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ABSTRACT. In this paper, we establish the uniqueness of positive solutions to the following fractional
nonlinear elliptic equation with harmonic potential

(−∆)s u +
(
ω+|x|2

)
u = |u|p−2u in Rn ,

where n ≥ 1, 0 < s < 1,ω>−λ1,s , 2 < p < 2n
(n−2s)+ , andλ1,s > 0 is the lowest eigenvalue of the operator

(−∆)s + |x|2. This solves an open question raised in [15] concerning the uniqueness of solutions to
the equation.

1. INTRODUCTION

In this paper, we are concerned with the uniqueness of positive solutions to the following frac-
tional nonlinear elliptic equation with harmonic potential,

(−∆)su + (
ω+|x|2)u = |u|p−2u in Rn , (1.1)

where n ≥ 1, 0 < s < 1, ω > −λ1,s , 2 < p < 2∗
s := 2n

(n−2s)+ and λ1,s > 0 is the lowest eigenvalue of

(−∆)s +|x|2 given by

λ1,s := inf

{∫
Rn

|(−∆)
s
2 u|2 d x +|x|2|u|2 d x : u ∈Σs ,

∫
Rn

|u|2 d x = 1

}
, (1.2)

Σs := H s(Rn)∩L2(Rn , |x|2 d x).

Here the fractional Laplacian (−∆)s is defined by

(−∆)su(x) :=C (n, s)P.V.
∫
Rn

u(x)−u(y)

|x − y |n+2s d y, C (n, s) := s22sΓ
(n+2s

2

)
π

n
2 γ(1− s)

.

The Sobolev space H s(Rn) is defined by the completion of C∞
0 (Rn) under the norm

‖u‖ := ‖u‖2 + [u]s ,

where

[u]s :=
(

C (n, s)

2

∫
Rn

∫
Rn

|u(x)−u(y)|2
|x − y |n+2s d xd y

) 1
2

.
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Equation (1.1) appears in the study of standing waves to the following fractional nonlinear Schrödinger
equation with harmonic potential,

i∂tψ+ (−∆)sψ+|x|2ψ= |ψ|p−2ψ in R×Rn , (1.3)

where a standing wave to (1.3) is a solution of the form

ψ(t , x) = e−iωt u(x), ω ∈R.

Equation (1.3) is of particular interest in fractional quantum mechanics, whereψ denotes the prob-
ability density function of a particle trapped inside a trapping potential well modeled by |x|2.

Following the early work due to Laskin [13, 14], the study of the following nonlinear elliptic equa-
tion driven by the fractional Laplacian has attracted much attention in recent decades,

(−∆)su +V (x)u = |u|p−2u in Rn , (1.4)

where n ≥ 1, 0 < s < 1 and 2 < p < 2∗
s . The existence of solutions to (1.4) can be straightforwardly

achieved with the help of minimax arguments, see for example [16]. Mathematically, it is impor-
tant and fundamental to investigate the uniqueness of solutions to (1.4). Let V (x) = ω > 0. When
s = 1, by applying shooting method, the uniqueness of positive solutions to (1.4) was established by
Kwong [12]. While 0 < s < 1, the consideration of the uniqueness of solutions to (1.1) is challenge-
able, due to the fractional Laplacian operator is nonlocal and ODE techniques adapted to deal with
the case s = 1 are no longer available. It was first proved by Amick and Toland in [1] that (1.4) has
a unique positive solution for n = 1, s = 1/2 and p = 3. Later, Fall and Valdinoci in [4] established
the uniqueness of positive solutions to (1.4) for s close to 1. The result has been extended by Frank,
Lenzmann and Silvestre [7, 8], who obtained the uniqueness of positive solutions with Morse index
one to (1.4) for any 0 < s < 1. Very recently, Fall and Weth in [5] further showed that (1.4) admits a
unique positive solution.

Observe that Σs is compactly embedded into Lq (Rn) for any 2 ≤ q < 2∗
s . Then, by using minimax

arguments in [16], one can simply derive the existence of solutions to (1.1). However, the unique-
ness of solutions to (1.1) is a delicate issue, which is left as open problem in [15]. When s = 1, by
applying ODE techniques due to Yanagida and Yotsutani [17], the uniqueness of positive solutions
to (1.1) was established in [10, 11]. While 0 < s < 1, the uniqueness of positive solutions to (1.1)
is unknown for a long time. Recently, by employing the approach developed in [7, 8], Gou in [9]
successfully derived that (1.1) has a unique ground state. However, the uniqueness of positive so-
lutions to (1.1) is unknown so far. As an extension of the result in [9], the aim of the present paper
is to establish the uniqueness of positive solutions to (1.1).

Theorem 1.1. Let n ≥ 1, 0 < s < 1, ω > −λ1,s and 2 < p < 2∗
s . Then problem (1.1) admits a unique

positive solution in Σs .

To prove Theorem 1.1, relying on the elements attained in [9], it suffices to show that any positive
solution to (1.1) is non-degenerate. The non-degeneracy of ground states to (1.1) was derived in
[15], which has been used to establish the uniqueness of ground states to (1.1) in [9]. Nevertheless,
arguments proposed in [15] are not available to verify the non-degeneracy of positive solutions
to (1.1). To gain the non-degeneracy of positive solutions to (1.1), we are inspired by ingredients
developed in [2, 5]. Let u ∈ Σs be a positive solution to (1.1). The aim is to demonstrate that u is
non-degenerate, i.e. K er [L+,s] = 0, where

L+,s = (−∆)s + (
ω+|x|2)− (p −1)|u|p−2,

see Theorem 2.2. To attain the desired conclusion, we begin with proving that any positive solution
to (1.1) is radially symmetric and decreasing, see Theorem 2.1, the proof of which is based on mov-
ing planes method. However, due to the presence of the harmonic potential, the procedure carried
out in the current context is different from the one conducted in [6], where the radial symmetry of
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positive solutions to (1.4) with V (x) =ω> 0 was revealed. Next we need to introduce the following
eigenvalue problem,

(−∆)s v + (
ω+|x|2)v =Λ|u|p−2v, v ∈Σs . (1.5)

It is not difficult to find that (1.5) possesses a sequence of eigenvalues 0 < Λ1 < Λ2 ≤ Λ3 ≤ ·· · ,
because Σs is compactly embedded into Lq (Rn) for any 2 ≤ q < 2∗

s . Observe that Λ1 is simple and
any eigenfunction corresponding to Λ1 is positive. And eigenfunctions corresponding to other
eigenvalues are orthogonal to the eigenfunctions corresponding to Λ1 with respect to the scalar
product in L2(Rn , |u|p−2 d x), which are indeed sign-changing. Since u ∈Σs is a positive solution to
(1.1), then we can conclude that Λ1 = 1. At this point, the key element is to check that Λ2 > p −1.
If this is true, then we know that K er [L+,s] = 0. If K er [L+,s] 6= 0, then we would get that p −1 is
an eigenvalue to (1.5). However, this is impossible, because Λ1 is the first eigenvalue and Λ2 is the
second one to (1.5). And there exists no eigenvalues betweenΛ1 andΛ2. To deduce thatΛ2 > p−1,
we shall argue by contradiction that Λ2 ≤ p − 1. In order to reach a contradiction, we first need
to infer that any eigenfunction corresponding to Λ2 is non-radial, the proof of which is beneficial
from the polarization arguments, see for example [2]. Then, making use of the Picone type result
established in [5], we are able to reach a contradiction. This completes the proof.

2. PROOF OF THEOREM 1.1

In this section, we are going to establish Theorem 1.1. To do this, we first prove the radial sym-
metry and decrease of any positive solution to (1.1). In what follows, we shall use the symbol X . Y
to denote that X ≤C Y for some proper constant C > 0.

Theorem 2.1. Let n ≥ 1, 0 < s < 1, ω > −λ1,s and 2 < p < 2∗
s . Then any positive solution to (1.1) is

radially symmetric and decreasing.

Proof. Let u ∈ Σs be a positive solution to (1.1). In order to prove that u is radially symmetric and
decreasing, we shall make use of moving planes method. Define

Σλ := {
x ∈Rn : x1 >λ

}
, Tλ := {

x ∈Rn : x1 =λ
}

, uλ(x) := u(xλ),

where xλ := (2λ−x1, x2, · · · , xn). By proceeding bootstrap procedure, we can derive that u ∈C∞(Rn)∩
L∞(Rn) and u(x) → 0 as |x|→∞. It then follows that there exists R > 0 such that

(−∆)su + α

2
u ≤ 0, |x| > R,

where α> 0. This along with [6, Lemma 4.3] and maximum principle gives that

0 < u(x).
1

|x|n+2s , x ∈Rn . (2.1)

Now define

λ0 := sup
λ≤0

Aλ, Aλ := {λ≤ 0 : uλ ≤ u in Σλ} . (2.2)

First we verify that the set Aλ is not empty. For convenience, we define

wλ(x) :=
{

(uλ−u)+ (x), x ∈Σλ,

(uλ−u)− (x), x ∈Rn\Σλ,

where

(uλ−u)+ (x) := max{(uλ−u)(x),0} , (uλ−u)− (x) := min{(uλ−u)(x),0} .
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Since u ∈Σs is a solution to (1.1), then∫
Σλ

(−∆)s(uλ−u)(uλ−u)+ d x +
∫
Σλ

ω(uλ−u)(uλ−u)++ (|xλ|2uλ−|x|2u
)

(uλ−u)+ d x

=
∫
Σλ

(|uλ|p−2uλ−|u|p−2u)(uλ−u)+ d x.
(2.3)

Observe that∫
Rn

|(−∆)
s
2 wλ|2 d x =

∫
Rn

(−∆)s wλwλd x =
∫
Σλ

(−∆)s wλwλd x +
∫
Rn \Σλ

(−∆)s wλwλd x

= 2
∫
Σλ

(−∆)s wλwλd x ≤ 2
∫
Σλ

(−∆)s(uλ−u)(uλ−u)+ d x.
(2.4)

Since λ≤ 0, then |x| ≤ |xλ| for x ∈Σλ and∫
Σλ

(|xλ|2uλ−|x|2u
)

(uλ−u)+ d x ≥
∫
Σλ

|x|2 (uλ−u) (uλ−u)+ d x =
∫
Σλ

|x|2|wλ|2 d x. (2.5)

Moreover, using the mean value theorem and (2.1), we can derive that∫
Σλ

(|uλ|p−2uλ−|u|p−2u)(uλ−u)+ d x =
∫
Σλ

|uλ|p−2uλ−|u|p−2u

(uλ−u)+
|(uλ−u)+|2 d x

.
∫
Σλ

|uλ|p−2|(uλ−u)+|2 d x

.
∫
Σλ

1

|xλ|(n+2s)(p−2)
|wλ|2 d x

≤
(∫
Σλ

1

|xλ|(n+2s)p
d x

) p−2
p

(∫
Σλ

|wλ|p d x

) 2
p

,

(2.6)

where ∫
Σλ

1

|xλ|(n+2s)p
d x =

∫
Rn \Σλ

1

|x|(n+2s)p
d x ≤

∫
Rn \B|λ|(0)

1

|x|(n+2s)p
d x = C

|λ|(n+2s)p−n
,

where C =C (n, s, p) > 0. Consequently, we conclude from (2.6) that∫
Σλ

(|uλ|p−2uλ−|u|p−2u)(uλ−u)+ d x .
1

|λ|(n+2s)p−n

(∫
Σλ

|wλ|p d x

) 2
p

. (2.7)

Combining (2.3), (2.4), (2.5) and (2.7) and applying the embedding inequality in Σs , we then obtain
that(∫

Σλ

|w |p d x

) 2
p

.
∫
Rn

|(−∆)
s
2 wλ|2 d x +

∫
Rn

(
ω+|x|2) |wλ|2 d x

.
∫
Σλ

(|uλ|p−2uλ−|u|p−2u)(uλ−u)+ d x .
(

1

|λ|(n+2s)p−n

) p−2
p

(∫
Σλ

|wλ|p d x

) 2
p

.

Now choosing |λ| > 0 large enough, we then reach a contradiction from above. This in turn infers
that wλ = 0 in Σλ for |λ| > 0 large enough. Therefore, we conclude that uλ ≤ u in Σλ for |λ| > 0 large
enough. As a consequence, there holds that the set Aλ is not empty and λ0 is finite defined by (2.2).

Next we are going to demonstrate that u = uλ0 in Σλ0 . Suppose by contradiction that u 6= uλ0

and uλ0 ≤ u in Σλ0 . If there exists x0 ∈Σλ0 such that u(x0) = uλ0 (x0), by applying the fact that u is a
solution to (1.1), then

(−∆)suλ0 (x0)− (−∆)su(x0) ≤ 0, (2.8)
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because of |x| ≤ |xλ0 |. However, we find that

(−∆)suλ0 (x0)− (−∆)su(x0) =C (n, s)
∫
Rn

u(y)−uλ0 (y)

|x − y |n+2s d y

=C (n, s)

(∫
Σλ0

u(y)−uλ0 (y)

|x0 − y |n+2s d y +
∫
Rn \Σλ0

u(y)−uλ0 (y)

|x0 − y |n+2s d y

)
(2.9)

=C (n, s)
∫
Σλ0

(
u(y)−uλ0 (y)

)( 1

|x0 − y |n+2s −
1

|x0 − yλ0 |n+2s

)
d y > 0.

Hence we reach a contradiction from (2.8) and (2.9). This obviously shows that uλ0 < u in Σλ0 . To
derive the desired conclusion, it suffices to verify that there exists ε > 0 small enough such that
uλ < u in Σλ for any λ0 < λ < λ0 + ε. Let us denote P = (λ,0, · · · ,0) ∈ Rn . In view of (2.3), (2.4) and
(2.5) and the embedding inequality in Σs , we know that there exists C > 0 such that(∫

Σλ

|w |p d x

) 2
p ≤C

∫
Σλ

(|uλ|p−2uλ−|u|p−2u)(uλ−u)+ d x. (2.10)

It is simple to compute that∫
Σλ∩BR (P )

(|uλ|p−2uλ−|u|p−2u)(uλ−u)+ d x =
∫
Σλ∩BR (P )

|uλ|p−2uλ−|u|p−2u

(uλ−u)+
(uλ−u)+ d x

.
∫
Σλ∩BR (P )∩supp(uλ−u)

|wλ|2 d x (2.11)

≤ ∣∣Σλ∩BR (P )∩ supp(uλ−u)
∣∣ p−2

p

(∫
Σλ

|wλ|p d x

) 2
p

,

where we used the mean value theorem and the fact that u ∈ L∞(Rn). Let R > 0 and R0 > 0 be such
that Σλ\BR (P ) ⊂ Rn\BR0 (0), which are determined later. Therefore, by invoking the mean value
theorem and (2.1) as previously, we are able to obtain that∫

Σλ\BR (P )
(|uλ|p−2uλ−|u|p−2u)(uλ−u)+ d x .

∫
Σλ\BR (P )

|uλ|p−2|wλ|2 d x

.

(∫
Rn \BR0 (0)

1

|xλ|(n+2s)p
d x

) p−2
p (∫

Σλ

|wλ|p d x

) 2
p

.

(
1

R(n+2s)p−n
0

) p−2
p (∫

Σλ

|wλ|p d x

) 2
p

.

Now we choose R0 > 0 large enough such that∫
Σλ\BR (P )

(|uλ|p−2uλ−|u|p−2u)(uλ−u)+ d x < 1

4C

(∫
Σλ

|wλ|p d x

) 2
p

. (2.12)

Then we choose R > 0 such that Σλ\BR (P ) ⊂Rn\BR0 (0). Moreover, applying (2.11), we choose ε> 0
small enough such that∫

Σλ∩BR (P )
(|uλ|p−2uλ−|u|p−2u)(uλ−u)+ d x < 1

4C

(∫
Σλ

|w |p d x

) 2
p

. (2.13)

Accordingly, from (2.12) and (2.13), there holds that∫
Σλ

(|uλ|p−2uλ−|u|p−2u)(uλ−u)+ d x < 1

2C

(∫
Σλ

|w |p d x

) 2
p

.
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Coming back to (2.10), we then have that wλ = 0 in Σλ. This readily indicates that u = uλ0 in Σλ0 .
Further, by (2.8) and (2.9), we can get that λ0 = 0. Indeed, if λ0 < 0, then

(−∆)suλ0 (x0)− (−∆)su(x0) < 0.

This clearly contradicts (2.9). Let 0 ≤ x1 < x ′
1, then −x ′

1 <−x1 < 0. Define

λ := −x1 −x ′
1

2
< 0.

Since uλ < u in Σλ, then

u(−x ′
1,0, · · · ,0) = uλ((−x ′

1,0, · · · ,0)λ) < u((−x ′
1,0, · · · ,0)λ) = uλ(−x1,0, · · · ,0) < u(−x1,0, · · · ,0).

It then follows that u(x ′
1,0, · · · ,0) < u(x1,0, · · · ,0), due to uλ0 = u in Σλ0 and λ0 = 0. At this mo-

ment, repeating the arguments above in any direction, we then get that u is radially symmetric and
decreasing. Thus the proof is completed. �

Theorem 2.2. Let n ≥ 1, 0 < s < 1, ω>−λ1,s and 2 < p < 2∗
s . Let u ∈Σs be a positive solution to (1.1).

Then there holds that K er [L+,s] = 0, where

L+,s = (−∆)s + (
ω+|x|2)− (p −1)|u|p−2.

Proof. Let u ∈ Σs be a positive solution to (1.1). It follows from Theorem 2.1 that u is radially sym-
metric and decreasing. First we introduce the following eigenvalue problem,

(−∆)s v + (
ω+|x|2)v =Λ|u|p−2v, v ∈Σs . (2.14)

It is obvious that there exists a sequence of eigenvalues 0 <Λ1 <Λ2 ≤Λ3 ≤ ·· · , whereΛ1 is given by

Λ1 = inf

{∫
Rn

|(−∆)
s
2 v |2 d x +

∫
Rn

(
ω+|x|2) |v |2 d x : v ∈Σs ,

∫
Rn

|v |2|u|p−2 d x = 1

}
.

It is well-known that Λ1 is the first eigenvalue, which is simple and possesses positive eigenfunc-
tions. Moreover, eigenfunctions corresponding to the eigenvalues Λi for i ≥ 2 are orthogonal to
eigenfunctions corresponding to Λ1 with respect to the scalar product in L2(Rn , |u|p−2 d x), which
indeed changes sign. Since u ∈ Σs solves (1.1) and it is positive, then it is an eigenfunction corre-
sponding toΛ1. This leads toΛ1 = 1. Therefore, the second eigenvalue can be denoted by

Λ2 = inf

{∫
Rn

|(−∆)
s
2 v |2 d x +

∫
Rn

(
ω+|x|2) |v |2 d x : v ∈Σs ,

∫
Rn

|v |2|u|p−2 d x = 1,
∫
Rn

v |u|p−1 d x = 0

}
.

In the following, we shall prove that any eigenfunction corresponding to Λ2 is not radially sym-
metric. Let v ∈Σs be an eigenfunction corresponding to Λ2. On the contrary, we shall assume that
v is radially symmetric, i.e. there exists a function ρ : [0,∞) → R such that ρ(|x|) = v(x) for x ∈ Rn .
It follows from [15, Proposition 7] that v changes sign only once. Let r > 0 be such that ρ(r ) = 0
and ρ(t ) > 0 for t > r . Let λ> 0 and Pλv be the polarization of v with respect to the half space Hλ,
where

Pλv(x) :=
{max{v(x), v(σλ(x))} , x ∈ Hλ,

min{v(x), v(σλ(x))} , x 6∈ Hλ,
(2.15)

Hλ := {
x ∈Rn : x1 <λ

}
, σλ(x) := (2λ−x1, x2, · · · , xn).

Since v changes sign, then Pλv changes sign. From the definition of the polarization, we can see
that

(Pλv)± = Pλv±, (2.16)

where the positive and negative parts of a function φ :Rn →R are respectively defined by

φ+ := max
{
φ(x),0

}
, φ− := min

{
φ(x),0

}
, φ=φ++φ−.
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In view of the definition of Pλ, we then write that

Pλv(x) :=


1

2
(v(x)+ v(σλ(x)))+ 1

2
|v(x)− v(σλ(x))| , x ∈ Hλ,

1

2
(v(x)+ v(σλ(x)))− 1

2
|v(x)− v(σλ(x))| , x 6∈ Hλ.

It then follows that∫
RN

|Pλv+|2 d x =
∫

Hλ

|Pλv+|2 d x +
∫
Rn \Hλ

|Pλv+|2 d x

= 1

2

∫
Hλ

|v+|2 +|v+(σλ·)|2 d x + 1

2

∫
Hλ

∣∣|v+|2 −|v+(σλ·)|2
∣∣ d x

+ 1

2

∫
Rn \Hλ

|v+|2 +|v+(σλ·)|2 d x − 1

2

∫
Rn \Hλ

∣∣|v+|2 −|v+(σλ·)|2
∣∣ d x

=
∫
Rn

|v+|2 d x.

(2.17)

Similarly, we can conclude that ∫
Rn

|Pλv−|2 d x =
∫
Rn

|v−|2 d x.

Now we assert that ∫
Rn

|x|2|Pλv+|2 d x ≤
∫
Rn

|x|2|v+|2 d x.

Let R > 0 and VR (|x|) := min
{|x|2,R2

}
for x ∈ Rn . Then we get that the function x 7→ −VR (|x|)+R2

is positive, decreasing and radially symmetric. By the definition of Pλ given by (2.15), then it is
invariant under the polarization Pλ, i.e. Pλ(−VR +R2) =−VR +R2. It then follows from [3, Lemma
3] that ∫

Rd

(−VR +R2) |v+|2 d x ≤
∫
Rd

Pλ(−VR +R2)|Pλv+|2 d x =
∫
Rd

(−VR +R2) |Pλv+|2 d x.

This along with (2.17) gives that∫
Rn

VR |Pλv+|2 d x ≤
∫
Rn

VR |v+|2 d x.

Passing the limit as R goes to infinity, we then have the desired conclusion. Similarly, we can derive
that ∫

Rn
|x|2|Pλv−|2 d x ≤

∫
Rn

|x|2|v−|2 d x.

Consequently, there holds that∫
RN

|Pλv±|2 d x =
∫
RN

|v±|2 d x,
∫
RN

|x|2|Pλv±|2 d x ≤
∫
RN

|x|2|v±|2 d x.

This together with (2.16) then leads to∫
Rn

(Pλv)±Pλv d x =
∫
Rn

|(Pλv)±|2 d x =
∫
Rn

|Pλv±|2 d x =
∫
Rn

|v±|2 d x =
∫
Rn

v v± d x, (2.18)

∫
Rn

|x|2(Pλv)±Pλv d x =
∫
Rn

|x|2|(Pλv)±|2 d x =
∫
Rn

|x|2|Pλv±|2 d x

≤
∫
Rn

|x|2|v±|2 d x =
∫
Rn

|x|2v v± d x.
(2.19)
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Since u is radially symmetric and decreasing, by the definition of Pλ given by (2.15), then it is in-
variant under the polarization Pλ, i.e. Pλu = u. Applying (2.16) and [3, Lemma 2], we then get
that

∫
Rn

|u|p−2(Pλv)(Pλv)± d x =
∫
Rn

|u|p−2|(Pλv)±|2 d x =
∫
Rn

|Pλu|p−2|Pλv±|2 d x

≥
∫
Rn

|u|p−2|v±|2 d x =
∫
Rn

|u|p−2v v± d x,
(2.20)

where Pλu > 0, due to u > 0. In addition, making use of [2, Lemma 2.2], we know that

∫
Rn

(−∆)
s
2 Pλv(−∆)

s
2 (Pλv)± d x ≤

∫
Rn

(−∆)
s
2 v(−∆)

s
2 v± d x. (2.21)

Since v ∈Σs solves (2.14) withΛ=Λ2, then

∫
Rn

(−∆)
s
2 v(−∆)

s
2 v± d x +

∫
Rn

(
ω+|x|2)v v± d x =Λ2

∫
Rn

|u|p−2v v± d x. (2.22)

Therefore, utilizing (2.18)-(2.21), we are able to conclude from (2.22) that

∫
Rn

(−∆)
s
2 Pλv(−∆)

s
2 (Pλv)± d x +

∫
Rn

(
ω+|x|2) (Pλv)(Pλv)± d x ≤Λ2

∫
Rn

|u|p−2(Pλv)(Pλv)± d x.

Since u > 0, Pλv+ ≥ 0 and Pλv− ≤ 0 for v+ := max{v(x),0} and v− := min{v(x),0}, by (2.16), then

∫
Rn

(Pλv)+|u|p−1 d x =
∫
Rn

(Pλv+)|u|p−1 d x > 0,

∫
Rn

(Pλv)−|u|p−1 d x =
∫
Rn

(Pλv−)|u|p−1 d x < 0,

where v is sign-changing. As a consequence, we have that there exists α1 > 0 such that

∫
Rn

(
(Pλv)++α1(Pλv)−

) |u|p−1 d x = 0.

Observe that

∫
Rn

∣∣(Pλv)++α1(Pλv)−
∣∣2 |u|p−2 d x =

∫
Rn

(∣∣(Pλv)+
∣∣2 +α2

1 |(Pλv)−|2
)
|u|p−2 d x > 0.

Therefore, we know that there exists α2 > 0 such that

α2
2

∫
Rn

∣∣(Pλv)++α1(Pλv)−
∣∣2 |u|p−2 d x = 1.
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This implies that α2
(
(Pλv)++α1(Pλv)−

) ∈ Σs is a test function for the variational characterization
ofΛ2. It then follows that

Λ2 ≤α2
2

∫
Rn

∣∣∣(−∆)
s
2 (Pλv)+

∣∣∣2
d x +α2

2

∫
Rn

(
ω+|x|2)∣∣(Pλv)+

∣∣2 d x

+α2
1α

2
2

∫
Rn

∣∣∣(−∆)
s
2 (Pλv)−

∣∣∣2
d x +α2

1α
2
2

∫
Rn

(
ω+|x|2) |(Pλv)−|2 d x

+2α1α
2
2

∫
Rn

(−∆)
s
2 (Pλv)+(−∆)

s
2 (Pλv)− d x

≤α2
2Λ2

∫
Rn

|u|p−2
∣∣(Pλv)+

∣∣2 d x −α2
2

∫
Rn

(−∆)
s
2 (Pλv)+(−∆)

s
2 (Pλv)− d x

+α2
1α

2
2Λ2

∫
Rn

|u|p−2 |(Pλv)−|2 d x −α2
1α

2
2

∫
Rn

(−∆)
s
2 (Pλv)+(−∆)

s
2 (Pλv)− d x

+2α1α
2
2

∫
Rn

(−∆)
s
2 (Pλv)+(−∆)

s
2 (Pλv)− d x

=Λ2

∫
R2
|u|p−2

∣∣α2
(
(Pλv)++α1(Pλv)−

)∣∣2 d x −α2
2(1−α1)2

∫
Rn

(−∆)
s
2 (Pλv)+(−∆)

s
2 (Pλv)− d x

≤Λ2,

where we used the fact that ∫
Rn

(−∆)
s
2 (Pλv)+(−∆)

s
2 (Pλv)− d x > 0.

It then gives that α1 = 1. Therefore, we know that Pλv = (Pλv)++ (Pλv)− is an eigenfunction cor-
responding to Λ2. Note that x = (r +2λ,0, · · · ,0) 6∈ Hλ and σλ(x) = (−r,0, · · · ,0). This then implies
that

Pλv(x) ≤ v(σλ(x)) = ρ(|σλ(x)|) = 0.

On the other hand, since −x ∈ Hλ with |x| > r , then

Pλv(−x) ≥ v(−x) = v(x) = ρ(|x|) > 0.

Hence we can conclude that Pλv is not radial and Pλv 6= v , because v is assumed to be radially
symmetric. Define ψλ := v −Pλv . Clearly, ψλ ∈ Σs is also an eigenfunction corresponding to Λ2.
Since Pλv ≥ v on Hλ, then ψλ ≤ 0 and ψλ 6= 0 on Hλ. Using maximum principle, we then know
that ψλ < 0 on Hλ. It then shows that v < v ◦σλ on Hλ for any λ> 0. Thus we are able to conclude
that v is strictly increasing with respect to the x1 direction in the half space H0. We then reach a
contradiction from the assumption v is radial and the fact that v is sign-changing and v(x) → 0 as
|x|→∞.

Next we are going to prove that Λ2 > p −1. Suppose by contradiction that Λ2 ≤ p −1. Let v ∈ Σs

be an eigenfunction corresponding toΛ2. Define

Tµ := {
x ∈Rn : x ·µ= 0

}
,

where µ ∈Rn is a unit vector. Denote σµ be the reflection with respect to Tµ. Define

ψµ := v − v ◦σµ
2

∈Σs .

Obviously, we find that ψµ enjoys the equation

(−∆)sψµ+
(
ω+|x|2)ψµ =Λ2|u|p−2ψµ. (2.23)

Define ϕ :=−∇u ·µ. Then ϕ ∈Σs satisfies the equation

(−∆)sϕ+ (
ω+|x|2)ϕ+2(x ·µ)u = (p −1)|u|p−2ϕ.

Since u is radially symmetric and decreasing, then ϕ is odd with respect to the refection Tµ and
ϕ≥ 0 in {x ∈Rn : x ·µ> 0}. It immediately follows from [5, Lemma 5.3] thatϕ> 0 on {x ∈Rn : x ·µ> 0}
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and ∇ϕ ·µ> 0 in {x ∈Rn : x ·µ= 0}. Let χ :R→ [0,1] be a smooth cut-off function such that χ= 1 on
(−1,1) and χ= 0 on (−2,2). Define

ψR
µ (x) :=ψµ(x)χ

( |x|
R

)
, R > 0.

Applying [5, Lemma 2.1], we then get that∫
Rn

|(−∆)
s
2ψR

µ |2 d x +
∫
Rn

(
ω+|x|2) |ψR

µ |2 d x − (p −1)
∫
Rn

|u|p−2|ψR
µ |2 d x ≥

∫
{x·µ>0}∩{y ·µ>0}

Hµ

ψR
µ ,ϕ

d x,

where

Hµ

ψR
µ ,ϕ

(x, y) :=C (N , s)ϕ(x)ϕ(y)

(
ψR
µ (x)

ϕ(x)
−
ψR
µ (y)

ϕ(y)

)2 (
1

|x − y |n+2s −
1

|σµ(x)− y |n+2s

)
.

Taking the limit as R →∞, we then know that∫
Rn

|(−∆)
s
2ψµ|2 d x+

∫
Rn

(
ω+|x|2) |ψµ|2 d x−(p−1)

∫
Rn

|u|p−2|ψµ|2 d x ≥
∫

{x·µ>0}∩{y ·µ>0}
Hµ
ψµ,ϕd x ≥ 0.

Using (2.23) and the assumption thatΛ2 ≤ p −1, we then obtain that

0 ≥ (
Λ2 −p +1

)∫
Rn

|u|p−2|ψµ|2 d x ≥
∫

{x·µ>0}∩{y ·µ>0}
Hµ
ψµ,ϕd x ≥ 0.

As a result, we have that ψµ = 0. Since v is nonradial, then there exists a unit vector µ ∈ Rn such
that ψµ 6= 0. We then reach a contradiction. This implies that Λ2 > p −1. Since 1 =Λ1 < p −1 <Λ2,
then K er [Ls,+] = 0 and the proof is completed. �

Proof of Theorem 1.1. From Theorems 2.1 and 2.2, we know that the conditions of Lemma 2.4 in
[9] hold true. Then, replacing the roles of ground states by positive solutions to (1.1) and closely
following the discussions in [9], we are able to conclude the desired conclusion. This completes
the proof. �
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