
Adv. Nonlinear Stud. 2016; 16 (3):409–419

Research Article

Sami Baraket and Vicențiu D. Rădulescu*

Combined Effects of Concave-Convex
Nonlinearities in a Fourth-Order Problem
with Variable Exponent
DOI: 10.1515/ans-2015-5032
Received December 19, 2015; revised February 2, 2016; accepted February 4, 2016

Abstract:We study two classes of nonhomogeneous elliptic problems with Dirichlet boundary condition and
involving a fourth-order differential operator with variable exponent and power-type nonlinearities. The first
result of this paper establishes the existence of a nontrivial weak solution in the case of a small perturbation
of the right-hand side. The proof combines variational methods, including the Ekeland variational principle
and the mountain pass theorem of Ambrosetti and Rabinowitz. Next we consider a very related eigenvalue
problem and we prove the existence of nontrivial weak solutions for large values of the parameter. The direct
method of the calculus of variations, estimates of the levels of the associated energy functional and basic
properties of the Lebesgue and Sobolev spaces with variable exponent have an important role in our argu-
ments.
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1 Introduction
In a pioneering paper, A. Ambrosetti, H. Brezis and G. Cerami [1] initiated the qualitative analysis of semi-
linear Dirichlet elliptic problems that involve concave and convex nonlinearities. They proved several exis-
tence, multiplicity and nonexistence results and developed powerful topological and variational methods
for the study of such nonlinear problems. In particular, they studied the effects of small perturbations for
the existence of solutions. In [13, 17] related existence results are established in the case of elliptic prob-
lems with variable exponents and Dirichlet boundary condition (see [26, 28] for further developments and
related properties). The main purpose of this paper is to complete the results of L. Kong [13] and to prove
the existence of a family of eigenvalues in a neighborhood of the origin. We also refer to the related papers
[10, 18, 27, 29, 30]. Additional results on higher-order problems or nonlinear partial differential equations
with variable exponent can be found in the papers by G. Autuori, F. Colasuonno and P. Pucci [3], Z. Chen [5],
F. Colasuonno and P. Pucci [6], A. Kratohvil and I. Necas [14], V. Lubyshev [16], P. Pucci and Q. Zhang [24].
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Let Ω ⊂ ℝN be a bounded domain with smooth boundary. Consider the following nonhomogeneous
eigenvalue problem:

{
{
{

−∆p(x)u = λ|u|q(x)−2u, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.1)

where p, q : Ω → ℝ are continuous functions and ∆p(x) denotes the p(x)-Laplace operator, which is defined
by

∆p(x)u := div(|∇u|p(x)−2∇u).
Problem (1.1) is studied in [17] (see also [28, Section 2.3.1]) in a subcritical setting under the basic as-

sumption
1 < min

x∈Ω q(x) < min
x∈Ω p(x) < max

x∈Ω q(x).
Under this hypothesis, the main result in [17] establishes that there exists λ∗ > 0 such that problem (1.1)
has at least one nontrivial solution for all λ ∈ (0, λ∗). Since the associated energy functional does not have a
mountain pass geometry (see A. Ambrosetti and P. Rabinowitz [2]), the proof relies essentially on the Ekeland
variational principle, see [9]. We point out that the original proof of the mountain pass theorem is based on
several powerful deformation techniques developed by R. Palais and S. Smale [20, 21], who developed the
main ideas of the Morse theory in the abstract framework of differential topology on infinite-dimensional
Riemann manifolds. A simpler proof of the mountain pass theorem is due to H. Brezis and L. Nirenberg [4],
who used a pseudo-gradient lemma, a perturbation argument and the Ekeland variational principle.

The study initiated in [17, 28] was continued by L. Kong [13] in the framework of the p(x)-biharmonic
operator ∆2p(x), namely

∆2p(x)u := ∆(|∆u|p(x)−2∆u).
Consider the fourth-order nonlinear elliptic equationwith variable exponent andDirichlet boundary con-

dition
{
{
{

∆2p(x)u + a(x)|u|p(x)−2u = λw(x)f(u), x ∈ Ω,
u = ∆u = 0, x ∈ ∂Ω,

(1.2)

where a(x) and w(x) are nonnegative potentials and the nonlinear term f behaves like

f(u) = |u|γ(x)−2u − |u|β(x)−2u,
where γ, β > 1 are continuous functions, and we assume the basic hypothesis

γ(x) < β(x) < p(x) for all x ∈ Ω. (1.3)

The main result in [13] asserts that there exists λ∗ > 0 such that problem (1.2) has at least one nontrivial
solution for all λ ∈ (0, λ∗).

In the present paper, we establish several existence results for problems related to (1.2) but under some
basic assumptions different from (1.3).

We consider the nonlinear problem

{
{
{

∆2p(x)u + a|u|p(x)−2u = λ(|u|γ(x)−2 − |u|β(x)−2)u, x ∈ Ω,
u = ∆u = 0, x ∈ ∂Ω,

(1.4)

where λ is a positive parameter and a ≥ 0. Under two different assumptions, we show that problem (1.4) has
at least one nontrivial solution if the positive parameter λ is small enough. The proof relies on the Ekeland
variational principle and the mountain pass theorem. We refer to J. Garcia Azorero and I. Peral Alonso [11]
who applied the mountain pass theorem to obtain the existence of a nodal (that is, sign-changing) solution
in a related quasilinear setting.
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The situation changes if we consider a problem very close to (1.4). Let us consider the following eigen-
value nonlinear Dirichlet problem:

{
{
{

∆2p(x)u + a|u|p(x)−2u = λ|u|γ(x)−2 − |u|β(x)−2u, x ∈ Ω,
u = ∆u = 0, x ∈ ∂Ω.

(1.5)

In this case, we establish a sufficient condition for the existence of nontrivial solutions provided that the
parameter λ is large enough. The proof is based on the direct method of the calculus of variations.

In Section 2 we recall some basic definitions and properties concerning the basic function spaces with
variable exponent. We refer to the recent monographs of L. Diening, P. Hästo, P. Harjulehto and M. Ruzicka
[8] and V. Rădulescu and D. Repovš [28] for related properties of Lebesgue and Sobolev spaces with variable
exponents. The main results are stated in Section 3 of this paper. Final comments and some open problems
are given in Section 4.

2 Function Spaces with Variable Exponent
Consider the set

C+(Ω) = {p ∈ C(Ω); p(x) > 1 for all x ∈ Ω}.
For all p ∈ C+(Ω) we define

p+ = sup
x∈Ω p(x) and p− = inf

x∈Ω p(x).
For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) = {u; u is measurable and ∫
Ω

|u(x)|p(x) dx <∞}.

This vector space is a Banach space if it is endowed with the Luxemburg norm, which is defined by

|u|p(x) = inf{μ > 0; ∫
Ω

!!!!!!!
u(x)
μ

!!!!!!!

p(x)
dx ≤ 1}.

The function space Lp(x)(Ω) is reflexive if and only if 1 < p− ≤ p+ <∞. Continuous functions with compact
support are dense in Lp(x)(Ω) if p+ <∞.

Let Lq(x)(Ω) denote the conjugate space of Lp(x)(Ω), where 1/p(x) + 1/q(x) = 1. If u ∈ Lp(x)(Ω) and
v ∈ Lq(x)(Ω), then the following Hölder-type inequality holds:

!!!!!!!
∫
Ω

uv dx
!!!!!!!
≤ (

1
p− + 1

q− )|u|p(x)|v|q(x).
Moreover, if pj ∈ C+(Ω) (j = 1, 2, 3) and

1
p1(x)
+

1
p2(x)
+

1
p3(x)
= 1,

then, for all u ∈ Lp1(x)(Ω), v ∈ Lp2(x)(Ω), w ∈ Lp3(x)(Ω),
!!!!!!!
∫
Ω

uvw dx
!!!!!!!
≤ (

1
p−1 + 1

p−2 + 1
p−3 )|u|p1(x)|v|p2(x)|w|p3(x).

The inclusion between Lebesgue spaces also generalizes the classical framework, namely if 0 < |Ω| <∞
and p1, p2 are variable exponents so that p1 ≤ p2 in Ω, then there exists the continuous embedding

Lp2(x)(Ω) í→ Lp1(x)(Ω).
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If k is a positive integer number and p ∈ C+(Ω), we define the variable exponent Sobolev space by
Wk,p(x)(Ω) = {u ∈ Lp(x)(Ω); Dαu ∈ Lp(x)(Ω) for all |α| ≤ k}.

Here α = (α1, . . . , αN) is a multi-index, |α| = ∑N
i=1 αi and

Dαu = ∂|α|u
∂α1x1 . . . ∂

αN
xN
.

OnWk,p(x)(Ω) we consider the norm
‖u‖k,p(x) = ∑|α|≤k |Dαu|p(x).

Then Wk,p(x)(Ω) is a reflexive and separable Banach space. Let Wk,p(x)
0 (Ω) denote the closure of C∞0 (Ω) in

Wk,p(x)(Ω).
Consider the function space E defined by

E = W1,p(x)
0 (Ω) ∩W2,p(x)(Ω).

Then E is a separable and reflexive Banach space if it is equipped with the norm

‖u‖E = ‖u‖1,p(x) + ‖u‖2,p(x).
The norms ‖u‖E and |∆u|p(x) are equivalent (cf. [13, p. 251]).

If a is a positive number, define, for all u ∈ E,

‖u‖a = inf{λ > 0; ∫
Ω

(
!!!!!!!
∆u
λ

!!!!!!!

p(x)
+ a

!!!!!!!
u
λ
!!!!!!!

p(x)
)dx ≤ 1}.

Then ‖u‖a is well-defined and it is a norm which is equivalent with the norms ‖u‖E and |∆u|p(x) in E.
Let ϱa : E → ℝ be themodular function defined by

ϱa(u) = ∫
Ω

(|∆u|p(x) + a|u|p(x)) dx.
If (un), u ∈ E, then the following properties are true:

‖u‖a > 1 ⇒ ‖u‖p
−

a ≤ ϱa(u) ≤ ‖u‖
p+
a , (2.1)

‖u‖a < 1 ⇒ ‖u‖p
+

a ≤ ϱa(u) ≤ ‖u‖
p−
a , (2.2)

‖un − u‖E → 0 ⇔ ϱa(un − u)→ 0.

Let p∗(x) denote the critical Sobolev exponent, namely

p∗(x) = {{
{

Np(x)
N−2p(x) if 2p(x) < N,
+∞ if 2p(x) ≥ N .

Wepoint out that if p, q ∈ C+(Ω) and q(x) < p⋆(x) for all x ∈ Ω, then the embedding E í→ Lq(x)(Ω) is compact,
see [13, Proposition 1.3].

The variable exponent Lebesgue and Sobolev spaces are generalizations of the classical Lebesgue and
Sobolev spaces, replacing the constant exponent p with an exponent function p(⋅). These spaces have been
the subject of constant interest since the beginning of the 20th century both as function spaces with intrin-
sic interest and for their applications to problems arising in nonlinear partial differential equations and the
calculus of variations. We refer to the monographs [7, 8, 28] for related properties of these spaces and their
history.
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3 The Main Results and Related Properties
We say that λ is an eigenvalue of problem (1.4) if there exists u ∈ E \ {0} such that, for all v ∈ E,

∫
Ω

|∆u|p(x)−2∆u∆vdx + a∫
Ω

|u|p(x)−2uvdx = λ∫
Ω

(|u|γ(x)−2uv − |u|β(x)−2uv)dx.
If λ is an eigenvalue of problem (1.4), the corresponding function u ∈ E \ {0} is a weak solution of problem
(1.4).

We study problem (1.4) under one of the following hypotheses:

1 < γ(x) < min{p(x), β(x)} < max{p(x), β(x)} < p∗(x) for all x ∈ Ω (3.1)

or
1 < min{p(x), β(x)} < max{p(x), β(x)} < γ(x) < p∗(x) for all x ∈ Ω. (3.2)

The energy functional associated to problem (1.4) is defined as

Eλ(u) = ∫
Ω

1
p(x) (

|∆u|p(x) + a|u|p(x))dx − λ∫
Ω

[
|u|γ(x)
γ(x)
−
|u|β(x)
β(x) ]dx for all u ∈ E.

Hypothesis (3.1) implies that Eλ is well-defined, of class C1, and

⟨E�
λ(u), v⟩ = ∫

Ω

(|∆u|p(x)−2∆u∆v + a|u|p(x)−2uv)dx − λ∫
Ω

(|u|γ(x)−2 − |u|β(x)−2)uvdx for all v ∈ E.

The first result of this paper is the following.

Theorem 3.1. Assume that one of the hypotheses (3.1) or (3.2) is satisfied. Then there exists a positive number
λ∗ such that for all λ ∈ (0, λ∗) problem (1.4) has at least one nontrivial weak solution.

We are then concernedwith the study of problem (1.5). We say that λ is an eigenvalue of problem (1.5) if there
exists u ∈ E \ {0} such that

∫
Ω

|∆u|p(x)−2∆u∆vdx + a∫
Ω

|u|p(x)−2uvdx = λ∫
Ω

|u|γ(x)−2uvdx − ∫
Ω

|u|β(x)−2uvdx for all v ∈ E.

Theorem 3.2. Assume that the hypothesis (3.1) is satisfied. Then there exists a positive number λ∗∗ such that
for all λ ∈ (λ∗∗,∞) problem (1.5) has at least one nontrivial weak solution.

We point out that hypothesis (3.1) implies that problem (1.4) does not have a mountain pass geometry. More
precisely, Eλ satisfies one of the geometric hypotheses of themountain pass theorem, namely the existence of
a “mountain” between twoprescribed “villages”.However, the secondgeometric assumptionof themountain
pass theorem is not fulfilled because this “valley” is close to the first “village” and not across the chain of
mountains, as requested by the mountain pass theorem. For this reason the existence of the solution follows
with different arguments and only for small perturbations (in terms of λ). An interesting open problem is to
provide a complete description for all values of the positive parameter λ.

We remark that Theorem 3.1 establishes a property related to [13, Theorem 2.1]. However, our result is
based on the assumption (3.1), which is more general than the corresponding hypothesis (2.1) in [13].

The proofs of Theorems 3.1 and 3.2 use some ideas developed in [17, 27, 28] in the framework of p(x)-
Laplace operators and extended in [13] to biharmonic operators with variable exponent.

3.1 Existence of a Mountain and a Village

We are first concerned with the proof of Theorem 3.1 if the hypothesis (3.1) is fulfilled.
We have Eλ(0) = 0. We first establish the following auxiliary property.
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Lemma 3.3. There exists a positive number λ∗ such that for all λ ∈ (0, λ∗) there are positive numbers r and η
such that Eλ(u) ≥ r for all u ∈ E with ‖u‖ = η.

Proof. We observe that

Eλ(u) ≥
1
p+ ∫

Ω

(|∆u|p(x) + a|u|p(x))dx − λγ− ∫
Ω

|u|γ(x)dx + λ
β+ ∫

Ω

|u|β(x)dx
=

1
p+ ϱa(u) − λγ− ∫

Ω

|u|γ(x)dx + λ
β+ ∫

Ω

|u|β(x)dx
≥

1
p+ ϱa(u) − λγ− ∫

Ω

|u|γ(x)dx.
Fix η ∈ (0, 1) and assume that ‖u‖E = η. Using relation (2.2), we obtain

Eλ(u) ≥
1
p+ ‖u‖p+E − λγ− ∫

Ω

|u|γ(x)dx.
Since the embedding E í→ Lγ(x)(Ω) is continuous, there exists C1 > 0 such that

Eλ(u) ≥
1
p+ ‖u‖p+E − λC1‖u‖γ−E = ηp+p+ − λC1ηγ− for all u ∈ E.

Now, taking λ∗ sufficiently small, we deduce that for all λ ∈ (0, λ∗) there exists r > 0 such Eλ(u) ≥ r for
all u ∈ E with ‖u‖E = η.

Next, we establish the existence of a valley near the origin.

Lemma 3.4. There exist v ∈ E and t0 > 0 such that Eλ(tv) < 0 for all t ∈ (0, t0).

Proof. Fix v ∈ E \ {0} such that v ≥ 0. For all t ∈ (0, 1) we have

Eλ(tv) = ∫
Ω

tp(x)
p(x) (

|∆v|p(x) + avp(x))dx − λ∫
Ω

tγ(x)
γ(x)

vγ(x)dx + λ∫
Ω

tβ(x)
β(x)

vβ(x)dx
≤
tp−

p− ϱa(v) − λ tγ+γ+ ∫
Ω

vγ(x)dx + λ tβ−
β− ∫

Ω

vβ(x)dx
= C1tp

−
+ C2tβ

−
− C3tγ

+ ,

where C1, C2, C3 are positive numbers.
Using hypothesis (3.1), we deduce that Eλ(tv) < 0, provided that t > 0 is sufficiently small.

3.2 A Compactness Condition Versus a Variational Principle

We recall that a sequence (un) ⊂ E is a Palais–Smale sequence if

Eλ(un) = O(1) and ‖E�
λ(un)‖E∗ = o(1) as n →∞.

Since the right-hand side of equation (1.4) does not satisfy the Ambrosetti–Rabinowitz condition, we
cannot deduce that Eλ satisfies the Palais–Smale condition, that is, any Palais–Smale sequence is relatively
compact. However, we prove in what follows that there is a suitable bounded Palais–Smale sequence that
contains a strongly convergent subsequence.

Returning to Lemma 3.3, we have
inf
u∈∂B Eλ(u) ≥ r > 0, (3.3)

where
B := {u ∈ E; ‖u‖a < η}.
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By Lemma 3.4, there exists v ∈ E such that

Eλ(tv) < 0 for all t > 0 small enough. (3.4)

Set
m := inf

u∈B Eλ(u).
Then m is finite and using relation (3.4), we deduce that m < 0. By (3.3) it follows that

inf
u∈∂B Eλ(u) − infu∈B Eλ(u) > 0.

Fix ε > 0 such that
ε < inf

u∈∂B Eλ(u) − infu∈B Eλ(u).
The functionalEλ restricted to the completemetric space B satisfies the hypotheses of the Ekeland variational
principle. A straightforward computation as in [28, pp. 46–47] shows that there exists a bounded sequence
(un) ⊂ B such that

Eλ(un)→ m and ‖E�
λ(un)‖E∗ → 0 as n →∞. (3.5)

So, up to a subsequence, we can assume that

un ⇀ u0 in E,
un → u0 in Lγ(x)(Ω),
un → u0 in Lβ(x)(Ω).

We claim that, in fact,
un → u0 in E.

Using the second information in relation (3.5), we deduce that, for all φ ∈ E,

∫
Ω

[|∆un|p(x)−2∆un∆(un − u0) + a|un|p(x)−2un(un − u0)]dx
− λ∫

Ω

(|un|γ(x)−2 − |un|β(x)−2)un(un − u0)dx → 0 as n →∞.

By [13, Lemma2.1 (b)], the operatorE�
λ : E → E∗ is an operator of type (S+). Thuswe obtain that un → u0

in E, which is our claim. So, by (3.5),

Eλ(u0) = m < 0 and E�
λ(u0) = 0.

We conclude that u0 is a nontrivial weak solution of problem (1.4). Thus each λ ∈ (0, λ∗) is an eigenvalue of
problem (1.4). The proof of Theorem 3.1 is now complete, provided that hypothesis (3.1) is fulfilled.

We are now concerned with the related property if condition (3.2) is satisfied. We first observe that under
this new hypothesis, the conclusion of Lemma 3.3 remains true. Next, since condition (3.2) implies that the
dominating term in the right-hand side of problem (1.4) is |u|γ(x)−2u, we prove in what follows the existence
of a valley across the chain of mountains.

Lemma 3.5. There exist v ∈ E and t0 > 0 such that Eλ(tv) < 0 for all t > t0.

Proof. Fix v ∈ E \ {0} such that v ≥ 0. By (2.1) we deduce that for all t > 1 we have

Eλ(tv) = ∫
Ω

tp(x)
p(x) (

|∆v|p(x) + avp(x))dx − λ∫
Ω

tγ(x)
γ(x)

vγ(x)dx + λ∫
Ω

tβ(x)
β(x)

vβ(x)dx
≤
tp+

p− ϱa(v) − λ tγ−γ+ ∫
Ω

vγ(x)dx + λ tβ+
β− ∫

Ω

vβ(x)dx
= C4tp

−
+ C5tβ

+
− C6tγ

− ,

where C4, C5, C6 are positive numbers.
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Using hypothesis (3.1), we have γ− > max{p−, β+}. It follows that Eλ(tv) < 0, provided that t > 0 is suffi-
ciently large.

3.3 Verification of the Palais–Smale Condition

We recall that the energy functional Eλ : E → ℝ satisfies the Palais–Smale condition if any sequence (un) ⊂ E
such that

Eλ(un) = O(1) and ‖E�
λ(un)‖E∗ = o(1) as n →∞, (3.6)

is relatively compact.
Let (un) ⊂ E be a sequence such that relation (3.6) is fulfilled.
We claim that (un) is bounded in E.
Arguing by contradiction, we suppose that the sequence (un) is unbounded in E. Without loss of gener-

ality, we can assume that ‖un‖a > 1 for all n ≥ 1. Using relation (3.6), we have

O(1) + o(‖un‖) = Eλ(un) −
1
γ− ⟨E�

λ(un), un⟩

= ∫
Ω

1
p(x) (

|∆un|p(x) + a|un|p(x))dx − λ∫
Ω

[
|un|γ(x)
γ(x)
−
|un|β(x)
β(x) ]dx

−
1
γ− ∫

Ω

(|∆un|p(x) + a|un|p(x))dx − λγ− ∫
Ω

(|un|γ(x) − |un|β(x))dx.
By relation (2.1) we deduce that

O(1) + o(‖un‖) = Eλ(un) −
1
γ− ⟨E�

λ(un), un⟩

≥ (
1
p+ − 1

γ− )∫
Ω

(|∆un|p
−
+ a|un|p

−
)dx

+ λ∫
Ω

(
1
β(x)
−

1
γ− )|un|β(x)dx + λ∫

Ω

(
1
γ− − 1

γ(x))
|un|γ(x)dx.

Using now the hypothesis (3.2), we conclude that

O(1) + o(‖un‖) ≥ (
1
p+ − 1

γ− )‖un‖p−a as n →∞.

Since γ− > p+, it follows that
‖un‖a = O(1) as n →∞.

This shows that (un) is bounded in E, thus our claim. So, up to a subsequence, we can assume that

un ⇀ u0 in E,
un → u0 in Lγ(x)(Ω),
un → u0 in Lβ(x)(Ω).

We show in what follows that
un → u0 in E.

Using the second information in relation (3.6), we deduce that for all φ ∈ E

∫
Ω

[|∆un|p(x)−2∆un∆φ + a|un|p(x)−2unφ]dx
− λ∫

Ω

(|un|γ(x)−2 − |un|β(x)−2)unφdx → 0 as n →∞.
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With the samearguments as in thefirst case and sinceE�
λ : E → E∗ is anoperator of type (S+),we conclude

that un → u0 in E, which shows that the Palais–Smale condition is satisfied. At this stage it is enough to
apply the mountain pass theorem in order to obtain a nontrivial weak solution of problem (1.4) for all λ > 0,
provided that the condition (3.2) is satisfied.

The proof of Theorem 3.1 is complete.

3.4 Proof of Theorem 3.2

The energy functional associated to problem (1.5) is defined as

Jλ(u) = ∫
Ω

1
p(x) (

|∆u|p(x) + a|u|p(x))dx − λ∫
Ω

|u|γ(x)
γ(x)

dx + ∫
Ω

|u|β(x)
β(x)

dx for all u ∈ E.

We show that Jλ is coercive, namely

Jλ(u)→ +∞ as ‖u‖a →∞.

Indeed, for all u ∈ E with ‖u‖a > 1 we have

Jλ(u) ≥
1
p+ ∫

Ω

(|∆u|p− + a|u|p−)dx − λγ− ∫
Ω

|u|γ(x)dx + 1
β+ ∫

Ω

|u|β(x)dx
≥

1
p+ ‖u‖p−a − λγ− ∫

Ω

|u|γ(x)dx
≥

1
p+ ‖u‖p−a − cλγ− ‖u‖γ+a ,

where c is the best constant of the continuous embedding E í→ Lγ(x)(Ω). By hypothesis (3.1) we have p− > γ+,
which infers that the energy functional Jλ is coercive.

Let (vn) be a minimizing sequence of the functional Jλ in E. Since Jλ is coercive, we deduce that (vn) is a
bounded sequence. So, up to a subsequence, we can assume that

vn ⇀ v0 in E,
vn → v0 in Lγ(x)(Ω),
vn → v0 in Lβ(x)(Ω).

Using now the lower semicontinuity of Jλ (see [13, Lemma 2.1 (a)]), we deduce that v0 is a global minimizer
of Jλ on E. It remains to prove that v0 ̸= 0. We have Jλ(0) = 0. Thus it is enough to show that

inf{Jλ(v); v ∈ E} < 0 for λ big enough.

Indeed, let us consider the following constrained minimization problem:

λ∗∗ := inf {∫
Ω

1
p(x) (

|∆w|p(x) + a|w|p(x))dx + ∫
Ω

|w|β(x)
β(x)

dx; w ∈ E and ∫
Ω

|w|γ(x)
γ(x)

dx = 1}. (3.7)

If (wn) ⊂ E is an arbitrary minimizing sequence of problem (3.7) then (wn) is bounded. Thus, up to subse-
quence, (wn) converges weakly in E and strongly in Lγ(x)(Ω) and Lβ(x)(Ω) to some w0 satisfying

∫
Ω

|w0|γ(x)
γ(x)

dx = 1

and
λ∗∗ = ∫

Ω

1
p(x) (

|∆w0|p(x) + a|w0|p(x))dx + ∫
Ω

|w0|β(x)
β(x)

dx > 0.

We conclude that
Jλ(w0) = λ∗∗ − λ < 0 for all λ > λ∗∗,

hence w0 is a nontrivial weak solution of problem (1.5). The proof of Theorem 3.2 is complete.
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4 Final Comments
The analysis of the proofs of Theorems 3.1 and 3.2 shows that the results remain true if the left-hand side of
problems (1.4) and (1.5) is replaced with

∆2p(x)u + α|u|p(x)−2u,
where α is a real number such that the operator ∆2p(x)u + α|u|p(x)−2u is coercive in E, hence there is some C > 0
such that, for all u ∈ E,

∫
Ω

(|∆u|p(x) + α|u|p(x))dx ≥ Cϱa(u).
Evenmore, we expect that the results established in this paper are true formore general operators, say Leray–
Lions operators with variable exponents. We refer here to the pioneering paper of J. Leray and J.-L. Lions [15].

The existence properties established in Theorems 3.1 and 3.2 remain valid if the bounded domainΩ is re-
placedwith an unbounded domainwith boundary ∂Ω. In such a case local arguments are used, see F. Gazzola
and V. Rădulescu [12, p. 59].

We point out that the results of this paper can be extended in a nonsmooth multi-valued setting, namely
underweaker assumptions on the right-hand side of problems (1.4) and (1.5),which imply that the associated
energy functionals are no longer of class C1. This corresponds to variational-hemivariational inequalities. We
refer to D. Motreanu and V. Rădulescu [19] for a related inequality problem.

Problems (1.4) and (1.5) have been studied in this paper in the subcritical case, which corresponds to
the basic assumption that the growth of the variable exponents β, γ and p is inferior than the critical expo-
nent p∗(x) for all x ∈ Ω. This hypothesis is crucial in order to ensure related compact embeddings of E into
Lebesgue spaces with variable exponent. A very interesting open problem is to study problems (1.4) and (1.5)
in the following almost critical setting: there exists x0 ∈ Ω such that

max{p(x), β(x), γ(x)} < p∗(x) for all x ∈ Ω \ {x0} and max{p(x0), β(x0), γ(x0)} = p∗(x0).
We believe that a very interesting research subject is to study problems (1.4) and (1.5) if the biharmonic

operator with variable exponent ∆2p(x)u is replaced by an operator with several variable exponents, for in-
stance

∆((|∆u|p1(x)−2 + |∆u|p2(x)−2)∆u).
We conclude with a very interesting open problem concerning (1.4) under the hypothesis (3.2). We have

applied in our proof the standardmountainpass theoremofA.Ambrosetti andP. Rabinowitz [2]. This pioneer-
ing result corresponds to mountains of positive altitude. The degenerate case is associated withmountains of
zero altitude and was established by P. Pucci and J. Serrin [22, 23] (see also Rădulescu [25] for an overview
of these results). We suggest to formulate the optimal assumptions for the right-hand side of equation (1.4)
in order to study this problem in the degenerate case of mountains of zero altitude.

Funding: This projectwas fundedby theNational Plan of Sciences, Technology and Innovation (MAARIFAH),
King Abdulaziz City for Sciences and Technology, Kingdom of Saudi Arabia (12-MAT2912-02).
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