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1. Introduction

Let Ω ⊆ RN be a bounded domain with a Lipschitz boundary ∂Ω. We are concerned with
the following double phase Dirichlet problem

(1)

{
−∆a

pu(z)−∆qu(z) = f(z, u(z)) in Ω,
u|∂Ω = 0, 1 < q < p < N.

In this problem, ∆a
p denotes the weighted p-Laplace operator with weight a ∈ L∞(Ω)+\{0},

which is defined by

∆a
pu = div(a(z)|Du|p−2Du).

Also, ∆q is the usual q-Laplacian defined by

∆qu = div(|Du|q−2Du).

The interest in the study of problems of this type is twofold. From one side, there are
motivations from mathematical physics, since the non-autonomous unbalanced operator has
been applied to describe steady-state solutions of reaction-diffusion equations arising in bio-
physics, plasma physics, and chemical reaction analysis. The prototype equation for these
models can be written in the form

ut = ∆a
pu(z) + ∆qu+ g(x, u).

In this framework, the function u generally stands for a concentration, the term ∆a
pu(z)+∆qu

corresponds to the diffusion with coefficient a(z)|Du|p−2 + |Du|q−2, while g(x, u) represents
the reaction term related to source and loss processes. On the other hand, such operators
provide a valuable framework for explaining the behavior of highly anisotropic materials
whose hardening properties, which are linked to the exponent governing the propagation of
the gradient variable, differ considerably with the point, where the modulating coefficient
a(z) dictates the geometry of a composite made by two different materials.
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Problem (1) is driven by the sum of these two operators. Since q < p, the differential
operator in (1) is not homogeneous. The differential operator is related to the so-called
“double phase” integral functional

i(u) =

∫
Ω
[a(z)|Du|p + |Du|q] dz.

The integrand of this variational integral is the function

η(z, t) = a(z)tp + tq for all z ∈ Ω, all t ≥ 0.

A feature of this paper is that we do not assume that the weight function a(·) is bounded
away from zero, that is, we do not require ess infΩ a > 0. This implies that the integrand
η(z, t) exhibits unbalanced growth in the t-variable, namely we have

tq ≤ η(z, t) ≤ c0[1 + tp] for all z ∈ Ω, all t ≥ 0, some c0 > 0.

This kind of growth behavior, is often called in the literature as “(p, q)- growth”. Such
functionals were first investigated by Marcellini [11], [12] and Zhikov [28], in the context of
problems of the calculus of variations and of nonlinear elasticity theory. The unbalanced
growth of η(z, ·) has serious implications in the analysis of double phase equations. The
functional framework of the problem changes and instead of the classical Sobolev spaces, it
is based on generalized Orlicz spaces. In contrast to balanced growth double phase problems
((p, q)-equations, both weighted and unweighted), for which there is a global (that is, up to
the boundary) regularity theory (see Lieberman [8]), for unbalanced growth double phase
problems no such theory exists. There are only local regularity results for local minimizers.
We refer to the recent remarkable works of Baroni-Colombo-Mingione [1], Marcellini [13],
[14], Ragusa-Tachikawa [26] and the references therein. We also mention the survey papers
of Mingione-Rădulescu [15], Papageorgiou [16], Rădulescu [25].

The lack of a global regularity theory, eliminates many powerful tools which are available
in the treatment of balanced growth double phase problems (such as the nonlinear Hopf
maximum principle and the comparison of Hölder and Sobolev local minimizers of the energy
functionals, see for example, Papageorgiou-Rădulescu-Zhang [21, Proposition A3]). So, we
are forced to use a different approach which is based on the Nehari method (ground state
solutions).

In problem (1), the reaction function f(z, x) is a measurable function and for a.a. z ∈ Ω,
f(z, ·) is continuously differentiable on R \ {0} and as x → ±∞ exhibits (p − 1)-sublinear
growth and we allow partial interaction with the first eigenvalue of −∆a

p with Dirichlet
boundary condition (nonuniform nonresonance). We prove a multiplicity theorem producing
three nontrivial bounded solutions and we provide sign information for all them (positive,
negative and nodal). In the past, multiplicity theorems for unbalanced growth double phase
problems were proved under the assumption that the reaction f(z, ·) is (p − 1)-superlinear
as x → ±∞. We refer to the works of Deregowska-Gasiński-Papageorgiou [4], Gasiński-
Papageorgiou [5], Gasiński-Winkert [6], Liu-Dai [9], Papageorgiou-Rădulescu-Zhang [19] and
Papageorgiou-Zhang [23]. Only the very recent work of Papageorgiou-Pudelko-Rădulescu
[17], considers problems with (p − 1)-sublinear reaction and produces two nontrivial solu-
tions with no sign information. Finally, we mention also the recent works on double phase
equations with unilateral constraints by Liu-Papageorgiou [10], Papageorgiou-Zhang-Zhang
[24], Zeng-Bai-Gasiński-Winkert [27] (existence of nontrivial solutions).

The double-phase problem (1) is motivated by numerous models arising in mathematical
physics. For instance, we can refer to the following fourth-order relativistic operator

u 7→ div

(
|∇u|2

(1− |∇u|4)3/4
∇u

)
,
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which describes large classes of phenomena arising in relativistic quantum mechanics. By
Taylor’s formula, we have

x2(1− x4)−3/4 = x2 +
3x6

4
+

21x10

32
+ · · · .

This shows that the fourth-order relativistic operator can be approximated by the following
autonomous double phase operator

u 7→ ∆4u+
3

4
∆8u.

The features of the present paper are the following:
(i) The source term of problem (1) is driven by a differential operator with a power-type

nonhomogeneous term.
(ii) The corresponding energy functional is a non-autonomous variational integral that

satisfies nonstandard growth conditions of (p, q)-type, following the terminology introduced
in the basic papers of Marcellini [11, 12, 13, 14].

(iii) The potential that describes the differential operator satisfies general regularity as-
sumptions and it belongs to the p-Muckenhoupt class. Accordingly, the thorough spectral
and the qualitative analysis contained in this paper are developed in Musielak-Orlicz-Sobolev
spaces.

(iv) The paper covers the nonuniform nonresonance case. The main result establishes the
existence of three solutions (all with sign information) and an interesting open problem is
whether this result remains valid for the resonance case.

2. Mathematical background and hypotheses

As we already mentioned in the introduction, the functional framework for the analysis
of problem (1) is based on the generalized Orlicz spaces. A comprehensive presentation of
the theory of these spaces can be found in the book of Harjulehto-Hästö [7].

Let C0,1(Ω̄) be the space of all R-valued Lipschitz continuous function on Ω̄ . Let Ap denote
the class of p-Muckenhoupt weights (see Cruz Uribe-Fiorenzo [3, p.142] and Harjulehto-Hästö
[7, p.114]).

Our hypotheses on the weight function a(·) and the exponents p, q are the following:

H0 : a ∈ C0,1(Ω̄) ∩Ap, a(z) > 0 for all z ∈ Ω, 1 < q < p < N , p
q < 1 + 1

N .

Remark 1. The last inequality in the above hypotheses is standard in Dirichlet double phase
problems and it says that the two exponents p and q can not be far part. It implies that
p < q∗ = Nq

N−q and this leads to some useful compact embeddings of certain relevant function

spaces. Moreover, this condition together with the Lipschitz continuity of the potential a(·)
implies that the Poincaré inequality is valid for the corresponding Musielak-Orlicz-Sobolev
space.

Let L0(Ω) denote the space of all measurable functions u : Ω → R. As usual, we identify
two such functions which differ only on a Lebesgue-null set. Recall that

η(z, t) = a(z)tp + tq for all z ∈ Ω, all t ≥ 0.

The generalized Orlicz-Lebesgue space, is defined by

Lη(Ω) =
{
u ∈ L0(Ω) : ρη(u) <∞

}
with ρη(u) being the modular function defined by

ρη(u) =

∫
Ω
η(z, |u|)dz.
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We endow Lη(Ω) with the so-called “Luxemburg norm” defined by

∥u∥η = inf
{
λ > 0 : ρη(

u

λ
) ≤ 1

}
.

Evidently, this is the Minkowski functional of the set {u ∈ Lη(Ω) : ρη(u) ≤ 1}. With this
norm Lη(Ω) becomes a separable Banach space which is also uniformly convex, hence reflexive
(the function η(z, ·) is uniformly convex).

Using Lη(Ω) we can define the corresponding generalized Musielak-Orlicz-Sobolev space
W 1,η(Ω) by

W 1,η(Ω) = {u ∈ Lη(Ω) : |Du| ∈ Lη(Ω)} ,
where Du denotes the weak gradient of u. This space is endowed with the following norm

∥u∥1,η = ∥u∥η + ∥Du∥η with ∥Du∥η = ∥|Du|∥η.
Also

W 1,η
0 (Ω) = C∞

c (Ω)
∥·∥1,η

.

For this space the Poincaré inequality holds, namely there exists ĉ = ĉ(Ω) > 0 such that

∥u∥η ≤ ĉ∥Du∥η for all u ∈W 1,η
0 (Ω).

Therefore on the space W 1,η
0 (Ω) we can consider the equivalent norm

∥u∥ = ∥Du∥η for all u ∈W 1,η
0 (Ω).

We have the following useful embeddings among the spaces introduced above.

Proposition 1. If hypotheses H0 hold, then

(a) Lη(Ω) ↪→ Lr(Ω) and W 1,η
0 (Ω) ↪→W 1,r

0 (Ω) continuously for all r ∈ [1, q];

(b) W 1,η
0 (Ω) ↪→ Lr(Ω) continuously (resp. compactly) for all r ∈ [1, q∗] (all r ∈ [1, q∗));

(c) Lp(Ω) ↪→ Lη(Ω) continuously.

There is a close relation between the norm ∥ · ∥ and the modular function ρη(·).

Proposition 2. If hypotheses H0 hold, then

(a) ∥u∥ = λ⇔ ρη(
Du
λ ) = 1;

(b) ∥u∥ < 1 (resp = 1, > 1) ⇔ ρη(u) < 1(= 1, > 1);
(c) ∥u∥ < 1 ⇒ ∥u∥p ≤ ρη(Du) ≤ ∥u∥q;
(d) ∥u∥ > 1 ⇒ ∥u∥q ≤ ρη(Du) ≤ ∥u∥p;
(e) ∥u∥ → 0 (resp → ∞) ⇔ ρη(Du) → 0 (resp → ∞).

Let V :W 1,η
0 (Ω) →W 1,η

0 (Ω)∗ be defined by

⟨V (u), h⟩ =
∫
Ω

[
a(z)|Du|p−2(Du,Dh)RN + |Du|q−2(Du,Dh)RN

]
dz for all u, h ∈W 1,η

0 (Ω).

This operator is bounded (maps bounded sets to bounded sets), continuous, strictly mono-
tone (thus, maximal monotone too) and coercive.

Let η0(z, t) be the following integrand

η0(z, t) = a(z)tp for all z ∈ Ω, all t ≥ 0.

We consider the corresponding generalized Orlicz spaces Lη0(Ω) and W 1,η0
0 (Ω). These are

separable Banach spaces which are uniformly convex (hence reflexive too). Moreover, from
Papageorgiou-Rădulescu-Zhang [20, Lemma 2.1], we have that

(2) W 1,η0
0 (Ω) ↪→ Lη0(Ω) compactly.

We consider the following nonlinear eigenvalue problem

(3) −∆a
pu(z) = λ̂a(z)|u(z)|p−2u(z) in Ω, u|∂Ω = 0.
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Problem (3) was examined recently by Papageorgiou-Pudelko-Rădulescu [17]. Using (2) they

proved among other things, that there is a smallest eigenvalue λ̂1 > 0 which is simple and

isolated in the spectrum of (3). Moreover, λ̂1 > 0 has the following variational characteriza-
tion

(4) λ̂1 = inf

{
ρη0(Du)

ρη0(u)
: u ∈W 1,η0

0 (Ω), u ̸= 0

}
.

As we already mentioned, the corresponding eigenspace is one-dimensional with elements
in W 1,η0

0 (Ω) ∩ L∞(Ω) which have fixed sign, more precisely, if û is an eigenfunction corre-

sponding to λ̂1 > 0, then û(z) > 0 or û(z) < 0 for a.a. z ∈ Ω. In fact, λ̂1 is the only
eigenvalue with eigenfunctions of constant sign. All other eigenvalues have eigenfunctions
which are nodal (sign-changing).

We will also use some tools from nonsmooth analysis and in particular the subdifferential
theory of Clarke [2]. So, let X be a Banach space and φ : X → R a locally Lipschitz function.
The generalized directional derivative of φ(·) at x ∈ X in the direction h ∈ X is defined by

φ0(x;h) = lim sup
x′→+x,λ↓0

φ(x′ + λh)− φ(x′)

λ
.

Then φ0(x; ·) is sublinear, continuous and by the Hahn-Banach theorem, we can define the
nonempty, convex, w∗-compact set

∂φ(x) =
{
x∗ ∈ X∗ : ⟨x∗, h⟩ ≤ φ0(x;h) for all h ∈ X

}
.

The multifunction x 7→ ∂φ(x) is known as the generalized (or Clarke) subdifferential of
φ(·). It coincides with the convex subdifferential if φ(·) is continuous, convex. The Clarke
subdifferential has a rich calculus that parallels the one for the convex subdifferential and
for smooth functions. For details we refer to the book of Clarke [2].

Given u ∈ L0(Ω), we introduce the positive and negative parts of u defined by

u+(z) = max{u(z), 0}, u−(z) = max{−u(z), 0}, z ∈ Ω.

We have u = u+−u−, |u| = u++u−. Moreover, if u ∈W 1,η
0 (Ω), then u± ∈W 1,η

0 (Ω). By | · |N
we denote the Lebesgue measure on RN . Finally, if X is a Banach space and φ ∈ C1(X),
then we define

Kφ =
{
u ∈ X : φ′(u) = 0

}
,

the critical set of φ(·).
Our hypotheses on the reaction f(z, x) are the following:

H : f : Ω×R → R is a measurable function such that for a.a. z ∈ Ω, f(z, 0) = 0, f(z, ·) ∈
C1(R\{0}) and
(i) |f(z, x)| ≤ â(z)[1 + |x|p−1] for a.a. z ∈ Ω, all x ∈ R, with â(z) ∈ L∞(Ω);
(ii) there exists a function θ ∈ L∞(Ω) such that

θ(z) ≤ λ̂1a(z) for a.a. z ∈ Ω, θ ̸≡ λ̂1a,

lim sup
x→±∞

f(z, x)

|x|p−2x
≤ θ(z) uniformly for a.a.z ∈ Ω;

(iii) limx→0
f(z,x)
|x|q−2x

= +∞ uniformly for a.a. z ∈ Ω;

(iv) for a.a. z ∈ Ω and all x ̸= 0, we have

(p− 1)f(z, x)x ≤ f ′x(z, x)x
2.

Remark 2. Hypothesis H(iv) implies that for a.a. x ∈ Ω, the function

x 7→ f(z, x)x

|x|p
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is nonincreasing on (−∞, 0) and nondecreasing on (0,+∞). If 1 < p < 2 and a ∈ (0, 2− p),
then a differential function which for small |x| ≤ 1 has the form xe−ax and for |x| > 1 large

is of the form θ|x|p−2x with θ < λ̂1a, satisfies hypotheses H.

Let F (z, x) =
∫ x
0 f(z, s)ds. We introduce the energy functional for problem (1) defined by

φ(u) =
1

p
ρη0(Du) +

1

q
∥Du∥qq −

∫
Ω
F (z, u)dz for all u ∈W 1,η

0 (Ω).

Evidently φ ∈ C1(W 1,η
0 (Ω)) and the Nehari manifold corresponding to φ(·) is the following

set

N =
{
u ∈W 1,η

0 (Ω) : ⟨φ′(u), u⟩ = 0, u ̸= 0
}
.

Since we want to have solutions of constant sign, we introduce the following positive and
negative truncations of φ(·):

φ+(u) =
1

p
ρη0(Du) +

1

q
∥Du∥qq −

∫
Ω
F (z, u+)dz

φ−(u) =
1

p
ρη0(Du) +

1

q
∥Du∥qq −

∫
Ω
F (z,−u−)dz for all u ∈W 1,η

0 (Ω).

Note that φ± ∈ C1(W 1,η
0 (Ω)). We introduce the Nehari manifolds for these two functions

N+ =
{
u ∈W 1,η

0 (Ω) : ⟨φ′
+(u), u⟩ = 0, u ̸= 0

}
,

N− =
{
u ∈W 1,η

0 (Ω) : ⟨φ′
−(u), u⟩ = 0, u ̸= 0

}
.

Finally for the nodal solutions, we consider the set

N0 =
{
u ∈W 1,η

0 (Ω) : u+ ∈ N, u− ∈ N
}
.

3. Three solutions theorem

First we prove a property of the Nehari manifold N which implies that N ̸= ∅.

Proposition 3. If hypotheses H0, H hold and u ∈W 1,η
0 (Ω), u ̸= 0, then there exists unique

tu > 0 such that tuu ∈ N .

Proof. Consider the fibering function µu(·) defined by

µu(t) = φ(tu) for all t ≥ 0.

Evidently, µu ∈ C1(0,∞) and for t > 0, we have

µ′u(t) = ⟨φ′(tu), u⟩ (by the chain rule),

⇒ µ′u(t) = ⟨V (tu), u⟩ −
∫
Ω
f(z, tu)udz

= tp−1ρη0(Du) + tq−1∥Du∥qq −
∫
Ω
f(z, tu)udz.

Therefore we see that

(5) µ′u(t) = 0 ⇔ tu ∈ N.

On account of (5), we consider the equation

µ′u(t) = 0,

⇒ ρη0(Du) +
1

tp−q
∥Du∥qq =

∫
Ω

f(z, tu)u

tp−1
dz.(6)
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Equation (6) suggests to consider the function

γu(t) = ρη0(Du)−
∫
Ω

f(z, tu)u

tp−1
dz +

1

tp−q
∥Du∥qq, t > 0.

We have

tp−qγu(t) = tp−qρη0(Du)−
∫
Ω

f(z, tu)u

tq−1
dz + ∥Du∥qq.

Passing to the limit as t→ 0+ and using hypothesis H(iii), we have that

(7) γu(t) → −∞ as t→ 0+.

On the other hand, on account of hypothesis H(ii), we see that

γu(t) → ρη0(Du)−
∫
Ω
θ(z)|u|pdz > 0 as t→ +∞,(8)

(recall that p > q and see Proposition 5 of [20]).

From (7), (8) and the Bolzano-Weiestrass’ theorem, we infer that there exists tu > 0 such
that

γu(tu) = 0.

Therefore tu > 0 is a solution of (6). Note that in (6) the left hand side is strictly decreasing
as a function of t > 0. For the right hand side, let

ℓ(t) =

∫
Ω

f(z, tu)u

tp−1
dz =

∫
Ω

f(z, tu)tu

tp
dz, t > 0.

Then, from H(iv) we can infer that

d

dt
ℓ(t) =

∫
Ω

f ′x(z, tu)t
p+1u2 + f(z, tu)tpu− ptp−1f(z, tu)tu

t2p
dz

=

∫
Ω

f ′x(z, tu)tu
2 + f(z, tu)u− pf(z, tu)u

tp
dz

=

∫
Ω

f ′x(z, tu)(tu)
2 − (p− 1)f(z, tu)(tu)

tp+1
dz ≥ 0.

Hence the right hand side is nondecreasing. It follows that the solution tu > 0 is unique and
we have

µ′u(tu) = 0,

⇒tuu ∈ N (see (5)).

The proof is now complete. �

Corollary 4. If hypotheses H0, H hold, then N ̸= ∅.
Another important consequence of Proposition 3 is the nonemptiness of N0, the set where

nodal solutions are located.

Corollary 5. If hypotheses H0, H hold, then N0 ̸= ∅.

Proof. Let u ∈ W 1,η
0 (Ω) with u+ ̸= 0, u− ̸= 0. Proposition 3 says that there exist unique

positive numbers t+ and t− > 0 such that

t+u
+ ∈ N and t−(−u−) ∈ N.

We set y = t+u
+ − t−u

−. Then y ∈W 1,η
0 (Ω) and

y+ = t+u
+, y− = t−u

−,

⇒y ∈ N0 and so N0 ̸= ∅.
The proof is complete. �
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Proposition 6. If hypotheses H0, H hold and u ∈ N , then φ(tu) ≤ φ(u) for all t > 0.

Proof. On account of hypotheses H(i), H(iii), givenM > 0 we can find c1 = c1(M) > 0 such
that

(9) F (z, x) ≥ M

q
|x|q − c1|x|p for a.a. z ∈ Ω, all x ∈ R.

Then for t > 0, we have

φ(tu) =
tp

p
ρη0(Du) +

tq

q
∥Du∥qq −

∫
Ω
F (z, tu)dz

≤ tp

p
ρη0(Du) +

tq

q

[
∥Du∥qq −M∥u∥qq

]
+ c1t

p∥u∥pp. (see (9)).(10)

Choosing M > 0 large from (10), we see that

φ(tu) ≤ c2t
p − c3t

q for some c2, c3 > 0.

Since q < p, we infer that

(11) φ(tu) < 0 for t ∈ (0, 1) small.

On the other hand, hypotheses H(i), (ii) imply that given ϵ > 0 and τ ∈ (1, q], we can
find c4 = c4(ϵ, τ) > 0 such that

F (z, x) ≥ 1

p
[θ(z) + ϵ] |x|p + c4|x|τ for a.a. z ∈ Ω, all x ∈ R.

Then for t > 1, we have

φ(tu) ≥ tp

p

[
ρη0(Du)−

∫
Ω
θ(z)|u|pdz − ϵ∥u∥pp

]
− c4t

τ∥u∥ττ .

Using Proposition 5 of [20] and choosing ϵ > 0 small, we obtain

φ(tu) ≥ c5t
p − c3t

τ for some c5, c6 > 0 all t > 0.

Since p > τ , we have that

(12) φ(tu) > 0 for t > 1 large.

We consider the fibering function

µu(t) = φ(tu) for all t > 0.

By hypothesis u ∈ N . So, t = 1 is the unique critical point of µu(·) (see Proposition 3).
Then from (11) and (12), it follows that t = 1 is the unique maximizer of µu(·). Therefore
we conclude that

φ(tu) ≤ φ(u) for all t > 0.

This completes the proof. �

Let m = infN φ.

Proposition 7. If hypotheses H0 and H hold, then m > 0.

Proof. Recall that

F (z, x) ≤ 1

p
[θ(z) + ϵ] |x|p + c7|x|τ for a.a. z ∈ Ω, all x ∈ R

(with τ ∈ (1, q], c7 > 0).
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Then for u ∈W 1,η
0 (Ω), we have

φ(u) ≥ 1

p

[
ρη0(Du)−

∫
Ω
θ(z)|u|pdz − ϵ∥u∥pp

]
− c7∥u∥ττ ,

≥ c8∥u∥p − c9∥u∥τ for some c8, c9 > 0 (see [20] and Proposition 1).

So, if ρ > 1 is large, we see that

φ(u) ≥ µ̂ > 0 for all ∥u∥ = ρ.

If u ∈ N , then let t̂u > 0 such that ∥t̂uu∥ = ρ. From Proposition 6, we have

φ(u) ≥ φ(t̂uu) ≥ µ̂ > 0.

Since u ∈ N is arbitrary, we deduce that

m ≥ µ̂ > 0,

which completes the proof. �

Proposition 8. If hypotheses H0 and H hold, then the functionals φ(·), φ±(·) are all coer-
cive.

Proof. Hypotheses H(i), (ii) imply that given ϵ > 0, we can find c10 = c10(ϵ) > 0 such that

(13) F (z, x) ≤ 1

p
[θ(z) + ϵ] |x|p + c10 for a.a. z ∈ Ω, all x ∈ R.

Let u ∈W 1,η
0 (Ω) with ∥u∥1,η0 ≥ 1. We have

φ(u) ≥ 1

p

[
ρη0(Du)−

∫
Ω
θ(z)|u|pdz

]
+

(
1

q
− ϵc11

)
∥u∥qq − c10|Ω|N

for some c11 > 0 (recall that W 1,q
0 (Ω) ↪→ Lp(Ω) since p < q∗).

Using once again Proposition 5 of [20], we have

ρη0(Du)−
∫
Ω
θ(z)|u|pdz ≥ c12∥u∥p1,η0 for some c12 > 0.

Choosing ϵ ∈ (0, 1) small, we have

φ(u) ≥ c12

[
∥u∥p1,η0 + ∥Du∥qq

]
− c10|Ω|N

≥ c12
[
ρη0(Du) + ∥Du∥qq

]
− c10|Ω|N (recall ∥u∥1,η0 ≥ 1 and see Proposition 2)

= c12ρη(Du)− c10|Ω|N ,
⇒φ(u) is coercive (see Proposition 2).

Similarly we argue for the functionals φ±(·). �

Let
m+ = inf

N+

φ+, m− = inf
N−

φ−, m0 = inf
N0

φ.

By producing solutions of these minimization problems, we will be able to have the multi-
plicity theorem for problem (1) (three solutions theorem).

Reasoning as we did for the functional φ(·) on N , we can obtain the following properties
for the pairs (φ+, N+) and (φ−, N−).

Proposition 9. If hypotheses H0 and H hold, then

(a) for every u ∈W 1,η
0 (Ω), u ̸= 0, there exists unique t+u > 0 such that t+u u ∈ N+, hence

N+ ̸= ∅;
(b) if u ∈ N+, then φ+(tu) ≤ φ+(u) for all t > 0;
(c) m+ > 0.
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Proposition 10. If hypotheses H0 and H hold, then

(a) for every u ∈W 1,η
0 (Ω), u ̸= 0, there exists unique t−u > 0 such that t−u u ∈ N−, hence

N− ̸= ∅;
(b) if u ∈ N−, then φ−(tu) ≤ φ−(u) for all t > 0;
(c) m− > 0.

Now we will produce solutions for the three minimization problems.

Proposition 11. If hypotheses H0, H hold, then there exists u0 ∈ N0 such that φ(u0) = m0.

Proof. Consider a minimizing sequence {un}n∈N ⊆ N0, φ(un) ↓ m0. We have

φ(un) = φ(u+n ) + φ(−u−n )
≥ 2m (since u+n ∈ N,−u−n ∈ N),

⇒m0 ≥ 2m > 0.

From Proposition 8, we see that

{u+n }n∈N , {u−n }n∈N ⊆W 1,η
0 (Ω) are bounded.

So, we may assume that

(14)

{
u+n ⇀ y1, u

−
n ⇀ y2 in W 1,η

0 (Ω),
y1, y2 ≥ 0 and {y1 > 0} ∩ {−y2 < 0} = ∅.

Since u+n ,−u−n ∈ N , we have

ρη(Du
+
n ) =

∫
Ω
f(z, u+n )u

+
n dz,

ρη(D(−u−n )) =
∫
Ω
f(z,−u−n )(−u−n )dz for all n ∈ N.

If y1 = 0, then from (14), we see that ρη(Du
+
n ) → 0 and so ∥u+n ∥ → 0 (see Proposition 2).

Hence

0 < m ≤ φ(u+n ) for all n ∈ N,φ(u+n ) → φ(0) = 0,

a contradiction. Therefore y1 ̸= 0. In a similar fashion, we show that y2 ̸= 0.
Using Proposition 3, we can find t1, t2 > 0 such that

t1y1 ∈ N and t2(−y2) ∈ N.

Let u0 = t1y1 − t2y2. Evidently u
+
0 = t1y1, u

−
0 = t2y2. Hence u0 ∈ N . We have

m0 = lim
n→∞

φ(un)

= lim
n→∞

[
φ(u+n ) + φ(−u−n )

]
≥ lim inf

n→∞

[
φ(t1u

+
n ) + φ(−t2u−n )

]
(see Proposition 6),

≥ φ(t1y1) + φ(−t2y2) (see(14))
= φ(u0) ≥ m0 (since u0 ∈ N0),

⇒φ(u0) = m0 with u0 ∈ N0.

The proof is now complete. �

Evidently, u0 ∈ N0 is a candidate for a nodal solution of (1). Now by solving the other
two minimization problems we will generate candidates for positive and negative solutions.

Proposition 12. If hypotheses H0, H hold, then there exist û ∈ N+ and v̂ ∈ N− such that

φ+(û) = m+ and m− = φ−(v̂).
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Proof. Let {un}n∈N ⊆ N+ be a minimizing sequence for φ+(·), that is,
φ+(un) ↓ m+.

Proposition 8 implies that

{un}n∈N ⊆W 1,η
0 (Ω) is bounded.

So, we may assume that

(15) un ⇀ u in W 1,η
0 (Ω).

Suppose, by contradiction, that u = 0. Since un ∈ N+, n ∈ N, we have

(16) ρη0(Dun) + ∥Du∥qq =
∫
Ω
f(z, u+n )u

+
n dz for all n ∈ N.

From (15) and since W 1,η
0 (Ω) ↪→ Lp(Ω) compactly (recall p < q∗ and see Proposition 1), we

have

(17)
un → u = 0 in Lp(Ω),

⇒ u+n → u+ = 0 in Lp(Ω).

So, if in (16), we pass to the limit as n→ ∞ and use (17), we obtain

ρη(Dun) → 0,

⇒un → 0 in W 1,η
0 (Ω) (see Proposition 2),

⇒φ+(un) → φ+(0) = 0 = m+ > 0 (see Proposition 9),

a contradiction. Therefore u ̸= 0 and so by Proposition 9, we can find unique t+ > 0 such
that

û = t+u ∈ N+.

We have
m+ = lim

n→∞
φ+(un)

≥ lim inf
n→∞

φ+(t+un) (see Proposition 9 (6))

≥ φ+(t+u) (see (15))

= φ+(û) ≥ m+ (see û ∈ N+),

⇒φ+(û) = m+ with û ∈ N+.

Similarly for φ−(·) using now Proposition 10. �

Next, we show that û, v̂ and u0 are critical points of φ+(·), φ−(·) and φ(·) respectively.
Therefore we conclude that N+, N− and N0 are natural constraints for φ+(·), φ−(·) and φ(·)
respectively (see Papageorgiou-Rădulescu-Repovš [18, p.425]).

Proposition 13. If hypotheses H0, H hold, then û ∈ Kφ+, v̂ ∈ Kφ−, u0 ∈ Kφ.

Proof. Consider the locally Lipschitz functional ψ+ :W 1,η
0 (Ω) ↪→ R defined by

ψ+(u) = ρη0(Dun) + ∥Du∥qq −
∫
Ω
f(z, u+)u+dz for all u ∈W 1,η

0 (Ω).

Then we have

m+ = φ+(û) = inf [φ+(u) : ψ+(u) = 0, u ̸= 0] .

By the nonsmooth Lagrange multiplier rule of Clarke [2, p.228], we can find (λ, β) ∈ R2\{0}
such that

(18)
0 ∈ λφ′

+(û) + β∂ψ′
+(û),

⇒λφ′
+(û) + βh∗ = 0 for some h∗ ∈ ∂ψ′

+(0).
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If β = 0, then λ ̸= 0 and we have

(19)

λφ′
+(û) = 0,

⇒φ′
+(û) = 0,

⇒u ∈ Kφ+ .

On (18) we act with û ∈ N+. We obtain

β⟨h∗, û⟩ = 0 (recall ⟨φ′
+(û), û⟩ = 0),

⇒β

[
pρη0(Dû) + q∥Dû∥qq −

∫
Ω
f ′x(z, û

+)(û+)2dz −
∫
Ω
f(z, û+)û+dz

]
= 0

(recall f(z, ·) ∈ C1(R\{0}) and see Clarke [2, pp.48, 80]),

⇒β

[
p

(
ρη0(Dû) + ∥Dû∥qq −

∫
Ω
f(z, û+)û+dz

)]
+ β

[
− (p− q)∥Dû∥qq −

∫
Ω

[
f ′x(z, û

+)(û+)2 − (p− 1)f(z, û+)û+
]
dz

]
= 0,

⇒β

[
− (p− q)∥Dû∥qq −

∫
Ω

[
f ′x(z, û

+)(û+)2 − (p− 1)f(z, û+)û+
]
dz

]
= 0, (since û ∈ N+),

a contradiction, since p > q, û ̸= 0 and see H(iv). Therefore β = 0 and so from (19) we have
û ∈ Kφ+ .

Similarly for v̂ ∈ N− using this time φ−(·) and the locally Lipschitz function

ψ−(u) = ρη0(Du) + ∥Du∥qq −
∫
Ω
f(z,−u−)(−u−)dz for all u ∈W 1,η

0 (Ω).

We conclude that
v̂ ∈ Kφ− .

Consider the C1-functional

ψ(u) = ρη0(Du) + ∥Du∥qq −
∫
Ω
f(z, u)udz for all u ∈W 1,η

0 (Ω).

Also let ξ± :W 1,η
0 (Ω) ↪→W 1,η

0 (Ω) be the Lipschitz maps defined by

ξ+(u) = u+, ξ−(u) = −u−.

We set ψ̂+ = ψ ◦ ξ+ and ψ̂− = ψ ◦ ξ−, we have

m0 = φ(u0) = inf
[
φ(u) : ψ̂+(u) = 0, ψ̂−(u) = 0, u± ̸= 0

]
.

By the nonsmooth Lagrange multiplier rule, we can find λ ∈ R, (θ1, θ2) ∈ R2 not both zero
such that

(20) 0 ∈ λφ′(u0) + θ1∂ψ̂+(u0) + θ2∂ψ̂−(u0).

Suppose that (β1, β2) ̸= 0, then at least one of the components is nonzero, say β1 ̸= 0.
We act with u+0 ∈ N and obtain as before

0 = β1

[
pρη0(Du

+
0 ) + q∥Du+0 ∥

q
q −

∫
Ω

[
f ′x(z, u

+
0 )(u

+
0 )

2 − (p− 1)f(z, u+0 )u
+
0

]
dz

]
⇒β1 = 0 (see H(iv) and recall u+0 ̸= 0).

Similarly we show that β2 ̸= 0. Therefore λ ̸= 0 and we have

λφ′(u0) = 0,

⇒ φ′(u0) = 0 and so u0 ∈ Kφ.

This completes the proof. �



DOUBLE PHASE PROBLEMS WITH UNBALANCED GROWTH 13

Now we are ready for the multiplicity theorem.

Theorem 14. If hypotheses H0, H hold, then problem has at least three nontrivial solutions

û ∈W 1,η
0 (Ω) ∩ L∞(Ω), û(z) > 0 for a.a. z ∈ Ω,

v̂ ∈W 1,η
0 (Ω) ∩ L∞(Ω), v̂(z) < 0 for a.a. z ∈ Ω,

u0 ∈W 1,η
0 (Ω) ∩ L∞(Ω) nodal solution.

Proof. We know that there exists û ∈W 1,η
0 (Ω) such that

φ+(û) = m+, û ∈ Kφ+ .

So, û is a ground state solution of (1). We have

⟨φ′
+(û), h⟩ = 0 for all h ∈W 1,η

0 (Ω).

Let h = −û− ∈W 1,η
0 (Ω). We obtain

ρη0(Dû
−) + ∥Dû−∥qq = 0,

⇒ρη(Dû
−) = 0,

⇒û ≥ 0, û ̸= 0 (recall û ∈ N+).

Invoking Theorem 3.1 of Gasiński-Winkert [6], we have that û ∈W 1,η
0 (Ω) ∩ L∞(Ω). Finally

Proposition 2.4 of Papageorgiou-Vetro-Vetro [22] implies that û > 0 for a.a. z ∈ Ω. Similarly
for v̂ ∈ N− with φ−(v̂) = m−, v̂ ∈ Kφ− . Finally from Proposition 11, we obtain u0 ∈ N0

such that
φ(u0) = inf

N0

φ

and also we have
u0 ∈ Kφ (see Proposition 13).

Therefore u0 ∈W 1,η
0 (Ω) ∩ L∞(Ω) is a nodal solution of (1). �

Remark 3. We see that all three functions are ground state solutions of problem (1). An
interesting open problem is whether Theorem 14 remains valid if we have resonance with

respect to λ̂1 > 0 as x→ ±∞, that is,

lim sup
x→±∞

f(z, x)

|x|p−2x
≤ λ̂1a(z) uniformly for a.a. z ∈ Ω.
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[21] N.S. Papageorgiou, V.D. Rădulescu, Y.P. Zhang, Anisotropic singular double phase Dirichlet problems,

Discrete Contin. Dyn. Syst. Ser. S 14 (2021), 4465-4502.
[22] N.S. Papageorgiou, C. Vetro, F. Vetro, Multiple solutions for parametric double phase Dirichlet problems,

Comm. Contemp. Math. 23 (2021), No. 2050006, pp. 16.
[23] N.S. Papageorgiou, C. Zhang, Singular (p, q)-equations with competing perturbations, Appl. Anal. 101

(17) (2022), 61516171.
[24] N.S. Papageorgiou, J. Zhang, W. Zhang, Global existence and multiplicity of solutions for nonlinear

singular eigenvalue problems, Discrete Contin. Dyn. Syst. S, (2024) doi:10.3934/dcdss.2024018.
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