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Abstract

In this paper, we study the following quasilinear Schrödinger equation:

−ε2∆u+ V (x)u− ε2∆(u2)u = g(u), x ∈ R2,

where ε > 0 is a small parameter, V ∈ C(R2,R) is uniformly positive and allowed to be un-
bounded from above, and g ∈ C(R,R) has a critical exponential growth at infinity. In the
autonomous case, when ε > 0 is fixed and V (x) ≡ V0 ∈ R+, we first present a remarkable
relationship between the existence of least energy solutions and the range of V0 without any
monotonicity conditions on g. Based on some new strategies, we establish the existence and
concentration of positive solutions for the above singularly perturbed problem. In particular,
our approach not only permits to extend the previous results to a wider class of potentials V
and source terms g, but also allows a uniform treatment of two kinds of representative nonlin-
earities that g has extra restrictions at infinity or near the origin, namely lim inf |t|→+∞

tg(t)

eα0t4

or g(u) ≥ Cq,V uq−1 with q > 4 and Cq,V > 0 is an implicit value depending on q, V and the
best constant of the embedding H1(R2) ⊂ Lq(R2), considered in the existing literature. To
the best of our knowledge, there have not been established any similar results, even for simpler
semilinear Schrödinger equations. We believe that our approach could be adopted and modified
to treat more general elliptic partial differential equations involving critical exponential growth.
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1 Introduction

This paper is concerned with the following quasilinear Schrödinger equation

−ε2∆u+ V (x)u− ε2∆(u2)u = g(u), x ∈ R2, (Q)ε
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where ε > 0 is a small parameter, V satisfies the following assumptions:
(V1) V ∈ C(R2,R) and infx∈R2 V (x) > 0;

(V2) there is a bounded domain Λ ⊂ R2 such that

min
x∈Λ

V (x) < min
x∈∂Λ

V (x), (1.1)

and g has the following critical exponential growth at infinity:

(G1) g ∈ C(R,R) and there exists α0 > 0 such that

lim
|t|→+∞

|g(t)|
eαt4

=

{
0, for all α > α0,

+∞, for all α < α0.
(1.2)

This kind of nonlinearity has the maximal growth which allows us to treat (Q)ε variationally in a
suitable function space, as the counterpart to the higher dimensions N ≥ 3 in which the critical
exponent is 2(2∗) = 4N/(N − 2), see below for more details. On the potential V , besides the local
condition (V2), we do not require any global condition other than (V1), which is even allowed to
be unbounded from above. We are interested in the so called semi-classical states for (Q)ε, which
are families of solutions uε developing a spike shape around one or more distinguished points of the
space, while vanishing asymptotically elsewhere as ε→ 0.

Quasilinear equations like (Q)ε appear naturally in mathematical physics and have been de-
rived as models of several physical phenomena, such as in the theory of superfluid film, Heisenberg
ferromagnets and magnons, in dissipative quantum mechanics, and in condensed matter theory,
see [6, 29,40].

In recent years, the following quasilinear Schrödinger equation

−∆u+ V (x)u− κ∆(u2)u = g(u), x ∈ RN (1.3)

with κ > 0, N ≥ 1, V ∈ C(RN ,R) and g ∈ C(R,R), has attracted a lot of attention and many
existence results have been obtained under variant assumptions on V and g by using variational
methods. For example, when g(u) = |u|q−2u with 4 < q < 2(2∗) (2∗ = 2N/(N − 2) if N ≥ 3,
2∗ = ∞ if N = 1, 2), the existence of a positive ground state solution for (1.3) was proved by
Poppenberg-Schmitt-Wang [41] and Liu-Wang [30] by using a constrained minimization argument,
which gives a solution of (1.3) with an unknown Lagrange multiplier λ in front of g(u). A new
variable replacement v = f−1(u) was introduced by Colin-Jeanjean [13] and Liu-Wang-Wang [32],
where f is defined by

f ′(t) =
1√

1 + 2|f(t)|2
on [0,+∞), f(−t) = −f(t) on (−∞, 0]. (1.4)

With this change of variable, the quasilinear problem can be transformed to a semilinear problem,
and some effective methods for semilinear problems can be applied to treat the resulting equation.
These arguments can also be extended to the more general subcritical case in the sense that |g(u)| ≤
C(u2+|u|q−1) with C > 0 and 4 < q < 2(2∗). As observed by Liu-Wang-Wang [32], the number 2(2∗)
behaves like a critical exponent for (1.3) if N ≥ 3. When N ≥ 3 and g(u) = |u|q−2u + |u|2(2∗)−2u
with 4 < q < 2(2∗), motivated by the celebrated work of Brezis-Nirenberg [5] on critical Sobolev
exponent problems for semilinear elliptic equations, the authors in [21, 44] got the existence of
nontrivial solutions for (1.3), see also [2, 12, 17, 23, 31, 34, 35] for more results. These results in the
critical growth case were also extended to the singularly perturbed problem of the form:

−ε2∆u+ V (x)u− κε2∆(u2)u = g(u), x ∈ RN , (1.5)

with N ≥ 3, see [9, 25,26,46] and references therein.
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Note that although there have been many works on the existence of nontrivial solutions for (1.3)
and (1.5) with N ≥ 3 in the critical growth case, rather less has been done when N = 2. In fact, the
dimension N = 2 is very special, as the corresponding Sobolev embedding yields H1(R2) ⊂ Lq(R2)
for all q ≥ 2, but H1(R2) ̸⊂ L∞(R2). In this case, the Trudinger-Moser inequality in R2 below can
be treated as a substitute of the Sobolev inequality in the higher dimensions N ≥ 3, as it establishes
the sharp maximal exponential integrability for functions in H1(R2).

Lemma 1.1. (Trudinger-Moser inequality [1, 7, 8]) i) If α > 0 and u ∈ H1(R2), then∫
R2

(
eαu

2

− 1
)
dx <∞;

ii) if u ∈ H1(R2), ∥∇u∥22 ≤ 1, ∥u∥2 ≤ M < ∞, and α < 4π, then there exists a constant C(M,α),
which depends only on M and α, such that∫

R2

(
eαu

2

− 1
)
dx ≤ C(M,α). (1.6)

In particular, the threshold α = 4π in Lemma 1.1 plays an analogous role of the critical Sobolev
exponent 2∗ = 2N/(N − 2). As we know, for the semilinear Schrödinger equation:

−∆u+ V (x)u = g(u), x ∈ R2, (1.7)

the function g(t) is said to have critical exponential growth if g ∈ C(R,R) and there exists α0 > 0
such that

lim
|t|→+∞

|g(t)|
eαt2

=

{
0, for all α > α0,

+∞, for all α < α0.
(1.8)

It is interesting to note that for quasilinear Schrödinger equation (1.3) with κ > 0, the above
definition of critical exponential growth changes into that g satisfies (G1) because of the fact:

u ∈ H :=

{
u ∈ H1(R2) :

∫
R2

u2|∇u|2dx <∞
}

⇒ u2 ∈ H1(R2). (1.9)

From now on, we will focus our attention on quasilinear Schrödinger equations with the critical
exponential growth. Since we look for positive solutions, as usual, we always assume that g(t) = 0
for all t ∈ (−∞, 0]. Let us describe the relevant works below. Before this, we first introduce the
following assumptions used in the references:

(V1′) V ∈ C(R2,R) and 0 < infx∈R2 V (x) ≤ V (x) ≤ lim inf |y|→+∞ V (y) < +∞ for all x ∈ R2;

(V2′) V ∈ C(R2,R) is a 1-periodic positive function;

(G2) g(t) = o(t) as t→ 0;

(AR) there exists µ1 > 4 such that g(t)t ≥ µ1G(t) ≥ 0 for all t ≥ 0, where G(t) =
∫ t

0
g(s)ds;

(MN) g(t)
t3 is increasing on t ∈ (0,+∞);

(M1) lim|t|→+∞
tg(t)

eα0t4
= +∞;

(M2) there exists a constant q > 2 such that for all t ≥ 0,

g(t) ≥ Cqt
q−1 with Cq >

[
µ1(q − 2)

q(µ1 − 4)

](q−2)/2 (α0

π

)(q−2)/2

Sq
q (θ), (1.10)

where

Sq(θ) := inf
u∈H1

r (R2)\{0}

[∫
R2

(
|∇u|2 + θu2

)
dx+

(∫
R2 u

2|∇u|2dx
)1/2]1/2(∫

R2 |u|qdx
)1/q . (1.11)
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As far as we know, the study on (Q)ε involving critical exponential growth started with two
papers [20] and [37] in 2007, in which ε = 1 and two types of linear potentials were considered, that
V satisfies the asymptotic condition (V1′) and the periodic condition (V2′), respectively. Precisely,
by the change of variable and the Mountain Pass theorem, the existence of a positive solution for
(Q)ε with ε = 1 was proved by do Ó-Miyagaki-Soares [20] under assumptions (V1′), (G1), (G2),
(AR) and (M1), and by Moameni [37] under assumptions (V2′), (G1), (G2), (AR) and (M2) with
θ = maxx∈R2 V (x). Later, the results obtained in [20] and [37] were extended to the singularly
perturbed equation (Q)ε with a small parameter ε > 0 and a more general class of potentials V
requiring only (V1) and (V2) by do Ó-Moameni-Soares [18], and by do Ó-Soares [19], respectively.
In particular, based on the results obtained in [20] and [37], with a penalization technique and
Mountain Pass arguments in a nonstandard Orlicz space, the authors in [18] and [19] obtained a
parameter family of positive solutions which concentrates, as ε → 0, near a local minimum of the
potential V , if g satisfies (G1), (G2), (AR), (MN) and (M1), and g satisfies (G1), (G2), (AR), (MN)
and (M2) with θ = V0, respectively.

We would like to emphasize that a key tool in [18,20] and [19,37] is conditions (M1) and (M2),
respectively, to overcome the loss of compactness due to the critical behavior of the nonlinearity,
each of which can help to show that Mountain Pass level is in the range of compactness of the
associated functional. In fact, the analogous conditions as (M1) and (M2) have appeared in most
of the studies for elliptic problems with a nonlinear term of exponential growth. For example, for
semilinear Schrödinger equation (1.7), the following two conditions:

(M3) lim|t|→+∞
tg(t)

eα0t2
= γ0 >

e
α0

maxx∈R2 V (x);

(M4) there exists a constant q0 > 2 such that for all t ≥ 0,

g(t) ≥ Cq0t
q−1 with Cq0 >

(
q0 − 2

q0

)(q0−2)/2 (α0

4π

)(q0−2)/2

γq0/2q0 ,

where

γq0 := inf
u∈H1(R2),∥u∥q0=1

∫
R2

(
|∇u|2 +max

x∈R2
V (x)u2

)
dx (1.12)

were assumed by de Figueiredo-Miyagaki-Ruf [14, 15] and Alves-do Ó-Marcos [3], respectively, see
also Miyagaki-Alves-Souto-Montenegro [4], Masmoudi-Sani [36, (8.4)], Ruf-Sani [42], Chen-Tang-Wei
[11] and Chen-Qin-Rădulescu-Tang [10] for more progresses in this direction. Note that with these
two types of representative conditions, one can obtain the desired upper bound for the Mountain Pass
level in two different ways: 1) by means of an estimate involving Moser’s sequence of functions; 2) by
choosing the appropriately large number Cq in (1.11) (or Cq0 in (1.12)) relying on some minimizing
problems related to the embedding H1(R2) ⊂ Lq(R2).

As pointed out by Masmoudi-Sani [36, Remark 8.2], it seems to be difficult to compare the
growth conditions (M1) with (M2) as they prescribe the growth of g at infinity and near the origin
respectively. In addition, we also note the following unpleasant facts on (M1) and (M2):

I) It is still unknown whether condition (M1) can be weakened in the sense of finding an exact

lower bound of lim inf |t|→+∞
tg(t)

eα0t4
like (M3) due to the competing effect of the second order

nonhomogeneous term ∆(u2)u.

II) Condition (M2) used in [19,37] involves the implicit value of the best constant of the embedding
H1(R2) ⊂ Lq(R2), which is so far unknown and still an open challenging problem, moreover,
(M2) also relies on the parameter µ1 > 4 appearing in (AR).

Now a natural question arises:

Can we find a unified condition involving both (M1) and (M2)
to achieve the desired estimation for the Mountain Pass level related with (Q)ε?
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In the present paper, we shall introduce some new strategies and techniques, and give an
affirmative answer to the above question, which permit to not only extend the results of [18–20,37]
to a wider class on nonlinearities, but also unify the existing results on two types of nonlinearities
satisfying (M1) or (M2) in this subject. More precisely, the purpose of this paper is two-fold:

� When ε = 1 and V (x) ≡ V0 ∈ R+ in (Q)ε, we shall present a remarkable relationship between
the existence of least energy solutions and the range of V0 without any monotonicity conditions
on g, and give a new existence criterion, both fully covering and weakening those required in
the existing literature.

� When ε > 0 is a small parameter and V satisfies (V1) and (V2) in (Q)ε, based on the new
necessary conditions, we establish the existence of a family of positive solutions for (Q)ε con-
centrating around local minima of the potential V , as ε → 0, where V just satisfy (V1) and
(V2), and is allowed to be unbounded from above.

For the first purpose, let us consider the following quasilinear autonomous Schrödinger equation
with constant potential

−∆u+ V0u−∆(u2)u = g(u), (Q)0

where V0 > 0, and g satisfies (G1), (G2) and the following condition:

(G3) lim|t|→∞
G(t)
t2 = +∞ and g(t)t ≥ 2G(t) ≥ 0 for all t ≥ 0,

which is much weaker than the condition of Ambrosetti-Rabinowitz type:

(AR′) g(t)t ≥ 4G(t) ≥ 0 for all t ≥ 0,

used in the previous works. By searching for the range of V0, we establish the existence of a least
energy solution for (Q)0, and also give a fine maximum characterization of the least energy solution.
We recall that a solution u ∈ H \{0} of (Q)0 is said to be a least energy solution if and only if Φ0(u)
equals the least energy

c∗0 := inf
{
Φ0(u)

∣∣∣ u ∈ H \ {0},Φ′
0(u) = 0

}
, (1.13)

where H is the working space defined by (1.9), and Φ0 : H → R is the energy functional correspond-
ing to (Q)0 defined by

Φ0(u) =
1

2

∫
R2

(1 + 2u2)|∇u|2dx+
1

2

∫
R2

V0u
2dx−

∫
R2

G(u)dx, (1.14)

see Section 2 for more details on H and Φ0 (see also [33,43]).
It is worth pointing out that all literatures dealing with quasilinear Schrödinger problems in-

volving critical exponential growth used a change of variable, which reduces a quasilinear problem to
a semilinear problem. In this way, some classical arguments developed by Brezis and Nirenberg [5]
can be adopted and modified to treat the reduced equation to restore the compactness. Although
this transformation approach is quite effective to find nontrivial solutions, it seems not to be ap-
plicable to find least energy solutions for the original problem, since it is unknown whether a least
energy solution of the reduced semilinear problem is the one of the original quasilinear problem after
a change of variable, which is the main reason why there have been no related existence results of
least energy solutions in this topic up to date. This forces the implementation of new ideas to search
for a least energy solution.

To state the results in this direction, we define the set

Γ0 :=
{
γ ∈ C([0, 1], H1(R2)) : γ(0) = 0,Φ0(f(γ(1))) < 0

}
, (1.15)

where f is defined by (1.4). Inspired by Ibrahim-Masmoudi-Nakanishi [27] and Masmoudi-Sani [36],
we also define the Trudinger-Moser ratio

C∗
TM(G) := sup

{
2

∥u∥22

∫
R2

G(u)dx
∣∣∣ u ∈ H \ {0}, 2∥∇u∥22 + ∥∇(u2)∥22 ≤ 4π

α0

}
, (1.16)

see more details in (2.56)-(2.58) below. Our first result is as follows.
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Theorem 1.2. Assume that g satisfies (G1)-(G3). Then for any V0 ∈ (0, C∗
TM(G)), equation (Q)0

admits a positive least energy solution w having the maximum characterization:

Φ0(w) = max
t∈[0,1]

Φ0(f(γ̃(t))) for some function γ̃ ∈ Γ0. (1.17)

In particular, based on the result of Theorem 1.2, with a little extra work we can also prove
the following existence result for (Q)ε with ε = 1 when V satisfies either (V1′) or (V2′) considered
in [20] or [37].

Theorem 1.3. Assume that V satisfies either (V1′) or (V2′), and g satisfies (G1)-(G3) and (AR′).
Let V := supx∈R2 V (x) < C∗

TM(G). Then (Q)ε with ε = 1 admits a positive solution.

For the study of singularly perturbed problem (Q)ε with a small parameter ε > 0, besides
(G1)-(G3), we introduce the following assumptions on g:

(G4) limt→+∞
G(t)
g(t)t = 0;

(G5) g(t)
t3 is non-decreasing on t ∈ (0,+∞).

Note that (G4) is weaker than the condition widely used in the literature below

(G4′) there exist M0 > 0 and t0 > 0 such that G(t) ≤M0g(t) for all t ≥ t0,

which is reasonable for functions f(t) behaving as eα0t
2

. The result in this direction is stated as
follows.

Theorem 1.4. Assume that V satisfies (V1) and (V2) with minx∈Λ V (x) < C∗
TM(G), and g satisfies

(G1)-(G5). Then there exists ε∗0 > 0 such that for all 0 < ε ≤ ε∗0, (Q)ε possesses a positive solution
uε ∈ C2,α

loc (R2) for some α ∈ (0, 1) with the following properties:

(i) uε(z) has a unique local maximum (hence global) zε ∈ R2 and zε ∈ Λ;

(ii) limε→0 V (εyε) = minx∈Λ V (x);

(iii) there exist positive constants Π0 and κ0, independent on ε, such that

uε(z) ≤ Π0 exp
(
−κ0
ε
|z|
)
, ∀ z ∈ R2, ε ∈ (0, ε∗0].

Some remarks on Theorems 1.2-1.4 are in order.

Remark 1.5. In many non-autonomous elliptic problems, it turns out that information on the least
energy level of an associated autonomous problem is crucial if there is no extra compactness condition,
since the least energy level often appears as the first level of possible loss of compactness. Theorem
1.2 appears to be the first result on the existence of least energy solutions for (Q)0 involving the
critical exponential growth without the additional monotonicity assumption on g(t)/t3. We believe
that the result of Theorem 1.2 could be useful for the study of other non-autonomous quasilinear
problems and its singular perturbation forms involving critical exponential growth.

Remark 1.6. The condition V < C∗
TM(G) in Theorem 1.3 can be derived from either the asymptotic

condition (M1′) or the global growth condition (M2′) as below:

(M1′) limt→+∞
t4G(t)

eα0t4
= +∞;

(M2′) there exists a constant q > 2 such that for all t ≥ 0,

g(t) ≥ C̃qt
q−1 with C̃q >

(
q − 2

2q

)(q−2)/2 (α0

π

)(q−2)/2

Sq
q (V ),
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(see Remark 2.10 below for more details). Note that (M1′) and (M2′) are weaker than (M1) and
(M2) used in [20] and [37], respectively, since

lim
t→+∞

t4G(t)

eα0t4
= lim

t→+∞

4G(t) + tg(t)

4α0eα0t4
and Cq > C̃q,

where Cq and C̃q appear in (M2) and (M2′). Besides, (AR′) is obviously weaker than (AR) required
in [20,37]. In this sense, Theorem 1.3 can be regarded as a unified improvement of the results of [20]
and [37].

Remark 1.7. (i) We believe that the ideas and techniques for the proofs of Theorem 1.4 could
be adopted and modified to treat more elliptic partial differential equations involving critical
exponential growth.
Indeed, on the one hand, our working space is the Sobolev space

E :=

{
u ∈ H1(R2) :

∫
R2

V (x)u2dx <∞
}
, (1.18)

which is more general than the Orlicz space used in [20,37]. On the other hand, our proofs do
not rely on the Schwarz symmetrization principle which may fail for some equations, such as
bi-harmonic equations, or the concentration-compactness type argument which is not available
if the nonlinearity has critical exponential growth.

(ii) To our knowledge, there have not been any similar results as Theorem 1.4 in the literature
when the nonlinearity has critical exponential growth, even for simpler semilinear Schrödinger
equations, namely (Q)ε in the absence of the nonhomogeneous term ∆(u2)u.

Let us point out the main difficulties and highlights for the proofs of Theorem 1.2 and Theorem
1.4, respectively, before ending this section.

The proof of Theorem 1.2 is based on the constrained minimization argument:

A0 = inf
u∈P0

Φ0(u) = inf
u∈P0

1

2

∫
R2

(1 + 2u2)|∇u|2dx with P0 = {u ∈ H \ {0} : P0(u) = 0},

where H and Φ0 are defined by (1.9) and (1.14), and P0 : H → R is the Pohozaev functional
related to the Pohozaev identity for (Q)0, see (2.5) below, which differs considerably from previous
works relying on a variable replacement. In particular, we need to implement new estimates on the
minimum A0. Moreover, special care is needed to gain more information on the least energy level.
Precisely, the principal difficulties lie in two aspects:

(I) The existing arguments estimating the (Mountain Pass) Minimax level for semilinear prob-
lems do not work without the change of variable, so we have to search for other tools to
obtain a desired upper bound for the minimization problem A0, in order to resolve the loss of
compactness, which may be produced not only by the concentration phenomena but also by
the vanishing phenomena.

(II) It is more involved to construct the maximum characterization of least energy solutions for
(Q)0 without any monotonicity assumptions on g, even in the absence of ∆(u2)u, since Φ0

has no saddle point structure with regard to the fibres {tu : t > 0} ⊂ H.

To overcome the two difficulties, we employ some new strategies and delicate analyses, summarized
as follows.

� To restore the compactness, we propose a new necessary and sufficient condition for
the boundedness and the compactness of general nonlinear functionals in H, in terms of the
growth and decay of the nonlinear function, not only among exponent and power functionals.
With this condition, we can treat uniformly two types of nonlinearities studied in the existing
literature, that is (M1) or (M2) holds.

7



� To find the maximum characterization of least energy solutions for (Q)0, we construct a good
sample path having some special minimax properties. Note that, in the dimension N ≥ 3,
such a path is easy to be constructed by means of the fibres {u(·/t) : t > 0} ⊂ H1(RN ).
Unfortunately, in the dimension N = 2, the path only relying on the dilation u(x/t) does
not belong to the class of admissible paths, and one can not find an analogous saddle point
structure, even in the absence of ∆(u2)u. This, together with the competing effect of ∆(u2)u,
enforces us to develop a different technical construction.

As a by-product of Theorem 1.2, we first establish the Pohozaev identity for quasilinear problems in
R2 by using a method different from those in the higher dimensions, which especially can be adopted
and modified to nonautonomous situations.

Our proof of Theorem 1.4 relies on the combination of a change of variable and a penalization
technique, which is motivated by the arguments of [20, 37], (see also [9, 25, 26, 46] for the dimension
N ≥ 3). The main ingredient of the penalization technique lies in a reduction of the nonlinearity g
outside Λ (see (3.6) below) in such a way that the modified energy functional Iε, defined by (3.9)
below, will satisfy a (local) Cerami condition at certain levels for any fixed small ε > 0, see Lemma
3.13 below. Along this line, for any fixed small ε > 0, we can find a one parameter family of critical
points {vε} for Iε. To ensure that the parameter family of critical points of the modified functionals
satisfies, after a rescaling and a change of variable, the original problem, what is most challenging
is to obtain the following uniform decay on the family ṽε(x) := vε(εx):

ṽε(x) → 0 as |x| → ∞ uniformly in ε ∈ (0, ε∗0] (1.19)

for some small constant ε∗0 > 0. In particular, compared with the previous works, some new
difficulties occur in the proof procedures:

(I) The lack of conditions (M1) and (M2) prevents us from using the existing methods for con-
trolling the Mountain Pass level by a fine threshold, which is the essential step to restore the
compactness for any fixed small ε > 0.

(II) Without the condition (AR) required in [20,37], it is more complicated to derive two types of
boundedness results and convergence results; one when ε is fixed, especially the other one to
obtain uniform conclusions when ε→ 0;

(III) To obtain the convergence of the parameter family of critical points {vε} for Iε mentioned
above, the concentration-compactness type argument dealing with the higher dimensions does
not work, since there is no BL-splitting property caused by critical exponential growth.

(IV) The proof of the uniform decay (1.19) in [20,37] depends strongly on the Schwarz symmetriza-
tion principle, especially the following equalities∫

|x|≥R

e2α(ṽ
2
ε−1)ṽ2εdx =

∫
|x|≥R

e2α[(ṽ
∗
ε )

2−1](ṽ∗ε )
2dx =

∞∑
k=1

∫
|x|≥R

(ṽ∗ε )
2k+2dx, (1.20)

where ṽ∗ε denotes the Schwarz symmetrization of ṽε. In this way, (1.19) can be derived from
the Radial Lemma and standard elliptic estimates. But, it seems to be rather difficult to get
the local equality between the function ṽε and its symmetric decreasing rearrangement ṽ∗ε in
(1.20). As far as we know, it remains open whether this uniform decay holds without the help
of the local equality (1.20).

These difficulties enforce the implementation of new ideas and strategies for the proof of Theorem
1.4. For example,

� to conquer the difficulty (I), instead of estimating directly the Mountain Pass level, we control
successfully the Mountain Pass level by the least energy c∗0, defined by (1.13), with stretched
variables and new inequalities;
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� to conquer the difficulties (II) and (III), in contrast to previous works, we take full advantage
of the information on ⟨I ′ε(vε), f(vε)/f ′(vε)⟩, and some new estimates and delicate analyses are
employed particularly when it comes to the uniform conclusions as ε→ 0;

� to conquer the difficulty (IV), different from the existing literature, we establish the convergence
of ṽε, after suitable translation, in H1(R2) by some subtle arguments, and then indirectly
prove the uniform decay (1.19) by using some new analytical techniques, where the Schwarz
symmetrization principle is not required.

The paper is organized as follows. In Section 2, we study the existence of least energy solutions
for (Q)0, and establish its maximum characterization, whereby Theorem 1.2 is proved. In Section 3,
we introduce the modified problem with penalized nonlinearity, and obtain a one parameter family
of mountain-pass critical points for modified energy functionals. Section 4 is devoted to the study of
L∞-estimate and behavior of mountain-pass critical points after the stretched variables as ε→ 0. In
Section 5, we prove that the parameter family of critical points of the modified functionals satisfy,
after a rescaling and a change of variable, the original problem (Q)ε, and complete the proof of
Theorem 1.4.

Throughout the paper, we make use of the following notations:
• H1(R2) denotes the Sobolev space equipped with the norm ∥u∥ = [

∫
R2(|∇u|2 + u2)dx]1/2;

• Ls(R2)(1 ≤ s <∞) denotes the Lebesgue space with the norm ∥u∥s =
(∫

R2 |u|sdx
)1/s

;
• For any x ∈ R2 and r > 0, Br(x) := {y ∈ R2 : |y − x| < r} and Br = Br(0);
• C1, C2 · · · denote positive (possibly different) constants, possibly dependent on ε.

2 Least energy solutions for (Q)0

In this section, we study the existence of least energy solutions for (Q)0, and establish its
maximum characterization, which completes the proof of Theorem 1.2. For this, we first introduce
the variational setting for (Q)0. Note that H, defined by (1.9), is not a vector space (it is not closed
under the sum), nevertheless it is a complete metric space with distance

dH(u, v) = ∥u− v∥+ ∥∇(u2)−∇(v2)∥2.

From (G1)-(G3), it follows that

lim
t→0

G(t)

t2
= 0 (2.1)

and

lim
t→+∞

t4G(t)

eαt4
=

{
0, for all α > α0,

+∞, for all α < α0.
(2.2)

Then we have for any ϵ > 0, α > α0 and q > 0, there exists C = C(ϵ, α, q) > 0 such that

2G(t) ≤ g(t)t ≤ ϵt2 + C|t|q
(
eαt

4

− 1
)
, ∀ t ∈ R. (2.3)

Using (2.3) and Lemma 1.1, it is easy to check that Φ0, defined by (1.14), is continuous on H.
Formally, our problem has a variational structure. For any ϕ ∈ C∞

0 (R2) and u ∈ H, u+ ϕ ∈ H, and
we can compute the Gateaux derivative:

⟨Φ′
0(u), ϕ⟩ =

∫
R2

[
(1 + 2u2)∇u · ∇ϕ+ 2|∇u|2uϕ+ V0uϕ

]
dx−

∫
R2

g(u)ϕdx. (2.4)

Therefore, u ∈ H is a solution of (Q)0 if and only if this derivative vanishes along any direction in
ϕ ∈ C∞

0 (R2), see [33] for more details.
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2.1 Existence of least energy solutions

First, we provide a Pohozaev type identity for (Q)0. The strategy of the proof is motivated by
a truncation argument due to Kavian (see [47, Appendix B]), but some differences occur due to the
presence of ∆(u2)u. For this, let us define the Pohozaev functional:

P0(u) = V0∥u∥22 − 2

∫
R2

G(u)dx. (2.5)

Lemma 2.1. Assume that g satisfies (G1)-(G3). If u ∈ H is a weak solution of (Q)0, then we have
the Pohozaev identity P0(u) = 0.

Proof. Let ψ ∈ C∞([0,+∞), [0, 1]) such that ψ(r) = 1 for r ∈ [0, 1] and ψ(r) = 0 for r ∈ [2,+∞).
Define ψn(x) := ψ(|x|2/n2) on R2 for n ∈ N. Then there exists C1 > 0 such that

0 ≤ ψn(x) ≤ C1, |x||∇ψn(x)| ≤ C1 ∀ x ∈ R2. (2.6)

Since u is a weak solution of (Q)0, by a standard regularity argument (see the appendix of [33]), we
can show that u, u2 ∈ H2

loc(R2). By Lemma 1.1 and (2.3), we have
∫
R2 G(u)dx < ∞. Multiplying

(Q)0 by ψn(x · ∇u), we have for every n ∈ N,

0 =
[
−∆u+ V0u−∆(u2)u

]
ψn(x · ∇u). (2.7)

It is clear that, for every n ∈ N,

−ψng(u)(x · ∇u) = −div(xψnG(u)) + 2ψnG(u) +G(u)(x · ∇ψn), (2.8)

−ψn∆u(x · ∇u) = −div

{[
∇u(x · ∇u)− x

|∇u|2

2

]
ψn

}
− |∇u|2

2
(x · ∇ψn) + (x · ∇u)(∇ψn · ∇u), (2.9)

ψnu(x · ∇u) = 1

2
div
(
u2ψnx

)
− u2ψn − 1

2
u2(x · ∇ψn)−

1

2
u2ψn (2.10)

and

−ψn∆(u2)u(x · ∇u) = −div
[
2ψnu

2(x · ∇u) · ∇u− ψnu
2|∇u|2 · x

]
− (x · ∇ψn)u

2|∇u|2 + 2(x · ∇u)(∇ψn · ∇u)u2. (2.11)

Hence, for every n ∈ N, it follows from (2.7), (2.8), (2.9), (2.10), (2.11) and the divergence theorem
that ∫

∂B2n

{
1

2n
|x · ∇u|2(1 + 2u2)− n|∇u|2(1 + 2u2)− nV0u

2 + 2nG(u)

}
ψndσ

= −
∫
B2n

[
V0u

2 − 2G(u)
]
ψndx− 1

2

∫
B2n

{
|∇u|2(1 + 2u2) + V0u

2 − 2G(u)
}
(x · ∇ψn)dx

+

∫
B2n

(x · ∇u)(∇ψn · ∇u)(1 + 2u2)dx, (2.12)

which, together with the fact that ψn|∂B2n = 0, implies∫
B2n

[
V0u

2 − 2G(u)
]
ψndx = −1

2

∫
B2n

{
|∇u|2(1 + 2u2) + V0u

2 − 2G(u)
}
(x · ∇ψn)dx

+

∫
B2n

(x · ∇u)(∇ψn · ∇u)(1 + 2u2)dx

10



= −1

2

∫
B√

2n\Bn

[
|∇u|2(1 + 2u2) + V0u

2 − 2G(u)
]
(x · ∇ψn)dx

+

∫
B√

2n\Bn

(x · ∇u)(∇ψn · ∇u)(1 + 2u2)dx. (2.13)

From (2.6), (2.13) and the Lebesgue dominated convergence theorem, we have∣∣∣∣∫
R2

[
V0u

2 − 2G(u)
]
dx

∣∣∣∣ = ∣∣∣∣ limn→∞

∫
B2n

[
V0u

2 − 2G(u)
]
ψndx

∣∣∣∣
≤ 1

2
lim

n→∞

∫
B√

2n\Bn

[
3|∇u|2(1 + 2u2) + V0u

2 + 2G(u)
]
|x||∇ψn|dx

≤ C1

2
lim
n→∞

∫
B√

2n\Bn

[
3|∇u|2(1 + 2u2) + V0u

2 + 2G(u)
]
dx = 0.

This, together with (2.5), shows that P0(u) = 0, as desired.

In the following, we will solve the constrained minimization problem:

A0 = inf
u∈P0

Φ0(u) with P0 = {u ∈ H \ {0} : P0(u) = 0}. (2.14)

Lemma 2.2. Assume that g satisfies (G1)-(G3). Then there exists a minimizing sequence {un} ⊂ P0

satisfying ∥un∥2 = 1 for A0. In particular,

A0 = inf
u∈P0

1

2

∫
R2

(1 + 2u2)|∇u|2dx = inf
u∈P1

0

1

2

∫
R2

(1 + 2u2)|∇u|2dx, (2.15)

where P0 is given by (2.5), and P1
0 = P0 ∩ {u ∈ H : ∥u∥2 = 1}.

Proof. First, we verify that P0 ̸= ∅. Let u ∈ H \ {0} be fixed and define a function ζ(t) := P0(tu)
on (0,∞). Using (G1)-(G3), it is easy to check that ζ(t) > 0 for small t > 0 and ζ(t) < 0 for large
t > 0. Then there exists tu > 0 such that ζ(tu) = P0(tuu) = 0, and so P0 ̸= ∅. Note that

Φ0(v) = Φ0(v)−
1

2
P0(v) =

1

2

∫
R2

(1 + 2v2)|∇v|2dx, ∀ v ∈ P0. (2.16)

Thus we can assume that there exists a minimizing sequence {un} ⊂ P0 satisfying

1

2

∫
R2

(1 + 2u2n)|∇un|2dx→ A0.

Let ũn = un(∥un∥1/22 x). Then a simple computation leads to ũn ∈ P0, ∥ũn∥2 = 1 and ∥∇ũn∥2 =
∥∇un∥2. This shows that ũn ∈ P1

0 . From this and the fact that P1
0 ⊂ P0, (2.15) follows directly.

The proof is completed.

To prove Theorem 1.2, we also need to show that the minimizer of A0 is indeed a least energy
solution of (Q)0. For this, we have the following important result.

Lemma 2.3. Assume that g satisfies (G1)-(G3).

(i) If u ∈ H is a critical point of Φ0 on the set P0, then it is a nontrivial solution of (Q)0 under
a suitable change of scale;

(ii) If the infimum A0 is attained, then A0 = c∗0, where the definition of c∗0 is given by (1.13).
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Proof. (i) Let u ∈ H be a critical point of Φ0 on the set P0. Then there is a Lagrange multiplier
λ ∈ R such that

−∆u− u∆(u2) + V0u− g(u) = 2λ[V0u− g(u)],

namely,
−∆u− u∆(u2) = (2λ− 1)[V0u− g(u)]. (2.17)

Since u ̸= 0, we deduce from (2.17) that

2λ− 1 ̸= 0 and V0u− g(u) ̸= 0. (2.18)

For any T > 0, by (G1), (G2) and (G3), there exist 0 < t1 < t2 < T and −T < t3 < t4 < 0 such
that

2G(t)− g(t)t ≤ 0, ∀ t ∈ [−T, T ], and 2G(t)− g(t)t < 0, ∀ t ∈ [t3, t4] ∪ [t1, t2]. (2.19)

Hence, it follows from (2.19) and the definition of P0 that∫
R2

[V0u− g(u)]udx =

∫
R2

[2G(u)− g(u)u]dx < 0. (2.20)

This implies that there exists w ∈ C∞
0 (R2) such that

⟨P ′
0(u), w⟩ =

∫
R2

[V0u− g(u)]wdx < 0. (2.21)

By multiplying (2.17) by w and integrating, we have∫
R2

[
(1 + 2u2)∇u · ∇w + 2|∇u|2uw

]
dx = (2λ− 1)

∫
R2

[V0u− g(u)]wdx. (2.22)

Using the fact P0(u) = 0 and (2.21), it is easy to see that for small enough ϵ > 0,

P0(u+ ϵw) < P0(u) = 0. (2.23)

Let

A(φ) :=
1

2

∫
R2

(1 + 2φ2)|∇φ|2dx, ∀ φ ∈ H.

Noting that A(u) = A0, by (2.22) and (2.23), we have

A(u+ ϵw) =
1

2

∫
R2

[
1 + 2

(
u2 + 2ϵuw + ϵ2w2

)] (
|∇u|2 + 2ϵ∇u · ∇w + ϵ2|∇w|2

)
dx

= A0 + ϵ(2λ− 1)

∫
R2

[V0u− g(u)]wdx+O(ϵ2). (2.24)

We claim that 2λ− 1 < 0. Otherwise, if 2λ− 1 > 0, then there exists ϵ0 > 0 small enough such that

P0(u+ ϵ0w) < 0 and A(u+ ϵ0w) < A0 (2.25)

due to (2.23) and (2.24). Let u0 = u+ ϵ0w. Then (2.25) yields P0(u0) < 0 and P0(su0) > 0 for s > 0
small enough as a consequence of (G2). Therefore, there exists s0 ∈ (0, 1) such that P0(s0u0) = 0,
and so (2.16) and (2.25) yield

A(s0u0) =
s20
2

∫
R2

(1 + 2s20u
2
0)|∇u0|2dx < s20A(u0) < A0. (2.26)

This shows that s0u0 ∈ P0 and Φ0(s0u0) < A0, which contradicts to the definition of A0. Hence, we
have 2λ− 1 < 0 as claimed. Thus,

ũ(x) := u

(
x√

1− 2λ

)
for a.e. x ∈ R2 (2.27)
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is a nontrivial solution of (Q)0.
(ii) If the infimum A0 is attained by u, then u is a critical point of Φ0 on the set P0. Applying

the above Conclusion (i), we have Φ′
0(ũ) = 0 and A0 = Φ0(ũ) ≥ c∗0, where ũ is defined by (2.27).

To prove A0 = Φ0(ũ) = c∗0, it remains to show that A0 ≤ c∗0. Note that Lemma 2.1 shows that if
Φ′

0(v) = 0 for v ∈ H, then v satisfies the Pohozaev identity P0(v) = 0, namely,{
u ∈ H \ {0},

∣∣∣ Φ′
0(u) = 0

}
⊂ P0.

This implies that A0 ≤ c∗0. The proof is completed.

Before studying the attainability of A0, we give a necessary and sufficient condition for the
boundedness and the compactness of general nonlinear functionals in H, motivated by Ibrahim-
Masmoudi-Nakanishi [27] and Masmoudi-Sani [36].

Lemma 2.4. Suppose that l : R → [0,+∞) is a Borel function and define a functional H by
L(u) :=

∫
R2 l(u(x))dx. Then for any K > 0 we have the following properties (B) and (C):

(B) Boundedness: The following (i) and (ii) are equivalent.

(i) lim sup|t|→+∞ e−2|t|4/K |t|4l(t) <∞ and lim sup|t|→0 |t|−2l(t) <∞.

(ii) There exists a constant Cl,K > 0 such that

u ∈ H, ∥∇(u2)∥2 ≤ 2πK ⇒ L(u) ≤ Cl,K

(
∥u∥22 + ∥u∥44

)
. (2.28)

(C) Compactness: The following (iii) and (iv) are equivalent.

(iii) lim sup|t|→+∞ e−2|t|4/K |t|4l(t) = 0 and lim|t|→0 |t|−2l(t) = 0.

(iv) For any radially symmetric sequence {un} ⊂ H satisfying ∥∇(u2n)∥22 ≤ 2πK, un ⇀ u in
H1(R2) and u2n ⇀ u2 in H1(R2), there holds L(un) → L(u).

Proof. Necessity of (i) and (iii):
To prove the necessity of (i) and (iii), we first consider the much easier case with the condition

as u→ 0. Let φn(x) be a sequence of radial functions in H defined by

φn(x) =


an if 0 ≤ |x| < Rn,

an(1− |x|+Rn) if Rn ≤ |x| < Rn + 1,

0 if |x| ≥ Rn + 1,

(2.29)

for some sequences an → 0 and Rn → ∞ chosen later. We have

∥∇(φ2
n)∥22 = O(a4nRn), ∥∇φn∥22 = O(a2nRn), (2.30)

∥φ2
n∥22 = O(a4nR

2
n), ∥φn∥22 = O(a2nR

2
n) (2.31)

and
L(φn) ≥ πR2

nl(an). (2.32)

If (i) is violated by lim supt→0 |t|−2l(t) = ∞, then we can find a sequence an ↘ 0 such that

l(an) ≥ n|an|2. Let Rn = a
−1/2
n + a−1

n n−1/4. Then Rn → +∞ and anRn → 0, so (2.30), (2.31) and
(2.32) yield ∥∇(φ2

n)∥22 → 0, ∥∇φn∥22 → 0, ∥φ2
n∥22 → 0, ∥φn∥22 → 0 and L(φn) ≥ πna2nR

2
n → ∞.

If (iii) is violated by lim supt→0 |t|−2l(t) > 0, then we can find a sequence an ↘ 0 and δ > 0
such that l(an) ≥ δ|an|2. Let Rn = 1/an. Then Rn → ∞, anRn = 1, a2nRn → 0 and L(φn) ≥
πδa2nR

2
n ≥ πδ.

It remains to treat the case where the condition for |t| → +∞ fails. Choose sequences 1 ≪
bn ↗ ∞ and Kn ↗ K such that

2π(Kn −K) +O

(
log bn
b2n

)
↗ 0, cn := e−2b4n/Knb4nl(bn) → lim sup

s→∞
e−2s4/Ks4l(s) (2.33)
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and let Rn = e−b4n/Knb2n. We define a radial function ψn ∈ H1(R2) by

ψn(x) =



bn, if 0 ≤ |x| < Rn,

bn

∣∣∣ log |x|
logRn

∣∣∣1/2 , if Rn ≤ |x| < 1
2 ,

2bn(1− |x|)
∣∣∣ log 2
logRn

∣∣∣1/2 , if 1
2 ≤ |x| < 1,

0, if |x| ≥ 1.

(2.34)

Noting that

logRn = − b4n
Kn

+ 2 log bn, (2.35)

by straightforward computations, we have for large n ∈ N,

∥∇(ψ2
n)∥22 = 4

∫
R2

ψ2
n|∇ψn|2dx

=
2πb4n

| logRn|2

∫ 1
2

Rn

1

r
dr +

128πb4n| log 2|2

| logRn|2

∫ 1

1
2

r(r − 1)2dr

=
2πb4n

| logRn|
+O

(
b4n

| logRn|2

)
= 2πKn +

2πK2
n log bn

b4n − 2Kn log bn
+O

(
b4n

(b4n − 2Kn log bn)
2

)

≤ 2πKn +O

(
log bn
b4n

)
, (2.36)

∥∇ψn∥22 =
πb2n

2| logRn|

∫ 1
2

Rn

1

r| log r|
dr +

πb2n log 2

2| logRn|

=
πb2n log | logRn|

2| logRn|
+O

(
b2n

| logRn|

)
= O

(
log bn
b2n

)
, (2.37)

∥ψn∥44 = πb4nR
2
n +

2πb4n
| logRn|2

∫ 1
2

Rn

r| log r|2dr + 32πb4n| log 2|2

| logRn|2

∫ 1

1
2

r(r − 1)4dr

= O

(
b4n

| logRn|2

)
= O

(
1

b4n

)
, (2.38)

∥ψn∥22 = πb2nR
2
n +

2πb2n
| logRn|

∫ 1
2

Rn

r| log r|dr + 8πb2n log 2

| logRn|

∫ 1

1
2

r(r − 1)2dr

= O

(
b2n

| logRn|

)
= O

(
1

b2n

)
(2.39)

and

L(ψn) ≥ πR2
nl(bn) =

πR2
ncne

2b4n/Kn

b4n
= πcn. (2.40)

Then (2.33), (2.36), (2.37), (2.38) and (2.39) imply that {ψn} and {ψ2
n} are bounded in H1(R2) and

∥∇(ψ2
n)∥22 ≤ 2πK for large n ∈ N. (2.41)
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If the condition (i) fails at infinity, namely cn → ∞, then it follows from (2.38), (2.39) and (2.40)
that

∥ψn∥44 + ∥ψn∥22 → 0 and L(ψn) → ∞,

which, together with (2.41), implies that the condition (ii) does not hold. Note that ψn(x) → 0 for
a.e. x ∈ R2, because |ψn(x)| ≤ ϵ if |x| ≥ e−ϵbn = o(1) for any ϵ > 0. Jointly with the boundedness
of {∥ψn∥} and {∥ψ2

n∥}, we get ψn ⇀ 0 in H1(R2) and ψ2
n ⇀ 0 in H1(R2). If the condition (iii) fails

at infinity, namely cn > 0 for large n, then it follows from (2.40) that

lim inf
n→∞

L(ϕn) > 0,

which, together with (2.41), implies that the condition (iv) does not hold. This ends the proof for
the necessity of (i) and (iii).

Necessity of (ii) and (iv):
We now prove the necessity of (ii), that is (i) implies (ii). Assume that the condition (i) holds.

Let us define a new Borel measurable function l̃(t) by

l̃(t) = l((2πK)1/4t), ∀ t ≥ 0. (2.42)

It is easy to check that

lim
t→+∞

(1 + t2)2 l̃(t)

e4πt4 − 1
= lim

t→+∞

t4 l̃(t)

e4πt4
< +∞ (2.43)

and

lim
t→0

l̃(t)

t2
< +∞. (2.44)

From (2.43), (2.44) and the condition (i), we deduce that there exist constantsK1,K2 > 0, dependent
on l and K, such that

l̃(t) ≤ K1t
2 +K2

e4πt
4 − 1

(1 + t2)2
, ∀ t ≥ 0. (2.45)

By the Trudinger-Moser inequality with the exact growth, we have∫
R2

e4π|v|
4 − 1

(1 + |v|2)2
dx ≤ C∥v2∥22 = C∥v∥44, ∀ v2 ∈ H1(R2) with ∥∇(v2)∥2 ≤ 1. (2.46)

From (2.45) and (2.46), it follows that for any v ∈ H with ∥∇(v2)∥2 ≤ 1, there holds∫
R2

l̃(v)dx ≤ K1∥v∥22 +K2

∫
R2

e4π|v|
4 − 1

(1 + |v|2)2
dx

≤ K1∥v∥22 +K2C∥v∥44. (2.47)

Let v = (2πK)−1/4u for u ∈ H. Then (2.42) and (2.47) imply that for any u ∈ H satisfying
∥∇(u2)∥22 ≤ 2πK, there holds

L(u) =

∫
R2

l(u)dx =

∫
R2

l̃(v)dx ≤ Cl,K

(
∥u∥22 + ∥u∥44

)
. (2.48)

This shows that the condition (ii) holds.
Next, we turn to prove the necessity of (iv), that is (iii) implies (iv). Assume that the condition

(iii) holds. Obviously, the condition (ii) is true because (iii) yields (i). For any radially symmetric
sequence {un} ⊂ H satisfying ∥∇(u2n)∥ ≤ 2πK and un ⇀ u in H1(R2), we will verify that

lim
n→∞

[L(un)− L(u)] = lim
n→∞

∫
R2

[l(un)− l(u)]dx = 0. (2.49)
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By the radial Sobolev inequality, we have

|un(r)|2 ≤ C ∥un∥2∥∇un∥2
r

, (2.50)

and hence, un(r) → 0 as r → ∞ uniformly in n. This, together with (2.50) and the fact that
l(t) = o(t2) as t→ 0, implies that for any ε > 0 there is R > 0 independent of n such that∫

R2\BR

l(un)dx = 2π

∫ ∞

R

l(un)rdr ≤ 2πε

∫ ∞

R

|un|2rdr ≤ ε∥un∥22 (2.51)

and ∫
R2\BR

l(u)dx ≤ ε. (2.52)

Moreover, using the condition (ii) and the fact that l(s) = o(e2s
4/K |s|−4) as s→ ∞, there is L > 1

independent of n such that∫
|un|>L

l(un)dx ≤ ε

∫
|un|>L

e2u
4
n/K |un|−4dx ≤ εC1

(
∥un∥22 + ∥un∥44

)
(2.53)

and ∫
|u|>L

l(u)dx ≤ ε. (2.54)

Combining (2.51), (2.52), (2.53) and (2.54), we get

lim
n→∞

[L(un)− L(u)] ≤ lim
n→∞

[∫
R2\BR

[l(un)− l(u)]dx+

∫
BR

[l(un)− l(u)]dx

]

≤ C2ε+ lim sup
n→∞

[∫
|un|>L

l(un)dx+

∫
|u|>L

l(u)dx

]

+ lim sup
n→∞

[∫
|un|≤L,|x|≤R

l(un)dx−
∫
|u|≤L,|x|≤R

l(u)dx

]
≤ C3ε,

where we have used the Lebesgue dominated convergence theorem in the last step. This accomplishes
the proof for the necessity of (ii) and (iv).

Now, we establish a relation between the attainability of A0 and the Trudinger-Moser inequality
with the exact growth. From (2.1), (2.2), (2.28), (2.46) and the Gagliardo-Nirenberg inequality, we
deduce that ∫

R2

G(u)dx ≤ C1
(
∥u∥22 + ∥u∥44

)
≤ C2∥u∥22

(
1 + ∥∇u∥22

)
,

∀ u ∈ H with 2∥∇u∥22 + ∥∇(u2)∥22 ≤ L <
4π

α0
. (2.55)

For this purpose, inspired by Ibrahim-Masmoudi-Nakanishi [27] and Masmoudi-Sani [36], we
introduce the Trudinger-Moser ratio

CL
TM(G) = sup

{
2

∥u∥22

∫
R2

G(u)dx
∣∣∣ u ∈ H \ {0}, 2∥∇u∥22 + ∥∇(u2)∥22 ≤ L

}
, (2.56)

the Trudinger-Moser threshold:

R(G) := sup
{
L > 0

∣∣∣ CL
TM(G) < +∞

}
(2.57)
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and we denote by C∗
TM(G) the ratio at the threshold, i.e.

C∗
TM(G) = C

R(G)
TM (G). (2.58)

By (2.55) and Lemma 2.4, we have R(G) = 4π/α0.
In this section, to apply Schwarz symmetrization to (Q)0, as usual we let

g̃(t) =

{
g(t), for all t > 0,

−g(−t), for all t ≤ 0.
(2.59)

Observe that g̃ satisfies the same conditions as g. Furthermore, by the maximum principle, solutions
of (Q)0 with g̃ are also solutions of (Q)0 with g. Hence there is no loss in generality in replacing g
by g̃, and we will always adopt the convention that g has been replaced by g̃; we keep however the
same notation g in the following discussion of this section.

Let
Hr := H ∩ {u ∈ H

∣∣ u(x) = u(|x|) a.e. in R2}.

In the following, we will solve the constrained minimization problem A0, given by (2.14).

Lemma 2.5. Assume that g satisfies (G1)-(G3). If A0 < π/α0, then A0 is attained and A0 = Φ0(u),
where u ∈ Hr is, under a suitable change of scale, a positive least energy solution of equation (Q)0.

Proof. We may always assume that there exists a sequence {un} ⊂ P0 ∩Hr satisfying

1

2

∫
R2

(1 + 2u2n)|∇un|2dx→ A0 <
π

α0
and ∥un∥2 = 1 (2.60)

by Schwarz symmetrization and Lemma 2.2. Then there exists some function u ∈ Hr such that
un ⇀ u and u2n ⇀ u2 in H1(R2).

Picking up 2
K > α0 satisfying limn→∞ ∥∇(u2n)∥22 ≤ 2πK, then (2.2) yields

lim
|t|→+∞

|t|4G(t)
e2|t|4/K

= 0. (2.61)

From (2.1), (2.61) and (C) of Lemma 2.4, we derive that

lim
n→∞

∫
R2

G(un)dx =

∫
R2

G(u)dx. (2.62)

Since P0(un) = 0 and ∥un∥2 = 1, by (2.62), we have

0 < V0 = lim
n→∞

V0∥un∥22 = 2 lim
n→∞

∫
R2

G(un)dx = 2

∫
R2

G(u)dx, (2.63)

which implies that u ̸= 0. Now, we prove that the infimum A0 is attained by u. By the weak lower
semicontinuity of the norm and (2.62), we have

P0(u) = V0∥u∥22 − 2

∫
R2

G(u)dx ≤ lim
n→∞

(
V0∥un∥22 − 2

∫
R2

G(un)dx

)
= 0 (2.64)

and

0 <
1

2

∫
R2

(1 + 2u2)|∇u|2dx ≤ lim
n→∞

1

2

∫
R2

(1 + 2u2n)|∇un|2dx = A0. (2.65)

Next, it remains only to show that u ∈ P0, namely P0(u) = 0. Set

h(t) = P0(tu) = t2V0∥u∥22 − 2

∫
R2

G(tu)dx.
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Then h(1) ≤ 0 by (2.64), and from (2.3), we can deduce that h(t) > 0 for t > 0 small enough.
Consequently, there exists t0 ∈ (0, 1] such that P0(t0u) = 0, namely t0u ∈ P0. This together with
(2.65) leads to

A0 ≤ t20
2

∫
R2

(1 + 2t20u
2)|∇u|2dx ≤ t20A0.

The above inequality and (2.65) show that t0 = 1 and 1
2

∫
R2(1 + 2u2)|∇u|2dx = A0. Combining

(2.63) with the fact that P0(u) = 0, we have ∥u∥2 = 1. Applying Lemma 2.3, we have that this u is a
least energy solution of (Q)0 under a suitable change of scale. Noting that ⟨Φ′

0(u),−u−⟩ = 0, where
u± = max{±u, 0}, it follows that u− = 0 and so u = u+ ≥ 0. Arguing as in the proof of [22, Page
3368], we can derive that u > 0 in R2. The proof is completed.

Lemma 2.6. Assume that g satisfies (G1)-(G3). Then A0 < π/α0 if and only if V0 < C∗
TM(G),

where C∗
TM(G) is given by (2.58).

Proof. First, we verify that V0 < C∗
TM(G) yields A0 < π/α0. We distinguish two cases: C∗

TM(G) <
+∞ and C∗

TM(G) = +∞. In the case C∗
TM(G) < +∞, since V0 < C∗

TM(G), then V0 < C∗
TM(G)− ϵ0

for some ϵ0 > 0. By the definition of C∗
TM(G), there exists some u0 ∈ H \ {0} such that

2∥∇u0∥22 + ∥∇(u20)∥22 ≤ R(G) = 4π/α0 and V0 < C∗
TM(G)− ϵ0 <

2

∥u0∥22

∫
R2

G(u0)dx. (2.66)

Then

P0(u0) = V0∥u0∥22 − 2

∫
R2

G(u0)dx < 0. (2.67)

Let h0(t) = P0(tu0) for t > 0. Since h0(1) < 0 by (2.67), and h0(t) > 0 for t > 0 small enough by
(2.3), there exists t0 ∈ (0, 1) such that h0(t0) = P0(t0u0) = 0, namely t0u0 ∈ P0. Therefore, we have

A0 ≤ t20
2

∫
R2

(1 + 2t20u
2
0)|∇u0|2dx <

1

2

∫
R2

(1 + 2u20)|∇u0|2dx ≤ 1

4
R(G) =

π

α0
,

which shows that A0 < π/α0 in the case C∗
TM(G) < +∞. In the case C∗

TM(G) = +∞, for any
V0 > 0, there exists some u0 ∈ H \ {0} such that

2∥∇u0∥22 + ∥∇(u20)∥22 ≤ R(G) and V0∥u0∥22 < 2

∫
R2

G(u0)dx.

Hence we can repeat the same arguments as above to get the desired conclusion.
Now, we prove that A0 <

π
α0

yields V0 < C∗
TM(G). Clearly, if C∗

TM(G) = +∞, then V0 <
C∗

TM(G) and the proof is completed. Therefore, without loss of generality, we may assume that
C∗

TM(G) < +∞. Applying Lemma 2.5 we know that A0 is achieved by some function u ∈ Hr, that
is

P0(u) = V0∥u∥22 − 2

∫
R2

G(u)dx = 0 (2.68)

and
1

2

∫
R2

(1 + 2u2)|∇u|2dx = A0 <
π

α0
. (2.69)

Define the function

ψ(t) =
2

t2∥u∥22

∫
R2

G(tu)dx, ∀ t > 0.

Then (2.68) yields ψ(1) = V0. Note that ψ(t) is monotone increasing by (G3). Define the function

ϕ(t) = t2
∫
R2

|∇u|2dx+ t4
∫
R2

2u2|∇u|2dx, ∀ t > 0.
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By (2.69) and the continuity of ϕ, we know that there exists t0 > 1 such that

ϕ(t0) =

∫
R2

[
1 + 2(t0u)

2
]
|∇(t0u)|2dx =

2π

α0
. (2.70)

Set v = t0u. Then we have

2∥∇v∥22 + ∥∇(v2)∥22 =
4π

α0
,

and so

C∗
TM(G) ≥ 2

∥v∥22

∫
R2

G(v)dx = ψ(t0) > ψ(1) = V0.

This completes the proof.

2.2 Maximum characterization of the least energy solution

In order to finish the proof of Theorem 1.2, in addition to proving the existence of a least energy
solution, we also need to establish the maximum characterization. For this purpose, we make the
change of variable by v = f−1(u), where f is defined by (1.4). After the change of variable, we
obtain the following functional:

I0(v) = Φ0(u) = Φ0(f(v)) =
1

2

∫
R2

[
|∇v|2 + V0f

2(v)
]
dx−

∫
R2

G(f(v))dx. (2.71)

About the change of variable f(t), we have the following lemma, see [13,18,32].

Lemma 2.7. The following properties involving f(t) and its derivative hold:

(f1) f is uniquely defined, C∞ and invertible;

(f2) 0 < f ′(t) ≤ 1 for all t ∈ R;

(f3) |f(t)| ≤ |t| for all t ∈ R;

(f4) f(t)/t→ 1 as t→ 0;

(f5) f(t)/
√
t→ 21/4 as t→ +∞;

(f6) f(t)/2 ≤ tf ′(t) ≤ f(t) for all t > 0 and f(t) ≤ tf ′(t) ≤ f(t)/2 for all t ≤ 0;

(f7) |f(t)| ≤ 21/4|t|1/2 for all t ∈ R;

(f8) |f(t)f ′(t)| ≤ 1/
√
2 for all t ∈ R;

(f9) there exists a positive constant θ0 such that

|f(t)| ≥
{
θ0|t|, |t| ≤ 1,
θ0|t|1/2, |t| > 1;

(f10) t 7→ f(t)f ′(t)/|t| is strictly decreasing on (−∞, 0) ∪ (0,+∞);

(f11) t 7→ f3(t)f ′(t)/|t| is strictly increasing on (−∞, 0) ∪ (0,+∞).

By (2.3) and Lemma 2.7, we have for any ϵ > 0, α > α0 and q > 0, there exists C = C(ϵ, α, q) > 0
such that

2G(f(t)) ≤ g(f(t))f(t) ≤ ϵf2(t) + C|f(t)|q
(
eαf

4(t) − 1
)

≤ ϵt2 + C|t|q
(
e2αt

2

− 1
)
, ∀ t ∈ R. (2.72)
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Using (2.72), Lemmas 1.1 and 2.7, one can check that I0 ∈ C1(H1(R2),R), moreover,

⟨I ′0(v), v⟩ =
∫
R2

[
|∇v|2 + V0f(v)f

′(v)v
]
dx−

∫
R2

g(f(v))f ′(v)vdx, ∀ v ∈ H1(R2) (2.73)

and

⟨I ′0(v), f(v)/f ′(v)⟩ =
∫
R2

(
1 +

2f2(v)

1 + 2f2(v)

)
|∇v|2dx+

∫
R2

V0f
2(v)dx

−
∫
R2

g(f(v))f(v)dx, ∀ v ∈ H1(R2). (2.74)

As in [13], critical points of I0 are solutions of the semilinear equation

−∆v + V0f(v)f
′(v) = g(f(v))f ′(v). (S)0.

Then v is a solution of (S)0 if and only if u = f(v) solves (Q)0, see [13,32].
We define the following Mountain Pass level for I0:

c0 = inf
γ∈Γ0

max
t∈[0,1]

I0(γ(t)) with Γ0 =
{
γ ∈ C([0, 1], H1(R2) : γ(0) = 0, I0(γ(1)) < 0

}
. (2.75)

Remark 2.8. As in [20, Proposition 3.1], we can get the geometric hypotheses of the Mountain Pass
theorem for I0. Then the Mountain Pass level c0 in (2.75) is well-defined. Moreover, the following
proof will yield c0 ≤ c∗0, where c

∗
0 is the least energy for Φ0 defined by (1.13).

Proof of Theorem 1.2. If V0 < C∗
TM(G), then Lemma 2.6 leads toA0 < π/α0. Hence the assumptions

of Lemma 2.5 are fulfilled. This, jointly with (ii) of Lemma 2.3, shows that (Q)0 has a positive least
energy solution u0 ∈ H satisfying

A0 = c∗0 =
1

2

∫
R2

(1 + 2u20)|∇u0|2dx < π/α0. (2.76)

Next, we give the maximum characterization of the least energy solution. Let w = f−1(u0). Then

c∗0 = Φ0(u0) = Φ0(f(w)) = I0(w), Φ′
0(u0) = 0 and I ′0(w) = 0. (2.77)

We define a curve γ, constituted of the three pieces given by:

γ(θ) =


θ
t1
wt1 , if θ ∈ [0, t1],

w[t3(θ−t1)+(t2−θ)t1]/(t2−t1), if θ ∈ [t1, t2],
t2(θ−t2)+t3−θ

t3−t2
wt3 , if θ ∈ [t2, t3],

(2.78)

where wt(x) = w(x/t) and 0 < t1 < 1 < t2 < t3 are determined later. It is easy to check that
γ ∈ C([0, 1], H1(R2)). Since ⟨I ′0(w), w⟩ = 0 by (2.77), then (2.73) yields∫

R2

[g(f(w))− V0f(w)] f
′(w)wdx =

∫
R2

|∇w|2dx > 0.

Then we can find t2 > 1 such that∫
R2

[g(f(ξw))− V0f(ξw)] f
′(ξw)wdx > 0, ∀ ξ ∈ [1, t2]. (2.79)

Note that for any fixed t > 0,

d

dξ
I0(ξwt) = ⟨I ′0(ξwt), wt⟩
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= ξ

{
∥∇wt∥22 −

∫
R2

[g(f(ξwt))− V0f(ξwt)]
f ′(ξwt)wt

ξ
dx

}
= ξ

{
∥∇w∥22 − t2

∫
R2

[g(f(ξw))− V0f(ξw)]
f ′(ξw)w

ξ
dx

}
. (2.80)

Choosing t1 ∈ (0, 1), we have

∥∇w∥22 − t21

∫
R2

[g(f(ξw))− V0f(ξw)]
f ′(ξw)w

ξ
dx > 0, ∀ ξ ∈ [0, 1]. (2.81)

By (2.79), we can also choose t3 > t2 such that

∥∇w∥22 − t23

∫
R2

[g(f(ξw))− V0f(ξw)]
f ′(ξw)w

ξ
dx ≤ − 2

t22 − 1
∥∇w∥22, ∀ ξ ∈ [1, t2]. (2.82)

Thus we can see by (2.81) that the function I0

(
θ
t1
wt1

)
is increasing on θ ∈ [0, t1] and takes its

maximal at θ = t1, namely

I0(γ(θ)) = I0

(
θ

t1
wt1

)
≤ I0(wt1), ∀ θ ∈ [0, t1]. (2.83)

Since Φ′
0(u0) = 0 and u0 = f(w), then Lemma 2.1 gives

P0(u0) =

∫
R2

[
V0u

2
0 − 2G(u0)

]
dx =

∫
R2

[
V0f

2(w)− 2G(f(w))
]
dx = 0. (2.84)

From (1.4), (2.76) and (2.84), we derive that

I0(wt) =
1

2
∥∇w∥22 +

t2

2

∫
R2

[
V0f

2(w)− 2G(f(w))
]
dx

=
1

2
∥∇w∥22 =

1

2

∫
R2

(1 + 2u20)|∇u0|2dx

= Φ0(u0) = c∗0, ∀ t > 0, (2.85)

which implies

I0(w[t3(θ−t1)+(t2−θ)t1]/(t2−t1)) = I0(w) = Φ0(u0) = c∗0, ∀ θ ∈ [t1, t2]. (2.86)

Next by (2.80) and (2.82), we have I0(ξwt3) is decreasing on ξ ∈ [1, t2]. Noting that

t2(θ − t2) + t3 − θ

t3 − t2
∈ [1, t2] ⇔ θ ∈ [t2, t3],

we know that I0

(
t2(θ−t2)+t3−θ

t3−t2
wt3

)
is decreasing on θ ∈ [t2, t3]. Therefore,

I0(γ(θ)) ≤ I0(γ(t2)) = I0(t2wt3), ∀ θ ∈ [t2, t3]. (2.87)

Moreover, (2.82) yields

I0(γ(t3)) = I0(t2wt3) = I0(wt3) +

∫ t2

1

d

dξ
I0(ξwt3)dξ

≤ 1

2
∥∇w∥22 −

∫ t2

1

2ξ

t22 − 1
∥∇w∥22dξ

= −1

2
∥∇w∥22 < 0. (2.88)
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Combining (2.77), (2.83), (2.86) and (2.87), we have

I0(γ(θ)) ≤ I0(w) = c∗0, ∀ θ ∈ [0, t3]. (2.89)

Let γ0(θ) = γ(t3θ) for all θ ∈ [0, 1]. Then γ0 ∈ Γ0 by (2.88), where the definition of Γ0 is given in
(2.75). From this, (2.75), (2.77) and (2.89), we derive

c0 ≤ max
t∈[0,1]

I0(γ0(t)) = I0(w) = c∗0. (2.90)

Hence, (1.17) follows from (2.77), (2.90) and Lemma 2.7, and so Theorem 1.2 is proved.

Lemma 2.9. Assume that g satisfies (G1)-(G3) and (M2′). Then A0 ≤ c0 < π/α0 where A0 and
c0 are given by (2.14) and (2.75), respectively.

Proof. Arguing as in the proof of [37, Lemma 3.5], we can get the following estimate on the Mountain
Pass level:

c0 ≤ q − 2

2qC̃
(q−2)/2
q

Sq(V0)
q, (2.91)

replacing (M2) used in [37] by (M2′). By (1.10) and (2.91), we have c0 < π/α0. Based on the general
minimax principle [30, Proposition 2.8] (see also [28]), we can construct a Cerami sequence {vn} with
I0(vn) → c0 and with the extra property that P0(vn) → 0. By modifying the proof of [20, 37], we
can deduce that there exists v0 ∈ H1(R2) \ {0} such that I ′0(v0) = 0 and I0(v0) = c0. In particular,
we can take advantage of the additional information P0(vn) → 0 to get the boundedness of {∥vn∥}
without the condition (AR) required in [20, 37], which is the main difference from those. Hence,
A0 ≤ c0 < π/α0 follows from the definition of A0, since P0(v0) = 0. The proof is completed.

Remark 2.10. (i) Recalling (2.1) and in light of (B) of Lemma 2.4, we can easily derive that

C∗
TM(G) = +∞ if and only if limt→+∞

t2G(t)

eα0t4
= +∞. Hence, if g satisfies (M1′), then V0 <

C∗
TM(G) = +∞ is obvious.

(ii) From Lemmas 2.6 and 2.9, we can easily derive that (M2′) implies the inequality V0 < C∗
TM(G).

3 Modified problem

Under (V1), we know that E, defined by (1.18), is a Hilbert space with the inner product

(u, v) =

∫
R2

[∇u · ∇v + V (x)uv] dx, ∀ u, v ∈ E

and the induced norm denoted by ∥u∥ = (u, u)1/2. Then E ↪→ H1(R2), and so for s ∈ [2,∞), there
exists γs > 0 such that

∥v∥s ≤ γs∥v∥, ∀ v ∈ E. (3.1)

Observe that formally (Q)ε is the Euler-Lagrange equation associated to the following functional

Φε(u) =
ε2

2

∫
R2

(1 + 2u2)|∇u|2dx+

∫
R2

V (x)u2dx−
∫
R2

G(u)dx. (3.2)

As in Section 2.2, we make the change of variable by v = f−1(u), and get the functional:

Jε(v) = Φε(u) = Φε(f(v)) =
ε2

2

∫
R2

|∇v|2dx+

∫
R2

V (x)f2(v)dx−
∫
R2

G(f(v))dx, (3.3)
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where f is defined by (1.4). Using (2.72), Lemmas 1.1 and 2.7, one can check that Jε ∈ C1(E,R).
Then vε is a critical point of Jε(v) if and only if uε = f(vε) is a solution of (Q)ε, see [13,32].

3.1 Penalized nonlinearity

To find a critical point of Jε(v), defined by (3.3), we introduce the penalized nonlinearity,
following the idea of del Pino-Felmer [16]. We may suppose, without loss of generality, that the
boundary ∂Λ is smooth and 0 ∈ Λ and V (0) = infx∈Λ V (x) by the translation invariance of the
problem. To simplify the notation, in what follows, we let minx∈Λ V (x) = V0. Using (V1), (V2),
(G2) and (G3), we can choose numbers k > 2 and β0 > 0 such that

g(β0) = β0V0k
−1, inf

x∈R2
V (x) > 2V0k

−1, (3.4)

and set

ḡ(t) :=

{
g(t), 0 ≤ t ≤ β0,
V0k

−1t, t > β0.
(3.5)

We consider the modified nonlinearity that is the Carathéodory function

g(x, t) :=

{
χΛ(x)g(t) + (1− χΛ(x)) ḡ(t), t ≥ 0,
0, t < 0,

(3.6)

where χΛ is the characteristic function on Λ defined by

χΛ(x) =

{
1, x ∈ Λ,
0, x ∈ R2 \ Λ. (3.7)

Let Ḡ(t) :=
∫ t

0
ḡ(s)ds and G(x, t) :=

∫ t

0
g(x, s)ds. We have the following properties on g.

Proposition 3.1. Assume that g satisfies (G1)-(G5). Then

(g1) g(x, t) = o(t) uniformly in x as t→ 0 and g(x, t) ≤ g(t) for all x ∈ R2 and t ≥ 0;

(g2) 0 ≤ 4G(x, t) ≤ g(x, t)t for all x ∈ Λ and t ≥ 0, or x ∈ R2 \ Λ and 0 ≤ t ≤ β0;

(g3) 0 ≤ 2G(x, t) ≤ g(x, t)t ≤ V0k
−1t2 and 0 ≤ g(x, f(t))f ′(t)t ≤ V0k

−1f(t)f ′(t)t for all x ∈ R2 \Λ
and t ≥ 0.

This proposition and (2.72) imply that for any ϵ > 0, α > α0 and q > 0, there exists C =
C(ϵ, α, q) > 0 such that

2G(x, f(t)) ≤ g(x, f(t))f(t) ≤ ϵf2(t) + C|f(t)|q
(
eαf

4(t) − 1
)

≤ ϵt2 + C|t|q
(
e2αt

2

− 1
)
, ∀ (x, t) ∈ R2 × R. (3.8)

For every ε ∈ (0, 1], we introduce the penalized functional Iε : E → R as follows:

Iε(v) =
1

2

∫
R2

[
ε2|∇v|2 + V (x)f2(v)

]
dx−

∫
R2

G(x, f(v))dx. (3.9)

Using (3.8), Lemmas 1.1 and 2.7, one can check that Iε ∈ C1(E,R), and

⟨I ′ε(v), ϕ⟩ =
∫
R2

[
ε2∇v · ∇ϕ+ V (x)f(v)f ′(v)ϕ

]
dx

−
∫
R2

g(x, f(v))f ′(v)ϕdx, ∀ ϕ ∈ E.

(3.10)

Moreover, the critical points of Iε are solutions of the modified problem:

−ε2∆v = f ′(v) [g(x, f(v))− V (x)f(v)] , x ∈ R2. (S)ε

In this section, we try to find a positive ground state solution for modified problem (S)ε.
Precisely, we are going to prove the following theorem.
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Theorem 3.2. Assume that (V1), (V2) and (G1)-(G5) hold. Let V0 = minx∈Λ V (x) < C∗
TM(G),

where C∗
TM(G) is given by (1.16). Then there exists ε0 > 0 such that (S)ε possesses a positive ground

state solution for any ε ∈ (0, ε0).

In this paper, we say that a solution of (S)ε is a ground state solution if it has the least energy
on the Nehari manifold defined by

Nε := {v ∈ E \ {0} : ⟨I ′ε(v), v⟩ = 0} . (3.11)

3.2 Mountain pass geometry

In this subsection, we verify that Iε(u) has a mountain pass geometry, and then obtain a Cerami
sequence of Iε(u) for every fixed ε ∈ (0, 1]. To this end, for ρ > 0, we define

A(v) :=

∫
R2

[
|∇v|2 + f2(v)

]
dx and Sρ := {u ∈ E : A(v) = ρ} . (3.12)

Clearly, Sρ is a closed subset and disconnects the space E. We have the following properties:
Proposition 3.3. Assume that (V1), (V2) and (G1)-(G4) hold. Then for any ε ∈ (0, 1],

(i) there exist ρε, δε > 0 such that Iε(v) ≥ δε for all v ∈ Sρε , where Sρε is given by (3.12);

(ii) there exists v0 ∈ C∞
0 (R2) with A(v0) > ρε such that Iε(v0) < 0.

Proof. (i) From (3.8), we know that for given α > α0, there exists C1 > 0 such that

G(x, f(t)) ≤ V0
4k
f2(t) + C1

(
eαf

4(t) − 1
)
f3(t)

≤ V0
4k
f2(t) + C1

(
e2αt

2

− 1
)
f3(t), ∀ (x, t) ∈ R2 × R. (3.13)

In view of Lemma 1.1, we have∫
R2

(
e4αv

2

− 1
)
dx =

∫
R2

(
e4α∥∇v∥2(v/∥∇v∥)2 − 1

)
dx ≤ C1, ∀ v ∈ E,A(v) ≤ π/2α. (3.14)

Note that ∥∇f(v)∥22 ≤ 2∥∇v∥22 for all v ∈ E. Then (3.1) (3.13), (3.14) and the Hölder inequality
give ∫

R2

G(x, f(v))dx ≤ V0
4k

∥f(v)∥22 + C1

∫
R2

(
e2αv

2

− 1
)
|f(v)|3dx

≤ V0
4k

∥f(v)∥22 + C1

[∫
R2

(
e4αv

2

− 1
)
dx

]1/2
∥f(v)∥36

≤ V0
4k

∥f(v)∥22 + C2[A(v)]
3/2, ∀ v ∈ E,A(v) ≤ π/2α. (3.15)

Hence, it follows from (3.4), (3.9) and (3.15) that

Iε(v) =
ε2

2

∫
R2

|∇v|2dx+
1

2

∫
R2

V (x)f2(v)dx−
∫
R2

G(x, f(v))dx

≥ ε2

4k
min{1, V0}A(v)− C2[A(v)]

3/2, ∀ v ∈ E,A(v) ≤ π/2α. (3.16)

Therefore, there exists δε > 0 and 0 < ρε < π/2α such that Iε(v) ≥ δε for all v ∈ Sρε
.

(ii) By (G1)-(G4), there exist K1,K2 > 0 and µ0 > 4 such that

G(t) ≥ K1t
µ0 −K2t

2, ∀ t ≥ 0. (3.17)

Using (3.17), a standard argument shows the desired conclusion.
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Using Proposition 3.3 and applying the Mountain Pass Theorem, we know that for any ε ∈ (0, 1],
there exists a Cerami sequence, reads as follows.

Lemma 3.4. Assume that (V1), (V2) and (G1)-(G4) hold. Then for any ε ∈ (0, 1], there exists a
sequence {vε,n} ⊂ E such that

Iε(vε,n) → cε, ∥I ′ε(vε,n)∥(1 + ∥vε,n∥) → 0, (3.18)

where

cε = inf
γ∈Γε

max
t∈[0,1]

Iε(γ(t)) > δε with Γε = {γ ∈ C([0, 1], E) : γ(0) = 0, Iε(γ(1)) < 0} . (3.19)

3.3 Characterization of the mountain-pass level

In this subsection, we establish the characterization of the mountain-pass level cε for any ε ∈
(0, 1], where cε is defined by (3.19).

Arguing as in [18, Lemma 3.7], we can easily show the following lemma.
Lemma 3.5. Assume that (V1), (V2) and (G1)-(G4) hold. Let ε ∈ (0, 1]. Then for any v ∈ E \{0},
there exists tv > 0 such that tvv ∈ Nε, where Nε is defined by (3.11).

Lemma 3.6. Assume that (V1), (G1), (G2), (G4) and (G5) hold. Let ε ∈ (0, 1]. Then

Iε(v) ≥ Iε(tv) +
1− t2

2
⟨I ′ε(v), v⟩, ∀ v ∈ E, t ≥ 0. (3.20)

Proof. For any v ̸= 0, (f10) of Lemma 2.7 yields

1

2

[
f2(v)− f2(tv)

]
− 1− t2

2
f(v)f ′(v)v =

∫ t

1

[
f(v)f ′(v)

v
− f(sv)f ′(sv)

sv

]
sv2ds ≥ 0, (3.21)

moreover, (G5) and (f11) of Lemma 2.7 imply

G(f(tv))−G(f(v)) +
1− t2

2
g(f(v))f ′(v)v =

∫ t

1

[g(f(sv))f ′(sv)v − g(f(v))f ′(v)sv] ds

=

∫ t

1

[
g(f(sv))

f3(sv)
· f

3(sv)f ′(sv)

sv
− g(f(v))

f3(v)
· f

3(v)f ′(v)

v

]
sv2ds ≥ 0. (3.22)

By (3.4), Proposition 3.1, (f2) and (f11) of Lemma 2.7, we have∫
R2\Λ

{
V (x)

[
1

2
f2(v)− 1

2
f2(tv)− 1− t2

2
f(v)f ′(v)v

]
+G(x, f(tv))−G(x, f(v)) +

1− t2

2
g(x, f(v))f ′(v)v

}
dx

=

∫
R2\Λ

{[
G(x, f(tv))− V (x)

2
f2(tv)

]
−
[
G(x, f(v))− V (x)

2
f2(v)

]
+

1− t2

2
[g(x, f(v))− V (x)f(v)] f ′(v)v

}
dx

= −
∫
R2\Λ

∫ t

1

[
V (x)f(sv)− g(x, f(sv))

f(sv)
· f(sv)f

′(sv)

sv

− V (x)f(v)− g(x, f(v))

f(v)
· f(v)f

′(v)

v

]
sv2dsdx ≥ 0. (3.23)

Hence, it follows from (3.9), (3.10), (3.21), (3.22) and (3.23) that

Iε(v)− Iε(tv)
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=
1− t2

2

∫
R2

|∇v|2dx+
1

2

∫
R2

V (x)
[
f2(v)− f2(tv)

]
dx

+

∫
R2

[G(x, f(tv))−G(x, f(v))] dx

=
1− t2

2
⟨I ′ε(v), v⟩+

∫
R2

V (x)

[
1

2
f2(v)− 1

2
f2(tv)− 1− t2

2
f(v)f ′(v)v

]
dx

+

∫
R2

[
G(x, f(tv))−G(x, f(v)) +

1− t2

2
g(x, f(v))f ′(v)v

]
dx

=
1− t2

2
⟨I ′ε(v), v⟩+

∫
Λ

V (x)

[
1

2
f2(v)− 1

2
f2(tv)− 1− t2

2
f(v)f ′(v)v

]
dx

+

∫
Λ

[
G(f(tv))−G(f(v)) +

1− t2

2
g(f(v))f ′(v)v

]
dx

+

∫
R2\Λ

{
V (x)

[
1

2
f2(v)− 1

2
f2(tv)− 1− t2

2
f(v)f ′(v)v

]
+G(x, f(tv))−G(x, f(v)) +

1− t2

2
g(x, f(v))f ′(v)v

}
dx

≥ 1− t2

2
⟨I ′ε(v), v⟩, ∀ t ≥ 0.

This shows that (3.20) holds.

Corollary 3.7. Assume that (V1), (V2) and (G1)-(G5) hold. Let ε ∈ (0, 1]. Then

mε := inf
v∈Nε

Iε(v) = inf
v∈E\{0}

sup
t>0

Iε(tv). (3.24)

Lemma 3.8. Assume that (V1), (V2) and (G1)-(G5) hold. Let ε ∈ (0, 1]. Then mε = cε, where cε
is given by (3.19).

Let
m0 := inf

v∈N0

I0(v) with N0 =
{
v ∈ H1(R2) \ {0} : ⟨I ′0(v), v⟩ = 0

}
. (3.25)

Clearly, the results in the above lemmas on modified problem (S)ε still work for the autonomous
problem (S)0. Combining with the result obtained in Section 2, we have the following theorem.

Theorem 3.9. Assume that (G1)-(G5) hold. Let 0 < V0 < C∗
TM(G), where C∗

TM(G) is given by
(1.16). Then (S)0 has a positive solution v0 ∈ H1(R2) such that

I0(v0) = c0 = m0 = inf
v∈N0

I0(v) = inf
v∈H1(R2)\{0}

sup
t>0

I0(tv) <
π

α0
. (3.26)

3.4 Local Cerami condition

In this subsection, we will prove that Iε satisfies the Cerami condition in a certain level. For
simplicity, we denote the Cerami sequence {vε,n} given by Lemma 3.4 by {vn} in this subsection.
Lemma 3.10. Assume that (V1), (V2) and (G1)-(G5) hold. Let ε ∈ (0, 1]. Then any sequence {vn}
satisfying (3.18) is bounded in E.

Proof. Note that (3.10) yields

⟨I ′ε(v), f(v)/f ′(v)⟩ =
∫
R2

ε2
(
1 +

2f2(v)

1 + 2f2(v)

)
|∇v|2dx+

∫
R2

V (x)f2(v)dx

−
∫
R2

g(x, f(v))f(v)dx, ∀ v ∈ E.

(3.27)
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Moreover, by Lemma 2.7, we have

∥f(vn)/f ′(vn)∥2 =

∫
R2

{[
1 +

2f2(vn)

1 + 2f2(vn)

]
|∇vn|2 +

[
1 + 2f2(vn)

]
f2(vn)

}
≤ 5∥vn∥2. (3.28)

Using (G5), it is easy to see that

1

4
g(t)t−G(t) ≥ 0, ∀ t ≥ 0. (3.29)

Using (G3) and (G4), it is easy to check that for each δ > 0, there exists Rδ > 0 satisfying

g(t)t ≥ δG(t), ∀ |t| ≥ Rδ. (3.30)

Then it follows from (3.4), (3.9), (3.18), (3.27), (3.28), (3.29) and (3.30) with δ > 4 that

cε + o(1) = Iε(vn)−
1

4
⟨I ′ε(vn), f(vn)/f ′(vn)⟩

=
1

4

∫
R2

[
ε2|∇f(vn)|2 + V (x)f2(vn)

]
dx− 1

4

∫
R2\Λ

V0
k
f2(vn)dx

+

∫
{x∈Λ:|f(vn)|≤Rδ}

[
1

4
g(f(vn))f(vn)−G(f(vn))

]
dx

+

∫
{x∈Λ:|f(vn)|>Rδ}

[
1

4
g(f(vn))f(vn)−G(f(vn))

]
dx

≥ 1

4k

∫
R2

[
ε2|∇f(vn)|2 + V0f

2(vn)
]
dx+

δ − 4

4δ

∫
{x∈Λ:|f(vn)|>Rδ}

g(f(vn))f(vn)dx.

The above inequality implies that

∥f(vn)∥ ≤ C1,

∫
{x∈Λ:|f(vn)|>Rδ}

g(f(vn))f(vn)dx ≤ C2. (3.31)

Since ⟨I ′ε(vn), vn⟩ = o(1), it follows from (3.31), (f6) of Lemma 2.7 and Proposition 3.1 that

ε2∥∇vn∥22 ≤ ε2∥∇vn∥22 +
∫
R2

V (x)f(vn)f
′(vn)vndx =

∫
R2

g(x, f(vn))f
′(vn)vndx+ o(1)

≤ C3∥f(vn)∥22 +
∫
{x∈Λ:|f(vn)|>Rδ}

g(f(vn))f(vn)dx+ o(1) ≤ C4. (3.32)

Moreover, by (3.31), (f9) of Lemma 2.7 and the Sobolev embedding theorem, we have∫
R2

v2ndx =

∫
{|vn|≤1}

v2ndx+

∫
{|vn|>1}

v2ndx ≤ 1

θ20

∫
R2

f2(vn)dx+
1

θ40

∫
R2

f4(vn)dx ≤ C5. (3.33)

Combining (3.32) with (3.33), we get the boundedness of {∥vn∥}, and the lemma is proved.

Lemma 3.11. Assume that (V1), (V2) and (G1)-(G5) hold. Let ε ∈ (0, 1] and {vn} be a Cerami
sequence satisfying (3.18). Then for given ϵ > 0 there exists Rϵ > 0 such that

lim sup
n→∞

∫
|x|≥Rϵ

[
ε2|∇vn|2 + V (x)f(vn)f

′(vn)vn
]
dx ≤ ϵ. (3.34)
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Proof. We choose R > 0 suitably large such that

Λ ⊂ BR/2(0), (3.35)

and take a cut-off function ηR ∈ C∞(R2, [0, 1]) such that ηR = 0 on BR/2(0), ηR = 1 on R2 \BR(0)
and |∇ηR| ≤ 3/R. Then ηR = 0 on Λ. By (3.10), (3.18), (g3) of Proposition 3.3 and Lemma 3.6, we
have

o(1) = ⟨I ′ε(vn), ηRvn⟩

=

∫
R2

[
ε2|∇vn|2 + V (x)f(vn)f

′(vn)vn
]
ηRdx+ ε2

∫
R2

(∇vn · ∇ηR) vndx

−
∫
R2

g(x, f(vn))f
′(vn)vnηRdx

≥ 1

2

∫
R2

[
ε2|∇vn|2 + V (x)f(vn)f

′(vn)vn
]
ηRdx− 3ε2

R

∫
R2

|∇vn||vn|dx

≥ 1

2

∫
|x|≥R

[
ε2|∇vn|2 + V (x)f(vn)f

′(vn)vn
]
dx− C6ε

2

R
,

which implies ∫
|x|≥R

[
ε2|∇vn|2 + V (x)f(vn)f

′(vn)vn
]
dx ≤ 2C6ε

2

R
+ o(1). (3.36)

Hence, for given ϵ > 0, there exists Rϵ > 0 such that (3.34) holds .

From [14, Lemma 2.1] and Lemma 2.7, we can get the following lemma.

Lemma 3.12. Assume that (G1) and (G2) hold. Let vn ⇀ v̄ in H1(R2).

(i) If
∫
R2 |g(x, vn)vn|dx ≤ K0 for some constant K0 > 0, then

limn→∞
∫
R2 g(x, vn)ϕdx =

∫
R2 g(x, v̄)ϕdx for any ϕ ∈ C∞

0 (R2).

(ii) If
∫
R2 |g(x, f(vn))f(vn)|dx ≤ K ′

0 for some constant K ′
0 > 0, then

limn→∞
∫
R2 g(x, f(vn))f

′(vn)ϕdx =
∫
R2 g(x, f(v̄))f

′(v̄)ϕdx for any ϕ ∈ C∞
0 (R2), if further (G4)

holds, limn→∞
∫
Ω
G(x, f(vn))dx =

∫
Ω
G(x, f(v̄))dx for any compact set Ω ⊂ R2.

Lemma 3.13. Assume that (V1), (V2) and (G1)-(G5) hold. Let ε ∈ (0, 1]. If cε < ε2π/α0, then
there exists vε > 0 such that Iε(vε) = cε and I ′ε(vε) = 0.

Proof. Applying Lemmas 3.4 and 3.10, for any ε ∈ (0, 1], there exists a bounded sequence {vn} ⊂ E
satisfying (3.18). We may thus assume, passing to a subsequence if necessary, that vn ⇀ vε in E,
vn → vε in Ls

loc(R2) for s ∈ [1,∞) and vn → vε a.e. in R2. Then (3.31) gives∫
R2

|g(x, f(vn))f(vn)|dx =

∫
R2

g(x, f(vn))f(vn)dx ≤ C7. (3.37)

From (3.37) and (ii) of Lemma 3.12, we can deduce that I ′ε(vε) = 0. Let cε < ε2π/α0. The rest of
the proof of Lemma 3.13 consists of several steps.

Step 1: We prove that vε > 0.
First, we claim that vε ̸= 0. For this, we suppose by contradiction that vε = 0. Then vn → 0 in
Ls
loc(R2) for s ∈ [1,∞) and vn → 0 a.e. in R2. From (f3) and (f6) of Lemma 2.7 and Lemma 3.11,

we then deduce that ∫
R2

f(vn)f
′(vn)vndx = o(1),

∫
R2

f2(vn)dx = o(1). (3.38)
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Noting that R2 \BR(0) ⊂ R2 \ Λ by (3.35), it follows from (3.38) and (g3) of Proposition 3.1 that∫
|x|>R

G(x, f(vn))dx ≤ V0
2k

∥f(vn)∥22 = o(1). (3.39)

Moreover, (ii) of Lemma 3.12 yields∫
|x|≤R

G(x, f(vn))dx = o(1). (3.40)

Combining (3.39) with (3.40), we have∫
R2

G(x, f(vn))dx = o(1). (3.41)

Since cε < ε2π/α0, it follows from (3.9), (3.18), (3.38) and (3.41) that

ε2∥∇vn∥22 ≤ 2cε + 2

∫
R2

G(x, f(vn))dx+ o(1) := ε2
2π

α0
(1− 3ϵ̄) + o(1) (3.42)

for some ϵ̄ > 0. Let us choose q ∈ (1, 2) such that

(1 + ϵ̄) (1− 2ϵ̄) q

1− ϵ̄
< 1. (3.43)

Then (G1) and (f7) of Lemma 2.7 yield

|g(x, f(t))|q ≤ C8

[
eα0(1+ϵ̄)qf4(t) − 1

]
≤ C8

[
e2α0(1+ϵ̄)qt2 − 1

]
, ∀ |f(t)| ≥ 1. (3.44)

By (3.42), (3.43), (3.44) and ii) of Lemma 1.1, we have∫
|f(vn)|≥1

|g(x, f(vn))|qdx ≤ C8

∫
R2

[
e2α0(1+ϵ̄)qv2

n − 1
]
dx

= C8

∫
R2

[
e2α0(1+ϵ̄)q(∥∇vn∥2

2+2πϵ̄/α0)v2
n/(∥∇vn∥2

2+2πϵ̄/α0) − 1
]
dx ≤ C9. (3.45)

Note that f(vn) → 0 in Ls(R2) for any s ≥ 2 by (3.38) and the Sobolev embedding theorem. Let
q′ = q/(q − 1). Then it follows from (3.45), the Hölder inequality and (f6) of Lemma 2.7, we have∫

|f(vn)|≥1

g(x, f(vn))f
′(vn)vndx ≤

∫
|f(vn)|≥1

g(x, f(vn))f(vn)dx

≤

[∫
|f(vn)|≥1

|g(x, f(vn))|qdx

]1/q
∥f(vn)∥q′ = o(1). (3.46)

Moreover, using (G1), (G2), (f3) of Lemma 2.7 and (3.38), we can check easily that∫
|f(vn)|<1

g(x, f(vn))f
′(vn)vndx ≤ C10∥f(vn)∥22 = o(1). (3.47)

Combining (3.10), (3.38), (3.46) and (3.47), we derive that

o(1) = ⟨I ′ε(vn), vn⟩ = ε2∥∇vn∥22 +
∫
R2

V (x)f(vn)f
′(vn)vndx+ o(1),

which, together with (3.9), (3.18), (3.19), (3.41) and (f6) of Lemma 2.7, leads to

δε ≤ cε + o(1) = Iε(vn) = o(1).
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This contradiction shows that vε ̸= 0. Noting that ⟨I ′ε(vε),−v−ε ⟩ = 0, where v±ε = max{±vε, 0}, it
follows that v−ε = 0 and so vε = v+ε ≥ 0. Arguing as in the proof of [22, Page 3368], we can derive
that vε > 0 in R2.

Step 2: We prove that limn→∞ ∥∇vn∥22 < 2π
α0

+ ∥∇vε∥22, up to a subsequence.

Suppose, by contradiction, that lim supn→∞ ∥∇vn∥22 ≥ 2π
α0

+ ∥∇vε∥22. Note that

⟨I ′ε(vn), f(vn)/f ′(vn)⟩ = o(1) and ⟨I ′ε(vε), f(vε)/f ′(vε)⟩ = 0. (3.48)

Then (3.27) and (3.48) give∫
Λ

[g(f(vn))f(vn)− g(f(vε))f(vε)] dx+
V0
k

∫
R2\Λ

[
f2(vn)− f2(vε)

]
dx

= ε2
∫
R2

[(
1 +

2f2(vn)

1 + 2f2(vn)

)
|∇vn|2 −

(
1 +

2f2(vε)

1 + 2f2(vε)

)
|∇vε|2

]
dx

+

∫
R2

V (x)
[
f2(vn)− f2(vε)

]
dx+ o(1). (3.49)

Using Lemma 3.11 and (ii) of Lemma 3.12, it is easy to see that∫
Λ

[G(f(vn))−G(f(vε))] dx = 0. (3.50)

Then it follows from (3.9), (3.18), (3.27), (3.48), (3.49), (3.50) and Fatou’s lemma that, up to a
subsequence,

cε + o(1) = Iε(vn)−
1

4
⟨I ′ε(vn), f(vn)/f ′(vn)⟩

=
1

4

∫
R2

[
ε2|∇vn|2

1 + 2f2(vn)
+ V (x)f2(vn)

]
dx− V0

4k

∫
R2\Λ

f2(vn)dx

+
1

4

∫
Λ

[g(f(vn))f(vn)− g(f(vε))f(vε)] dx

+

∫
Λ

[
1

4
g(f(vε))f(vε)−G(f(vε))

]
dx

=
1

4

∫
R2

[
ε2|∇vn|2

1 + 2f2(vn)
+ V (x)f2(vn)

]
dx− V0

4k

∫
R2\Λ

f2(vn)dx

+
ε2

4

∫
R2

[(
1 +

2f2(vn)

1 + 2f2(vn)

)
|∇vn|2 −

(
1 +

2f2(vε)

1 + 2f2(vε)

)
|∇vε|2

]
dx

− V0
4k

∫
R2\Λ

[
f2(vn)− f2(vε)

]
dx+

∫
R2

V (x)
[
f2(vn)− f2(vε)

]
dx

+

∫
Λ

[
1

4
g(f(vε))f(vε)−G(f(vε))

]
dx+ o(1)

≥ ε2

2

∫
R2

|∇vn|2dx− ε2

4

∫
R2

[(
1 +

2f2(vε)

1 + 2f2(vε)

)
|∇vε|2

]
dx+ o(1)

≥ ε2
π

α0
+
ε2

2

∫
R2

|∇vε|2dx− ε2

4

∫
R2

[(
1 +

2f2(vε)

1 + 2f2(vε)

)
|∇vε|2

]
dx+ o(1)

= ε2
π

α0
+
ε2

4
∥∇f(vε)∥22 + o(1).

This contradicts to the assumption cε < ε2π/α0. Hence, limn→∞ ∥∇vn∥22 < 2π
α0

+ ∥∇vε∥22.
Step 3: We prove that vn → vε in E, up to a subsequence.
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For this, we first verify that ∥vn − vε∥2 → 0. From Lemma 3.11 and the Gagliardo-Nirenberg
inequality, we can deduce that for ϵ > 0 small enough, there exists R′

ϵ > 0 large enough such that∫
R2\BR′

ϵ

[
f2(vn) + f4(vn)

]
dx ≤ ϵ. (3.51)

Jointly with (f9) of Lemma 2.7, we have∫
R2\BR′

ϵ

v2ndx ≤ 1

θ20

∫
{x∈R2\BR′

ϵ
:|vn|≤1}

f2(vn)dx+
1

θ40

∫
{x∈R2\BR′

ϵ
:|vn|>1}

f4(vn)dx

≤ θ20 + 1

θ40
ϵ. (3.52)

Combining (3.52) and the fact that vn → vε in L2(BR′
ϵ
), we get∫

R2

|vn − vε|2dx =

∫
BR′

ϵ

|vn − vε|2dx+

∫
R2\BR′

ϵ

|vn − vε|2dx ≤ o(1) + C11ϵ,

which, together with the arbitrariness of ϵ > 0, yields ∥vn − vε∥2 → 0. From this, the Sobolev
embedding theorem and Lemma 2.7, we can derive

∥vn − vε∥s → 0 and ∥f(vn)− f(vε)∥s → 0, ∀ s ≥ 2. (3.53)

By Step 2, we know that there exists ϵ̂ > 0 such that, up to a subsequence,

∥∇(vn − vε)∥22 =
2π(1− 3ϵ̂)

α0
for large n ∈ N. (3.54)

Let us choose q̂ ∈ (1, 2) such that
(1 + ϵ̂)2(1− 2ϵ̂)q̂2

1− ϵ̂
< 1. (3.55)

Noting that Λ is a bounded domain, it follows from (3.54), (3.55), the Young’s inequality and the
Trudinger-Moser inequality in bounded domains that∫

Λ

|g(f(vn))|q̂dx ≤ C12

∫
Λ

eα0(1+ϵ̂)q̂f4(vn)dx

≤ C12

∫
Λ

e2α0(1+ϵ̂)2 ϵ̂−1q̂v2
εe2α0(1+ϵ̂)2q̂(vn−vε)

2

dx

≤ (q̂ − 1)C12

q̂

∫
Λ

e2α0(1+ϵ̂)2ϵ̂−1q̂2(q̂−1)−1v2
εdx+

C12

q̂

∫
Λ

e2α0(1+ϵ̂)2q̂2(vn−vε)
2

dx

≤ C13 +
C12

q̂

∫
Λ

e2α0(1+ϵ̂)2q̂2(∥∇(vn−vε)∥2
2+2πϵ̂/α0)(vn−vε)

2/(∥∇(vn−vε)∥2
2+2πϵ̂/α0)dx ≤ C14. (3.56)

Let q̂′ = q̂/(q̂ − 1). Then by Lemma 2.7, (3.56) and the Hölder inequality, we get∣∣∣∣∫
Λ

g(f(vn))[f(vn)− f(vε)]dx

∣∣∣∣ ≤ [∫
Λ

|g(f(vn))|q̂dx
]1/q̂ [∫

Λ

|f(vn)− f(vε)|q̂
′
dx

]1/q̂′
= o(1). (3.57)

Noting that f(vn)⇀ f(vε) in H
1(R2), by (3.37) and (i) of Lemma 3.12, we have∫

Λ

[g(f(vn))− g(f(vε))]f(vε)dx = o(1). (3.58)

Combining (3.57) with (3.58), we get∫
Λ

[g(f(vn))f(vn)− g(f(vε))f(vε)] dx
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=

∫
Λ

g(f(vn))[f(vn)− f(vε)]dx+

∫
Λ

[g(f(vn))− g(f(vε))]f(vε)dx = o(1). (3.59)

Therefore, it follows from (3.48), (3.49), (3.53) and (3.59) that

o(1) =

∫
Λ

[g(f(vn))f(vn)− g(f(vε))f(vε)] dx+
V0
k

∫
R2\Λ

[
f2(vn)− f2(vε)

]
dx

= ε2
∫
R2

[(
1 +

2f2(vn)

1 + 2f2(vn)

)
|∇vn|2 −

(
1 +

2f2(vε)

1 + 2f2(vε)

)
|∇vε|2

]
dx

+

∫
R2

V (x)
[
f2(vn)− f2(vε)

]
dx+ o(1),

which, together with Fatou’s lemma, implies that ∥∇(vn−vε)∥2 → 0. This, jointly with (3.53), shows
that vn → vε in E up to a subsequence, and so Iε(vε) = cε and I ′ε(vε) = 0 provided cε < ε2π/α0.
The proof is completed.

Now, to end the proof of Theorem 3.2, using Lemmas 3.8 and 3.13, it suffices to establish
the desired estimate of the mountain-pass level. Hereafter, we always assume that (V1), (V2) and
(G1)-(G5) hold, and let V0 = minx∈Λ V (x) < C∗

TM(G), where C∗
TM(G) is given by (2.58).

3.5 Estimate of the mountain-pass level

In this subsection, we give the estimate of the mountain-pass level cε, defined by (3.19), and
finish the proof of Theorem 3.2.
Lemma 3.14. There exists ε0 > 0 such that cε < ε2π/α0 for all ε ∈ (0, ε0].

For the proof of Lemma 3.14, we need to work with stretched variables, because of the presence
of ε2 before the component-∥∇u∥22 in Iε(u). Precisely, we change the variables as z = εx, and
consider the following energy functional:

Iε(v) =
1

2

∫
R2

[
|∇v|2 + V (εx)f2(v)

]
dx−

∫
R2

G(εx, f(v))dx (3.60)

associated to the equation:

−∆v = f ′(v) [g(εx, f(v))− V (εx)f(v)] , x ∈ R2, (S̃)ε

and defined on the Banach space

Eε :=

{
v ∈ H1(R2) :

∫
R2

V (εx)v2dx <∞
}
. (3.61)

It is easy to see that Iε ∈ C1(Eε,R), and

⟨I ′
ε(v), ϕ⟩ =

∫
R2

[∇v · ∇ϕ+ V (εx)f(v)f ′(v)ϕ] dx

−
∫
R2

g(εx, f(v))f ′(v)ϕdx, ∀ ϕ ∈ Eε. (3.62)

For every ε ∈ (0, 1], we consider the Nehari manifold

Ñε = {v ∈ Eε \ {0} : ⟨I ′
ε(v), v⟩ = 0} . (3.63)

Arguing as in Lemmas 3.5, 3.6 and Corollary 3.7, for any ε ∈ (0, 1], we have

m̃ε := inf
v∈Ñε

Iε(v) = inf
v∈Eε\{0}

sup
t>0

Iε(tv). (3.64)

The following lemma is crucial in the proof of Lemma 3.14.
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Lemma 3.15. lim supε→0 m̃ε ≤ m0.

Proof. Let v0 be a positive ground state solution of (S)0 involved in Theorem 3.9. Without loss of
generality, we may assume that v0 maximizes at zero. Consider the function wε = ϕ(εx)v0, where
ϕ ∈ C∞

0 (R2, [0, 1]) is defined by

ϕ(x) =

{
1, x ∈ Bρ,

0, x ∈ R2 \B2ρ

(3.65)

with ρ > 0 such that B2ρ ⊂ Λ. It is easy to see that wε → v0 in H1(R2) as ε→ 0. Furthermore,

supp wε ⊂ Λε := {x ∈ R2 : εx ∈ Λ} (3.66)

and ∫
R2

V (εx)w2
εdx ≤

∫
Λε

V (εx)w2
εdx ≤ sup

x∈Λ
V (x)∥wε∥22 ≤ sup

x∈Λ
V (x)∥v0∥22. (3.67)

Then (3.66) and (3.67) imply that wε ∈ Eε,∫
R2

G(εx, f(wε))dx =

∫
R2

G(f(wε))dx (3.68)

and ∫
R2

g(εx, f(tεwε))f
′(tεwε)tεwεdx =

∫
R2

g(f(tεwε))f
′(tεwε)tεwεdx. (3.69)

Similarly as in Lemma 3.5, we derive that for each ε ∈ (0, 1], there exists tε > 0 such that tεwε ∈ Ñε,
i.e.,

⟨I ′
ε(tεwε), tεwε⟩ = 0, (3.70)

and so Iε(tεwε) ≥ m̃ε by (3.64). By (G4), (3.17) and (3.70), arguing as in the proof of [18, Lemma
19], we can deduce that {tε} is bounded. We claim that, up to a subsequence,∫

R2

[
V (εx)f2(wε)− V0f

2(v0)
]
dx→ 0 as ε→ 0 (3.71)

and ∫
R2

[V (εx)f ′(wε)wε − V0f
′(v0)v0] dx→ 0 as ε→ 0. (3.72)

Next, we just give the proof of (3.71), because the other is similar. Since

sup
x∈Λε

V (εx) ≤ sup
x∈Λ

V (x), ∀ ε ∈ (0, 1]

and wε → v0 in H1(R2) as ε→ 0, we have

V (εx)f2(wε)− V0f
2(v0) → 0 for a.e. x ∈ R2 (3.73)

and there exists h ∈ L1(R2) such that

0 ≤ V (εx)f2(wε) ≤ sup
x∈Λ

V (x)w2
ε ≤ sup

x∈Λ
V (x)h(x) for a.e. x ∈ R2. (3.74)

Hence, (3.71) follows from (3.73), (3.74) and the Lebesgue dominated convergence theorem. As in
the proof of Lemma 3.6, we have

Iε(v) ≥ Iε(tv) +
1− t2

2
⟨I ′

ε(v), v⟩, ∀ v ∈ Eε, t ≥ 0. (3.75)

33



Since {tε} is bounded, it follows from (2.71), (2.73), (3.25), (3.60), (3.62), (3.66), (3.67), (3.71),
(3.72) and (3.75) that, up to a subsequence,

m0 + oε(1) = I0(v0) + oε(1) = I0(v0) +
1

2

∫
R2

[
V (εx)f2(wε)− V0f

2(v0)
]
dx

= Iε(wε) ≥ Iε(tεwε) +
1− t2ε

2
⟨I ′

ε(wε), wε⟩

≥ m̃ε +
1− t2ε

2
⟨I ′0(v0), v0⟩+

1− t2ε
2

∫
R2

[V (εx)f ′(wε)wε − V0f
′(v0)v0] dx

= m̃ε + oε(1),

where oε(1) → 0 as ε→ 0. This completes the proof.

Proof of Lemma 3.14. It is easy to see that mε = ε2m̃ε for all ε ∈ (0, ε0]. Then Lemma 3.14 follows
directly from Lemmas 3.8 and 3.15 in the same way as that of [18].

Proof of Theorem 3.2. Theorem 3.2 follows directly from Lemmas 3.8, 3.13 and 3.14.

By performing the scaling x 7→ εx, Theorem 3.2 also yields a one parameter family of critical
points {ṽε} of Iε for any ε ∈ (0, ε0], namely

ṽε(x) := vε(εx) for x ∈ R2, I ′
ε(ṽε) = 0 and Iε(ṽε) = m̃ε, ∀ ε ∈ (0, ε0]. (3.76)

This gives
−∆ṽε = f ′(ṽε) [g(εx, f(ṽε))− V (εx)f(ṽε)] , ∀ x ∈ R2, ε ∈ (0, ε0]. (3.77)

In the next section, we will give the L∞-estimate and the behavior of ṽε as ε→ 0, to relate to
critical points of Jε, defined by (3.3). In what follows, we denote o(1) → 0 as ε→ 0.

4 L∞-estimate and behavior of ṽε as ε → 0

Lemma 4.1. There is a constant K > 0, independent of ε, such that ∥ṽε∥∞ ≤ K for all ε ∈ (0, ε0].

Proof. With Lemma 3.15, using similar arguments as that of Lemma 3.10, we can prove that there
exists a constant K1 > 0, independent of ε, such that ∥ṽε∥ ≤ K1 for all ε ∈ (0, ε0]. As in the proof
of [18, Proposition 22], we can conclude this lemma.

Lemma 4.2. There exist {yε} ⊂ R2 and R̃, β̃ > 0, independent of ε, such that∫
BR̃(yε)

f2(ṽε)dx ≥ β̃, ∀ ε ∈ (0, ε0].

Proof. Suppose by contradiction that the lemma does not hold. Using a result by Lions, we have
f(ṽε) → 0 in Ls(R2). By (3.8) and Lemma 4.1, we can derive that∫

R2

G(εx, f(ṽε))dx =

∫
R2

g(εx, f(ṽε))f(ṽε)f
′(ṽε)ṽεdx = o(1). (4.1)

By (3.62), (4.1) and (f6) of Lemma 2.7, we derive that

0 = ⟨I ′
ε(ṽε), ṽε⟩ = ∥∇ṽε∥22 +

∫
R2

V (εx)f(ṽε)f
′(ṽε)ṽεdx+ o(1)

≥ ∥∇ṽε∥22 +
1

2

∫
R2

V (εx)f2(ṽε)dx+ o(1), (4.2)

which, jointly with (3.60), yields that m̃ε = o(1). On the other hand, by a standard argument, we
can prove that there exists σ > 0, independent of ε, such that m̃ε ≥ σ > 0 for all ε ∈ (0, ε0], since
infx∈R2 V (x) > 0. This a contradiction, and thus the lemma is proved.
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As in [18, Lemma 25, Remark 26], we have the following lemma and remark:

Lemma 4.3. The family {εyε}0<ε≤ε0 has the following property dist(εyε,Λ) ≤ εR̃.

Remark 4.4. The family {εyε}0<ε≤ε0 can be taken in such a way that εyε ∈ Λ for all 0 < ε ≤ ε0.

Indeed, since dist(εyε,Λ) < 2εR̃ for all 0 < ε ≤ ε0, there exists xε ∈ Λ satisfying |yε − ε−1xε| < 2R̃.
Thus,

0 < β̃ ≤
∫
BR̃(yε)

f2(ṽε)dx ≤
∫
B3R̃(ε−1xε)

f2(ṽε)dx.

Replacing R̃ by 3R̃ in Lemma 4.3, we can replace yε by ε−1xε.

For all ε ∈ (0, ε0], we let

wε(x) = ṽε(x+ εyε), ∀ x ∈ R2. (4.3)

Then Theorem 3.2 and (3.76) give that

−∆wε = f ′(v) [g(εx+ εyε, f(wε))− V (εx+ εyε)f(wε)] , x ∈ R2. (4.4)

Lemma 4.5. limε→0 V (εyε) = V0 = minx∈Λ V (x). Moreover, wε → w in H1(R2) and wε → w in
C2,α
loc (R2) for some α ∈ (0, 1), where w ∈ H1(R2) is a positive ground state solution of (S)0.

Proof. Let {εn} be a sequence such that εn ∈ (0, ε0] verifying εnyεn ∈ Λ by Remark 4.4. We may
assume that, up to a subsequence,

εnyεn → x0 ∈ Λ, V (x0) ≥ V0. (4.5)

To simplify the notation, set ṽn = ṽεn and wn = wεn . Since {∥wn∥} is bounded due to ∥wn∥ = ∥ṽn∥,
we may assume that there exists w ∈ H1(R2) such that

wn ⇀ w in H1(R2), wn → w in Ls
loc(R2) for all s ≥ 1 and wn → w a.e. in x ∈ R2. (4.6)

By Lemma 4.2, we have w ̸= 0. Next, we divide the proof into the following steps.
Step 1: We prove that w ∈ H1(R2) \ {0} is a ground state solution of (S)0.
We define

χ(x) = lim
n→∞

χΛ(εnx+ εnyεn) a.e. in x ∈ R2 (4.7)

and
g̃(x, t) = χ(x)g(t) + (1− χ(x)) ḡ(t) ∀ (x, t) ∈ R2 × R. (4.8)

Then we have
g(εnx+ εnyεn , f(wn))f(wn) → g̃(x, f(w))f(w) a.e. in x ∈ R2 (4.9)

and
G(εnx+ εnyεn , f(wn)) → G̃(x, f(w))f(w) a.e. in x ∈ R2, (4.10)

where G̃(x, t) =
∫ t

0
g̃(x, s)ds. By (4.4), we have∫

R2

[∇wn · ∇ϕ+ V (εnx+ εnyεn)f(wn)f
′(wn)ϕ] dx

=

∫
R2

g(εnx+ εnyεn , f(wn))f
′(wn)ϕdx, ∀ ϕ ∈ C∞

0 (R2). (4.11)

Noting that Lemma 4.1 and (4.3) give

∥wn∥∞ ≤ C∞ with some constant C∞ > 0 independent of n, (4.12)
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it follows from the Lebesgue dominated convergence theorem that∫
R2

g(εnx+ εnyεn , f(wn))f
′(wn)ϕdx =

∫
R2

g̃(x, f(w))f ′(w)ϕdx = o(1), ∀ ϕ ∈ C∞
0 (R2). (4.13)

Taking the limit in (4.11), using (4.5) and (4.13), we see that w satisfies∫
R2

[∇w · ∇ϕ+ V (x0)f(w)f
′(w)ϕ] dx =

∫
R2

g̃(x, f(w))f ′(w)ϕdx, ∀ ϕ ∈ C∞
0 (R2). (4.14)

Therefore, w is a critical point of the functional given by

Ĩ(v) = 1

2

∫
R2

[
|∇v|2 + V (x0)f

2(v)
]
dx−

∫
R2

G̃(x, f(v))dx, ∀ v ∈ H1(R2). (4.15)

To end this step, it remains to show that

x0 ∈ Λ and V (x0) = V0. (4.16)

Indeed, if x0 ∈ Λ can be proved, we then get εnyεn ∈ Λ for n ∈ N sufficiently large. Hence, χ(x) = 1
for all x ∈ R2 and w is a critical point of the following functional

Ix0
(v) =

1

2

∫
R2

[
|∇v|2 + V (x0)f

2(v)
]
dx−

∫
R2

G(f(v))dx, ∀ v ∈ H1(R2), (4.17)

and so the conclusion follows if further V (x0) = V0. We next prove that (4.16) holds. Denoting
by cx0 the mountain-pass level associated to the functional Ix0 and by c̃ the mountain-pass level

associated to the functional Ĩ, we claim that cx0
≤ c̃. In fact, since G̃(x, t) ≤ G(t) for all x ∈ R2

and t ∈ R, we obtain Ix0(v) ≤ Ĩ(v) for all v ∈ H1(R2), and this implies that cx0 ≤ c̃. Arguing as

in Corollary 3.7 and Lemma 3.8, we can get Ĩ(w) ≥ c̃ since Ĩ ′(w) = 0. Moreover, using the fact
V (x0) ≥ V0, it is easy to check that c0 ≤ cx0

. Thus, we have

m0 = c0 ≤ cx0 ≤ c̃ ≤ Ĩ(w), (4.18)

where c0 and m0 are given by (2.75) and (3.25). Let us define the set

An =
{
x ∈ R2 : εnx+ εnyεn ∈ Λ

}
. (4.19)

If x ∈ An, then (3.29) and (4.8) imply that

V (εnx+ εnyεn)f
2(wn) + g(εnx+ εnyεn , f(wn))f(wn)− 4G(εnx+ εnyεn , f(wn))

=V (εnx+ εnyεn)f
2(wn) + g(f(wn))f(wn)− 4G(f(wn)) ≥ 0. (4.20)

If x ̸∈ An, then (3.4), (3.5) and (4.8) imply that

V (εnx+ εnyεn)f
2(wn) + g(εnx+ εnyεn , f(wn))f(wn)− 4G(εnx+ εnyεn , f(wn))

≥V (εnx+ εnyεn)f
2(wn)−

V0
k
f2(wn) ≥ 0. (4.21)

Noting that
εnx+ εnyεn → x0 a.e. in x ∈ R2,

then it follows from (3.76), (4.6), (4.9), (4.10), (4.14), (4.15), (4.18), (4.20), (4.21), Fatou’s lemma
and semicontinuity of the norm that

m0 ≤ Ĩ(w) = Ĩ(w)− 1

4

〈
Ĩ ′(w), f(w)/f ′(w)

〉
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=
1

4

∫
R2

[
|∇f(w)|2 + V (x0)f

2(w)
]
dx

− 1

4

∫
R2

[
g̃(x, f(w))f(w)− 4G̃(x, f(w))

]
dx

≤ 1

4
lim inf
n→∞

∫
R2

|∇f(wn)|dx+
1

4
lim inf
n→∞

∫
R2

[
V (εnx+ εnyεn)f

2(wn)

+ g(εnx+ εnyεn , f(wn))f(wn)− 4G(εnx+ εnyεn , f(wn))] dx

=
1

4
lim inf
n→∞

∫
R2

|∇f(ṽn)|dx+
1

4
lim inf
n→∞

∫
R2

[
V (εnx)f

2(ṽn)

+ g(εnx, f(ṽn))f(ṽn)− 4G(εnx, f(ṽn))] dx

≤ lim sup
n→∞

[
Iεn(ṽn)−

1

4

〈
I ′
εn(ṽn), f(ṽn)/f

′(ṽn)
〉]

= lim sup
ε→0

m̃ε ≤ m0, (4.22)

which, together with (4.18), implies

f(wn) → f(w) in H1(R2) and m0 = c0 = cx0 = c̃ = Ĩ(w). (4.23)

Using (4.23) and the fact that the mountain pass level c0 on the constant potential V0 is continuous
and increasing, we can obtain (4.16) holds. This completes this step.

Step 2: We prove that wn → w in H1(R2).
By (4.23) and (f9) of Lemma 2.7, we know that there exists h1 ∈ L1(R2) such that

|wn|2 ≤ 1

θ20
f2(wn) +

1

θ40
f4(wn) ≤ h1(x) for a.e. x ∈ R2. (4.24)

Using (4.24) and the Lebesgue dominated convergence theorem, we have ∥wn − w∥2 → 0, which,
jointly with the Sobolev embedding theorem, gives ∥wn − w∥s → 0 for all s ≥ 2. From this, (3.8),
(4.12), Hölder inequality and the Lebesgue dominated convergence theorem, we have∫

R2

V (εnx+ εnyεn)f(wn)f
′(wn)(wn − w)dx = o(1) (4.25)

and ∫
R2

g(εnx+ εnyεn , f(wn))f
′(wn)(wn − w)dx = o(1). (4.26)

Therefore, it follows from (4.4), (4.25) and (4.26) that

o(1) =

∫
R2

∇wn · ∇(wn − w)dx+

∫
R2

V (εnx+ εnyεn)f(wn)f
′(wn)(wn − w)dx

−
∫
R2

g(εnx+ εnyεn , f(wn))f
′(wn)(wn − w)dx

=

∫
R2

∇wn · ∇(wn − w)dx+ o(1),

which implies that ∥∇(wn − w)∥2 → 0. This shows that wn → w in H1(R2).
Step 3: We verify that wn → w in C2,α

loc (R2) for some α ∈ (0, 1).
The previous two steps imply

−∆(wn − w) = Hn(x) in R2, (4.27)

where

Hn(x) =V0f(w)f
′(w)− V (εnx+ εnyεn)f(wn)f

′(wn)
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+ g(εnx+ εnyεn , f(wn))f
′(wn)− g(f(w))f ′(w).

By (4.6) and (4.12), we have Hn(x) → 0 for a.e. x ∈ R2. Note that for each compact subset D of R2

we have |Hn|, |w| ≤ CD for some positive constant CD dependent on D due to (4.12) and the fact
that {|εnx + εnyεn |}n≥1 is bounded for all x ∈ D . Thus, it follows from the Lebesgue dominated
convergence theorem that Hn → 0 in Ls

loc(R2) for all s ≥ 1. The rest of the proof is the same as

the one in [18]. Indeed, using [24, Theorem 9.11], we can conclude that wn → w in W 2,s
loc (R2) for all

s ≥ 1, and so wn → w in C1,α
loc (R2) for some α ∈ (0, 1). Now, by [24, Theorem 6.2], we have wn → w

in C2,α
loc (R2) for some α ∈ (0, 1) and the lemma is proved.

Lemma 4.6. There is a constant M0 > 0, independent of x ∈ R2 and ε ∈ (0, ε0], such that

0 < wε(x) ≤M0

∫
B1(x)

wε(y)dy, ∀ ε ∈ (0, ε0], x ∈ R2. (4.28)

Proof. Let ε ∈ (0, ε0]. By (G1), (G2), (4.12), Lemma 2.7 and Proposition 3.1, there exists a constant
ϱ1 > 0 such that

g(εx+ εyε, f(t)) ≤ ϱ1f(t) ≤ ϱ1t, ∀ t ∈ [0, C∞]. (4.29)

Since wε > 0, then it follows from (4.4) and (4.29) that

−∆wε = f ′(wε) [g(εx+ εyε, f(wε))− V (εx+ εyε)f(wε)]

≤ ϱ1wε, x ∈ R2, (4.30)

which implies that wε is a sub-solution of the equation (−∆ − ϱ1)w = 0, and hence (4.28) follows
from the sub-solution estimate (see [45, Theorem C. 1.2]).

Lemma 4.7. There exists ε∗ ∈ (0, ε0] sufficiently small such that the family ṽε(x) → 0 as |x| → ∞
uniformly in ε ∈ (0, ε∗].

Proof. To prove this, it suffices to show that there exists ε∗ ∈ (0, ε0] such that wε(x) → 0 as |x| → ∞
uniformly in ε ∈ (0, ε∗], since ṽε(x) = wε(x − εyε) and {εyε} is bounded by (4.3) and Lemma 4.3.
Suppose by contradiction that there exists δ1 > 0, εn ∈ (0, ε∗] and {xn} ⊂ R2 with εn → 0 and
|xn| → ∞ such that wεn(xn) ≥ δ1. From Lemma 4.5, we have wεn → w in H1(R2), where w is given
by Lemma 4.5. Hence, it follows from (4.28) and the Hölder inequality that

δ1 ≤ wεn(xn) ≤M0

∫
B1(xn)

wεn(y)dy

≤M0

∫
B1(xn)

|wεn(y)− w(y)|dy +M0

∫
B1(xn)

|w(y)|dy

≤M0

√
π∥wεn − w∥2 +M0

∫
B1(xn)

|w(y)|dy = o(1),

which is a contradiction. This completes the proof.

Lemma 4.8. There exist Π0, κ0 > 0, independent of x ∈ R2 and ε ∈ (0, ε∗], such that

0 < ṽε(x) ≤ Π0 exp(−κ0|x|), ∀ ε ∈ (0, ε∗], x ∈ R2. (4.31)

Proof. Using Lemma 4.8, (f2) and (f4) of Lemma 2.7 and (g1) of Proposition 3.1, we have

lim
|x|→∞

f(ṽε(x))

ṽε(x)
= 1, lim

|x|→∞

g(εx, f(ṽε(x)))

ṽε(x)
= 0, uniformly in ε ∈ (0, ε∗]. (4.32)

Then there exists a constant R1 > 0, independent of x ∈ R2 and ε, such that

0 <
3

4
ṽε(x) ≤ f(ṽε(x)) ≤ 1, g(εx, f(ṽε(x))) ≤

V0
k
ṽε(x), ∀ ε ∈ (0, ε∗], x ∈ R2 with |x| ≥ R1,
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where k > 2 is given by (3.4). This, together with (3.4) and (3.77), implies

∆ṽε = f ′(ṽε) [V (εx)f(ṽε)− g(εx, f(ṽε))] ≥
V0
4k
ṽε, ∀ ε ∈ (0, ε∗], x ∈ R2 with |x| ≥ R1. (4.33)

Set w̃ε(x) = ṽε(x)−Ke−
√

V0
4k (|x|−R1), where K is given in Lemma 4.1. Then

∆w̃ε(x) ≥
V0
4k
w̃ε(x), ∀ x ∈ R2 with |x| ≥ R1.

By the maximum principle (see [39]), we conclude that w̃ε(x) ≤ 0 for |x| ≥ R1, i.e.,

|ṽε(x)| ≤ Ke−
√

V0
4k (|x|−R1), ∀ x ∈ R2 with |x| ≥ R1.

Therefore, there exist Π0, κ0 > 0, independent of x and ε, such that (4.31) holds.

5 Proof of Theorem 1.4

Let vε(x) = ṽε(x/ε) for all ε ∈ (0, ε∗], where ṽε and ε∗ are given by (3.76) and Lemma 4.7.

Lemma 5.1. There exists ε∗0 ∈ (0, ε∗] sufficiently small such that uε = f(vε) is a nontrivial solution
of (Q)ε for all ε ∈ (0, ε∗0].

Proof. In view of Lemma 4.7, there exists R∗ > 0 such that

ṽε(x) ≤ β0, ∀ |x| ≥ R∗, (5.1)

where β0 is given by (3.5). Since Λε = {x ∈ R2 : εx ∈ Λ} and Λ is bounded, we have |Λε| is large
enough provided that ε is small enough. Thus we can choose ε∗0 ∈ (0, ε∗] sufficiently small such that
BR∗ ⊂ Λε∗0

. Jointly with (3.77) and (5.1), we conclude that for all ε ∈ (0, ε∗0], ṽε satisfies:

−∆ṽε = f ′(ṽε) [g(f(ṽε))− V (εx)f(ṽε)] , x ∈ R2.

which implies that vε(x) = ṽε(x/ε) satisfies

−ε2∆vε = f ′(vε) [g(f(vε))− V (x)f(vε)] , x ∈ R2. (5.2)

Hence, uε = f(vε) is a positive solution of (Q)ε for all ε ∈ (0, ε∗0], and the proof is completed.

Proof of Theorem 1.4. Let ε∗0 be given in Lemma 5.1. With Lemma 5.1, to end the proof, it remains
to verify that uε, obtained in Lemma 5.1, satisfies (i)-(iii) of Theorem 1.4. We first prove that (i)
holds. From Lemma 4.5, we know that for all ε ∈ (0, ε∗0], wε possesses a global maximum point
xε ∈ Bρ for some ρ > 0. Considering the translation w̃ε = wε(· + xε), we may assume that the
function wε achieves its global maximum at the origin of R2 without of loss of generality. Using the
fact that w is spherically symmetric, ∂w/∂r < 0 for all r > 0 and wn → w in C2,α

loc (R2), by [38, Lemma
4.2], we can conclude that wε possesses no critical point other than the origin for all ε ∈ (0, ε∗0].
Notice that the maximum value of vε(z) = v(εx) = ṽε(x) = wε(x − yε) is achieved at the point
zε = εyε ∈ Λ. As the function f is strictly increasing, the maximum value of uε(z) = f(vε(z)) is
also achieved in this point. As ∇uε = f ′(vε)∇vε, uε possesses no critical point other than zε, and
so the item (i) of Theorem 1.4 is proved. The item (ii) is a consequence of Lemma 4.5. Finally, by
(f3) of Lemma 2.7 and Lemma 4.8, we have

0 < uε(z) = f(vε(z)) ≤ vε(z) = ṽε

(z
ε

)
≤ Π0 exp

(
−κ0
ε
|z|
)
, ∀ z ∈ R2, ε ∈ (0, ε∗0], (5.3)

and thus the item (iii) of Theorem 1.4 is proved.
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