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Abstract. Let f be a continuous and non-decreasing function such that f > 0

on (0,∞), f(0) = 0, sups≥1 f(s)/s < ∞ and let p be a non-negative continuous

function. We study the existence and nonexistence of explosive solutions to
the equation ∆u + |∇u| = p(x)f(u) in Ω, where Ω is either a smooth bounded

domain or Ω = RN . If Ω is bounded we prove that the above problem has never

a blow-up boundary solution. Since f does not satisfy the Keller-Osserman
growth condition at infinity, we supply in the case Ω = RN a necessary and

sufficient condition for the existence of a positive solution that blows up at

infinity.

1. Introduction and the Main Results. Explosive solutions of semilinear ellip-
tic equations have been studied intensively in the last few decades. Most of such
studies have been concerned with equations of the type

∆u = g(x, u),

in which the function g takes various forms (see [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 18,
20, 24] and their references).

In this paper we study an elliptic problem involving a sublinear nonlinearity.
Due to the lack of the Keller-Osserman condition [19, 25], we find a necessary and
sufficient condition satisfied by the potential so that our problem admits a nonradial
solution blowing up at infinity. More precisely, we consider the equation{

∆u+ |∇u| = p(x)f(u) in Ω,
u ≥ 0 in Ω, (1.1)

where Ω ⊂ RN (N ≥ 3) is either a smooth bounded domain or the whole space.
The presence of the gradient term can have significant influence on the existence

of a solution, as well as on its asymptotic behavior. Problems of this type ap-
pear in stochastic control theory and have been first studied by Lasry and Lions
[22]. The corresponding parabolic equation was considered in Quittner [26] and in
Galaktionov and Vázquez [12]. We also refer to Bandle and Giarrusso [3, 16] who
established existence results and the asymptotic behavior of solutions for semilinear
elliptic equations in bounded domains containing gradient term (see also [14, 21]
for other classes of nonlinear elliptic problems involving gradient term).
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Throughout this paper we assume that p is a non-negative function such that
p ∈ C0,α(Ω) (0 < α < 1) if Ω is bounded, and p ∈ C0,α

loc (RN ), otherwise. The
non-decreasing non-linearity f fulfills
(f1) f ∈ C0,α

loc [0,∞), f(0) = 0 and f > 0 on (0,∞).
We also assume that f is sublinear at infinity, in the sense that

(f2) Λ ≡ sup
s≥1

f(s)
s

<∞.

Cf. Véron [27], the non-decreasing non-linearity f is called an absorption term.
A solution u of the problem (1.1) with u(x) → ∞ as dist (x, ∂Ω) → 0 (if Ω is

bounded) is called a large (explosive, blow-up) solution. If Ω = RN , this condition
can be rewritten as u(x) → ∞ as |x| → ∞. In this latter case such solution is
called an entire large (explosive) solution. In terms of the dynamic programming
approach, an explosive solution of (1.1) corresponds to a value function (or Bellman
function) associated to an infinite exit cost (see [22]).

We note that in [15] it is studied the existence and nonexistence of large solutions
for the corresponding system to (1.1) where the coefficients are radial functions.

If Ω is bounded we prove the following non-existence result.

Theorem 1.1. Suppose that Ω ⊂ RN is a smooth bounded domain. Then prob-
lem (1.1) has no positive large solution in Ω.

Following Bandle and Giarrusso [3], in the presence of the Keller-Ossermann
condition on f, equation (1.1) may have positive large solutions.

Next, we consider problem (1.1) when Ω = RN . For all r ≥ 0 we set

φ(r) = max
|x|=r

p(x), ψ(r) = min
|x|=r

p(x), and h(r) = φ(r)− ψ(r).

We suppose that ∫ ∞

0

rh(r)Ψ(r)dr <∞, (1.2)

where

Ψ(r) = exp
(

ΛN

∫ r

0

sψ(s)ds
)
, ΛN =

Λ
N − 2

.

Obviously, if p is radial then h ≡ 0 and (1.2) occurs. Assumption (1.2) shows that
the variable potential p(x) has a slow variation. An example of nonradial potential
for which (1.2) holds is p(x) = 1+|x1|2

(1+|x1|2)(1+|x|2)+1 . In this case φ(r) = r2+1
(r2+1)2+1 and

ψ(r) = 1
r2+2 . If ΛN = 1, by direct computation we get rh(r)Ψ(r) = O

(
r−2
)

as
r →∞ and so (1.2) holds.

Our analysis will be developed under the basic assumption (1.2).

Theorem 1.2. Assume Ω = RN and p satisfies (1.2). Then problem (1.1) has
positive entire large solution if and only if∫ ∞

1

e−tt1−N

∫ t

0

essN−1ψ(s)dsdt = ∞. (1.3)

Remark 1.3. Since
∫ r

0

ertkdt = k!er

(
k∑

s=1

(−1)k−s t
s

s!

)
− (−1)kk!, for all integers

k ≥ 1, we can give some examples of potentials p that verify both conditions (1.2)
and (1.3). In the case where ΛN = 1 such functions are
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(i) p(x) = 1 + |x|m + |x1|e−|x|
m+2

, m > 0.

(ii) p(x) =
1 + |x1|g(|x|)e−|x|

1 + |x|
, g ∈ C0,α

loc [0,∞) ∩ L1[0,∞), g ≥ 0.

Remark 1.4. We point out that a solution of (1.1) may exist even if condition (1.2)
fails, as shown in what follows. Define

p(x) = 2|x|2 + 6x2
1 +

√
|x|2 + 3x2

1 +N + 1, x ∈ RN .

and f(t) = 2t. For this choice of p and f, the equation (1.1) has the nonradial entire
large solution u(x) = e|x|

2+x2
1 . In this case h(r) = 6r2 + r, so (1.2) fails to hold.

The above results also apply to problems on Riemannian manifolds if ∆ is re-
placed by the Laplace–Beltrami operator

∆B =
1√
c

∂

∂xi

(√
c aij(x)

∂

∂xi

)
, c := det (aij) ,

with respect to the metric ds2 = cij dxidxj , where (cij) is the inverse of (aij). In
this case our results apply to concrete problems arising in Riemannian geometry.
For instance, (cf. Loewner-Nirenberg [23]) if Ω is replaced by the standard N–
sphere (SN , g0), ∆ is the Laplace-Beltrami operator ∆g0 , a = N(N − 2)/4, and
f(u) = (N − 2)/[4(N − 1)]u(N+2)/(N−2), we find the prescribing scalar curvature
equation with gradient term.

2. Proof of Results.

2.1. Proof of Theorem 1.1. Suppose by contradiction that problem (1.1) has a
positive large solution u and define v(x) = ln(1 + u(x)), x ∈ Ω. It follows that v is
positive and v(x) →∞ as dist (x, ∂Ω) → 0. We have

∆v =
1

1 + u
∆u− 1

(1 + u)2
|∇u|2 in Ω

and so

∆v ≤ p(x)
f(u)
1 + u

≤ ‖p ‖∞
f(u)
1 + u

≤ A in Ω,

for some constant A > 0. Therefore

∆(v(x)−A|x|2) < 0, for all x ∈ Ω.

Let w(x) = v(x)−A|x|2, x ∈ Ω. Then ∆w < 0 in Ω. Moreover, since Ω is bounded,
it follows that w(x) →∞ as dist(x, ∂Ω) → 0.

Let M > 0 be arbitrary. We claim that w ≥M in Ω. For all δ > 0, we set

Ωδ = {x ∈ Ω ; dist(x, ∂Ω) > δ}.
Since w(x) →∞ as dist(x, ∂Ω) → 0, we can choose δ > 0 such that

w(x) ≥M for all x ∈ Ω \ Ωδ. (2.1)

On the other hand,

−∆(w(x)−M) > 0 in Ωδ,
w(x)−M ≥ 0 on ∂Ωδ.

By the maximum principle we get w(x)−M ≥ 0 in Ωδ. So, by (2.1), w ≥M in Ω.
Since M > 0 is arbitrary, it follows that w ≥ n in Ω, for all n ≥ 1. Obviously, this
is a contradiction and the proof is now complete.
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2.2. Proof of Theorem 1.2. Several times in the proof of Theorem 1.2 we shall
apply the following inequality∫ r

0

e−tt1−N

∫ t

0

essN−1g(s)dsdt ≤ 1
N − 2

∫ r

0

tg(t)dt, ∀ r > 0, (2.2)

for any continuous function g : [0,∞) → [0,∞). Indeed, using an integration by
parts in the left hand side we obtain∫ r

0

e−tt1−N

∫ t

0

essN−1g(s)dsdt ≤
∫ r

0

t1−N

∫ t

0

sN−1g(s)dsdt

=
1

2−N

∫ r

0

(
t2−N

)′ ∫ t

0

sN−1g(s)dsdt

=
1

2−N
r2−N

∫ r

0

tN−1g(t)dt+
1

N − 2

∫ r

0

tg(t)dt

≤ 1
N − 2

∫ r

0

tg(t)dt,

so (2.2) follows.

Necessary condition. Suppose that (1.2) fails and the equation (1.1) has a
positive entire large solution u. We claim that∫ ∞

1

e−tt1−N

∫ t

0

essN−1φ(s)dsdt <∞. (2.3)

We first recall that φ = h+ ψ. Thus∫ ∞

1

e−tt1−N

∫ t

0

essN−1φ(s)dsdt =
∫ ∞

1

e−tt1−N

∫ t

0

essN−1ψ(s)dsdt

+
∫ ∞

1

e−tt1−N

∫ t

0

essN−1h(s)dsdt.

By virtue of (2.2) we find∫ ∞

1

e−tt1−N

∫ t

0

essN−1φ(s)dsdt ≤∫ ∞

1

e−tt1−N

∫ t

0

essN−1ψ(s)dsdt+
1

N − 2

∫ ∞

0

th(t)dt ≤∫ ∞

1

e−tt1−N

∫ t

0

essN−1ψ(s)dsdt+
1

N − 2

∫ ∞

0

th(t)Ψ(t)dt.

Since
∫ ∞

1

e−tt1−N

∫ t

0

essN−1ψ(s)dsdt <∞, by (1.2) we deduce that (2.3) follows.

Now, let ū be the spherical average of u, i.e.,

ū(r) =
1

ωNrN−1

∫
|x|=r

u(x)dσx, r ≥ 0,

where ωN is the surface area of the unit sphere in RN . Since u is a positive entire
large solution of (1.1) it follows that ū is positive and ū(r) → ∞ as r → ∞. With
the change of variable x→ ry, we have

ū(r) =
1
ωN

∫
|y|=1

u(ry) dσy, r ≥ 0
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and
ū′(r) =

1
ωN

∫
|y|=1

∇u(ry) · y dσy, r ≥ 0. (2.4)

Hence
ū′(r) =

1
ωN

∫
|y|=1

∂u

∂r
(ry) dσy =

1
ωNrN−1

∫
|x|=r

∂u

∂r
(x) dσx,

that is
ū′(r) =

1
ωNrN−1

∫
B(0,R)

∆u(x) dx, for all r ≥ 0. (2.5)

Due to the gradient term |∇u| in (1.1), we cannot infer that ∆u ≥ 0 in RN and
so we cannot expect that ū′ ≥ 0 in [0,∞). We define the auxiliary function

U(r) = max
0≤t≤r

ū(t), r ≥ 0. (2.6)

Then U is positive and non-decreasing. Moreover, U ≥ ū and U(r) →∞ as r →∞.
The assumptions (f1) and (f2) yield f(t) ≤ Λ(1 + t), for all t ≥ 0. So, by (2.4)

and (2.5),

ū′′ +
N − 1
r

ū′ + ū′ ≤ 1
ωNrN−1

∫
|x|=r

[∆u(x) + |∇u|(x)] dσx

=
1

ωNrN−1

∫
|x|=r

p(r)f(u(x))dσx

≤ Λφ(r)
1

ωNrN−1

∫
|x|=r

(1 + u(x)) dσx

= Λφ(r) (1 + ū(r))
≤ Λφ(r) (1 + U(r)) ,

for all r ≥ 0. It follows that(
rN−1erū′

)′ ≤ ΛerrN−1φ(r) (1 + U(r)) , for all r ≥ 0.

So, for all r ≥ r0 > 0 ,

ū(r) ≤ ū(r0) + Λ
∫ r

r0

e−tt1−N

∫ t

0

essN−1φ(s)(1 + U(s))dsdt.

The monotonicity of U implies

ū(r) ≤ ū(r0) + Λ(1 + U(r))
∫ r

r0

e−tt1−N

∫ t

0

essN−1φ(s)dsdt, (2.7)

for all r ≥ r0 ≥ 0. By (2.3) we can choose r0 ≥ 1 such that∫ ∞

r0

e−tt1−N

∫ t

0

essN−1φ(s)dsdt <
1

2Λ
. (2.8)

Thus (2.7) and (2.8) yield

ū(r) ≤ ū(r0) +
1
2
(1 + U(r)), for all r ≥ r0. (2.9)

By the definition of U and lim
r→∞

ū(r) = ∞, we find r1 ≥ r0 such that

U(r) = max
r0≤t≤r

ū(r), for all r ≥ r1. (2.10)

Considering now (2.9) and (2.10) we obtain

U(r) ≤ ū(r0) +
1
2
(1 + U(r)), for all r ≥ r1.
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Hence
U(r) ≤ 2ū(r0) + 1, for all r ≥ r1.

This means that U is bounded, so u is also bounded, a contradiction. It follows
that (1.1) has no positive entire large solutions.

Sufficient condition. We need the following auxiliary comparison result.

Lemma 2.1. Assume that (1.2) and (1.3) hold. Then the equations

∆v + |∇v| = φ(|x|)f(v) ∆w + |∇w| = ψ(|x|)f(w) (2.11)

have positive entire large solution such that

v ≤ w in RN . (2.12)

Proof. Radial solutions of (2.11) satisfy

v′′ +
N − 1
r

v′ + |v′| = φ(r)f(v)

and
w′′ +

N − 1
r

w′ + |w′| = ψ(r)f(w).

Assuming that v′ and w′ are non-negative, we deduce(
errN−1v′

)′
= errN−1φ(r)f(v)

and (
errN−1w′

)′
= errN−1ψ(r)f(w).

Thus any positive solutions v and w of the integral equations

v(r) = 1 +
∫ r

0

e−tt1−N

∫ t

0

essN−1φ(s)f(v(s))dsdt, r ≥ 0, (2.13)

w(r) = b+
∫ r

0

e−tt1−N

∫ t

0

essN−1ψ(s)f(w(s))dsdt, r ≥ 0, (2.14)

provide a solution of (2.11), for any b > 0. Since w ≥ b, it follows that f(w) ≥
f(b) > 0 which yields

w(r) ≥ b+ f(b)
∫ r

0

e−tt1−N

∫ t

0

essN−1ψ(s)dsdt, r ≥ 0.

By (1.3), the right hand side of this inequality goes to +∞ as r → ∞. Thus
w(r) →∞ as r →∞. With a similar argument we find v(r) →∞ as r →∞.

Let b > 1 be fixed. We first show that (2.14) has a positive solution. Simi-
larly, (2.13) has a positive solution.

Let {wk} be the sequence defined by w1 = b and

wk+1(r) = b+
∫ r

0

e−tt1−N

∫ t

0

essN−1ψ(s)f(wk(s))dsdt, k ≥ 1. (2.15)

We remark that {wk} is a non-decreasing sequence. To get the convergence of
{wk} we will show that {wk} is bounded from above on bounded subsets. To this
aim, we fix R > 0 and we prove that

wk(r) ≤ beMr, for any 0 ≤ r ≤ R, and for all k ≥ 1, (2.16)

where M ≡ ΛN max
t∈[0,R]

tψ(t).
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We achieve (2.16) by induction. We first notice that (2.16) is true for k = 1.
Furthermore, the assumption (f2) and the fact that wk ≥ 1 lead us to f(wk) ≤ Λwk,
for all k ≥ 1. So, by (2.15),

wk+1(r) ≤ b+ Λ
∫ r

0

e−tt1−N

∫ t

0

essN−1ψ(s)wk(s)dsdt, r ≥ 0.

Using now (2.2) (for g(t) = ψ(t)wk(t)) we deduce

wk+1(r) ≤ b+ ΛN

∫ r

0

tψ(t)wk(t)dt, ∀ r ∈ [0, R].

The induction hypothesis yields

wk+1(r) ≤ b+ bM

∫ r

0

eMtdt = beMr, ∀ r ∈ [0, R].

Hence, by induction, the sequence {wk} is bounded in [0, R], for any R > 0. It
follows that w(r) = lim

k→∞
wk(r) is a positive solution of (2.14). In a similar way we

conclude that (2.13) has a positive solution on [0,∞).
The next step is to show that the constant b may be chosen sufficiently large so

that (2.12) holds. More exactly, if

b > 1 +KΛN

∫ ∞

0

sh(s)Ψ(s)ds, (2.17)

where K = exp
(
ΛN

∫∞
0
th(t)dt

)
, then (2.12) occurs.

We first prove that the solution v of (2.13) satisfies

v(r) ≤ KΨ(r), ∀ r ≥ 0. (2.18)

Since v ≥ 1, from (f2) we have f(v) ≤ Λv. We use this fact in (2.13) and then we
apply the estimate (2.2) for g = φ. It follows that

v(r) ≤ 1 + ΛN

∫ r

0

sφ(s)v(s)ds, ∀ r ≥ 0. (2.19)

By Gronwall’s inequality we obtain

v(r) ≤ exp
(

ΛN

∫ r

0

sφ(s)ds
)
, ∀ r ≥ 0,

and, by (2.19),

v(r) ≤ 1 + ΛN

∫ r

0

sφ(s) exp
(

ΛN

∫ s

0

tφ(t)dt
)
ds, ∀ r ≥ 0.

Hence

v(r) ≤ 1 +
∫ r

0

(
exp

(
ΛN

∫ s

0

tφ(t)dt
))′

ds, ∀ r ≥ 0,

that is

v(r) ≤ exp
(

ΛN

∫ r

0

tφ(t)dt
)
, ∀ r ≥ 0. (2.20)

Inserting φ = h+ ψ in (2.20) we have

v(r) ≤ eΛN

∫ r
0 th(t)dtΨ(r) ≤ KΨ(r), ∀ r ≥ 0,

so (2.18) follows.
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Since b > 1 it follows that v(0) < w(0). Then there exists R > 0 such that
v(r) < w(r), for any 0 ≤ r ≤ R. Set

R∞ = sup{ R > 0 | v(r) < w(r), ∀ r ∈ [ 0, R] }.

In order to conclude our proof, it remains to show that R∞ = ∞. Suppose the
contrary. Since v ≤ w on [ 0, R∞] and φ = h+ ψ, from (2.13) we deduce

v(R∞) = 1 +
∫ R∞

0

e−tt1−N

∫ t

0

essN−1h(s)f(v(s))dsdt

+
∫ R∞

0

e−tt1−N

∫ t

0

essN−1ψ(s)f(v(s))dsdt.

So, by (2.2),

v(R∞) ≤ 1+
1

N − 2

∫ R∞

0

th(t)f(v(t))dt+
∫ R∞

0

e−tt1−N

∫ t

0

essN−1ψ(s)f(w(s))dsdt.

Taking into account that v ≥ 1 and the assumption (f2), it follows that

v(R∞) ≤ 1 +KΛN

∫ R∞

0

th(t)Ψ(t)dt+
∫ R∞

0

e−tt1−N

∫ t

0

essN−1ψ(s)f(w(s))dsdt.

Now, using (2.17) we obtain

v(R∞) < b+
∫ R∞

0

e−tt1−N

∫ t

0

essN−1ψ(s)f(w(s))dsdt = w(R∞).

Hence v(R∞) < w(R∞). Therefore, there exists R > R∞ such that v < w on
[ 0, R], which contradicts the maximality of R∞. This contradiction shows that
inequality (2.12) holds and the proof of Lemma 2.1 is now complete.

Proof of Theorem 1.2 completed. Suppose that (1.3) holds. For all k ≥ 1
we consider the problem{

∆uk + |∇uk| = p(x)f(uk) in B(0, k),
uk(x) = w(k) on ∂B(0, k). (2.21)

Then v and w defined by (2.13) and (2.14) are positive sub and super–solutions of
(2.21). So this problem has at least a positive solution uk and

v(|x|) ≤ uk(x) ≤ w(|x|) in B(0, k), for all k ≥ 1.

By Theorem 14.3 in [17], the sequence {∇uk} is bounded on every compact set in
RN . Hence the sequence {uk} is bounded and equicontinuous on compact subsets of
RN . So, by the Arzela-Ascoli Theorem, the sequence {uk} has a uniform convergent
subsequence, {u1

k} on the ballB(0, 1). Let u1 = limk→∞ u1
k. Then {f(u1

k)} converges
uniformly to f(u1) on B(0, 1) and, by (2.21), the sequence {∆u1

k + |∇u1
k|} converges

uniformly to pf(u1). Since the sum of Laplacian and Gradient is a closed operator,
we deduce that u1 satisfies (1.1) on B(0, 1).

Now, the sequence {u1
k} is bounded and equicontinuous on the ball B(0, 2), so it

has a convergent subsequence {u2
k}. Let u2 = lim

k→∞
u2

k on B(0, 2) and u2 satisfies

(1.1) on B(0, 2). Proceeding in the same way, we construct a sequence {un} so that
un satisfies (1.1) on B(0, n) and un+1 = un on B(0, n) for all n. Moreover, the
sequence {un} converges in L∞loc(RN ) to the function u defined by

u(x) = um(x), for x ∈ B(0,m).
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Since v ≤ un ≤ w on B(0, n) it follows that v ≤ u ≤ w on RN , and u satisfies
(1.1). From v ≤ u we deduce that u is a positive entire large solution of (1.1). This
completes the proof.
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