , Ω) < S1 < 2 N−μ+2

2N−μ SH,L for some S1 ∈ ℝ.
Proof of Theorem 1.1 completed. As we have established, SH,L( ⋅ , Ω) satisfies Palais–Smale at level α on M

for α ∈ (SH,L , 2 N−μ+2
2N−μ SH,L). We will argue by contradiction. If SH,L( ⋅ , Ω) does not admit a critical value in this

range, by the deformation lemma (seeBonnet [7, Theorem2.5]) for any α ∈ (SH,L , 2 N−μ+2
2N−μ SH,L) there exist δ > 0

and an onto homeomorphism function ψ : M→M such that

ψ(Mα+δ) ⊂Mα−δ ,

whereMα = {u ∈M : SH,L(u, Ω) < α}. For a givenfixed ε > 0we can cover the interval [SH,L + ε, S1]byfinitely
many such δ-intervals and composing the deformation maps, we get an onto-homeomorphism function
ψ : M→M such that

ψ(MS1 ) ⊂MSH,L+ε .

Also, we can assume ψ(u) = u for all u whenever SH,L(u, Ω) ≤ SH,L + ε2 .
By the concentration-compactness lemma (see [14]) and [16, Lemma 1.2], we have that for any sequence{um} ∈MSH,L+ 1m there exists a subsequence and x(0) ∈ Ω such that(∫

Ω

|(um)+(y)|2∗μ|x − y|μ dy)|(um)+|2∗μ dx ⇁ δx(0) , |∇um|2 dx ⇁ SH,Lδx(0)
weakly in the sense of measure. This implies given any neighborhood V of Ω, there exists an ε > 0 such
that G(MSH,L ) ⊂ V.

Since Ω is a smooth bounded domain, we can find a neighborhood V of Ω such that for any q ∈ V there
exists a unique nearest neighbor r = π(q) ∈ Ω such that the projection π is continuous. Let ε be chosen for
such a neighborhood V, and let ψ : M→M be the corresponding onto homeomorphism. Define the map
D : Σ × [0, 1] → Ω given by

D(σ, t) = π(G(ψ(f σt ))).
It is easy to see that D is well-defined, continuous and satisfies

D(σ, 0) = π(G(ψ(f0))) =: y0 ∈ Ω and D(σ, 1) = σ for all σ ∈ Σ.
This implies that D is a contraction of Σ in Ω contradicting the hypothesis of Ω. Hence, our assumption is
wrong implies that SH,L( ⋅ , Ω) has a critical value, that is, there exists a u ∈ D1,2

0 (Ω) such that u is a solution
to problem (P). Now, using [15, Lemma 4.4], we have u ∈ L∞(Ω) ∩ C2(Ω). Thus, by the maximum principle,
u is a positive solution of problem (P). Hence the proof of Theorem 1.1 is complete.
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