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SCHRÖDINGER EQUATION WITH COMPETING POTENTIALS∗

WEN ZHANG† , JIAN ZHANG‡ , AND VICENŢIU D. RĂDULESCU§

Abstract. In this paper, we establish concentration and multiplicity properties of positive ground
state solutions to the following perturbed pseudo-relativistic Schrödinger equation with competing
potentials {

(−ε2∆+m2)su+V (x)u=K(x)f(u) in RN ,
u∈Hs(RN ), u>0 in RN ,

where N >2s, ε is a small positive parameter, and (−∆+m2)s is the pseudo-relativistic Schrödinger
operator with s∈ (0,1) and mass m>0. We assume that the potentials V , K and the nonlinearity f
are continuous but are not necessarily of class C1. Under natural hypotheses, combining the extension
method, Nehari analysis and the Ljusternik-Schnirelmann category theory, we first study the existence
and concentration phenomena of positive solutions for ε>0 sufficiently small, as well as multiplicity
properties depending on the topology of the set where V attains its global minimum and K attains
its global maximum. Moreover, we establish the asymptotic convergence and the exponential decay of
positive solutions. In the final part of this paper, we provide a sufficient condition for the non-existence
of ground state solutions.
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1. Introduction

1.1. Historical background The Schrödinger equation is central in quantum
mechanics and it plays the role of Newton’s laws and conservation of energy in classical
mechanics, that is, it predicts the future behaviour of a dynamical system. It is striking
to point out that talking about his celebrating equation, Erwin Schrödinger said: “I
don’t like it, and I’m sorry I ever had anything to do with it”. The linear Schrödinger
equation is a central tool of quantum mechanics, which provides a thorough description
of a particle in a non-relativistic setting. Schrödinger’s linear equation is

∆ψ+
8π2m

~2
(E−V (x))ψ= 0,

where ψ is the Schrödinger wave function, m is the mass of the particle, ~ denotes
Planck’s renormalized constant, E is the energy, and V stands for the potential energy.

Schrödinger also established the classical derivation of his equation, based upon the
analogy between mechanics and optics, and closer to de Broglie’s ideas. He developed
a perturbation method, inspired by the work of Lord Rayleigh in acoustics, proved the
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equivalence between his wave mechanics and Heisenberg’s matrix, and introduced the
time dependent Schrödinger’s equation

i~ψt=− ~2

2m
∆ψ+V (x)ψ−γ|ψ|p−1ψ, x∈RN (N ≥2), (1.1)

where p<2N/(N−2) if N ≥3 and p<+∞ if N = 2.
In physical problems, a cubic nonlinearity corresponding to p= 3 in equation (1.1) is

common; in this case problem (1.1) is called the Gross-Pitaevskii equation. In the study
of equation (1.1), Floer and Weinstein [22] and Oh [35] supposed that the potential V
is bounded and possesses a non-degenerate critical point at x= 0. More precisely, it
is assumed that V belongs to the class (Va) (for some real number a) introduced in
Kato [27]. Taking γ>0 and ~>0 sufficiently small and using a Lyapunov-Schmidt type
reduction, Oh [35] proved the existence of bound state solutions of problem (1.1), that
is, a solution of the form

ψ(x,t) =e−iEt/~u(x) . (1.2)

Using the Ansatz (1.2), we can reduce the nonlinear Schrödinger equation (1.1) to the
semilinear elliptic equation

− ~2

2m
∆u+(V (x)−E)u= |u|p−1u.

The change of variable y=~−1x (and replacing y by x) yields

−∆u+2m(V~(x)−E)u= |u|p−1u, x∈RN , (1.3)

where V~(x) =V (~x).
Let us also recall that in his 1928 pioneering paper, G. Gamow [23] proved the tun-

neling effect, which lead to the construction of the electronic microscope and the correct
study of the alpha radioactivity. The notion of “solution” used by him was not explicitly
mentioned in the paper but it is coherent with the notion of weak solution introduced
several years later by other authors such as J. Leray, L. Sobolev and L. Schwartz. Most
of the study developed by Gamow was concerned with the bound states ψ(x,t) defined
in (1.2), where u solves the stationary equation

−∆u+V (x)u=λu in RN ,

for a given potential V (x). Gamow was particularly interested in the Coulomb potential
but he also proposed to replace the resulting potential by a simple potential that keeps
the main properties of the original one. In this way, if Ω is a subdomain of RN , Gamow
proposed to use the finite well potential

Vq,Ω(x) =

{
V (x) if x∈Ω
q if x∈RN \Ω

for some q∈R.

It seems that the first reference dealing with the limit case, the so-called infinite well
potential,

V∞(x;R,V0) =

{
V0 if x∈Ω
+∞ if x∈RN \Ω

for some V0∈R,
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was the book by the 1977 Nobel Prize Mott [34]. The more singular case in which
V0 is the Dirac mass δ0 is related with the so-called Quantum Dots, see Joglekar [26].
In contrast with classical mechanics, in quantum mechanics the incertitude appears
(the Heisenberg principle). For instance, for a free particle (i.e. with V (x)≡0), in
nonrelativistic quantum mechanics, if the wave function ψ(·,t) at time t= 0 vanishes
outside some compact region Ω then at an arbitrarily short time later the wave function
is nonzero arbitrarily far away from the original region Ω. Thus, the wave function
instantaneously spreads to infinity and the probability of finding the particle arbitrarily
far away from the initial region is nonzero for all t>0.

1.2. Statement of the problem, features and main results In this paper
we consider the following singularly perturbed pseudo-relativistic Schrödinger equation
with competing potentials{

(−ε2∆+m2)su+V (x)u=K(x)f(u) in RN ,
u∈Hs(RN ), u>0 in RN , (1.4)

where N >2s, ε>0 is small parameter, (−∆+m2)s is pseudo-relativistic Schrödinger
operator with s∈ (0,1) and mass m>0, V and K are potential functions and f is the
reaction term with subcritical growth. We are interested in the qualitative and asymp-
totic analysis of solutions to problem (1.4) and we are mainly concerned with existence
and multiplicity properties of solutions, as well as with concentration phenomena as
ε→0.

The features of this paper are the following:
(1) the pseudo-relativistic Schrödinger operator generates the nonlocal nature of

the problem;
(2) the problem combines the multiple effects generated by two variable potentials;
(3) there exists a interesting competition effect between the external potential and

the reaction potential, which implies more complex phenomena to locate the concentra-
tion positions;

(4) the main concentration phenomenon creates a bridge between the global maxi-
mum point of the solution versus the global minimum of the external potential and the
global maximum of the reaction potential;

(5) due to the unboundedness of the domain, the Palais-Smale sequences do not
have the compactness property;

(6) the proofs combine some refined estimates and some analysis techniques includ-
ing extension, topological and variational tools.

Problem (1.4) arises when one is looking for the standing waves of the following
time-dependent pseudo-relativistic Schrödinger equations:

i~
∂Ψ

∂t
= (−∆+m2)sΨ+V (x)Ψ−f(x,Ψ), (x,t)∈RN ×R,

where Ψ represents the wave function, V is an external potential, m is the mass of
free relativistic particle and the nonlinear coupling f describes a self-interaction among
many particles. In physics this equation has been successfully used to describe the
behavior of bosons, spin-0 particles in relativistic fields.

We observe that the pseudo-relativistic Schrödinger operator in (1.4) can be char-
acterized as

(−∆+m2)su(x) =F−1((|ξ|2 +m2)sFu(ξ))(x), x∈RN (1.5)
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for any rapidly decaying function u belonging to the Schwartz space S(RN ), where F
denotes the usual Fourier transform and F−1 denotes its inverse transform. Besides,
according to [29] (see also [2, 20]), the operator (1.5) also has the following expression
with singular integral

(−∆+m2)su(x)

=CN,sm
N+2s

2 P.V.

∫
RN

u(x)−u(y)

|x−y|N+2s
2

WN+2s
2

(m|x−y|)dy+m2su(x),
(1.6)

where P.V. stands for the Cauchy principal value, Wι is the modified Bessel function
of the second kind of order ι, (the asymptotic properties of Wι can be found in [7, 20])
and CN,s is a positive constant whose exact value is given by

CN,s= 2−
N+2s

2 +1π−
N
2 22s s(1−s)

Γ(2−s)
.

Clearly, as m→0, the operator (−∆+m2)s reduces to the well-known fractional
Laplacian (−∆)s which has the expression with singular integral

(−∆)su(x) = ĈN,sP.V.

∫
RN

u(x)−u(y)

|x−y|N+2s
dy (1.7)

and

ĈN,s=π−
N
2 22sΓ(N+2s

2 )

Γ(2−s)
s(1−s).

From (1.6) and (1.7) we can easily see that the most important difference between
the operators (−∆)s and (−∆+m2)s is that the first one is homogeneous in scaling
whereas the second one is inhomogeneous as should be clear from the presence of the
Bessel function Wι in (1.6).

During the last two decades, some fractional problems involving (1.7) have been
widely investigated due to many applications in different fields, such as quantum me-
chanics, phase transitions, anomalous diffusions, chemical reaction in liquids and so on.
In particular, a great interest has been devoted to the existence and multiplicity and
asymptotic behaviors of solutions for fractional Schrödinger equation

ε2s(−∆)su+V (x)u=f(u) in RN . (1.8)

Here since we cannot introduce the huge bibliography on this subject, we refer the read-
ers to [1,17,19,21,25,32,36,37,44,45] for the existence, multiplicity, concentration and
regularity of positive solutions. We also refer to the monograph [6] in which the author
studies several nonlinear fractional Schrödinger equations using suitable variational and
topological methods, and the monograph by Molica Bisci-Rădulescu-Servadei [33] for a
very comprehensive introduction for the nonlocal fractional problems.

On the other hand, there have been many works concerning with the study of
existence and properties of solutions for the fractional equations driven by (−∆+m2)s

with m>0. For the case s= 1
2 , Lieb and Yau [30] first studied the following pseudo-

relativistic Hartree equation√
−∆+m2u+V (x)u=

(
1

|x|
∗ |u|2

)
u in RN , (1.9)
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the radially symmetric ground state solution was proved via minimization argumen-
t. Lenzmann [28] proved that this ground state solution is unique up to translations
and phase change, and the non-degeneracy result of the ground state solution was also
obtained. Later, Coti Zelati-Nolasco [15] investigated the existence of positive radi-
ally symmetric ground state solution for (1.9) with more general radially symmetric
convolution kernel. Under the radially symmetric condition for potential V , Melgaard-
Zongo [31] proved the existence of the radially symmetric solutions with high energy.
Without the symmetric condition for the external potential V , the positive ground state
solution was constructed by Cingolani-Secchi [13], and some asymptotic decay estimates
of solutions were also proved. For the general case s∈ (0,1), Ambrosio [4] proved the
existence and symmetry of ground state solutions for problem (1.4) without external
potential V . We also refer to [5, 9] for more results about the regularity and decay of
solutions.

When ε>0 sufficiently small, the solutions of (1.4) are often referred to as semi-
classical states, which have very rich dynamic behaviors, such as concentration, conver-
gence and decay etc. Especially, the concentration phenomenon of semiclassical states,
as ε→0, reflects the transition from quantum mechanics to classical mechanics and it
gives rise to significant physical insights. As far as we know there exist relatively few
papers treating the existence and concentration of semiclassical states to (1.4). Let us
now briefly recall some related results in this direction.

Regarding the study of semiclassical analysis for problem (1.4) we would like to
mention the papers [2, 3, 14, 24]. More precisely, under the local hypothesis introduced
by del Pino-Felmer [16]: there exists a bounded domain Ω such that

inf
x∈Ω

V (x)< inf
x∈∂Ω

V (x), (1.10)

Cingolani-Secchi [14] studied the semi-classical limit for the pseudo-relativistic Hartree
equation √

−ε2∆+m2u+V (x)u= (Iα ∗|u|p) |u|p−2u in RN .

Using the extension method developed by Caffarelli-Silvestre [11] and the penalization
technique introduced by Byeon-Jeanjean [10], they established the existence of a single-
spike solution which concentrates at the local minimum points of V . Taking advantage
of the same method as in [14], Gao-Rădulescu-Yang-Zheng [24] proved the existence of
multi-peak solutions when the nonlinearity satisfies general hypotheses of Berestycki-
Lions type.

Also under the condition (1.10), Ambrosio [2] investigated the following general
pseudo-relativistic Schrödinger equation with linear external potential and subcritical
growth

(−ε2∆+m2)su+V (x)u=f(u) in RN , (1.11)

where s∈ (0,1). Using the penalization method [16] combined with the Ljusternik-
Schnirelmann category theory, the author obtained the multiplicity result and concen-
tration properties of semiclassical positive solutions to problem (1.11). We also mention
the recent paper [3] in which some similar results for the case of critical growth were
established.

We would like to point out that, in all the works mentioned above, the authors
only considered the effect of the linear potential V on the existence, multiplicity and
concentration phenomena of solutions for problem (1.4) or similar to (1.4). For such
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case, the problem is autonomous in the reaction, in the sense that the nonlinearities on
the right-hand side of the equation do not depend on the variable x. That is why it
is quite natural to ask how the appearance of nonlinear potential and linear potential
will affect the existence, multiplicity and concentration of solutions to problem (1.4)?
This is the main motivation of the present paper and we will give an affirmative answer,
which also complement and extend the results before.

Inspired by the above facts, in this paper we will investigate the existence, multiplic-
ity and concentration phenomena of positive solutions to problem (1.4) under the effects
of both linear potential V and nonlinear potential K. Following [41] (see also [43]), the
combination of linear potential and nonlinear potential is called the competing poten-
tials, which makes difficulties in determining the concentration positions of solutions.
This happens because V has the tendency to attract solutions to its minimum points,
while the potential K tends to attract solutions to its maximum points. Therefore, the
study of the concentration phenomena of semiclassical states to problem (1.4) becomes
more delicate and involved under the effects of competing potentials.

More precisely, the main ingredients of this paper are the following four aspects.
We first prove the existence of positive ground state solutions for small ε. Secondly,
we determine two concrete sets related to the potentials V and K as the concentration
positions to study the concentration phenomena of these solutions as ε→0. Thirdly,
we analyze the asymptotic convergence of ground state solutions under scaling and
translation and the exponential decay estimate. Finally, we investigate the relation
between the number of positive solutions and the topology of the set where V attains its
global minimum and K attains its global maximum. To the best of our knowledge, the
present paper is the first work dealing with multiplicity and concentration properties for
the general pseudo-relativistic Schrödinger equations in the presence of two competing
potentials.

Concerning the potentials V and K, we use the following notations:

Vmin = minV, V ={x∈RN :V (x) =Vmin} and V∞= liminf
|x|→∞

V (x)

and

Kmax = maxK, K ={x∈RN :K(x) =Kmax} and K∞= limsup
|x|→∞

K(x).

Let us now introduce the following assumptions on V and K in the spirit of [18].

(A0) V,K ∈C(RN ,R) are bounded, Vmin∈ (−m2s,0) and Kmin := infK>0;
(A1) Vmin<V∞ and there is xv ∈V such that K(xv)≥K(x) for all |x|≥R and some

large R>0;
(A2) Kmax>K∞ and there is xk ∈K such that V (xk)≤V (x) for all |x|≥R and

some large R>0;
(A3) V,K ∈C(RN ,R) are bounded functions such that 0<V∞ := lim|x|→∞V (x)≤

V (x) and 0<K(x)≤K∞ := lim|x|→∞K(x), and |V|>0 or |K|>0, where

V={x∈RN :V∞<V (x)} and K={x∈RN :K∞>K(x)}.

Note that, for case (A1), we can assume K(xv) = maxx∈V K(x), and for case (A2),
we can assume V (xk) = minx∈K V (x). In order to characterize the concentration phe-
nomena of positive ground state solutions, we consider the following sets:

Av :={x∈V :K(x) =K(xv)}∪{x /∈V :K(x)>K(xv)},
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and

Ak :={x∈K :V (x) =V (xk)}∪{x /∈K :V (x)<V (xk)}.

We also observe that xv ∈Av and xk ∈Ak, which implies that Av and Ak are non-
empty and bounded sets. Furthermore, if (A1) holds and V ∩K 6=∅, we can set K(xv) =

max
x∈V ∩K

K(x) and

Av :={x∈V ∩K :K(x) =K(xv)},

then Av =V ∩K . Similarly, if (A2) holds and V ∩K 6=∅, then Ak =V ∩K .
Meanwhile, we assume that the nonlinearity f satisfies the following conditions:

(f1) f ∈C(R,R) and f(t) = 0 for all t<0;
(f2) f(t) =o(|t|) as t→0;
(f3) there are c0>0 and p∈ (2,2∗s) with 2∗s = 2N

N−2s such that f(t)≤ c0(1+ |t|p−1) for
all t;

(f4) there exists θ∈ (2,2∗s) such that

0<θF (t) =θ

∫ t

0

f(τ)dτ ≤ tf(t) for all t>0;

(f5) f(t)
t is increasing for all t∈ (0,∞).

The main results of this paper can be stated as follows:
Theorem 1.1. Suppose that (A0), (A1) and (f1)-(f5) are satisfied, then for all small
ε>0

(i) problem (1.4) has at least a positive ground state solution uε;
(ii) Lε is compact, where Lε denotes the set of all ground state solutions;
(iii) uε(x) possesses a maximum point xε such that, up to a subsequence, xε→x0 as

ε→0, and lim
ε→0

dist(xε,Av) = 0, and vε(x) :=uε(εx+xε) converges to a ground

state solution of

(−∆+m2)su+V (x0)u=K(x0)f(u) in RN .

In particular, if V ∩K 6=∅, then lim
ε→0

dist(xε,V ∩K ) = 0, and up to a subse-

quence, vε converges to a ground state solution of

(−∆+m2)su+Vminu=Kmaxf(u) in RN .

(iv) There exist positive constants c,C such that

uε(x)≤C exp
(
−c
ε
|x−xε|

)
.

Theorem 1.2. Suppose that (A0), (A2) and (f1)-(f5) are satisfied, then all the conclu-
sions of Theorem 1.1 remain true with Av replaced by Ak.

In order to study the multiplicity result of positive solutions for problem (1.4), we
first recall the definition of Ljusternik-Schnirelmann category. If Y is a given closed
subset of a topological space X, the Ljusternik-Schnirelmann category catX(Y ) is the
least number of closed and contractible sets in X which cover Y .

To obtain the multiplicity result, in the following we assume V ∩K 6=∅. Let us
denote by

Λ :=V ∩K and Λδ ={x∈RN : dist(x,Λ)≤ δ} for δ>0.
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Evidently, from (A0), (A1) and (A2) we can see that the set Λ is compact. The multi-
plicity result is the following theorem.

Theorem 1.3. Suppose that (A0), (A1) (or (A2)) and (f1)-(f5) are satisfied and Λ 6=∅.
Then for any δ>0 there exists εδ>0 such that, for any ε∈ (0,εδ), problem (1.4) has at
least catΛδ(Λ) positive solutions.

Finally, we give the non-existence result of ground state solutions as follows.

Theorem 1.4. Suppose that (A3) and (f1)-(f5) are satisfied, then for each ε>0, prob-
lem (1.4) has no positive ground state solutions.

Let us now outline the strategies and approaches to establish Theorems 1.1-1.4.
Our arguments are based on appropriate topological and variational arguments inspired
by [2, 40].

Firstly, we observe that the operator (−∆+m2)s involving in problem (1.4) has the
nonlocal feature and that does not scale like the fractional Laplacian operator (−∆)s.
More precisely, the operator (−∆+m2)s is not compatible with the semigroup R+ acting
on functions as t∗u 7→u(t−1x) for t>0. This feature means that some arguments used
to handle (1.8) do not work in our problem. To surmount these difficulties, we will use a
variant of the s-harmonic extension method from Caffarelli-Silvestre [11] (see also [20])
which allows us to investigate (1.4) by studying a local problem via suitable variational
methods.

Secondly, due to the fact that the nonlinear term f is only continuous, the Nehari
manifold is not differentiable and some well-known arguments for C1-Nehari manifold
are not applicable in our situation. To overcome this difficulty created by the non-
differentiability, we will use the method developed by Szulkin-Weth [39] to handle the
present problem. The main idea of this method is to find a homeomorphism mapping
between the Nehari manifold and the unit sphere of working space. Then, one can
construct a reduction functional on the unit sphere such that critical points of reduction
functional are in one-to-one correspondence with critical points of the original functional.

Thirdly, the combined effects of lack of compactness and competition of two po-
tentials bring some difficulties to our analysis, it is difficult to prove that the energy
functional has the Palais-Smale compactness property. This goal will be achieved by
doing a finer analysis and using the energy comparison method to establish some com-
parison relationships of the ground state energy value between the original problem and
certain auxiliary problems. Furthermore, these comparison relationships we established
are also very beneficial for proving the concentration phenomena and nonexistence of
solutions, which play a fundamental role in the study. Arguing as in [2], we prove the
regularity and exponential decay of solutions. These properties contribute to determin-
ing the concentration location of solutions. To obtain the multiplicity result of positive
solutions, we use the Ljusternik-Schnirelmann category theory and the techniques due
to Benci-Cerami [8] based on precise comparisons between the category of some sublevel
sets of the energy functional and the category of the set Λ.

Finally, it should be pointed out the main results presented in this paper are new
and have not been established previously for the general pseudo-relativistic Schrödinger
equations. And all of conclusions are new even for the special case s= 1

2 . Moreover,
we would like to point out that our arguments are rather flexible and we believe that
the ideas contained here can be applied in other fractional problems with competing
potentials.

The remainder part of the paper is organized as follows. In Section 2, we establish
a suitable variational framework of problem (1.4) and introduce the Nehari manifold
method. In Section 3, we present some results for the autonomous problem. In Section
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4, we analyze the Palais-Smale compactness condition. In Section 5, we prove the
existence and concentration of positive ground state solutions and we complete the
proofs of Theorem 1.1 and Theorem 1.2. In Section 6, we are devoted to the multiplicity
result and we give the proof of Theorem 1.3. Finally, we prove the non-existence result
of ground state solutions and finish the proof of Theorem 1.4 in Section 7.

2. Variational framework and Nehari manifold
Throughout the paper, we introduce following notations which will be used later.
• The symbol RN+1

+ denotes the half space {(x,y) :x∈RN ,y >0};
• ‖·‖p denotes the usual norm of the space Lp(RN ), 1≤p≤∞;
• c, c, C, Ci denote some different positive constants;
• For x∈RN , r>0, we will denote by Br(x) the ball in RN centered at x with

radius r;
• For x∈RN+1

+ and r>0, B+
r (x) will be the ball in RN+1

+ centered at x with radius
r;
• u+ = max{u,0} and u−= min{u,0}.

In what follows, we introduce some definitions and basic results of the Lebesgue
spaces with weight. Let Ω⊂RN+1

+ be an open set. Lp(Ω,y1−2s) denotes the weighted
Lebesgue space of all measurable functions u : Ω→R such that

‖u‖Lp(Ω,y1−2s) =

(∫∫
Ω

y1−2s|u|pdxdy

) 1
p

<∞.

We define the weighted Sobolev space H1(Ω,y1−2s) with the norm

‖u‖H1(Ω,y1−2s) =

(∫∫
Ω

y1−2s(|∇u|2 + |u|2)dxdy

) 1
2

and the inner product

(u,v) =

∫∫
Ω

y1−2s(∇u∇v+uv)dxdy.

Let Hs(RN ) be the usual fractional Sobolev space defined as the completion of
C∞0 (RN ) with respect to the norm

‖u‖Hs =

(∫
RN

(|ξ|2 +m2)s|Fu(ξ)|2dξ

) 1
2

,

where F denotes the usual Fourier transform and m>0.
We define Xs(RN+1

+ ) :=H1(RN+1
+ ,y1−2s), which is the completion of C∞0 (RN+1

+ )
with respect to the norm

‖u‖Xs =

(∫∫
RN+1

+

y1−2s(|∇u|2 +m2u2)dxdy

) 1
2

.

According to [20, Lemma 3.1], we can know that Xs(RN+1
+ ) is continuously embedded

in L2q0(RN+1
+ ,y1−2s), and there holds

‖u‖L2q0 (RN+1
+ ,y1−2s)≤ c1‖u‖Xs for all u∈Xs(RN+1

+ ), (2.1)
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where q0 = 1+ 2
N−2s . Moreover, we also know that Xs(RN+1

+ ) is compactly embedded

in the space L2(B+
R ,y

1−2s) for all R>0.
Following [20, Proposition 5], there is a linear trace operator Tr :Xs(RN+1

+ )→
Hs(RN ) such that

σs‖Tr(u)‖2Hs ≤‖u‖2Xs for all u∈Xs(RN+1
+ ),

where σs= 21−2sΓ(1−s)/Γ(s) is a normalization constant. Moreover, according to the
definition of Hs-norm we can get

σsm
2s‖Tr(u)‖22≤σs‖Tr(u)‖2Hs ≤‖u‖2Xs for all u∈Xs(RN+1

+ ). (2.2)

In the sequel, in order to simplify the notation, we denote Tr(u) by u(x,0).
We observe that Tr(Xs(RN+1

+ ))⊆Hs(RN ), and together with the fact that the
embedding Hs(RN ) ↪→Lq(RN ) is continuous for all q∈ [2,2∗s], and locally compact for
all q∈ [1,2∗s), we have the following embedding result.

Lemma 2.1. Tr(Xs(RN+1
+ )) is embedded continuously into Lq(RN ) for any q∈ [2,2∗s]

and compactly into Lqloc(RN ) for any q∈ [1,2∗s).
We recall the following Lions compactness lemma, see Lemma 3.3 in [2].

Lemma 2.2. Let p∈ [2,2∗s). If {un}⊂Xs(RN+1
+ ) is a bounded sequence and if

lim
n→∞

sup
z∈RN

∫
BR(z)

|un(x,0)|pdx= 0,

where R>0, then un(x,0)→0 in Lq(RN ) for all q∈ (2,2∗s).
We introduce the extension method for the pseudo-differential operator (−∆+m2)s.

Precisely speaking, for any u∈Hs(RN ), there exists a unique function w∈Xs(RN+1
+ )

solving the following problem{
−div(y1−2s∇w)+m2y1−2sw= 0, in RN+1

+ ,
w(x,0) =u, on RN .

The function w is called the extension of u and has the following properties:
(1) ∂w

∂ν1−2s :=− lim
y→0

y1−2s ∂w
∂y (x,y) =σs(−∆+m2)su(x) in distribution sense;

(2) σs‖u‖2Hs =‖w‖2Xs ;
(3) if u∈S(RN ), then w∈C∞(RN+1

+ )∩C(RN+1
+ ) and it can be expressed as

w(x,y) =

∫
RN
Ps,m(x−z,y)u(z)dz

with

Ps,m(x,y) :=C(N,s)y2sm
N+2s

2 |(x,y)|−
N+2s

2 WN+2s
2

(m|(x,y)|)

and

C(N,s) =pN,s2
N+2s

2 −1/Γ(
N+2s

2
),

where pN,s is the constant for the Poisson kernel with m= 0, see [38].
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In order to investigate some properties of solutions, we need to apply some con-
clusions about local Schauder estimates for degenerate elliptic equations involving the
operator

−div(y1−2s∇w)+m2y1−2sw with m>0.

Let Ω⊂RN+1
+ be a bounded domain with ∂Ω 6=∅, and let h∈L

2N
N+2s

loc (∂Ω) and g∈
L1
loc(∂Ω). We consider the following problem{

−div(y1−2s∇w)+m2y1−2sw= 0, in Ω,
∂w

∂ν1−2s =h(x)w+g(x), on ∂Ω.
(2.3)

Here we say w∈H1(Ω,y1−2s) is a weak supersolution (resp. subsolution) to (2.3) in Ω
if for any nonnegative ϕ∈C1

0 (Ω∪∂Ω),∫∫
Ω

y1−2s(∇w∇ϕ+m2wϕ)dxdy≥ (≤)

∫
∂Ω

[h(x)w(x,0)+g(x)]ϕ(x,0)dx.

We say that w∈H1(Ω,y1−2s) is a weak solution to (2.3) in Ω if it is both a weak
supersolution and a weak subsolution.

For R>0, let ΩR :=BR×(0,R). We introduce the following results proved in [20].
Lemma 2.3. Let f,g∈Lq(B1) for some q> N

2s .
(a) Let u∈H1(Ω1,y

1−2s) be a weak subsolution to (2.3) in Ω1, then

sup
Ω1/2

u+≤ c
(
‖u+‖L2(Ω1,y1−2s) + |g+|Lq(B1)

)
,

where c>0 depends only on m,N,s,q and |f+|Lq(B1).
(b) Let u∈H1(Ω1,y

1−2s) be a nonnegative weak supersolution to (2.3) in Ω1, then
for some p0>0 and any 0<r1<r2<1 we get

inf
Ω̄r1

u+ |g−|Lq(B1)≥ c‖u‖Lp0 (Ωr2 ,y
1−2s),

where c>0 depends only on m,N,s,q,r1,r2 and |f−|Lq(B1).
(c) Let u∈H1(Ω1,y

1−2s) be a nonnegative weak solution to (2.3) in Ω1, then u∈
C0,α(Ω̄1/2) and

‖u‖C0,α(Ω̄1/2)≤ c(‖u‖L2(Ω1) + |g|Lq(B1))

where α∈ (0,1), c>0 depends only on m,N,s,q and |f |Lq(B1).
Observe that, making the change of variable x 7→ εx, then problem (1.4) is equivalent

to the following problem{
(−∆+m2)su+V (εx)u=K(εx)f(u), in RN ,
u∈Hs(RN ),u>0, in RN . (2.4)

Clearly, if u is a solution of problem (2.4), then v(x) :=u(x/ε) is a solution of problem
(1.4). Thus, to study the original problem (1.4), it suffices to study the equivalent
problem (2.4).

Furthermore, according to the previous discussion and using the extension method,
we are able to transform problem (2.4) into the following local problem{

−div(y1−2s∇w)+m2y1−2sw= 0, in RN+1
+ ,

∂w
∂ν1−2s =σs (−V (εx)w(x,0)+K(εx)f(w(x,0))), on RN . (2.5)



12 SEMICLASSICAL STATES FOR PSEUDO-RELATIVISTIC SCHRÖDINGER EQUATION

If w is a solution of problem (2.5), then the trace u(x) = Tr(w) =w(x,0) is a solution of
problem (2.4), and the converse is also true. Therefore, both formulations are equivalent.
For the sake of convenience, we set the constant σs= 1 for the second equation in (2.5).

Now we establish the variational framework of problem (2.5). For any fixed ε>0,
we define the working space of problem (2.5)

Eε=

{
u∈Xs(RN+1

+ ) :

∫
RN
V (εx)u2(x,0)dx<∞

}
endowed with the norm

‖u‖ε=

[
‖u‖2Xs +

∫
RN
V (εx)u2(x,0)dx

] 1
2

and the inner product

(u,v)ε=

∫∫
RN+1

+

y1−2s(∇u∇v+m2uv)dxdy+

∫
RN
V (εx)u(x,0)v(x,0)dx

for all u,v∈Eε. From condition (A0) we know that the potential V is sign-changing.
Still, we can also check that ‖·‖ε is actually a norm. In fact, as observed in [2], we have
that

‖u‖2ε =

[
‖u‖2Xs +Vmin

∫
RN
u2(x,0)dx

]
+

∫
RN

[V (εx)−Vmin]u2(x,0)dx.

Using (2.2) and the fact Vmin∈ (−m2s,0) we have[
1+

Vmin

m2s

]
‖u‖2Xs ≤

[
‖u‖2Xs +Vmin

∫
RN
u2(x,0)dx

]
≤‖u‖2Xs ,

which implies that

‖u‖2Xs +Vmin

∫
RN
u2(x,0)dx

and ‖·‖Xs are equivalent. Therefore, we can see that ‖·‖ε is actually a norm and
Eε⊂Xs(RN+1

+ ). Using (A0) and (2.2) again, we can conclude that

‖u‖2Xs ≤
[

m2s

m2s+Vmin

]
‖u‖2ε . (2.6)

We define the energy functional associated to problem (2.5) on Eε

Φε(u) =
1

2
‖u‖2Xs +

1

2

∫
RN
V (εx)u2(x,0)dx−

∫
RN
K(εx)F (u(x,0))dx

=
1

2
‖u‖2ε−

∫
RN
K(εx)F (u(x,0))dx.

Using Lemma 2.1 and some standard arguments, we can check that Φε∈C1(Eε,R), and
critical points of Φε correspond to weak solutions of problem (2.5). Moreover, for any
u,v∈Eε, we have

〈Φ′ε(u),v〉= (u,v)ε−
∫
RN
K(εx)f(u(x,0))v(x,0)dx.
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From (f1), (f2) and (f3) we can deduce that for any ε>0, there exists Cε>0 such
that

|f(t)|≤ε|t|+Cε|t|p−1 and |F (t)|≤ε|t|2 +Cε|t|p for any t∈R. (2.7)

Moreover, (f5) implies that

F (t)>0 and
1

2
f(t)t−F (t)>0, ∀t>0. (2.8)

To prove the positive ground state solutions of problem (2.5), we will use the method
of Nehari manifold developed by Szulkin and Weth [39]. Define the Nehari manifold
associated to Φε by

Nε :={u∈Eε \{0} : 〈Φ′ε(u),u〉= 0},

and the ground state energy value

cε := inf
Nε

Φε.

Evidently, we can see that if cε is achieved by uε∈Nε, then uε is a critical point of Φε.
Since cε is the lowest level for Φε, then uε is called a ground state solution of problem
(2.5).

Applying Lemma 2.1 and some standard arguments, it is easy to check that the
functional Φε satisfies some elementary properties.
Lemma 2.4. Suppose that(f1)-(f5) are satisfied, then Φε satisfies the following proper-
ties:

(1) Φ′ε maps bounded sets of Eε into bounded sets of Eε;
(2) Φ′ε is weakly sequentially continuous in Eε.

Lemma 2.5. Suppose that (A0) and (f1)-(f5) are satisfied, then
(1) there exist α, %>0 such that Φε(u)≥α with ‖u‖ε=%;
(2) there exist u∈Eε and R>0 with ‖u‖ε>R such that Φε(u)<0.
Proof. (1) From (2.2), (2.6), (2.7) and Lemma 2.1 we get

Φε(u)≥ 1

2
‖u‖2ε−ε‖u(x,0)‖22−CεKmax‖u(x,0)‖pp

≥ 1

2
‖u‖2ε−

ε

m2s
‖u‖2Xs−c2Cε‖u‖

p
Xs

≥
[

1

2
− ε

m2s+Vmin

]
‖u‖2ε−c3Cε‖u‖pε .

Using (A0), p>2 and the arbitrariness of ε, then there exist α,%>0 such that Φε(u)≥α
for ‖u‖ε=%.

(2) Let e∈Eε\{0}, from (f4) we have

Φε(te) =
1

2
‖e‖2ε−

∫
RN
K(εx)

F (te)

t2
dx→−∞ as t→∞.

Evidently, the conclusion (2) holds.
Lemma 2.5 shows that Φε satisfies the usual mountain pass geometry, then we can

use a version of mountain pass theorem without the Palais-Smale condition [42] to yield
the existence of a Palais-Smale sequence {un} at level c̃ε, namely

Φε(un)→ c̃ε and Φ′ε(un)→0,
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where c̃ε is the mountain pass level of Φε defined as

c̃ε= inf
`∈Γ

max
t∈[0,1]

Φε(`(t)),

and

Γ ={`∈C([0,1],Eε) : `(0) = 0,Φε(`(1))<0}.

Since Nε is not differentiable under our conditions, we collect some properties of
Nε in order to use the Nehari manifold method.
Lemma 2.6. Nε is bounded away from 0, and is closed in Eε.

Proof. Let u∈Nε, from Lemma 2.1, (2.2), (2.6) and (2.7) we have

‖u‖2ε =

∫
RN
K(εx)f(u(x,0))u(x,0)dx

≤εKmax‖u(x,0)‖22 +CεKmax‖u(x,0)‖pp
≤εc4‖u‖2ε +c5‖u‖pε .

So, it is easy to see that there exists α0>0 such that ‖u‖ε≥α0.
Let {un}⊂Nε be a sequence such that un→u in Eε. From Lemma 2.4, we know

Φ′ε(un) is bounded, and

〈Φ′ε(un),un〉−〈Φ′ε(u),u〉= 〈Φ′ε(un)−Φ′ε(un),u〉+〈Φ′ε(un),un−u〉→0,

this shows that 〈Φ′ε(u),u〉= 0. Together with the above conclusion we deduce that
‖u‖ε≥α0 and u∈Nε. This completes the proof.
Lemma 2.7. Let u∈Eε\{0}, then there exists a unique tu>0 such that tuu∈Nε. More-
over, m̂ε(u) = tuu is the unique global maximum of Φε on R+u. In particular, if u∈Nε,
then

Φε(u) = max
t≥0

Φε(tu)≥Φε(tu) for all t≥0.

Proof. Let u∈Eε\{0}, we define the function g(t) = Φε(tu) for t>0. According
to the proof of Lemma 2.5, we know that g(0) = 0, g(t)>0 for t sufficiently small and
g(t)<0 for t sufficiently large. Hence, there is t= tu such that maxt>0g(t) is attained
at tu, so g′(tu) = 0 and tuu∈Nε.

Now we prove that tu is the unique critical point of g. Suppose by contradiction
that there exist t1 and t2 with 0<t1<t2 such that t1u,t2u∈Nε, then it follows that

‖u‖2ε =

∫
RN
K(εx)

f(t1u(x,0))

t1u(x,0)
u2(x,0)dx

and

‖u‖2ε =

∫
RN
K(εx)

f(t2u(x,0))

t2u(x,0)
u2(x,0)dx.

From (f5) we have

0 =

∫
RN
K(εx)

[
f(t1u(x,0))

t1u(x,0)
− f(t2u(x,0))

t2u(x,0)

]
u2(x,0)dx<0,
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this is impossible, a contradiction. So the proof is now complete.
Lemma 2.8. There exists λ>0 such that tu≥λ for each u∈Sε, and for each compact
subset W⊂Sε, there exists CW >0 such that tu≤CW for all u∈W, where Sε={u∈Eε :
‖u‖ε= 1}.

Proof. For each u∈Sε, by Lemma 2.6 and Lemma 2.7, there exists tu>0 such that
tuu∈Nε, and tu=‖tuu‖ε≥α0. Next we show that tu≤CW for all u∈W⊂Sε. Arguing
by contradiction we assume that there exist a sequence {un}⊂W⊂Sε and {tn} such
that tn→∞. Since W is compact, there exists u∈W such that un→u in Eε. From
the proof of Lemma 2.5, it is clear that Φε(tnun)→−∞. However, for any u∈Nε, we
deduce from (2.8) that

Φε(u) = Φε(u)− 1

2
〈Φ′ε(u),u〉

=

∫
RN
K(εx)

[
1

2
f(u(x,0))u(x,0)−F (u(x,0))

]
dx>0.

So, the conclusion Φε(tnun)→−∞ is impossible, a contradiction. This ends the proof.

According to Lemmas 2.5-2.8, the ground state energy value cε has a minimax
characterization given by

cε= c̃ε= inf
u∈Eε\{0}

max
t≥0

Φε(tu) = inf
u∈Sε

max
t≥0

Φε(tu). (2.9)

We refer to see [39] and [42] for the detailed proof .
Lemma 2.9. (1) There is α>0 independent of ε such that cε≥α>0.

(2) Φε is coercive on Nε, i.e., Φε(u)→∞ as ‖u‖ε→∞, u∈Nε.
Proof. (1) For any u∈Nε, from Lemma 2.5 we have Φε(tu)≥α>0 for t>0 small.

Moreover, by (2.9) we get cε≥α>0. So, the conclusion (1) holds.
(2) Let u∈Nε, then using (f4) we have

Φε(u) =Φε(u)− 1

θ
〈Φ′ε(u),u〉

=

[
1

2
− 1

θ

]
‖u‖2ε +

∫
RN
K(εx)

[
1

θ
f(u(x,0))u(x,0)−F (u(x,0))

]
dx

≥
[

1

2
− 1

θ

]
‖u‖2ε .

Obviously, this shows that the conclusion (2) holds.
Lemma 2.10. The mapping m̂ε :Eε\{0}→Nε is continuous, and the map mε := m̂ε|Sε :
Sε→Nε is a homeomorphism between Sε and Nε with inverse given by

m−1
ε :Nε→Sε, m

−1
ε (u) =u/‖u‖ε.

Proof. First we assume that un→u 6= 0. Since m̂ε(su) = m̂ε(u) for each s>0, we may
assume un∈Sε for all n and it suffices to show that m̂ε(un)→ m̂ε(u) after passing to a
subsequence. According to Lemma 2.7, m̂ε(un) = tunun. It follows from Lemma 2.8 that
{tun} is bounded and bounded away from 0, hence, taking a subsequence, tun→ t0>0.
By Lemma 2.6, Nε is closed and m̂ε(un)→ t0u and t0u∈Nε. Hence t0u= tuu= m̂ε(u).
From the above proof, the second conclusion is an immediate consequence.
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Based on Lemma 2.10, we define the functional Îε :Eε\{0}→R and the restriction
Iε :Sε→R

Îε(u) = Φε(m̂ε(u)) and Iε= Îε|Sε .

According to the above preliminary results, we have the following important results.
The details can be found in relevant material from Corollary 3.3 in [39].
Lemma 2.11. The following conclusions hold:

(a) Îε∈C1(Eε\{0},R) and for u,v∈Eε and u 6= 0,

〈Î ′ε(u),v〉= ‖m̂ε(u)‖ε
‖u‖ε

〈Φ′ε(m̂ε(u)),v〉.

(b) Iε∈C1(Sε,R) and 〈I ′ε(u),v〉=‖m̂ε(u)‖ε〈Φ′ε(m̂ε(u)),v〉 for v∈Tu(Sε), where
Tu(Sε) is the tangent space of Sε at u.

(c) {un} is a Palais-Smale sequence for Iε if and only if {m̂ε(un)} is a Palais-Smale
sequence for Φε.

(d) u is a critical point of Iε if and only if m̂ε(u) is a critical point of Φε. Moreover,
the corresponding critical values coincide and and

inf
Sε
Iε= inf

Nε

Φε= cε.

3. The autonomous problem
We will make use of the limit problem of problem (2.5) to help us to prove the main

results. So, in this section we start by considering the autonomous problem{
−div(y1−2s∇w)+m2y1−2sw= 0, in RN+1

+ ,
∂w

∂ν1−2s =−µw(x,0)+κf(w(x,0)), on RN . (3.1)

where µ>−m2s and κ>0. Define the corresponding working space

Eµ=

{
u∈Xs(RN+1

+ ) :

∫
RN
µu2(x,0)dx<∞

}
with the norm

‖u‖µ=

[
‖u‖2Xs +

∫
RN
µu2(x,0)dx

] 1
2

and the inner product

(u,v)µ=

∫∫
RN+1

+

y1−2s(∇u∇v+uv)dxdy+

∫
RN
µu(x,0)v(x,0)dx, u,v∈Eµ.

It is well known that the solutions of problem (3.1) are precisely critical points of
the functional

Jµκ(u) =
1

2
‖u‖2Xs +

1

2

∫
RN
µu2(x,0)dx−κ

∫
RN
F (u(x,0))dx

=
1

2
‖u‖2µ−κ

∫
RN
F (u(x,0))dx.
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Clearly, Jµκ∈C1(Eµ,R) and its differential is given by

〈J ′µκ(u),v〉= (u,v)µ−κ
∫
RN
f(u(x,0))v(x,0)dx

for any u,v∈Eµ. The Nehari manifold and ground state energy associated to Jµκ are
defined by

Nµκ :={u∈Eµ \{0} : 〈J ′µκ(u),u〉= 0} and cµκ= inf
Nµκ

Jµκ.

As before, we define the mappings

m̂µκ :Eµ\{0}→Nµκ and mµκ= m̂µκ|S :S→Nµκ,

and the inverse of mµκ is given by

m−1
µκ :Nµκ→S, m−1

µκ (u) =u/‖u‖µ.

From the previous arguments in Section 2, we see that Jµκ, Nµκ and cµκ have
similar properties with Φε, Nε and cε. Moreover, all related Lemmas in Section 2
remain hold for the autonomous problem (3.1). So we give these results for problem
(3.1).

Lemma 3.1. The following conclusions hold:
(a) Nµκ is bounded away from 0. Moreover, Nµκ is closed in Eµ.
(b) For u∈Eµ\{0}, there exists a unique tu>0 such that tuu∈Nµκ. Moreover,

m̂µκ(u) = tuu is the unique global maximum of Jµκ on R+u.
(c) There exists λ>0 such that tu≥λ for each u∈S, and for each compact subset
W⊂S, there exists CW >0 such that tu≤CW for all u∈W.

(d) cµκ>0 and Jµκ has positive bounded below on Nµκ.
(e) Jµκ is coercive on Nµκ, i.e., Jµκ(u)→∞ as ‖u‖µ→∞, u∈Nµκ.

Let us define the functional Îµκ :Eµ\{0}→R and the restriction Iµκ :S→R

Îµκ(u) =Jµκ(m̂µκ(u)) and Iµκ= Îµκ|S .

Similarly, we have the following results.
Lemma 3.2. The following conclusions hold:

(a) Iµκ∈C1(S,R) and 〈I ′µκ(u),v〉=‖m̂µκ(u)‖〈J ′µκ(m̂µκ(u)),v〉 for v∈Tu(S), where
Tu(S) is the tangent space of S at u.

(b) {un} is a Palais-Smale sequence for Iµκ if and only if {m̂µκ(un)} is a Palais-
Smale sequence for Jµκ.

(c) u is a critical point of Iµκ if and only if m̂µκ(u) is a critical point of Jµκ.
Moreover, the corresponding values of Iµκ and Jµκ coincide and

cµκ= inf
Nµκ

Jµκ= inf
S
Iµκ.

Now we use the Nehari manifold method to establish the existence result of positive
ground state solution of problem (3.1), this result is very useful in later arguments.
Lemma 3.3. Assume that µ>−m2s, κ>0 and (f1)-(f5) are satisfied. Then problem
(3.1) has at least one positive ground state solution ũ such that Jµκ(ũ) = cµκ.

Proof. Firstly, it follows from Lemma 3.1-(d) that cµκ>0. We observe that if
u∈Nµκ satisfies Jµκ(u) = cµκ, then m−1

µκ (u)∈S is a minimizer of Iµκ, and hence a
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critical point of Iµκ. Lemma 3.2 shows that u is a critical point of Jµκ. Hence, we
need to prove that there exists a minimizer ũ∈Nµκ such that Jµκ(ũ) = cµκ. Indeed,
using Ekeland’s variational principle [42], there exists a sequence {vn}⊂S such that
Iµκ(vn)→ cµκ and I ′µκ(vn)→0 as n→∞. Let un= m̂µκ(vn)∈Nµκ for all n∈N. Then
using Lemma 3.2 again, we can get Jµκ(un)→ cµκ and J ′µκ(un)→0. According to
Lemma 3.1-(e), we can see that {un} is bounded in Eµ, and ‖un‖µ≥α0 for some α0>0
by Lemma 3.1-(a).

We claim that

lim
n→∞

sup
z∈RN

∫
BR(z)

u2
n(x,0)dx>0.

Otherwise, Lemma 2.2 yields that un(x,0)→0 in Lq(RN ) for any q∈ (2,2∗s). From the
fact that un∈Nµκ and (2.7) we can deduce that

0 = 〈J ′µκ(un),un〉=‖un‖2µ−κ
∫
RN
f(un(x,0))un(x,0)dx=‖un‖2µ+o(1),

this shows that ‖un‖µ→0, which contradicts with ‖un‖µ≥α0.
Thus, there are δ>0 and {kn}⊂ZN such that∫

BR(kn)

u2
n(x,0)dx≥ δ.

Setting ũn(x,y) =un(x+kn,y), then we have∫
BR(0)

ũ2
n(x,0)dx≥ δ. (3.2)

Since problem (3.1) is autonomous, then Jµκ possesses the invariance under ZN -
translation, and we have ‖ũn‖µ=‖un‖µ and

Jµκ(ũn)→ cµκ and J ′µκ(ũn)→0. (3.3)

Up to a subsequence, we assume that ũn⇀ũ in Eµ, ũn(x,0)→ ũ(x,0) in Lqloc(RN ) for

q∈ (2,2∗s), and ũn(x,y)→ ũ(x,y) a.e. in RN+1
+ , ũn(x,0)→ ũ(x,0) a.e. in RN . Therefore,

from Lemma 2.4, (3.2) and (3.3) we infer that ũ 6= 0 and J ′µκ(ũ) = 0. This shows that
ũ∈Nµκ and Jµκ(ũ)≥ cµκ.

On the other hand, applying Fatou’s lemma and (2.8), we can get

cµκ= lim
n→∞

[
Jµκ(ũn)− 1

2
〈J ′µκ(ũn),ũn〉

]
= lim
n→∞

[
κ

∫
RN

1

2
f(ũn(x,0))ũn(x,0)−F (ũn(x,0))dx

]
≥κ
∫
RN

[
1

2
f(ũ(x,0))ũ(x,0)−F (ũ(x,0))

]
dx

=Jµκ(ũ)− 1

2
〈J ′µκ(ũ),ũ〉=Jµκ(ũ),

this shows that Jµκ(ũ)≤ cµκ. Then we have Jµκ(ũ) = cµκ and ũ is critical point of Jµκ.
So, ũ is a ground state solution of problem (3.1).
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Next, we show that the ground state solution ũ is positive. Indeed, taking ũ−=
min{ũ,0} as test function in problem (3.1), we can obtain

‖ũ−‖2µ=κ

∫
RN
f(ũ−(x,0))ũ−(x,0)dx= 0.

This shows that ũ−= 0, that is ũ≥0 in RN+1
+ . By the regularity results (see Lemma

5.5 below), we know that ũ(x,0)∈Lq(RN ) for any q∈ [2,∞], and that ũ∈L∞(RN+1
+ ).

According to Lemma 2.3-(c), we have ũ∈C0,α(RN+1
+ ) for some α∈ (0,1). Finally we

can apply the Harnack’s inequality (see Lemma 2.3-(b)) to conclude that ũ>0 in RN+1
+ .

The following lemma describes a comparison between the ground state energy values
for different parameters µ and κ, which is crucially important in our analysis.
Lemma 3.4. Let µi>−m2s and κi>0 for i= 1,2, with min{µ2−µ1,κ1−κ2}≥0. Then
cµ1κ1 ≤ cµ2κ2 . Additionally, if max{µ2−µ1,κ1−κ2}>0, then cµ1κ1 <cµ2κ2 . In particu-
lar, we have cµ1κi <cµ2κi if µ1<µ2, and cµiκ1

>cµiκ2
if κ1<κ2.

Proof. Let u∈Nµ2κ2
with Jµ2κ2

(u) = cµ2κ2
, then, Lemma 3.1-(b) implies that

cµ2κ2
=Jµ2κ2

(u) = max
t≥0
Jµ2κ2

(tu).

Using Lemma 3.1-(b) again, there exists t0>0 such that u0 = t0u∈Nµ1κ1
and

Jµ1κ1
(u0) = max

t≥0
Jµ1κ1

(tu0).

According to the above facts we have

cµ2κ2 =Jµ2κ2(u)≥Jµ2κ2(u0)

=Jµ1κ1(u0)+
1

2
(µ2−µ1)

∫
RN
u2

0(x,0)dx+(κ1−κ2)

∫
RN
F (u0(x,0))dx

≥ cµ1κ1
+

1

2
(µ2−µ1)

∫
RN
u2

0(x,0)dx+(κ1−κ2)

∫
RN
F (u0(x,0))dx.

Evidently, cµ2κ2
≥ cµ1κ1

. If max{µ2−µ1,κ1−κ2}>0, it is easy to see that cµ2κ2
>cµ1κ1

by the above formula. This finishes the proof.

4. Palais-Smale compactness condition
In this section we will analyze the behaviors of Palais-Smale sequence to overcome

the lack of compactness. First, combining the nonlocal version of Brezis-Lieb lemma
and some standard arguments, we have the following splitting lemma.
Lemma 4.1. Let {un} be a sequence such that un⇀u in Eε, and set vn=un−u. Then
we have

Φε(vn) = Φε(un)−Φε(u)+on(1),

and

〈Φ′ε(vn),ϕ〉= 〈Φ′ε(un),ϕ〉−〈Φ′ε(u),ϕ〉+on(1)

uniformly in ϕ∈Eε.
Consider the limit problem{

−div(y1−2s∇w)+m2y1−2sw= 0, in RN+1
+ ,

∂w
∂ν1−2s =−V∞w(x,0)+K∞f(w(x,0)), on RN . (4.1)
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As before, we use the notations JV∞K∞ , NV∞K∞ and cV∞K∞ to denote the associated
energy functional, Nehari manifold and ground state energy value of limit problem (4.1),
respectively.
Lemma 4.2. Let {un} be a Palais-Smale sequence at level c>0 for Φε with un⇀u in
Eε. Then the following alternative holds: either un→u in Eε along a subsequence, or
c−Φε(u)≥ cV∞K∞ .

Proof. Define vn=un−u and assume that vn90 in Eε. We infer from Lemma 2.7
that for each vn there exists a unique {tn}⊂ (0,∞) such that {tnvn}⊂NV∞K∞ . We
divide the proof into three steps.

Step 1. The sequence {tn} satisfies

limsup
n→∞

tn≤1.

Indeed, assume by contradiction that the above conclusion does not hold. Then, there
exist τ >0 and a subsequence of {tn}, still denoted by itself, such that

tn≥1+τ for all n∈N.

On account of Lemma 4.1, we see that 〈Φ′ε(vn),vn〉=on(1) and

‖vn‖2Xs +

∫
RN
V (εx)v2

n(x,0)dx−
∫
RN
K(εx)f(vn(x,0))vn(x,0)dx=on(1).

By the fact that {tnvn}⊂NV∞K∞ , we have

‖vn‖2Xs +

∫
RN
V∞v

2
n(x,0)dx−

∫
RN

K∞f(tnvn(x,0))

tnvn(x,0)
v2
n(x,0)dx= 0.

Consequently, ∫
RN

[
K∞f(tnvn(x,0))

tnvn(x,0)
−K∞f(vn(x,0))

vn(x,0)

]
v2
n(x,0)dx

=

∫
RN

[
K(εx)f(vn(x,0))

vn(x,0)
−K∞f(vn(x,0))

vn(x,0)

]
v2
n(x,0)dx

+

∫
RN

[V∞−V (εx)]v2
n(x,0)dx+on(1).

(4.2)

By the definition of V∞ and K∞, for any ε>0, there exists R=R(ε)>0 such that

V (εx)≥V∞−ε and K(εx)≤K∞+ε for any |x|≥R. (4.3)

Since vn⇀0 in Eε, Lemma 2.2 implies that vn(x,0)→0 in Lqloc(RN ) for q∈ [2,2∗s). Using
(2.7) and (4.2) we get∫

RN

[
K∞f(tnvn(x,0))

tnvn(x,0)
−K∞f(vn(x,0))

vn(x,0)

]
v2
n(x,0)dx

≤
∫
RN

[K(εx)−K∞]f(vn(x,0))vn(x,0)dx+

∫
RN

[
(V∞−V (εx))v2

n(x,0)
]
dx+on(1)

≤ε
∫
|x|≥R

f(vn(x,0))vn(x,0)dx+ε

∫
|x|≥R

v2
n(x,0)dx

+2Kmax

∫
|x|≤R

f(vn(x,0))vn(x,0)dx+2Vmax

∫
|x|≤R

v2
n(x,0)dx++on(1)

= c6ε+on(1).
(4.4)
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Since vn90 in Eε and 〈Φ′ε(vn),vn〉→0, then there exist R̄, δ>0 and zn∈RN such
that ∫

BR̄(zn)

v2
n(x,0)dx≥ δ. (4.5)

Note that the above claim is true. Otherwise, using Lemma 2.2, we have vn(x,0)→0 in
Lq(RN ) for q∈ (2,2∗s). According to (2.2), (2.6), (2.7) and 〈Φ′ε(vn),vn〉=on(1) we can
deduce that

on(1) = 〈Φ′ε(vn),vn〉

=‖vn‖2ε−
∫
RN
K(εx)f(vn(x,0))vn(x,0)dx

≥‖vn‖2ε−εKmax‖vn(x,0)‖22−CεKmax‖vn(x,0)‖pp
≥ (1−εc7)‖vn‖2ε−c8‖vn(x,0)‖pp.

Then, vn→0 in Eε, which is a contradiction. Setting ṽn=vn(x+zn,y), we may assume
that, up to a subsequence, ṽn⇀ṽ in Eε and ṽn(x,0)→ ṽ(x,0) a.e. in RN . Thus,∫

BR̄(0)

ṽ2
n(x,0)dx≥ δ,

which implies that ṽ 6= 0. Moreover, using the fact that vn≥0 for all n∈N, we have that
ṽ(x,0)≥0 a.e. in RN . Hence, there exists a subset Ω1⊂RN with positive measure such
that ṽ(x,0)>0 for all x∈Ω1. Consequently, according to (f5) and (4.4) we get

0<

∫
Ω1

[
K∞f((1+τ)vn(x,0))

(1+τ)vn(x,0)
−K∞f(vn(x,0))

vn(x,0)

]
v2
n(x,0)dx≤ c6ε+on(1).

Letting n→∞ in the last inequality and applying Fatou’s lemma, it follows that

0<

∫
Ω1

[
K∞f((1+τ)ṽ(x,0))

(1+τ)ṽ(x,0)
−K∞f(ṽ(x,0))

ṽ(x,0)

]
ṽ2(x,0)dx≤ c6ε,

this is a contradiction since the arbitrariness of ε.
From Step 1, we derive that

limsup
n→∞

tn= 1 or limsup
n→∞

tn= t0<1.

Next we will study each one of these possibilities.

Step 2. The sequence {tn} satisfies

limsup
n→∞

tn= 1.

In this case, there exists a subsequence, such that tn→1. Using Lemma 4.1 and the
fact that JV∞K∞(tnvn)≥ cV∞K∞ we have

c−Φε(u)+on(1) = Φε(vn)

= Φε(vn)−JV∞K∞(tnvn)+JV∞K∞(tnvn)

≥Φε(vn)−JV∞K∞(tnvn)+cV∞K∞ .

(4.6)
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Note that,

Φε(vn)−JV∞K∞(tnvn)

=
(1− t2n)

2
‖vn‖2Xs +

1

2

∫
RN

[V (εx)− t2nV∞]v2
n(x,0)dx

+

∫
RN

[K∞F (tnvn(x,0))−K(εx)F (vn(x,0))]dx.

(4.7)

It follows from (4.3) that

V (εx)− t2nV∞= (V (εx)−V∞)+(1− t2n)V∞≥−ε+(1− t2n)V∞ for any |x|≥R,

then by vn(x,0)→0 in L2
loc(RN ) and tn→1 we have∫

RN
[V (εx)− t2nV∞]v2

n(x,0)dx

=

∫
|x|≤R

[V (εx)− t2nV∞]v2
n(x,0)dx+

∫
|x|≥R

[V (εx)− t2nV∞]v2
n(x,0)dx

≥ (Vmin− t2nV∞)

∫
|x|≤R

v2
n(x,0)dx−ε

∫
|x|≥R

v2
n(x,0)dx+V∞(1− t2n)

∫
|x|≥R

v2
n(x,0)dx

≥on(1)−c7ε.
(4.8)

Now we prove that∫
RN

[K∞F (tnvn(x,0))−K(εx)F (vn(x,0))]dx≥on(1)−cε. (4.9)

In fact, observe that∫
RN

[K∞F (tnvn(x,0))−K(εx)F (vn(x,0))]dx

=

∫
RN

[K∞F (tnvn(x,0))−K∞F (vn(x,0))]dx

+

∫
RN

[K∞F (vn(x,0))−K(εx)F (vn(x,0))]dx

:=D1 +D2.

On the one hand, using the mean value theorem, tn→1 and the boundedness of {vn}
we get

D1≤K∞
∫
RN
|F (tnvn(x,0))−F (vn(x,0))|dx

≤ c8|tn−1|
∫
RN
|vn(x,0)|2dx+c9|tn−1|

∫
RN
|vn(x,0)|pdx

=on(1).

On the other hand, applying the fact vn(x,0)→0 in Lqloc(RN ) for q∈ [2,2∗s) and (4.3)
we obtain

D2 =

∫
|x|≤R

[K∞−K(εx)]F (vn(x,0))dx+

∫
|x|≥R

[K∞−K(εx)]F (vn(x,0))dx

≥on(1)−c10ε.
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Combining the above two estimates for D1 and D2, we can see that (4.9) holds.
Finally, from (2.6), the boundedness of {vn} and tn→1 we can deduce that

(1− t2n)

2
‖vn‖2Xs =on(1). (4.10)

Using (4.6), (4.7) (4.8), (4.9) and (4.10) we have

c−Φε(u)≥on(1)−c11ε+cV∞K∞ ,

and taking the limit as ε→0 we get

c−Φε(u)≥ cV∞K∞ .

Step 3. The sequence {tn} satisfies

limsup
n→∞

tn= t0<1.

We assume that there is a subsequence, still denoted by {tn}, such that tn→ t0<1.
Similarly, from the above arguments, we can get∫

RN
[K∞−K(εx)]

[
1

2
f(vn(x,0))vn(x,0)−F (vn(x,0))

]
dx=on(1). (4.11)

Since 〈Φ′ε(vn),vn〉=on(1), then we have

c−Φε(u)+on(1) = Φε(vn)− 1

2
〈Φ′ε(vn),vn〉

=

∫
RN
K(εx)

[
1

2
f(vn(x,0))vn(x,0)−F (vn(x,0))

]
dx.

(4.12)

Recalling that tnvn∈NV∞K∞ , and using (f5), (4.11) and (4.12) we have

cV∞K∞ ≤JV∞K∞(tnvn)

=JV∞K∞(tnvn)− 1

2
〈J ′V∞K∞(tnvn),tnvn〉

=

∫
RN
K∞

[
1

2
f(tnvn(x,0))tnvn(x,0)−F (tnvn(x,0))

]
dx.

≤
∫
RN
K∞

[
1

2
f(vn(x,0))vn(x,0)−F (vn(x,0))

]
dx

=

∫
RN
K(εx)

[
1

2
f(vn(x,0))vn(x,0)−F (vn(x,0))

]
dx

+

∫
RN

[K∞−K(εx)]

[
1

2
f(vn(x,0))vn(x,0)−F (vn(x,0))

]
dx

= Φε(vn)− 1

2
〈Φ′ε(vn),vn〉+on(1)

= c−Φε(u)+on(1).

Taking the limit as n→∞, we get

c−Φε(u)≥ cV∞K∞ .
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This ends the proof.
Combining Lemma 4.1 and Lemma 4.2, we have the following compactness result.

Lemma 4.3. Let {un} be a bounded Palais-Smale sequence at level c<cV∞K∞ for Φε.
Then {un} has a convergent subsequence in Eε.

Proof. Let {un} be a bounded Palais-Smale sequence, up to a subsequence, we may
assume that un⇀u in Eε. Using Lemma 2.4, we can see that Φ′ε(u) = 0. Moreover, it
follows from (2.8) that

Φε(u) = Φε(u)− 1

2
〈Φ′ε(u),u〉

=

∫
RN
K(εx)

[
1

2
f(u(x,0))u(x,0)−F (u(x,0))

]
dx≥0.

(4.13)

Hence, we have c−Φε(u)≤ c<cV∞K∞ . Evidently, we can deduce from Lemma 4.2 that
un→u in Eε. This finishes the proof.

5. Existence and concentration of positive ground states
In this section, we are going to prove the existence and concentration phenomena

of positive ground state solutions to problem (2.5). Moreover, we complete the proofs
of Theorems 1.1 and 1.2.

We first consider the case that (A0) and (A1) are satisfied. For any xv ∈V , we set
Ṽ (εx) =V (εx+εxv) and K̃(εx) =K(εx+εxv). It is clear that if ũ is a solution of{

−div(y1−2s∇w)+m2y1−2sw= 0, in RN+1
+ ,

∂w
∂ν1−2s =−Ṽ (εx)w(x,0)+K̃(εx)f(w(x,0)), on RN .

then u(x) = ũ(x−εxv) solves problem (2.5). From (A0) and (A1), without loss of gen-
erality, we may assume that xv = 0∈V or xv = 0∈V ∩K if V ∩K 6=∅. So

V (0) =Vmin and κ :=K(0)≥K(x) for all |x|≥R. (5.1)

Consider the following problem{
−div(y1−2s∇w)+m2y1−2sw= 0, in RN+1

+ ,
∂w

∂ν1−2s =−Vminw(x,0)+κf(w(x,0)), on RN . (5.2)

In the sequel, we also use the associated notations JVminκ, NVminκ and cVminκ as before,
which denote the energy functional, Nehari manifold and ground state energy value of
problem (5.2), respectively. Moreover, according to Lemma 3.3 we know that problem
(5.2) possesses at least one positive ground state solution.

Next, we give the comparison relationship of the ground state energy value between
problem (2.5) and problem (5.2), which will play a crucial role in our arguments.

Lemma 5.1. We have limsup
ε→0

cε≤ cVminκ. In particular, if V ∩K 6=∅, then lim
ε→0

cε=

cVminKmax
.

Proof. Let u∈NVminκ be a positive ground state solution of problem (5.2), then we
have

cVminκ=JVminκ(u) = max
t≥0
JVminκ(tu). (5.3)

Moreover, by Lemma 2.7 that there exists tε>0 such that tεu∈Nε, and

cε≤Φε(tεu) = max
t≥0

Φε(tu). (5.4)
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It is clear to see that {tε} is bounded. Then, passing to a subsequence, we assume that
tε→ t0. Observe that

Φε(tεu) =JVminκ(tεu)+
t2ε
2

∫
RN

[V (εx)−Vmin]u2(x,0)dx

+

∫
RN

[κ−K(εx)]F (tεu(x,0))dx.

(5.5)

Using the boundedness of tε, K(εx)→κ in a bounded domain and the decay of u, we
have ∫

RN
[κ−K(εx)]F (tεu(x,0))dx

=

∫
|x|≤R

[κ−K(εx)]F (tεu(x,0))dx+

∫
|x|≥R

[κ−K(εx)]F (tεu(x,0))dx

=oε(1).

(5.6)

Similarly, we can get

t2ε
2

∫
RN

[V (εx)−Vmin]u2(x,0)dx=oε(1). (5.7)

From (5.5) (5.6) and (5.7) we infer that

Φε(tεu) =JVminκ(t0u)+oε(1).

Together with (5.3) and (5.4), as ε→0, we have

cε≤Φε(tεu)→JVminκ(t0u)≤max
t≥0
JVminκ(tu) =JVminκ(u) = cVminκ.

Thus,

limsup
ε→0

cε≤ cVminκ. (5.8)

Now we show that the second conclusion holds. Note that

Φε(u) =JVminKmax
(u)+

∫
RN

[Kmax−K(εx)]F (u(x,0))dx

+
1

2

∫
RN

[V (εx)−Vmin]u2(x,0)dx.

It follows that

cVminKmax
≤ cε.

On the other hand, since V ∩K 6=∅, then κ=Kmax. So, according to (5.8) we can get

lim
ε→0

cε= cVminKmax
.

The proof is now complete.
Now we give the existence result of positive ground state solutions of problem (2.5).

Lemma 5.2. Suppose that (A0), (A1) and (f1)-(f5) are satisfied. Then for any ε>0
small enough, problem (2.5) has a positive ground state solution.
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Proof. Note that if uε∈Nε satisfies Φε(uε) = cε, by Lemma 2.11 we have

Iε(m
−1
ε (uε)) = Φε(m̂ε(m

−1
ε (uε))) = Φε(uε) = cε= inf

Sε
Iε.

This shows that m−1
ε (uε)∈Sε is a minimizer of Iε, and hence a critical point of Iε. Lem-

ma 2.11 shows that uε is a critical point of Φε. So, it suffices to verify that there exists
a minimizer uε∈Nε such that Φε(uε) = cε. Indeed, applying the Ekeland variational
principle [42], there exists a sequence {vn}⊂Sε such that Iε(vn)→ cε and I ′ε(vn)→0
as n→∞. Let un= m̂ε(vn)∈Nε for all n∈N. Then using Lemma 2.11 again, we get
Φε(un)→ cε and Φ′ε(un)→0. Moreover, Lemma 2.9 shows that {un} is bounded in Eε.
We can assume that, up to a subsequence, un⇀uε in Eε. From (5.1), we have Vmin<V∞
and κ≥K∞. By Lemma 3.4, we get cVminκ<cV∞K∞ , moreover, using Lemma 5.1 we
deduce that cε≤ cVminκ<cV∞K∞ for ε>0 small enough. Then, Lemma 4.3 shows that
Φε satisfies the Palais-Smale compactness condition for ε>0 small enough. Using Lem-
ma 2.4 and continuity of Φε, we have Φ′ε(uε) = 0 and Φε(uε) = cε. Hence, problem (2.5)
possesses a ground state solution uε. According to Lemma 2.3 and using some similar
arguments as in the proof of Lemma 3.3, we can prove that the positivity of the ground
state solution.

Let Lε be the set of all positive ground state solutions of problem (2.5). Then we
have the following compactness result for the set Lε.
Lemma 5.3. Lε is compact in Eε for all small ε>0.

Proof. Suppose by contradiction that, for some εj→0, Lεj is not compact in Eε.
Thus, for each j, there exists a sequence {ujn}⊂Lεj such that it has no convergent
subsequence. However, we observe that {ujn} is bounded in Eε. So, we may assume
without loss of generality that ujn⇀u in Eε as n→∞. Arguing as in the proof of Lemma
5.2, we can easily get a contradiction.

Next, we study the concentration phenomena of positive ground state solution uε
obtained in Lemma 5.2 as ε→0. First we prove the following result, which plays a
fundamental role in the study of the behaviors of ground state solutions.

Lemma 5.4. Let uε∈Lε, then there is a sequence {zε}, up to a subsequence, such that
εzε→x0 as ε→0, lim

ε→0
dist(εzε,Av) = 0 and vε(x,y) :=uε(x+zε,y) converges strongly to

a positive ground state solution of{
−div(y1−2s∇w)+m2y1−2sw= 0, in RN+1

+ ,
∂w

∂ν1−2s =−V (x0)w(x,0)+K(x0)f(w(x,0)), on RN .

In particular, if V ∩K 6=∅, then lim
ε→0

dist(εzε,V ∩K ) = 0, and up to a subsequence, vε

converges strongly to a positive ground state solution of{
−div(y1−2s∇w)+m2y1−2sw= 0, in RN+1

+ ,
∂w

∂ν1−2s =−Vminw(x,0)+Kmaxf(w(x,0)), on RN .

Proof. Let εj→0 as j→∞, uj :=uεj ∈Lεj , we first show that there exist {zj}⊂RN ,
R>0 and σ0>0 such that ∫

BR0
(zj)

u2
j (x,0)dx≥σ0. (5.9)

Arguing by contradiction we assume that

lim
j→∞

sup
z∈RN

∫
BR(z)

u2
j (x,0)dx= 0, ∀R>0.
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Then Lemma 2.2 yields that uj(x,0)→0 in Lq(RN ) for q∈ (2,2∗s). On account of (2.2),
(2.6), (2.7) and Lemma 2.1, we see that

0 = 〈Φ′εj (uj),uj〉

=‖uj‖2εj −
∫
RN
K(εjx)f(uj(x,0))uj(x,0)dx

≥‖uj‖2εj −εKmax‖uj(x,0)‖22−CεKmax‖uj(x,0)‖pp
≥ (1−εc12)‖uj‖2εj −c13‖uj(x,0)‖pp.

Since p∈ (2,2∗s), then uj→0 in Eε. However, from Lemma 2.6 we can see that {uj} has
positive bounded from below. Clearly this is a contradiction, and so (5.9) holds.

Setting vj(x,y) =uj(x+zj ,y), we may assume that, up to a subsequence, vj⇀v in
Eε and vj(x,0)→v(x,0) in Lqloc(RN ) for q∈ [2,2∗s), and v 6= 0 by (5.9). Moreover, we
also observe that vj is a solution of the problem{

−div(y1−2s∇w)+m2y1−2sw= 0, in RN+1
+ ,

∂w
∂ν1−2s =−V (εjx+εjzj)w(x,0)+K(εjx+εjzj)f(w(x,0)), on RN . (5.10)

Then, the corresponding energy

Tεj (vj) =
1

2
‖vj‖2Xs +

1

2

∫
RN
V (εjx+εjzj)v

2
j (x,0)dx−

∫
RN
K(εjx+εjzj)F (vj(x,0))dx

=Tεj (vj)−
1

2
〈T ′εj (vj),vj〉

=

∫
RN
K(εjx+εjzj)

[
1

2
f(vj(x,0))vj(x,0)−F (vj(x,0))

]
dx

=Φεj (uj)−
1

2
〈Φ′εj (uj),uj〉

=Φεj (uj) = cεj ,

(5.11)

and for any ϕ∈C∞0 (RN ) we have

〈T ′εj (vj),ϕ〉=
∫∫

RN+1
+

y1−2s(∇vj∇ϕ+vjϕ)dxdy+

∫
RN
V (εjx+εjzj)vj(x,0)ϕ(x,0)dx

−
∫
RN
K(εjx+εjzj)f(vj(x,0))ϕ(x,0)dx= 0.

(5.12)

From (A0), we can assume without loss of generality that V (εjzj)→V0 and K(εjzj)→
K0 as j→∞.

Next we will take several steps to complete the proof.

Step 1. We show that v is a positive ground state solution of the limit problem{
−div(y1−2s∇w)+m2y1−2sw= 0, in RN+1

+ ,
∂w

∂ν1−2s =−V0w(x,0)+K0f(w(x,0)), on RN . (5.13)

In fact, since vj⇀v in Eε, using some standard arguments we can easily check that∫
RN
V (εjx+εjzj)vj(x,0)ϕ(x,0)dx=

∫
suppϕ

V (εjx+εjzj)vj(x,0)ϕ(x,0)dx

→
∫
RN
V0v(x,0)ϕ(x,0)dx.
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Similarly, we get∫
RN
K(εjx+εjzj)f(vj(x,0))ϕ(x,0)dx→

∫
RN
K0f(v(x,0))ϕ(x,0)dx.

On account of (5.12), we see that v is a solution of problem (5.13). Moreover,

JV0K0
(v) =JV0K0

(v)− 1

2
〈J ′V0K0

(v),v〉

=K0

∫
RN

[
1

2
f(v(x,0))v(x,0)−F (v(x,0))

]
dx

≥ cV0K0
,

where cV0K0
is the ground state energy value of JV0K0

. On the other hand, using Fatou’s
lemma and Lemma 5.1 we have

cV0K0 ≤K0

∫
RN

[
1

2
f(v(x,0))v(x,0)−F (v(x,0))

]
dx

≤ liminf
j→∞

[∫
RN
K(εjx+εjzj)

(
1

2
f(vj(x,0))vj(x,0)−F (vj(x,0))

)
dx

]
= liminf

j→∞
Tεj (vj)≤ limsup

j→∞
Φεj (uj)≤ cV0K0

.

This shows that v is a ground state solution of problem (5.13). Reasoning as in the
proof of Lemma 3.3, we show that v is positive. Also, we get

lim
j→∞

Tεj (vj) = lim
j→∞

cεj =JV0K0
(v) = cV0K0

. (5.14)

Step 2. We claim that {εjzj} is bounded. Arguing by contradiction we assume
that, up to a subsequence, |εjzj |→∞. From (5.1) and (A1), we find that V0>Vmin

and K0≤κ. Then we deduce from Lemma 3.4 that cV0K0
>cVminκ. But, according to

Lemma 5.1 and (5.14), we can get cεj→ cV0K0
≤ cVminκ. This is a contradiction. So,

{εjzj} is bounded.
Consequently, from Step 2, up to subsequence, we can assume that εjzj→x0 as

j→∞, then V0 =V (x0) and K0 =K(x0). Hence, by Step 1 we know that v is a positive
ground state solution of the limit problem{

−div(y1−2s∇w)+m2y1−2sw= 0, in RN+1
+ ,

∂w
∂ν1−2s =−V (x0)w(x,0)+K(x0)f(w(x,0)), on RN .

Step 3. We prove that lim
j→∞

dist(εjzj ,Av) = 0. Indeed, we just need to prove x0∈Av.

We use a contradiction argument to do this. If x0 /∈Av, then we get V0≥Vmin and
K0<κ by condition (A1) and the definition of Av. Moreover, by Lemma 3.4 we have
cV0K0 >cVminκ. Thus, we deduce from (5.14) and Lemma 5.1 that

lim
j→∞

cεj = cV0K0
>cVminκ≥ lim

j→∞
cεj ,

which is a contradiction.

Step 4. We verify that vj→v in Eε. We adapt the ideas in [18], and let η : [0,∞)→
[0,1] be a smooth function such that η(t) = 1 if t≤1, η(t) = 0 if t≥2. Define ṽj(x) =
η(2|x|/j)v(x). By straightforward computation, we can easily check that

‖v− ṽj‖Xs→0 and ‖v(x,0)− ṽj(x,0)‖q→0 as j→∞ (5.15)
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for q∈ [2,2∗s]. Setting wj =vj− ṽj , it is easy to verify that up to a subsequence,

lim
j→∞

∣∣∣∣∫
RN
K(εjx+εjzj)[F (vj(x,0))−F (wj(x,0))−F (ṽj(x,0))]dx

∣∣∣∣= 0 (5.16)

and

lim
j→∞

∣∣∣∣∫
RN
K(εjx+εjzj)[f(vj(x,0))−f(wj(x,0))−f(ṽj(x,0))]ϕ(x,0)dx

∣∣∣∣= 0 (5.17)

uniformly in ϕ∈Eε with ‖ϕ‖ε≤1. Using the decay of v and (5.15) we can easily check
that

lim
j→∞

∫
RN
V (εjx+εjzj)ṽ

2
j (x,0)dx→

∫
RN
V0v

2(x,0)dx (5.18)

and

lim
j→∞

∫
RN
K(εjx+εjzj)F (ṽj(x,0))dx→

∫
RN
K0F (v(x,0))dx. (5.19)

From (5.14), (5.15), (5.16), (5.18) and (5.19), we infer that

Tεj (wj) =Tεj (vj)−JV0K0
(v)

+

∫
RN
K(εjx+εjzj)[F (vj(x,0))−F (wj(x,0))−F (ṽj(x,0))]dx+oj(1)

=oj(1),

which implies that Tεj (wj)→0. Similarly, from (5.17), we also get T ′εj (wj)→0. Hence,
together with (f4), we obtain

oj(1) =Tεj (wj)−
1

θ
〈T ′εj (wj),wj〉

=

[
1

2
− 1

θ

]
‖wj‖2ε +

∫
RN
K(εjx+εjzj)

[
1

θ
f(wj(x,0))wj(x,0)−F (wj(x,0))

]
dx

≥
[

1

2
− 1

θ

]
‖wj‖2ε ,

which shows that ‖wj‖ε→0. Then, from (5.15) we see that vj→v in Eε.
Finally, if V ∩K 6=∅, then Av =V ∩K . Following the above arguments, we can

prove that

lim
j→∞

dist(εjzj ,V ∩K ) = 0.

So, x0∈V ∩K , V (x0) =Vmin and K(x0) =Kmax. Moreover, up to a subsequence, vj
converges to a positive ground state solution v of the limit problem{

−div(y1−2s∇w)+m2y1−2sw= 0, in RN+1
+ ,

∂w
∂ν1−2s =−Vminw(x,0)+Kmaxf(w(x,0)), on RN .

From the above steps, we finish the proofs of all conclusions of Lemma 5.4.
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In what follows, we study the regularity and decay properties of the solutions. First,
in view of (A0) and (2.7), we can argue as in the proof of [2, Lemma 4.1] to obtain the
following L∞-estimate.
Lemma 5.5. vj(x,0)∈L∞(RN ) and there exists C>0 such that

‖vj(x,0)‖∞≤C for all j∈N.

Moreover, vj ∈L∞(RN+1
+ ) and there exists C̃ >0 such that

‖vj‖L∞(RN+1
+ )≤ C̃ for all j∈N.

.
We observe that vj(x,0) is a weak solution of the problem

(−∆+m2)svj(x,0) =−Vj(x)vj(x,0)+Kj(x)f(vj(x,0)) in RN .

Fix δ∈ (0,m2s+Vmin), we deduce from (A0) and (2.7) that vj(x,0) is a weak subsolution
to

(−∆+m2)svj(x,0) = (δ−Vmin)vj(x,0)+Cδv
p−1
j (x,0) =:φj in RN (5.20)

for some Cδ>0. Evidently, we can see that φj≥0 in RN . Using Lemma 5.4, Lemma
5.5 and interpolation inequality, we know that for any q∈ [2,∞)

φj→φ := (δ−Vmin)v(x,0)+Cδv
p−1(x,0) in Lq(RN ) (5.21)

and ‖φj‖∞≤C for all j∈N.
Let wj ∈Hs(RN ) be the unique solution of

(−∆+m2)swj =φj in RN . (5.22)

Then wj =B2s,m ∗φj , where

B2s,m(x) = (2π)−
N
2 F−1((|ξ|2 +m2)−s)(x)

is the Bessel kernel with parameter m. According to the scaling property of the Fourier
transform, we have B2s,m(x) =mN−2sB2s,1(mx). Using formula (4.1) at page 416 in [7],
B2s,m(x) has the following expression

B2s,m(x) =
1

2
N+2s−2

2 π
N
2 Γ(s)

m
N−2s

2 WN−2s
2

(m|x|)|x|
2s−N

2 .

Moreover, it satisfies the following properties (see [7, p.416-417]):
(B1) B2s,m is positive, radially symmetric and smooth in RN \{0};
(B2) B2s,m(x)≤C(χB2

(x)|x|2s−N +χBc2 (x)e−c|x|) for all x∈RN and some C,c>0;

(B3) B2s,m∈Lr(RN ) for all r∈ [1, N
N−2s ).

Based on these information, we are able to prove the following result.
Lemma 5.6. vj(x,0)→0 as |x|→∞ uniformly in j∈N.

Proof. The proof of lemma can be found in [3], for the convenience of the readers,
we give the proof here. We fist verify that wj(x)→0 as |x|→∞ uniformly in j∈N. For
any σ∈ (0, 1

2 ), we have

wj(x) = (B2s,m ∗φj)(x) =

∫
B 1
σ

(x)

+

∫
Bc1
σ

(x)

B2s,m(x−y)φj(y)dy.



W. ZHANG, J. ZHANG, V.D. RĂDULESCU 31

On the one hand, according to (B1) and (B2) we get

0≤
∫
Bc1
σ

(x)

B2s,m(x−y)φj(y)dy≤‖φj‖∞
∫
Bc1
σ

(x)

e−c|x−y|dy

≤C
∫ ∞

1
σ

e−crrN−1dr=:Cν(σ)→0 as σ→0.

(5.23)

On the other hand, it follows that

0≤
∫
B 1
σ

(x)

B2s,m(x−y)φj(y)dy=

∫
B 1
σ

(x)

B2s,m(x−y)(φj(y)−φ(y))dy

+

∫
B 1
σ

(x)

B2s,m(x−y)φ(y)dy.

Choosing q∈ (1,min{ N
N−2s ,2}) such that q′= q

q−1 >2, and using (B3) and Hölder in-
equality we have∫

B 1
σ

(x)

B2s,m(x−y)φj(y)dy≤‖B2s,m‖q‖φj−φ‖q′+‖B2s,m‖q‖φ‖Lq′ (B 1
σ

(x)).

From (5.21) we know that ‖φj−φ‖q′→0 as j→∞ and ‖φ‖Lq′ (B 1
σ

(x))→0 as |x|→∞.

So, there exist R0>0 and j0∈N such that for any j≥ j0 and |x|≥R0∫
B 1
σ

(x)

B2s,m(x−y)φj(y)dy≤Cσ. (5.24)

We deduce from (5.23) and (5.24) that∫
RN

B2s,m(x−y)φj(y)dy≤C(ν(σ)+σ). (5.25)

for any j≥ j0 and |x|≥R0.
For each j∈{1, ·· · ,j0−1}, it is clear that there exists a constant Rj>0 such that

‖φj‖Lq′ (B 1
σ

(x))<σ for all |x|≥Rj . Hence, for all |x|≥Rj we have

∫
RN

B2s,m(x−y)φj(y)dy≤Cν(σ)+

∫
B 1
σ

(x)

B2s,m(x−y)φj(y)dy

≤Cν(σ)+‖B2s,m‖q‖φj‖Lq′ (B 1
σ

(x))≤C(ν(σ)+σ).

(5.26)

Taking R= max{R0,R1,·· · ,Rj0−1} and using (5.25) and (5.26) we have∫
RN

B2s,m(x−y)φj(y)dy≤C(ν(σ)+σ)

for |x|≥R uniformly in j∈N. Letting σ→0, we obtain the desired conclusion for wj .
Finally, using (5.20), (5.22) and the comparison principle (see [2, Theorem 4.3]) we

know that 0≤vj(x,0)≤wj(x) in RN and we finish the proof of this lemma.
Lemma 5.7. There exists ν0>0 such that ‖vj(x,0)‖∞≥ν0 for all j∈N.
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Proof. First, according to (5.9) we can see that∫
BR(0)

v2
j (x,0)dx≥σ0>0

for some R>0 and j≥ j0. Assume by contradiction that ‖vj(x,0)‖∞→0 as j→+∞,
then

0<σ0≤
∫
BR(0)

v2
j (x,0)dx≤|BR|‖vj(x,0)‖2∞→0 as j→∞,

which is impossible.
We now proceed as in the proof of Theorem 1.1 in [2] (see also [3]) to derive the

following exponential estimate.
Lemma 5.8. There exist c, C>0 such that for all j∈N

uj(x,0)≤C exp(−c|x−zj |).

Proof. By Lemma 5.6, (A0) and (f1), there exists R1>0 such that

Kj(x)f(vj(x,0))≤ δvj(x,0) (5.27)

for some δ∈ (0,m2s+Vmin) and |x|≥R1. Pick a smooth cut-off function φ defined in
RN such that 0≤φ≤1, φ(x) = 0 for |x|≥1 and φ 6≡0. By using the Riesz representation
theorem, there exists a unique function v̂∈Hs(RN ) such that

(−∆+m2)sv̂−(δ−Vmin)v̂=φ in RN .

Moreover, applying the extension method and Lemma 2.3, we can verify that v̂ is
continuous and positive. Evidently, there exists R2>1 we have

(−∆+m2)sv̂−(δ−Vmin)v̂= 0 in B̄cR2
. (5.28)

By constructing a suitable comparison function which has the exponential decay at in-
finity and using the comparison principle, we can obtain the exponential decay property
of v̂, that is,

0<v̂≤Ce−c|x|, for all x∈RN (5.29)

for some C,c>0, the details of proof are similar to the proof of (57) in [2].
Taking R= max{R1,R2}, and using (A0) and (5.27) we have

(−∆+m2)svj(x,0)−(δ−Vmin)vj(x,0)≤0 in B̄cR. (5.30)

Set a= minB̄R v̂ >0, b= supj∈N‖vj(x,0)‖∞<∞ and wj = (b+1)v̂−avj(x,0). Clearly,

wj≥0 in B̄R. From (5.28) and (5.30), we infer that

(−∆+m2)swj−(δ−Vmin)wj≥0 in B̄cR.

Since δ−Vmin<m
2s, using the comparison principle (see [2, Theorem 4.3]) we can

infer that wj≥0 in RN . Then vj(x,0)≤ b+1
a v̂, this together with (5.29) we obtain

0<vj(x,0)≤C0e
−c|x| for all x∈RN ,
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for some C0,c>0. Recall that uj(x,0) =vj(x−zj ,0), then we have

0<uj(x,0) =vj(x−zj ,0)≤C0e
−c|x−zj | for all x∈RN .

The proof is completed.
Now we are in a position to complete the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Firstly, from Lemma 5.2 we can see that problem (2.5) has
a positive ground state solution uε for ε>0 small enough. Then uε(x,0) is a positive
ground state solution of problem (2.4), and ûε(x) :=uε(

x
ε ,0) is a positive ground state

solution of problem (1.4). So, the conclusion (i) holds. Lemma 5.3 shows that the
conclusion (ii) holds.

Next we show the concentration of the maximum points of ground state solutions as
ε→0. From Lemma 5.4, there exists a sequence {zε}⊂RN such that vε(x,y) :=uε(x+
zε,y)→v in Eε. If pε is a global maximum point of vε(x,0), we deduce from Lemma
5.6 and Lemma 5.7 that there exists R0>0 such that pε∈BR0

(0). Thus, yε=pε+zε is
a global maximum point of uε(x,0), and xε= εyε is a global maximum point of ûε(x).
According to Lemma 5.4, we get

xε→x0 and lim
ε→0

dist(xε,Av) = 0,

Moreover, ûε(εx+xε) converges to a positive ground state solution û of

(−∆+m2)su+V (x0)u=K(x0)f(u) in RN .

In particular, if V ∩K 6=∅, then Av =V ∩K and

lim
ε→0

dist(xε,V ∩K ) = 0,

and ûε(εx+xε) converges to a positive ground state solution û of

(−∆+m2)su+Vminu=Kmaxf(u) in RN .

So, conclusion (iii) holds.
Finally, from Lemma 5.8 we have

|ûε(x)|= |uε(
x

ε
,0)|= |vε(

x

ε
−zε,0)|≤C exp

(
−c|x

ε
−zε|

)
≤C exp

(
−c|x

ε
−yε|

)
=C exp

(
−c
ε
|x−xε|

)
for some c,C >0. Consequently, the proof of Theorem 1.1 is completed. �

Proof of Theorem 1.2. For the case that (A0) and (A2) are satisfied, we can assume
without loss of generality that xk = 0∈K or xk = 0∈V ∩K if V ∩K 6=∅. Consequent-
ly,

K(0) =Kmax and τ :=V (0)≤V (x) for all |x|≥R.

Arguing as in the proof of Lemma 5.1, we also prove that

limsup
ε→0

cε≤ cτKmax
.

The remaining proofs are similar to the proof of Theorem 1.1 with suitable modification.
Here we omit the details. �
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6. Multiplicity of positive solutions

In this section we will prove the multiplicity result of positive solutions and complete
the proof of Theorem 1.3. For this purpose, we always assume that Λ :=V ∩K 6=∅.

Let u be a positive ground state solution of problem{
−div(y1−2s∇w)+m2y1−2sw= 0, in RN+1

+ ,
∂w

∂ν1−2s =−Vminw(x,0)+Kmaxf(w(x,0)), on RN , (6.1)

and ζ be a smooth nonincreasing cut-off function in [0,+∞) such that ζ(s) = 1 if 0≤s≤ 1
2

and ζ(s) = 0 if s≥1. For any z∈Λ, we define

Ψε,z(x,y) = ζ(|(εx−z,y)|)u(
εx−z
ε

,y).

Then, according to Lemma 2.7, there exists tε>0 such that

max
t≥0

Φε(tΨε,z) = Φε(tεΨε,z).

We define γε : Λ→Nε by γε(z) = tεΨε,z. By the construction, we can see that γε(z) has
compact support for any z∈Λ.

Lemma 6.1. The function γε satisfies

lim
ε→0

Φε(γε(z)) = cVminKmax uniformly in z∈Λ.

Proof. Assume by contradiction that there exist ε0>0, {zn}⊂Λ and εn→0 such
that

|Φεn(γεn(z))−cVminKmax
|≥ε0. (6.2)

Using the Lebesgue’s dominated convergence theorem, we can easily check that

‖Ψεn,zn‖2Xs +

∫
RN
V (εnx)Ψ2

εn,zn(x,0)dx→‖u‖2Xs +

∫
RN
Vminu

2(x,0)dx, (6.3)

and ∫
RN
K(εnx)F (Ψεn,zn(x,0))dx→Kmax

∫
RN
F (u(x,0))dx. (6.4)

Since 〈Φ′εn(tεnΨεn,zn),tεnΨεn,zn〉= 0, making the change of variable x̃= εnx−zn
εn

we have

t2εn‖Ψεn,zn‖2Xs + t2εn

∫
RN
V (εnx)Ψ2

εn,zn(x,0)dx

=

∫
RN
K(εnx)f(tεnΨεn,zn(x,0))tεnΨεn,zn(x,0)dx

=

∫
RN
K(εnx̃+zn)f(tεnζ(|(εnx̃,0)|)u(x̃,0))tεnζ(|(εnx̃,0)|)u(x̃,0)dx̃.

(6.5)
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We claim that tεn→1. We first prove that {tεn} is bounded. Indeed, suppose by
contradiction that tεn→∞. Using (6.5) and (f5) we have

‖Ψεn,zn‖2Xs +

∫
RN
V (εnx)Ψ2

εn,zn(x,0)dx

=

∫
RN
K(εnx̃+zn)f(tεnζ(|(εnx̃,0)|)u(x̃,0))tεnζ(|(εnx̃,0)|)u(x̃,0)t−2

εn dx̃

≥Kmin

∫
B 1

2
(0)

f(tεnu(x̃,0))

tεnu(x̃,0)
u2(x̃,0)dx̃

≥Kmin
f(tεnu(x̃0,0))

tεnu(x̃0,0)

∫
B 1

2
(0)

u2(x̃,0)dx̃,

(6.6)

where u(x̃0,0) = min{u(x̃,0) : |x̃|≤ 1
2}>0. From (f4), (6.3) and (6.6), we get a contra-

diction. Hence, {tεn} is bounded. Passing to a subsequence, we may assume that
tεn→ t0≥0. If t0 = 0, we deduce from (f2) and (6.5) that

‖Ψεn,zn‖2Xs +

∫
RN
V (εnx)Ψ2

εn,zn(x,0)dx→0,

this contradicts relation (6.3). Consequently, t0>0.
Next, we prove that t0 = 1. Letting n→∞ in (6.5), we have

‖u‖2Xs +

∫
RN
Vminu

2(x,0)dx=Kmax

∫
RN

f(t0u(x,0))

t0u(x,0)
u2(x,0)dx. (6.7)

Moreover, since u is a positive ground state solution of problem (6.1), then we have

‖u‖2Xs +

∫
RN
Vminu

2(x,0)dx=Kmax

∫
RN
f(u(x,0))u(x,0)dx. (6.8)

It follows from (6.7) and (6.8) that∫
RN

[
f(t0u(x,0))

t0u(x,0)
− f(u(x,0))

u(x,0)

]
u2(x,0)dx= 0.

Then, we infer from (f5) that t0 = 1. Therefore, using (6.3) and (6.4) we have

Φεn(γεn(zn)) =
t2εn
2

[
‖Ψεn,zn‖2Xs +

∫
RN
V (εnx)Ψ2

εn,zn(x,0)dx

]
−
∫
RN
K(εnx)F (tεnΨεn,zn(x,0))dx

→1

2

[
‖u‖2Xs +

∫
RN
Vminu

2(x,0)dx

]
−Kmax

∫
RN
F (u(x,0))dx

=JVminKmax(u) = cVminKmax .

Obviously, from (6.2) we can see that this is impossible. This ends the proof.
Now, we are in the position to introduce the barycenter map. For any δ>0, let

ρ=ρ(δ)>0 be such that Λδ⊂Bρ(0). We define η :RN→RN as follows

η(x) =x for |x|≤ρ and η(x) =
ρx

|x|
for |x|≥ρ.
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Let us consider βε :Nε→RN given by

βε(u) =

∫
RN η(εx)u2(x,0)dx∫

RN u
2(x,0)dx

.

Lemma 6.2. We have the following limit

lim
ε→0

βε(γε(z)) =z uniformly in z∈Λ.

Proof. If it is not true, then there exist σ0>0, {zn}⊂Λ and εn→0 such that

|βεn(γεn(zn))−zn|≥σ0>0. (6.9)

Using the definitions of γεn and βεn , and making the change of variable x̃= εnx−zn
εn

we
get

βεn(γεn(zn)) =zn+

∫
RN [η(εnx̃+zn)−zn](ζ(|(εnx̃,0)|)u2(x̃,0)dx̃∫

RN (ζ(|(εnx̃,0)|)u2(x̃,0)dx̃
.

Taking into account {zn}⊂Λ⊂Bρ(0) and using the Lebesgue’s dominates convergence
theorem, we have

|βεn(γεn(zn))−zn|→0,

which contradicts relation (6.9).

Lemma 6.3. Let εn→0 and {un}⊂Nεn be a sequence satisfying Φεn(un)→ cVminKmax .
Then there exists {z̃n}⊂RN such that vn(x,y) =un(x+ z̃n,y) has a convergent subse-
quence. Moreover, up to a subsequence, zn→z∈Λ, where zn= εnz̃n.

Proof. Since un∈Nεn and Φεn(un)→ cVminKmax , we have that {un} is bounded. We
claim that there are R0,δ >0 and z̃n∈RN such that

liminf
n→∞

∫
BR0

(z̃n)

u2
n(x,0)dx≥ δ. (6.10)

Indeed, if relation (6.10) does not hold, Lemma 2.2 implies that un(x,0)→0 in Lq(RN )
for q∈ (2,2∗s). From (2.7) and the fact un∈Nεn , it is easy to verify that un→0 in Eε,
which is a contradiction, because Φεn(un)→ cVminKmax >0. So, (6.10) holds.

Setting vn(x,y) =un(x+ z̃n,y), up to a subsequence, we can assume that vn⇀v 6= 0.
According to Lemma 2.7, there exists tn>0 such that ṽn= tnvn∈NVminKmax

. Then we
have

cVminKmax
≤JVminKmax

(ṽn) =JVminKmax
(tnun)≤Φεn(tnun)≤Φεn(un)→ cVminKmax

,

which shows that JVminKmax
(ṽn)→ cVminKmax

. By virtue of Lemma 3.1-(e), we know
that {ṽn} is bounded. Thus, for some subsequence, ṽn⇀ṽ with ṽ 6= 0. Moreover,
J ′VminKmax

(ṽ) = 0. Using Lemma 4.1 we have

JVminKmax
(ṽn− ṽ)→ cVminKmax

−JVminKmax
(ṽ) and J ′VminKmax

(ṽn− ṽ)→0.
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Observe that, using (2.8) and Fatou’s lemma we have

cVminKmax
= lim
n→∞

[
JVminKmax

(ṽn)− 1

2
〈J ′VminKmax

(ṽn), ṽn〉
]

= lim
n→∞

[
Kmax

∫
RN

(
1

2
f(ṽn(x,0))ṽn(x,0)−F (ṽn(x,0))

)
dx

]
≥Kmax

∫
RN

[
1

2
f(ṽ(x,0))ṽ(x,0)−F (ṽ(x,0))

]
dx

=JVminKmax
(ṽ)− 1

2
〈J ′VminKmax

(ṽ), ṽ〉

=JVminKmax
(ṽ)

≥cVminKmax
.

It follows that

JVminKmax
(ṽn− ṽ)→0 and J ′VminKmax

(ṽn− ṽ)→0. (6.11)

Moreover, using (f4) and (6.11) we have

on(1) =JVminKmax
(ṽn− ṽ)− 1

θ
〈J ′VminKmax

(ṽn− ṽ), ṽn− ṽ〉

=

(
1

2
− 1

θ

)[
‖ṽn− ṽ‖2Xs +

∫
RN
Vmin[ṽn(x,0)− ṽ(x,0)]2dx

]
+Kmax

∫
RN

[
1

θ
f(ṽn(x,0)− ṽ(x,0))(ṽn(x,0)− ṽ(x,0))−F (ṽn(x,0)− ṽ(x,0))

]
dx

≥
(

1

2
− 1

θ

)[
‖ṽn− ṽ‖2Xs +

∫
RN
Vmin[ṽn(x,0)− ṽ(x,0)]2dx

]
,

which implies that ṽn→ ṽ in EVmin
. Since {tn} is bounded, we can assume that tn→

t0>0, and so, vn→v in EVmin
.

Next, we will prove that {zn}={εnz̃n} has a subsequence satisfying zn→z∈Λ. We
first show that {zn} is bounded. Indeed, assume by contradiction that {zn} is not
bounded. Then, there exists a subsequence, still denoted by {zn}, such that |zn|→∞.
From ṽn→ ṽ in EVmin

, Vmin<V∞ and Kmax>K∞, we can infer that

cVminKmax =
1

2

[
‖ṽ‖2Xs +

∫
RN
Vminṽ

2(x,0)dx

]
−Kmax

∫
RN
F (ṽ(x,0))dx

<
1

2

[
‖ṽ‖2Xs +

∫
RN
V∞ṽ

2(x,0)dx

]
−K∞

∫
RN
F (ṽ(x,0))dx

≤ liminf
n→∞

[
1

2

[
‖ṽn‖2Xs +

∫
RN
V (εnx+zn)ṽ2

n(x,0)dx

]
−
∫
RN
K(εnx+zn)F (ṽn(x,0))dx

]
≤ liminf

n→∞

[
1

2

[
‖tnun‖2Xs +

∫
RN
V (εnx)t2nu

2
n(x,0)dx

]
−
∫
RN
K(εnx)F (tnun(x,0))dx

]
= liminf

n→∞
Φεn(tnun)

≤ liminf
n→∞

Φεn(un)

= cVminKmax ,
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which is a contradiction. Thus, {zn} is bounded and, up to a subsequence, we may
assume that zn→z. If z 6∈Λ, then Vmin<V (z) and Kmax>K(z), and according to the
above steps we get a contradiction. Therefore, we conclude that z∈Λ.

Let ϑ :R+→R+ be a positive function defined by

ϑ(ε) = max
z∈Λ
|Φε(γε(z))−cVminKmax |.

It follows from Lemma 6.1 that ϑ(ε)→0 as ε→0. We introduce a subset Ñε of Nε.
Setting

Ñε :={u∈Nε : Φε(u)≤ cVminKmax
+ϑ(ε)}.

Since γε(z)∈ Ñε for all z∈Λ, then we can deduce that Ñε 6=∅. Moreover, we have the
following result.
Lemma 6.4. For any δ>0, then the following holds

lim
ε→0

sup
u∈Ñε

inf
z∈Λδ
|βε(u)−z|= 0.

Proof. Let εn→0 as n→∞. For each n∈N, there exists {un}⊂ Ñεn , such that

inf
z∈Λδ
|βεn(un)−z|= sup

u∈Ñεn

inf
z∈Λδ
|βεn(u)−z|+on(1).

Hence, it is sufficient to prove that there exists {zn}⊂Λδ such that

lim
n→∞

|βεn(un)−zn|= 0.

Indeed, since {un}⊂ Ñεn , then we have

cVminKmax ≤ cεn ≤Φεn(un)≤ cVminKmax +ϑ(εn),

which implies that

Φεn(un)→ cVminKmax and {un}⊂Nεn .

According to Lemma 6.3, there exists {z̃n}⊂RN such that vn(x) =un(x+ z̃n) has a
convergent subsequence. Moreover, up to a subsequence, zn= εnz̃n→z∈Λ. Therefore,
we get

βεn(un) =

∫
RN η(εnx)u2

n(x,0)dx∫
RN u

2
n(x,0)dx

=

∫
RN η(εnx̃+zn)u2

n(εnx̃+zn,0)dx̃∫
RN u

2
n(εnx̃+zn,0)dx̃

=zn+

∫
RN [η(εnx̃+zn)−zn]v2

n(x̃,0)dx̃∫
RN v

2
n(x̃,0)dx̃

→z∈Λ.

Consequently, there exists {zn}⊂Λδ such that

lim
n→∞

|βεn(un)−zn|= 0.
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The proof is now complete.
We shall use the Ljusternik-Schnirelmann category theory and the techniques devel-

oped by Benci-Cerami [8] to prove the multiplicity result of positive solutions. Observe
that, since Nε is not a C1-submanifold of Eε, we cannot directly apply the Ljusternik-
Schnirelmann category theory. Fortunately, form Lemma 2.10, we can know that the
mapping mε is a homeomorphism between Nε and Sε, and Sε is a C1-submanifold of
Eε. So we can apply the Ljusternik-Schnirelmann category theoty to the functional
Iε(u) = Φε(m̂ε(u))|Sε = Φε(mε(u)). Based on the above facts, we give the completed
proof of Theorem 1.3.

Proof of Theorem 1.3. For any ε>0, we define ωε : Λ→Sε as follows

ωε(z) =m−1
ε (tεΨε,z) =m−1

ε (γε(z)) for all z∈Λ.

Using Lemma 6.1 we get

lim
ε→0

Iε(ωε(z)) = lim
ε→0

Φε(γε(z)) = cVminKmax
uniformly in z∈Λ.

Moreover, we set

S̃ε={u∈Sε : Iε(u)≤ cVminKmax
+ϑ(ε)},

with ϑ(ε) = supz∈Λ |Iε(ωε(z))−cVminKmax |→0 as ε→0. Hence, ωε(z)∈ S̃ε for all z∈Λ,

and this shows that S̃ε 6=∅ for all ε>0.
Combining Lemma 2.10, Lemma 2.11, Lemma 6.1 and Lemma 6.4, we can see that

there exists εδ>0 such that the diagram

Λ
γε−→ Ñε

m−1
ε−−−→ S̃ε

mε−−→ Ñε
βε−→Λδ

is well defined for any ε∈ (0,εδ). By Lemma 6.2, there exists a function l(ε,z) with
|l(ε,z)|< δ

2 uniformly in z∈Λ for all ε∈ (0,εδ), such that βε(γε(z)) =z+ l(ε,z) for al-
l z∈Λ. We define the function H(t,z) =z+(1− t)l(ε,z). Then, H : [0,1]×Λ→Λδ is
continuous. Evidently, H(0,z) =βε(γε(z)) and H(1,z) =z for all z∈Λ, and βε ◦γε=
(βε ◦mε)◦ωε is homotopic to the inclusion mapping id : Λ→Λδ. So, making use of Lem-
ma 2.2 of [12] (see also [8]), we have

catS̃ε(S̃ε)≥ catΛδ(Λ).

On the other hand, we choose a function ϑ(ε)>0 such that ϑ(ε)→0 as ε→0 and
such that cVminKmax +ϑ(ε) is not a critical level for Φε. For ε>0 small enough, Lemma
4.3 shows that Φε satisfies the Palais-Smale condition in Ñε. Then, using Lemma 2.11,
we know that Iε satisfies the Palais-Smale condition in S̃ε. Therefore, applying the
Ljusternik-Schnirelmann category theory (see [12, Theorem 2.1]), we obtain that Iε has
at least catS̃ε(S̃ε) critical points on S̃ε. Then, using Lemma 2.11 again, we can deduce
that Φε has at least catΛδ(Λ) critical points. This finishes the proof of Theorem 1.3. �

7. Nonexistence of positive ground state solutions
In this section we are going to prove the nonexistence result of positive ground state

solutions. We first consider the following auxiliary problem{
−div(y1−2s∇w)+m2y1−2sw= 0, in RN+1

+ ,
∂w

∂ν1−2s =−V∞w(x,0)+K∞f(w(x,0)), on RN , (7.1)
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where V∞ and K∞ are given in condition (A3). Clearly, from the discussion in Section
3, we can know that problem (7.1) has a positive ground state solution. In what follows
we are ready to give the proof of Theorem 1.4.

Proof of Theorem 1.4. First we need to claim that cε= cV∞K∞ for each ε>0. On
the one hand, from (A3), we see that V∞≤V (x) and K(x)≤K∞ for all x∈RN , then
cε≥ cV∞K∞ by Lemma 3.4.

On the other hand, we show that cε≤ cV∞K∞ for any fixed ε>0. Let u∞ be a
positive ground state solution of problem (7.1), by Lemma 3.1-(b), we know that u∞ is
the unique global maximum of JV∞K∞(tu∞). Set un=u∞(·−zn), where {zn}⊂RN is
a sequence satisfying |zn|→∞ as n→∞. According to Lemma 2.7, there exists tn>0
such that m̂ε(un) = tnun∈Nε is the unique global maximum of Φε(tun) for each n.
Moreover, the sequence {tn} is bounded.

Computing directly, we have

cε≤Φε(tnun)

=JV∞K∞(tnun)

+
t2n
2

∫
RN

[V (εx)−V∞]u2
n(x,0)dx+

∫
RN

[K∞−K(εx)]F (tnun(x,0))dx

=JV∞K∞(tnu
∞)+

t2n
2

∫
RN

[V (εx+εzn)−V∞]|u∞(x,0)|2dx

+

∫
RN

[K∞−K(εx+εzn)]F (tnu
∞(x,0))dx

≤cV∞K∞+
t2n
2

∫
RN

[V (εx+εzn)−V∞]|u∞(x,0)|2dx

+

∫
RN

[K∞−K(εx+εzn)]F (tnu
∞(x,0))dx.

(7.2)

Using the decay of u∞, it follows that for any ε>0, there exists R>0 such that∫
|x|≥R

[V (εx+εzn)−V∞]|u∞(x,0)|2dx≤ cε.

Moreover, using (A3) and Lebesgue’s dominated convergence theorem we have

lim
n→∞

∫
|x|≤R

[V (εx+εzn)−V∞]|u∞(x,0)|2dx= 0.

Thus, we have proved that∫
RN

[V (εx+εzn)−V∞]|u∞(x,0)|2dx=on(1). (7.3)

Similarly, using the above arguments and (2.7) we can easily check that∫
RN

[K∞−K(εx+εzn)]F (tnu
∞(x,0))dx=on(1). (7.4)

So, we deduce from (7.2), (7.3) and (7.4) that cε= cV∞K∞ for each ε>0.
We complete the proof by using a contradiction argument. Suppose that for some

ε0>0 there exists a positive function u0 such that u0∈Nε0 and cε0 = Φε0(u0). Lemma
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3.1-(b) shows that u0 is the unique global maximum of Φε0(tu0). Using Lemma 3.1-(b)
again, there exists t∞>0 such that t∞u0∈NV∞K∞ , hence

cV∞K∞ ≤JV∞K∞(t∞u0) = max
t≥0
JV∞K∞(tu0). (7.5)

On the other hand, using (A3) we have JV∞K∞(u)≤Φε0(u) for any u. By (7.5) we
have

cV∞K∞ ≤JV∞K∞(t∞u0)≤Φε0(t∞u0)≤Φε0(u0) = cε0 = cV∞K∞ .

This shows that

cV∞K∞ =JV∞K∞(t∞u0) = Φε0(t∞u0). (7.6)

Observe that

JV∞K∞(t∞u0) =Φε0(t∞u0)+
1

2

∫
RN

[V∞−V (ε0x)]|t∞u0(x,0)|2dx

+

∫
RN

[K(ε0x)−K∞]F (t∞u0(x,0))dx.

(7.7)

We deduce from (A3) that∫
RN

[V∞−V (ε0x)]|t∞u0(x,0)|2dx<0, (7.8)

and ∫
RN

[K(ε0x)−K∞]F (t∞u0(x,0))dx<0. (7.9)

Finally, from (7.7), (7.8) and (7.9), we obtain JV∞K∞(t∞u0)<Φε0(t∞u0), which
contradicts relation (7.6). This completes our proof. �
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