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Abstract. We consider a wide class of fully nonlinear integro-differential equations that
degenerate when the gradient of the solution vanishes. By using compactness and per-
turbation arguments, we give a complete characterization of the regularity of viscosity
solutions according to different diffusion orders. More precisely, when the order of the
fractional diffusion is sufficiently close to 2, we obtain Hölder continuity for the gradient of
any viscosity solutions and further derive an improved gradient regularity estimate at the
origin. For the order of the fractional diffusion in the interval (1, 2), we prove that there

is at least one solution of class C1,α
loc . Additionally, if the order of the fractional diffusion

is in the interval (0, 1], the local Hölder continuity of solutions is inferred.

1. Introduction

In this paper, we focus on the local behavior of viscosity solutions to a quite general class
of fully nonlinear nonlocal elliptic problems of the type

−Φ(x, |Du|)Iσ(u, x) = f(x) in B1, (1.1)

where B1 := B1(0) is a unit ball in the Euclidean space Rn, f ∈ C(B1) ∩ L∞(B1), Φ :
B1 × [0,∞) → [0,∞) is a continuous map possessing degeneracy as the gradient vanishes,
and the nonlinear nonlocal operator Iσ is uniformly elliptic in the sense of Caffarelli and
Silvestre [19,20], that is, there holds

inf
I∈L

Iv(x) ≤ Iσ(u+ v, x)− Iσ(u, x) ≤ sup
I∈L

Iv(x)

for a family of linear operators L. Let σ ∈ (0, 2) and 0 < λ ≤ Λ < ∞, K be a family of
symmetric kernels formed by the measurable functions K : RN \ {0} → R+ having

λ
CN,σ

|x|N+σ
≤ K(x) ≤ Λ

CN,σ

|x|N+σ
,

where CN,σ > 0 is a normalizing constant. For K ∈ K and u : RN → R, define

IKu(x) =
1

2
P.V.

∫
RN

(u(x+ y) + u(x− y)− 2u(x))K(y) dy

with the symbol P.V. meaning the Cauchy principal value. Observe that IKu for each K
is well-defined if u is C1,1 at the point x and fulfills adequate growth conditions at infinity,
i.e.,

∥u∥L1
σ(RN ) :=

∫
RN

|u(y)|
1 + |y|N+σ

dy < +∞.
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At this time, we denote by L1
σ(RN ) the set of such functions. For a two-parameter collection

of kernels {Kαβ}αβ ⊆ K, the nonlinear operator Iσ can be given by

Iσu(x) = inf
β

sup
α
IKαβ

u(x),

which appears naturally in stochastic control problems when two or more players are in-
volved in a competitive game, see [40].

In the past years, integro-differential operators have attracted increasing attention and
have developed abundant theories. For the qualitative properties, Barles, Chasseigne and
Imbert [10] considered a Dirichlet problem for elliptic integro-differential equations and
provided general existence results of viscosity solutions by Perron’s method. The com-
parison principles for second-order degenerate integro-differential equations were shown
in [12], whereas a key ingredient was a nonlocal version of Jensen Ishii’s lemma for so-
lutions with arbitrary growth at infinity to such problems; see also [30] for similar results
on subquadratic solutions. As for the parabolic analogue, Ciomaga [21] verified the strong
maximum principle by studying the horizontal and vertical propagation of maxima. More
existence, uniqueness, and comparison results can be referred to e.g. [1, 2, 31,36].

When it comes to the quantitative properties of solutions, Bass and Levin [15] first got,
relying on probabilistic methods, Harnack inequalities for nonnegative harmonic functions
concerning a class of integro-differential elliptic equations in the framework of potential
theory. Then, such results were extended to the problems exhibiting more general structures
in [14,41]. In [39], Silvestre presented instead a purely analytical proof for Hölder continuity
of harmonic functions concerning the integral operator with PDE techniques, where he also
dealt with quite particular nonlinear nonlocal equations. It is worth mentioning that the
previous quantitative estimates will blow up when the order of the equation goes to 2.

The first results being uniform in the degree were derived by [19], in which Caffarelli and
Silvestre investigated general fully nonlinear integro-differential equations and demonstrated
interior behaviors of solutions via a powerful Harnack approach introduced by Krylov-
Safonov. To be precise, the authors justified Hölder continuity by establishing the nonlocal
ABP estimate and Harnack inequality ahead of time, which leads further to C1,α-regularity
under some extra assumptions on the integral kernels. Because these estimates remain uni-
form as the degree of operator tends to 2, they can be viewed as a natural extension of
the regularity theory for PDEs. Subsequently, the same authors [20] continued to general-
ize C1,α-regularity to the nonlocal equations that are not translation-invariant by utilizing
compactness and perturbative argument. That is, the solutions to the equation studied are
C1,α regular, whenever this equation is uniformly close to another one with C1,α solutions.
More or less simultaneously, Barles et al. [11] concluded, using the Ishii-Lion’s viscosity
method, Hölder estimates for a large class of elliptic and parabolic integro-differential equa-
tions involving second and first-order terms; see [9] concerning further Lipschitz regularity
in a similar setting.

In particular, some specific cases of (1.1) have been explored up to now. For instance,
if Φ(x, t) = tγ , dos Prazeres and Topp [37] proved the local Hölder and Lipschitz estimates
of viscosity solutions by following the ideas due to [9, 11], together with gradient Hölder
continuity via an improvement of the flatness procedure for σ close enough to 2. See also [13]
for the situation γ < −σ. Afterwards, these results were extended to the nonhomogeneous
scenario, i.e., Φ(x, t) = tp + a(x)tq, in [3]. Especially, for any 1 < σ < 2, the authors
in [3] discovered that there exists at least one viscosity solution being C1,α regular under
the degenerate setting (0 < p ≤ q), which is new even for Φ(x, t) = tγ in [37]. Recently,
several aspects of nonlocal quasilinear equations with elliptic degeneracy could be found
in [5], including existence, multiplicity and gradient regularity.
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The investigation of model (1.1) is also motivated by physical contexts such as porous
medium flow, dislocation dynamics and others in [3]. On the other hand, Eq. (1.1) can be
seen as a nonlocal counterpart to second-order fully nonlinear equations with the form

−Φ(x, |Du|)F (D2u) = f in B1, (1.2)

where the operator F : SN → R is uniformly elliptic in the sense that

λTr(B) ≤ F (A+B)− F (A) ≤ ΛTr(B)

for all A,B ∈ SN , B ≥ 0. Here SN is the set of symmetric matrices. Let us point out
that Eq. (1.2) is a nonvariational analogue of the well-known double phase equation, for
instance, [22,24,27,28,33,34]. The interior and global regularity results related to this kind of
equation were inferred by [6,7]; see [8] for second derivative Lδ-estimates. In addition, some

special types of (1.2) have been extensively investigated, such as Φ(x, t) = tp(x) + a(x)tq(x)

with −1 < p(x) ≤ q(x) and a(x) ≥ 0 in [26,32]. We refer the readers to [16,17,23,29,35,38]
and references therein for more studies.

Inspired by the work mentioned above, in this paper we consider the fully nonlinear
nonlocal elliptic equation (1.1) with a quite general degeneracy of the type Φ(·, |Du|), which
covers all the previous models. Our equation can not only encompass the p-growth and
double-phase growth degeneracy but also include the variable exponent, log-type and Orlicz
double-phase growth cases. We aim at seeking some appropriate structure conditions on
(1.1) to establish the interior C0,α, C1,α regularity in a universal way. To begin with, by
following the approximation idea described in [29], we give gradient Hölder continuity result
under the case that σ is sufficiently close to 2. Since the nonlocal operator Iσ at this time
can approach a uniformly elliptic local operator F , the regularity of the solutions to (1.1)
will be transferred from that of the F -harmonic functions in a suitable manner.

Theorem 1.1. Let u ∈ C(B1) be a viscosity solution of (1.1) and the conditions (A1)–(A5)
(in Section 2) be in force. Then there is a σ0 ∈ (1, 2), close enough to 2, such that u is
locally of class C1,α(B1) with

∥u∥C1,α(B1/2)
≤ C

(
∥u∥L∞(B1) + ∥u∥L1

σ(RN ) + ∥f∥
σ−1
1+s1

L∞(B1)

)
,

provided σ ∈ (σ0, 2), where 0 < α < min
{
α, σ−1

1+s2

}
and the positive constant C depends on

N,λ,Λ, s1,M,M,α. Here α is the index related to the optimal regularity for an F -harmonic
function.

The constant C in Theorem 1.1 is uniform in σ, that is, it will not blow up as σ → 2.
The result stated in the theorem above is also sharp owing to an example given by [37] in
the spirit of [4]. Nonetheless, saying simply that solutions are C1,α regular does not tell the
whole story. For instance, if Φ(x, t) = tp and Iσ takes the fractional Laplacian, for each
β ∈ (0, σ − 1), a function u(x) = |x|1+β admits

|Du|p(−∆)
σ
2 u(x) = C|x|(1+β)(1+p)−(σ+p),

see [25]. Letting θ = (1+β)(1+p)−(σ+p), we can find that θ is smaller than or equal to the

degenerate rate p, and that u is C
1,σ−1+θ

1+p at the origin (a critical point of u); see [35] for the
local version. This suggests that the C1,α regularity of u can be surpassed, at least at some
meaningful point, if Hölder exponent of the right-hand side is larger than the growth rate
of gradient term in the equation. Therefore, we can further deduce an improved gradient
estimate for the scenario Φ(x, t) = tp, which is new as far as we know. It should be noted
that any universal constant mentioned in this paper means that it might depend only on
the parameters related to Eq. (1.1) itself.
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Theorem 1.2. Let the assumptions (A1), (A2), (A5) be in force. Suppose that u ∈ C(B1)
is a viscosity solution of |Du|pIσ(u, x) = f(x) with the source term |f(x)| ≤ m|x|θ for
θ ∈ (0, 1). Then one can find a 1 < σ0 < 2 (sufficiently close to 2) such that u is of class

C
1,min

{
α−,σ−1+θ

1+p

}
at the origin with the estimate

|u(x)− u(0)−Du(0) · x| ≤ C|x|1+α, x ∈ B 1
8

for any

α ∈ (0, α) ∩
(
0,
σ − 1 + θ

1 + p

]
,

provided σ0 < σ < 2. Here α is an exponent corresponding to the optimal regularity of an
F -harmonic function, and C > 0 depends upon α and universal parameters.

In the general case 1 < σ < 2, we could not apply directly the method used to prove
Theorem 1.1, because Iσ may not approximate a uniformly elliptic local operator. However,
similar to [3, Theorem 1.1], we still verify that there exists at least one solution u to (1.1)

satisfying u ∈ C1,α
loc (B1) for some α ∈ (0, 1), which is stated as below.

Theorem 1.3. If σ ∈ (1, 2) and the assumptions (A1)–(A4) hold true, we can find such a

viscosity solution u ∈ C(B1) of (1.1) that u is C1,α
loc (B1) regular and

∥u∥C1,α(B1/2)
≤ C

(
∥u∥L∞(B1) + ∥u∥L1

σ(RN ) + ∥f∥
σ−1
1+s1

L∞(B1)

)
,

where 0 < α < min
{
α̂, σ−1

1+s2

}
and C > 0 depends on α and universal constant. Here α̂ is

the index related to the regularity of Iσ-harmonic functions.

Finally, let us present lower-order regularity shown by the Ishii-Lion’s method in [9, 11]
under the case 0 < σ ≤ 1.

Theorem 1.4. Suppose that the conditions (A1)–(A4) are satisfied. Let u ∈ C(B1) be a
viscosity solution to (1.1). Then,

(1) for σ ∈ (0, 1), u ∈ C0,σ
loc (B1) and

∥u∥C0,σ(B1/2)
≤ C

(
∥u∥L∞(B1) + ∥u∥L1

σ(RN ) + ∥f∥L∞(B1)

)
with C depending on σ,N, λ,Λ,M,M, s1;

(2) for σ = 1, u ∈ C0,α
loc (B1) with any α ∈ (0, 1), and

∥u∥C0,α(B1/2)
≤ C

(
∥u∥L∞(B1) + ∥u∥L1

σ(RN ) + ∥f∥L∞(B1)

)
with C depending on α,N, λ,Λ,M,M, s1.

This paper is organized as follows. In Section 2, we first collect some basic notations,
notions and give the hypotheses on (1.1). Sections 3 and 4 are devoted to showing the C1,α-
regularity properties for (1.1) under the scenarios that σ ∈ (σ0, 2) and σ ∈ (1, 2) separately.
Finally, Hölder continuity of solutions to (1.1) is justified for σ ∈ (0, 1] in Section 5.

2. Preliminaries

In this section, we give the definitions of viscosity solutions and present some structure
conditions on Eq. (1.1).
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2.1. Assumptions. Throughout this paper, we always give the following main hypotheses:

(A1) we suppose u ∈ L1
σ(RN );

(A2) The source term f belongs to C(B1) ∩ L∞(B1);

(A3) The function Φ : B1 × [0,∞) → [0,∞) is continuous and there is a constant M ≥ 1

such that M
−1 ≤ Φ(x, 1) ≤M for any x ∈ B1;

(A4) For Φ, there exist constants 0 ≤ s1 ≤ s2 such that for every x ∈ B1 the map

t → Φ(x,t)
ts1 is almost increasing and the map t → Φ(x,t)

ts2 is almost decreasing with
constant M ≥ 1;

(A5) Let {Kij}ij ⊂ K be a set of kernels such that there exist a collection of numbers
{kij} ⊂ [λ,Λ] and a modulus of continuity ω fulfilling∣∣Kij |x|N+σ − kij

∣∣ ≤ ω(|x|) for |x| ≤ 1.

Here a function u : [0,∞) → [0,∞) is almost decreasing or almost increasing if there is a
constant M ≥ 1 such that u(τ) ≤ Mu(t) or u(t) ≤ Mu(τ) respectively for 0 ≤ t < τ . The
last assumption above assures the nonlocal operator Iσ approaches a local fully nonlinear
operator F with uniform ellipticity as σ goes to 2. Concerning the derivation of conditions
(A3), (A4), we mainly adopt the same hypotheses on Φ introduced in [6]. Additionally, from
a variational perspective, Hästö and Ok [28] considered the gradient Hölder continuity for
local minimizers of the energy functional

u 7→
∫
B1

φ(x, |Du|) dx

with φ : B1 × [0,∞) → [0,∞), where the key assumptions on the integral density φ are

that there exist two numbers p, q > 1 such that t→ Φ(x,t)
tp is almost non-decreasing and t→

Φ(x,t)
tq is almost non-increasing. In this respect, (A3) and (A4) in (1.1) are also reasonable.

Finally, let us mention that the conditions (A3), (A4) cover some remarkable cases besides

Φ(x, t) = tp + a(x)tq or Φ(x, t) = tp(x) + a(x)tq(x), such as

• Φ(x, t) = tp + a(x)tp log(e+ t).

• Φ(x, t) = ϕ(t) + a(x)φ(t) with suitable N -functions ϕ, φ, where the function 0 ≤
a(x) ∈ C(B1).

2.2. Notions. Next, we give the concepts of viscosity solutions and so-called approximated
viscosity solutions. If not important or not confused, we omit the subscript σ of the operator
I in the rest of the work. For generality, we define the solutions of a variety of (1.1) as
below:

−Φ(x, |Du+ η|)I(u, x) = f(x) in B1, (2.1)

where the vector η ∈ RN . In what follows, for u : RN → R and K ∈ K, we define

IK [Ω](u, x) = CN,σP.V.

∫
Ω
(u(x+ y)− u(x))K(y) dy

with Ω ⊆ RN a measurable set.

Definition 2.1 (viscosity solutions). We call the function u ∈ C(B1)∩L1
σ(RN ) a viscosity

supersolution (subsolution) to (2.1), whenever for any x0 ∈ B1 and any φ(x) ∈ C2(RN )
such that u− φ reaches a local minimum (maximum) at x0, there holds that

−Φ(x0, |Dφ(x0) + η|)Iδ(u, φ, x0) ≥ (≤)f(x0),

where we denote

Iδ(u, φ, x0) = inf
j
sup
i

(
IKij [Bδ](φ, x0) + IKij [B

c
δ ](u, x0)

)
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with Bδ being a neighborhood of x0 and Bc
δ meaning the complement of Bδ in RN . Here

{Kij}ij ⊂ K is a set of kernels. A function u is called a viscosity solution to (2.1) when it
is viscosity supersolution and subsolution simultaneously.

The following approximated viscosity solutions play a fundamental role in proving The-
orem 1.3.

Definition 2.2 (Approximated viscosity solutions). The function u ∈ C(B1) ∩ L1
σ(RN )

is called an approximated viscosity solution to (2.1), if there exist sequences of functions
{uk} ⊂ C(B1)∩L1

σ(RN ), of vectors {ηk} ⊂ RN , of numbers {dk} ⊂ R+ and µ > 0, fulfilling
that ηk → η, dk → 0, uk → u locally uniformly in B1 as k → ∞ and |uk| ≤ µ(1 + |x|1+α)
with 1 + α ∈ (0, σ), such that uk is a viscosity solution of

−Φ(x, |Duk + ηk|+ dk)I(uk, x) = f(x) in B1. (2.2)

In addition, we take ηk = 0 for any k ∈ N if η = 0, and dk satisfies kds2k → ∞ when
0 ≤ s1 ≤ s2.

3. C1,α-regularity under a smallness condition on 2− σ

With the precondition that 2 − σ is small enough, we in this part are going to show
the gradient Hölder continuity for viscosity solutions of (1.1) and establish a Schauder-type
regularity estimate at the origin. To make use of the compactness method, now we first
utilize the Ishii-Lions method and elliptic estimates “in the direction of gradient” presented
in [9, 11] to prove the local Lipschitz continuity of solutions to problem (2.1).

3.1. Gradient Hölder regularity.

Proposition 3.1. Let σ ∈ (1, 2) and the assumptions (A1), (A3), (A4) be in force. Sup-
pose that u ∈ C(B1) is a viscosity solution to (2.1). Then u is locally Lipschitz contin-
uous in B1, that is, there exists a constant Clip ≥ 1 depending on ∥u∥L∞(B1), ∥u∥L1

σ(RN ),

∥f∥L∞(B1), N, λ,Λ, s1, σ,M,M , but not on η, such that

|u(x)− u(y)| ≤ Clip|x− y|
for every x, y ∈ B 1

2
. Moreover, the Lipschitz constant Clip is uniformly bounded as σ → 2.

Proof. We divide this proof into two diverse cases in which |η| is large or small.
Case 1. |η| is large. Assume |η| > a0 for a number a0 > 0 to be fixed later. First, we

introduce some nonnegative and smooth functions. Let ψ : RN → R fulfilling ψ ≡ 0 in B 1
2

and ψ ≡ 1 in Bc
3
4

, and moreover define

h(x) =

(
osc
B1

u+ 1

)
ψ(x).

Denote

ω(t) =

t−
1
4 t

1+α, t ∈ [0, t0],

ω(t0), t ∈ (t0,∞),

where α ∈ (0, 1) is a small enough number that will be selected, and t0 ≤
(

4
1+α

) 1
α
is a fixed

number.
We proceed by doubling the variables. Construct the auxiliary functions

φ(x, y) = Lω(|x− y|) + h(y)

and
Ψ(x, y) = u(x)− u(y)− φ(x, y).
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Here the constant L ≥ 1 will be determined later. In fact, it is the Lipschitz constant of
viscosity solution. We can see readily, from the continuity of Ψ, that Ψ realizes its maximum
at (x, y) ∈ B1 × B1. We shall show Ψ(x, y) ≤ 0 by contradiction argument so that we get
the Lipschitz continuity. If not, there holds that

0 < u(x)− u(y)− Lω(|x− y|)− h(y)

≤ osc
B1

u−
(
osc
B1

u+ 1

)
ψ(y)− Lω(|x− y|).

Obviously, x ̸= y. Due to the definition of ψ, we have y ∈ B 3
4
. Otherwise, there is a

contradiction that
0 < osc

B1

u− osc
B1

u− 1− Lω(|x− y|) < 0.

Furthermore, we also have

osc
B1

u ≥ Lω(|x− y|) = L|x− y|
(
1− 1

4
|x− y|α

)
≥ L

2
|x− y|, (3.1)

which indicates that

|x| ≤ |x− y|+ |y| ≤ 2

L
osc
B1

u+
3

4
≤ 7

8
by choosing L ≥ 16 osc

B1

u.

Next, we are going to establish the viscosity inequality of u, which is the base for getting
contradiction. Since the function Ψ attains its maximum in B1 ×B1 at (x, y), then u(x)−
φ(x, y) has the local maximum at x and u(y) − (−φ(x, y)) gets the local minimum at y.
Through the definition of viscosity solution, we obtain−Φ(x, |Dxφ(x, y) + η|)Iδ(u, φ(·, y), x) ≤ f(x)

−Φ(y, | −Dyφ(x, y) + η|)Iδ(u,−φ(x, ·), y) ≥ f(y)
(3.2)

for every δ ∈ (0, 1), where

Dxφ(x, y) = Lω′(|x− y|) x− y

|x− y|
and −Dyφ(x, y) = Lω′(|x− y|) x− y

|x− y|
−Dh(y).

Observe that
3

16
L ≤ |Dxφ(x, y)| = L

∣∣∣∣1− 1 + α

4
|x− y|α

∣∣∣∣ ≤ L (3.3)

and
L

8
≤ 3

16
L− |Dh(y)| ≤ |Dyφ(x, y)| = L+ |Dh(y)| ≤ 17

16
L, (3.4)

where we have picked L so large that(
osc
B1

u+ 1

)
|Dh(y)| ≤ C(N)

(
osc
B1

u+ 1

)
≤ L

16
.

Recall that we have assumed |η| > a0. Now set a0 = 2L. Notice that, from (3.3) and
(3.4), |Dxφ(x, y) + η| ≥ a0 − L ≥ L

| −Dyφ(x, y) + η| ≥ a0 − 17
16L ≥ 15

16L.
(3.5)

Therefore, it follows from the inequalities (3.2) and (3.5) that−Iδ(u, φ(·, y), x) ≤ ∥f∥L∞(B1)

Φ(x,|Dxφ(x,y)+η|) ≤
C∥f∥L∞(B1)

|Dxφ(x,y)+η|s1 ≤ C∥f∥L∞(B1)

Ls1 ,

−Iδ(u,−φ(x, ·), y) ≥ − C∥f∥L∞(B1)

|−Dyφ(x,y)+η|s1 ≥ −C∥f∥L∞(B1)

Ls1 .
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Here we utilized the connection that M
−1 ≤ Φ(x, 1) ≤ M Φ(x,t)

ts1 for t ≥ 1. Then it yields
that

Iδ(u, φ(·, y), x)− Iδ(u,−φ(x, ·), y) ≥ −C∥f∥L∞(B1)

with some universal constant C ≥ 1. At this moment, we want to estimate the left-hand
side of the last display that consists of uniformly elliptic nonlocal operators. However, this
procedure is identical to that in the proof of [3, Lemma 3.1] or [37, Lemma 2.2], so we do
not repeat the process anymore and directly give the final estimate

−C
(
∥f∥L∞(B1) + osc

B1

u+ ∥u∥L1
σ(RN ) + 1

)
≤ −CL|x− y|1−σ+α(N+2−σ). (3.6)

Remembering |x − y| ≤ 2L−1 osc
B1

u in (3.1) and L > 2 osc
B1

u, together with taking α > 0

sufficiently small to derive

α := 1− σ + α(N + 2− σ) ≤ 1− σ

2
< 0,

it then follows from (3.6) that

−C
(
∥f∥L∞(B1) + osc

B1

u+ ∥u∥L1
σ(RN ) + 1

)
≤ −L,

where C > 0 is a universal constant. Apparently, we get a contradiction via choosing L =

2C
(
∥f∥L∞(B1) + ∥u∥L∞(B1) + ∥u∥L1

σ(RN ) + 1
)
, which implies the assumption Ψ(x, y) > 0 is

false. We now complete the proof in the case of |η| large.
Case 2. |η| is small. Let us study the case |η| ≤ a0 with a0 being a fixed constant from

Case 1. The procedure is very similar to Case 1, so we sketch it. Introduce a function

φ(x, y) = L̃ω(|x− y|) + h(y)

and follow these notations in Case 1 except the number L replacing by L̃. Then the
inequalities (3.3) and (3.4) become

L̃

8
≤ |Dxφ(x, y)|, |Dyφ(x, y)| ≤

17

16
L̃.

Since |η| ≤ a0, we have|Dxφ(x, y) + η| ≥ |Dxφ(x, y)| − |η| ≥ L̃
8 − a0 ≥ a0

| −Dyφ(x, y) + η| ≥ 17L̃
16 − a0 ≥ 16a0

by picking L̃ ≥ 16a0. Moreover, we also arrive at

Iδ(u, φ(·, y), x)− Iδ(u,−φ(x, ·), y) ≥ −
C∥f∥L∞(B1)

as10
.

At this stage, following the same proof in Case 1 deduces the Lipschitz continuity of u by
determining L̃ large enough. □

Lemma 3.2. Let the conditions (A1)–(A5) hold true with M = 1. Suppose that u ∈ C(B1)
is a viscosity solution of (2.1) with ∥u∥L∞(B1) ≤ 1. Given µ, ε > 0, there is a positive κ
depending on N,λ,Λ, ε, s1, s2,M, µ such that if

|σ − 2|+ ∥f∥L∞(B1) ≤ κ

and

|u(x)| ≤ µ(1 + |x|1+α) for x ∈ RN
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with some α ∈ (0, 1), then there exists an F -harmonic function h ∈ C1,α
loc (B1) (i.e., h solves

F (D2h) = 0 in the viscosity sence) fulfilling

∥u− h∥L∞(B1/2) ≤ ε

Proof. Argue by contradiction. If not, then there are µ0, ε0 > 0 and sequences of {σk}, {fk},
{Φk}, {uk} and a sequence of vectors {ηk} such that

(i)

|σk − 2|+ ∥fk∥L∞(B1) ≤
1

k
;

(ii) uk ∈ C(B1) with ∥uk∥L∞(B1) ≤ 1 and |uk(x)| ≤ µ0(1 + |x|1+α) solves the following
equation

−Φk(x, |Duk + ηk|)Iσk
(uk, x) = fk(x) in B1, (3.7)

where the operator Iσk
satisfies (A5).

(iii) Here Φk ∈ C(B1 × [0,∞), [0,∞)) satisfies that the function t → Φk(x,t)
ts1 is almost

increasing and the function t→ Φk(x,t)
ts2 is almost decreasing with the same constant

M ≥ 1 and Φk(x, 1) = 1 for all x ∈ B1.

Nonetheless, we have

∥uk − h∥L∞(B1/2) > ε0

for any h(x) ∈ C1,α
loc (B1). Recalling σk → 2, by means of the condition (A5), we know

that Iσk
→ F , where F is a uniformly (λ,Λ)-elliptic operator. Moreover, it follows from

Proposition 3.1 that there is a continuous function u such that uk → u locally uniformly in
B1. Particularly, it holds that

u ∈ C(B3/4) and ∥u∥L∞(B3/4) ≤ 1,

but

sup
x∈B1/2

|u(x)− h(x)| > ε0. (3.8)

In what follows, we are going to demonstrate that u solves the equation below in the
viscosity sense

−F (D2u) = 0 in B3/4. (3.9)

To this end, we only prove u is a viscosity supersolution because the result that u is a
subsolution can be shown similarly. Suppose that φ(x) is a test function such that u − φ
realizes its local minimum in B1 at x̃. Without loss of generality, assume |x̃| = u(0) =
φ(0) = 0 and φ is a quadratic polynomial, that is,

φ(x) =
1

2
Ax · x+ p · x,

where p ∈ RN and A is a symmetric matrix and Ax · x or p · x denotes the inner product.
Thanks to uk → u locally uniformly in B1, we could find a point xk and a quadratic
polynomial

φk(x) :=
1

2
A(x− xk) · (x− xk) + p · (x− xk) + uk(xk)

touching uk from below at xk lying in a small neighborhood of the origin. In view of uk a
viscosity solution to (3.7), it yields that

−Φk(xk, |p+ ηk|)Iδ
σk
(uk, φk, xk) ≥ fk(xk). (3.10)
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Next, we distinguish two different scenarios. First of all, if {ηk} is unbounded, then, with
the aid of Φk(xk, |p+ ηk|) ≥ C|p+ ηk|s1 → ∞ up to a subsequence, we pass to the limit in
(3.10) and get

−F (A) = − lim
k→∞

Iδ
σk
(uk, φk, xk) ≥ lim

k→∞

fk(xk)

Φk(xk, |p+ ηk|)
= 0.

For the second case that {ηk} is bounded, we may suppose ηk → η (up to a subsequence).
We first examine that if |p + η| ̸= 0, then |p + ηk| ≥ 1

2 |p + η| for k large enough. Thereby,
applying the assumptions on Φk, (for large k) we haveΦk(xk, |p+ ηk|) ≥M−1|p+ ηk|s1 ≥ 2−s1M−1|p+ η|s1 , for |p+ η| ≥ 1

Φk(xk, |p+ ηk|) ≥M−1|p+ ηk|s2 ≥ 2−s2M−1|p+ η|s2 , for |p+ η| < 1

and further get

−F (A) = − lim
k→∞

Iδ
σk
(uk, φk, xk) ≥ − lim

k→∞

2s2M

kmin{|p+ η|s1 , |p+ η|s2}
= 0.

Now let us concentrate on justifying F (A) ≤ 0 under the situation |p + η| = 0 that
involves p = η = 0 or p = −η ̸= 0. Suppose by contradiction

F (A) > 0. (3.11)

Thus we can find from the uniform ellipticity of F (·) that the matrix A has one positive
eigenvalue at least. Let Rn = T⊕Q be the orthogonal sum, where T stands for the invariant
space made out of the eigenvectors related to positive eigenvalues.

Case 1. b = −η ̸= 0. Let γ > 0 and

ϕγ(x) := φ(x) + γ|PT (x)| =
1

2
Ax · x+ p · x+ γ|PT (x)|

with PT meaning the orthogonal projection over T . Owing to uk → u locally uniformly and
φ(x) touching u(x) from below at 0, then for γ sufficiently small ϕγ(x) touches uk(x) from
below at some point xγk in a neighbourhood of 0. Besides, xγk → x for some x ∈ B3/4 as
k → ∞ (up to a subsequence).

When PT (x
γ
k) = 0, we announce F (A) ≤ 0, which contradicts (3.11). Notice that

ϕγ(x) :=
1

2
Ax · x+ p · x+ γe · PT (x)

touches uk from below at xγk for all e ∈ SN−1 (i.e., |e| = 1). Then we have the viscosity
inequality as

−Φk(x
γ
k , |ηk +Axγk + p+ γPT (e)|)Iδ

σk
(uk, ϕγ , x

γ
k) ≥ fk(x

γ
k), (3.12)

where we note D(e · PT (x)) = PT (e). Now choosing e ∈ T ∩ SN−1 yields PT (e) = e. If
Ax = 0, then it follows from |ηk + p| → 0 that, for large k,

|ηk + p+Axγk + γe| > γ

2
.

Therefore, via the structure on Φk, we get

lim
k→∞

|fk(xγk)|
Φk(x

γ
k , |ηk +Axγk + p+ γPT (e)|)

≤ lim
k→∞

C

kmin{γs1 , γs2}
= 0,

and further have F (A) ≤ 0 by (3.12). If Ax ̸= 0, then in the case T ≡ RN we pick carefully
e ∈ SN−1 such that

|ηk + p+Axγk + γe| ≥ 1

2
|Ax+ γe| − 1

4
|Ax+ γe| = 1

4
|Ax+ γe| > 0.
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Hence, we can obtain F (A) ≤ 0. On the other hand, if Ax ̸= 0 and T ̸= RN , we take
e ∈ T⊥ ∩ SN−1 so that

|ηk + p+Axγk + γPT (e)| ≥
1

2
|Ax| − 1

4
|Ax| = 1

4
|Ax| > 0,

where we observe PT (e) = 0. Thus, analogous to the case Ax = 0 again, we can see
F (A) ≤ 0.

Finally, let us treat the occurrence PT (x
γ
k) ̸= 0. We can find that the map x → |PT (x)|

is convex and smooth near the point xγk . Because of PT being a projection, then

|PT (x)|D(|PT (x)|) = PT (x) and D2(|PT (x)|) is nonnegative definite. (3.13)

Hence we arrive at the following viscosity inequality

−Φk(x
γ
k , |ηk +Axγk + p+ γê|)Iδ

σk
(uk, ϕγ , x

γ
k) ≥ fk(x

γ
k),

where we let ê =
PT (xγ

k)

|PT (xγ
k)|

for simplicity. Considering separately the scenarios that Ax = 0

and Ax ̸= 0 like the case PT (x
γ
k) = 0 leads to

−F (A+D2|PT (x)|) ≥ 0.

By virtue of (3.13) and the ellipticity condition on F , we derive F (A) ≤ 0, which contradicts
(3.11).

Case 2. p = η = 0. At this point, the procedures become easier. Since 1
2Ax · x touches

u(x) from below at 0 and uk → u locally uniformly, then the test function

ϕ̂γ(x) :=
1

2
Ax · x+ γ|PT (x)|

touches uk from below at some x̂k in a small neighborhood of 0 for k large enough. Likewise,
we will check two cases that |PT (x̂k)| = 0 and |PT (x̂k)| > 0, and further estimate the

boundedness on |ηk + Ax̂k + e| as well as |ηk + Ax̂k + γê| with ê := PT (x̂k)
|PT (x̂k)| (PT (x̂k) ̸= 0),

which is in a similar manner to Case 1. Eventually, we conclude F (A) ≤ 0, which contradicts
(3.10).

At this stage, we have proved u is a viscosity supersolution to (3.9) and in a specular
way we could verify it is a subsolution as well. It is well known in [18, Chapter 5] that the
solution, u, of (3.9) is of C1,α locally for some α ∈ (0, 1), so we choose h = u and obtain a
contradiction with (3.8). Now the proof is finished. □

Lemma 3.3. Let the preconditions (A1)–(A5) be fulfilled. Suppose u is a normalized vis-
cosity solution of (1.1). Given µ > 0, there is a κ > 0 depending on N,λ,Λ, s1, s2,M,M,α
such that if

|σ − 2|+ ∥f∥L∞(B1) ≤ κ

and
|u(x)| ≤ µ(1 + |x|1+α) for x ∈ RN

with α coming from Lemma 3.2, then we can find a ρ ∈
(
0, 12
)
, depending on N,λ,Λ, α, and

a sequence of affine functions {ln} of the type ln(x) = an + pn · x for which

∥u− ln∥L∞(Bρn ) ≤ ρn(1+α) (3.14)

with
|an+1 − an|+ ρn|pn+1 − pn| ≤ Cρn(1+α)

for every

α ∈ (0, α) ∩
(
0,
σ − 1

1 + s2

]
.

Here C ≥ 1 only depends on N,λ,Λ.
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Proof. Step 1. First, we assert that there is an affine function l(x) and a ρ ∈
(
0, 12

)
such

that
sup
x∈Bρ

|u− l| ≤ ρ1+α.

Assume with no loss of generality Φ(x, 1) = 1. Otherwise, set Φ(x, t) = Φ(x,t)
Φ(x,1) . Let h ∈

C1,α(B3/4) is an F -harmonic function from Lemma 3.2 such that

∥u− h∥L∞(B3/4) ≤ ε

with ε > 0 to be fixed a posteriori. The existence of such function h(x) is assured, provided
κ > 0 is small enough from Lemma 3.2.

It follows from the regularity theory for h in [18] that for ρ ∈ (0, 1)

sup
x∈Bρ

|h(x)− (h(0) +Dh(0) · x)| ≤ Cρ1+α,

and
|h(0)|+ |Dh(0)| ≤ C,

where both C and α ∈ (0, 1) depend only on N,λ,Λ. Denote

l(x) = a+ p · x := h(0) +Dh(0) · x.
Then

sup
x∈Bρ

|u(x)− l(x)| ≤ sup
x∈Bρ

|u(x)− h(x)|+ sup
x∈Bρ

|h(x)− l(x)| < ε+ Cρ1+α.

Since 0 < α < α, we take 0 < ρ≪ 1 satisfying

Cρα−α ≤ 1

2
⇒ ρ ≤ (2C)−

1
α−α .

In addition, fix ε = 1
2ρ

1+α. This leads to the claim.

Step 2. We proceed by induction. For k = 1, this is the content in Step 1. Suppose the
conclusion in Lemma 3.3 holds for k = 1, 2, · · · , n. Now we shall justify that for k = n+ 1.
Introduce a function un(x) : RN → R as

un(x) :=
u(ρnx)− ln(ρ

nx)

ρn(1+α)
.

We can check that un solves in the viscosity sense an equation of the form

−Φ(x, |Dun + ρ−nαpn|)I(un, x) = f(x),

where the nonlocal operator I has the same uniform ellipticity condition as the operator I
in (1.1) (more details on this can be seen in [20]), and

Φ(x, t) =
Φ(ρnx, ρnαt)

Φ(ρnx, ρnα)
and f(x) =

ρnσ−n(1+α)

Φ(ρnx, ρnα)
f(ρnx).

Observe that Φ(x, 1) = 1 and the function t → Φ(x,t)
ts1 is almost non-decreasing and the

function t → Φ(x,t)
ts2 is almost non-increasing with the identical constant M ≥ 1 in (A4).

Recall α ≤ σ−1
1+s2

. Then we have 0 ≤ σ − 1− α(1 + s2) and further

ρn(σ−1−α)

Φ(ρnx, ρnα)
≤ ρn(σ−1−α)

M−1ρns2α
≤M,

which indicates ∥f∥L∞(B1) ≤Mε. Once we justify the assertion

|un(x)| ≤ 1 + |x|1+α for x ∈ RN , (3.15)
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we could apply the conclusion in Step 1 to arrive at

sup
Bρ

|un(x)− l̃(x)| ≤ ρ1+α,

where l̃(x) is an affine function of the form l̃(x) = ã + p̃ · x with |ã| + |p̃| ≤ C(N,λ,Λ).
Scaling back, it holds that

sup
Bρn+1

|u(x)− ln+1(x)| ≤ ρ(n+1)(1+α)

with

ln+1 := an+1 + pn+1 · x = ln(x) + ρn(1+α) l̃(ρ−nx).

Here we deduce

|an+1 − an| ≤ Cρn(1+α) and |pn+1 − pn| ≤ Cρnα,

as desired.
We eventually verify (3.15) by induction to complete the proof. For k = 0, take u0 = u.

Assume the inequality (3.15) holds for k = 0, 1, 2, · · · , n. Next, we prove it for k = n + 1.
Observe that

un+1(x) = ρ−(1+α)

[
u(ρn(ρx))− ln(ρ

n(ρx))

ρn(1+α)
− l̃(ρx)

]
=
un(ρx)− l̃(ρx)

ρ1+α
.

When ρ|x| > 1
2 , we continue to take ρ ≤

(
1

10(1+C)

) 1
α−α

to

|un+1(x)| ≤ ρ−(1+α)[(1 + |ρx|1+α) + C(1 + |ρx|)]
≤ ρα−α(5 + 6C)|x|1+α

≤ |x|1+α.

On the other hand, when ρ|x| ≤ 1
2 , we get

|un+1(x)| ≤ ρ−(1+α)(|un(ρx)− h(ρx)|+ |h(ρx)− l̃(ρx)|)

≤ ρ−(1+α)(ρ1+α/2 + Cρ1+α|x|1+α)

≤ 1

2
+ Cρα−α|x|1+α

≤ 1 + |x|1+α,

where h is from Lemma 3.2. Finally, we select ρ = 1
2 min

{(
1
2C

) 1
α−α

,
(

1
10(1+C)

) 1
α−α

}
, and

complete this proof. □

To show Theorem 1.1, we will exploit Lemma 3.3 and make use of the scaling features
of (1.1) to trace the problem back to a smallness regime. That is, it is possible to suppose
that

∥u∥L∞(B1) ≤ 1 and ∥f∥L∞(B1) ≤ ε (3.16)

with 0 < ε ≪ 1. The viscosity solution u to (1.1) with (3.16) is termed a normalized
solution. Now checking its scaling properties permits us to work under the hypothesis
(3.16). Define v : RN → R as

v(x) :=
u(x0 + rx)

K
,
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where r ∈ (0, 1) satisfies Br(x0) ⊂ B1 and K ≥ 1 is a number to be fixed. It is easy to find
that v solves in the viscosity sense

−Φ(x, |Dv|)I(v, x) = f(x) in B1, (3.17)

where I is a uniformly elliptic nonlocal operator of the same ellipticity type as I in (1.1).
Here

f(x) =
rσf(x0 + rx)

KΦ
(
x0 + rx, Kr

)
and

Φ(x, |Dv|) =
Φ
(
x0 + rx, Kr |Dv|

)
Φ
(
x0 + rx, Kr

) .

We can know that Φ(x, 1) = 1 for x ∈ B1 and Φ(x, t) fulfills the structure conditions in
(A4) with the same constants there. Furthermore, (A3)–(A4) ensure

∥f∥L∞(B1) ≤
rs1+σ∥f∥L∞(B1)

M−1M
−1
K1+s1

≤ ε,

via choosing

K = 1 + ∥u∥L∞(B1) +

(
MM∥f∥L∞(B1)

ε

) 1
1+s1

.

As a result, v(x) solves the equation (3.17) in the same class as (1.1) with the small regime
in (3.16).

At this moment, the assumptions in Lemma 3.3 have been fulfilled so that we can apply
this lemma to conclude the main result. Notice that both of the sequences {an}, {pn}
converge, because they are Cauchy sequences. Thus we take an affine function l∞(x) to
establish the inequality

sup
Br

|u(x)− l∞(x)| ≤ Cr1+α (3.18)

for all r ∈ (0, ρ], which is obtained by using the discrete iteration display (3.14) and implies
the C1,α-regularity of u. Here the C ≥ 1 is a universal constant. The evaluation on (3.18)
is very standard, the details of which can be found for instance [3, 26].

3.2. Sharp regularity. This subsection is devoted to establishing an improved gradient
estimate at the origin. To facilitate the presentation, we focus on the special case that
Φ(x, t) = tp. Now consider the following equation

|Du|pI(u, x) = f(x) in B1. (3.19)

Throughout this portion, we assume the source term f on the right-hand side of (3.19)
satisfies

|f(x)| ≤ m|x|θ for x ∈ B1 (3.20)

with θ ∈ (0, 1), and we should keep in mind that the solutions of (3.19) is locally of class
C1,α(B1) as soon as σ is sufficiently close to 2.

Lemma 3.4. Let the conditions (A1), (A2), (A5) be in force. Let u ∈ C(B1) be a normalized
viscosity solution of Eq. (3.19) with u(0) = 0. Given µ, ε > 0, there is a constant κ
depending on N,λ,Λ, p, ε, µ such that whenever

|Du(0)|+ |σ − 2|+ ∥f∥L∞(B1) ≤ κ

and

|u(x)| ≤ µ(1 + |x|1+α)
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for x ∈ RN with some α ∈ (0, 1), then we can find an F -harmonic function h with h ∈
C1,α
loc (B1), so that

0 ∈ C(h) := {x ∈ B1|h(x) = |Dh(x)| = 0} and ∥u− h∥L∞(B3/4) ≤ ε.

Proof. Argue by contradiction. If this assertion is false, then we can assume that there exist
µ0, ε0 > 0 and sequences of functions {uk}, {fk}, and a sequence of numbers {σk} such that

|Duk|pIσk
(uk, x) = fk(x) in B1

with uk(0) = 0 and ∥uk∥L∞(B1) ≤ 1, as well as

|Duk(0)|+ |σk − 2|+ ∥fk∥L∞(B1) ≤
1

k
,

where the nonlocal operator Iσk
fulfills the condition (A5). However, it holds

∥uk − h∥L∞(B3/4) > ε0 (3.21)

for all F -harmonic functions h with 0 ∈ C(h). Indeed, since the equation F (D2h) = 0
does not has explicit dependency on h and Dh, then we may suppose, up to a transform
v(x) = h(x)− h(0)−Dh(0) · x, h(0) = |Dh(0)| = 0.

With the help of Theorem 1.1 and Arzelà-Ascoli theorem, we know that {uk} converges
(up to a subsequence) locally uniformly to a continuous function u in B1 in the C1-topology.
That is, it yields that

u(0) = |Du(0)| = 0. (3.22)

Utilizing the condition (A5) and the fact σk → 2, we can see that Iσk
→ F with F being a

uniformly (λ,Λ)-elliptic operator. Furthermore, there holds fk → 0 uniformly in B1. The
remaining procedures are almost the same as that of Lemma 3.2. Then we can get the
result that u solves in the viscosity sense F (D2u) = 0 in B7/8. From this and (3.22), we
arrive at a contradiction with (3.21) for large enough k by selecting h = u. □

Lemma 3.5. Under the hypotheses of Lemma 3.4 above, given a µ > 0, there is a κ > 0
depending on N,λ,Λ, p, α, µ and a ρ ∈

(
0, 12
)
depending only on N,λ,Λ, α, such that if

|Du(0)|+ |σ − 2|+ ∥f∥L∞(B1) ≤ κ

and
|u(x)| ≤ µ(1 + |x|1+α)

for x ∈ RN , then one has
sup
x∈Bρ

|u(x)| ≤ ρ1+α

for every α ∈ (0, α) with α coming from Lemma 3.4.

Proof. Let ε > 0 be a number to be chosen later. Thanks to Lemma 3.4, we find a κ > 0
and an F -harmonic function h such that 0 ∈ C(h) and

sup
x∈B3/4

|u(x)− h(x)| ≤ ε.

In view of the optimal C1,α
loc regularity for h (see e.g., [17,42]) together with the fact h(0) =

|Dh(0)| = 0, we derive

sup
x∈Br

|h(x)| ≤ Cr1+α for any r ∈
(
0,

3

4

]
with a universal constant C = C(N,λ,Λ) > 0.

Next, choose two universal constants

0 < ρ ≤
(

1

2C

) 1
α−α

and ε =
1

2
ρ1+α.
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From this, it is easy to have

sup
x∈Bρ

|u(x)| ≤ sup
x∈Bρ

|u(x)− h(x)|+ sup
x∈Bρ

|h(x)|

≤ 1

2
ρ1+α + Cρα−αρ1+α

= ρ1+α.

□

Lemma 3.6. Let the preconditions of Lemma 3.4 and |f(x)| ≤ m|x|θ be true. Then for
given µ > 0, one can find two small universal constants κ, ρ ∈ (0, 1) such that whenever

|σ − 2| ≤ κ, (3.23)

|Du(0)| ≤ κtα for t ∈ (0, ρ]

and
|u(x)| ≤ µ(1 + |x|1+α)

for x ∈ RN with α from Lemma 3.4, it holds that

sup
x∈Bt

|u(x)| ≤ Ct1+α

with a universal number C ≡ C(N,λ,Λ, α) and

α ∈ (0, α) ∩
(
0,
σ − 1 + θ

1 + p

]
.

Proof. We verify this claim by induction argument. Observe that we may suppose that
∥f∥L∞(B1) ≤ κ for κ being from Lemma 3.4 by scaling and normalization. First of all, we
need to justify that for k ∈ N

sup
x∈B

ρk

|u(x)| ≤ ρk(1+α) (3.24)

under the conditions that (3.23) and |Du(0)| ≤ κρkα with ρ from Lemma 3.5. For k = 1,
(3.24) follows immediately from Lemma 3.5. Suppose the conclusion (3.24) holds true for
k = 1, 2, · · · , n. Now we prove (3.24) for k = n+ 1. Set un : RN → R as

un(x) =
u(ρnx)

ρn(1+α)
.

Then un is a viscosity solution to the following equation

|Dun|pI(un, x) = f(x),

where the nonlocal operator I carries the same uniform ellipticity properties as the operator
I in (1.1), and

f(x) = ρnσ−n(1+α)−npαf(ρnx).

Remember α ≤ σ−1+θ
1+p and |f(x)| ≤ m|x|θ. There holds that

|f(x)| ≤ mρn(σ−1+θ−α−pα)|x|θ ≤ m.

On the other hand, via the hypotheses of induction, we know |Du(0)| ≤ κρnα, and so we
get |Dun(0)| ≤ κ. In addition, we can demonstrate

|un(x)| ≤ 1 + |x|1+α for x ∈ RN .

The evaluation of this inequality is analogous to that in Lemma 3.3. Thus we drop it here.
At this point, un falls into the framework of Lemma 3.5, and hence it yields

sup
x∈Bρ

|un(x)| ≤ ρ1+α.
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Rescaling back, one gets

sup
x∈Bρn+1

|u(x)| ≤ ρ(n+1)(1+α).

By now, the proof of (3.24) is finished. Finally, for t ∈ (0, ρ], there exists an integer n > 0
such that ρn+1 < t ≤ ρn, which leads to

sup
x∈Bt

|un(x)| ≤ sup
x∈Bρn

|u(x)| ≤ ρn(1+α) ≤ ρ−(1+α)t1+α,

provided |Du(0)| ≤ κtα. Now we complete the whole proof. □

Now we end this section with demonstrating Theorem 1.2.

Proof of Theorem 1.2. First notice that we can assume that u(0) = 0, ∥u∥L∞(B1) ≤ 1
and ∥f∥L∞(B1) ≤ κ with κ small enough, by translation and normalization. We are going
to prove this conclusion by implementing a dichotomy argument, which is divided into two
scenarios. Let 0 < κ, ρ < 1 be two universal constants from Lemma 3.6.

Case 1. |Du(0)| ≤ κρα. Set a number

τ =

(
|Du(0)|

κ

) 1
α

. (3.25)

In the first subcase τ ≤ t ≤ ρ, it follows from (3.25) that

|Du(0)| ≤ κtα.

Thereby, exploiting Lemma 3.6 leads to

sup
x∈Bt

|u(x)| ≤ Ct1+α

with a universal C > 0. Furthermore, there holds that

sup
x∈Bt

|u(x)−Du(0) · x| ≤ Ct1+α + |Du(0)|t

≤ (C + κ)t1+α.

Additionally, in the second subcase 0 < t < τ(≤ ρ), we construct an auxiliary function

uτ (x) :=
u(τx)

τ1+α
.

It is easy to see that

sup
x∈B1

|uτ (x)| = sup
x∈B1

∣∣∣∣u(τx)τ1+α

∣∣∣∣ ≤ C. (3.26)

Indeed, we have |Du(0)| = κτα by (3.25) and employ again Lemma 3.6 to obtain

sup
x∈Bτ

|u(x)| ≤ Cτ1+α.

Therefore, we can readily examine that uτ ∈ C(B1) is a viscosity solution with (3.26) to
the problem

|Duτ |pI(uτ , x) = f(x) in B1, (3.27)

where the nonlocal operator I has the same uniform ellipticity constants as the operator
I in (1.1), and f(x) = τσ−(1+α)−pαf(τx). Note that |f(x)| ≤ mτσ−1+θ−α(1+p)|x|θ ≤ m
due to α ≤ σ−1+θ

1+p . Since the source term f in (3.27) has a universal bound, the interior

C1,α-regularity for uτ follows from Theorem 1.1. In addition, recall the fact |Duτ (0)| =∣∣∣Du(0)
τα

∣∣∣ = κ. Then we may take a small universal radius r > 0, independent of τ , such that

κ

2
≤ |Duτ (x)| ≤ 2κ in Br.
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As a matter of fact, by uτ ∈ C1,α
loc (B1), there holds that, for some universal C ≥ 1,

|Duτ (x)−Duτ (0)| ≤ C|x|α

and further

κ− C|x|α ≤ |Duτ (x)| ≤ κ+ C|x|α.
From this, Eq. (3.27) becomes

I(uτ , x) = |Duτ |−pf(x) in Br.

That is to say, uτ solves a uniformly elliptic nonlocal equation with a universally bounded
source term on the right-hand side. As a consequence, through the regularity theory avail-
able in [19,20], such solution uτ to the last problem is almost as regular as an F -harmonic
function, as long as the parameter σ is sufficiently close to 2. (This moment, the operator

Iσ approaches a local uniformly (λ,Λ)-elliptic operator F .) That is, uτ ∈ C1,α−

loc . We further
derive

sup
x∈Bδ

|uτ (x)−Duτ (0) · x| ≤ Cδ1+α

for every 0 < δ ≤ r
2 and 0 < α < α. Scaling back, it yields that

sup
x∈Bt

|u(x)−Du(0) · x| ≤ Ct1+α

for all 0 < t ≤ τr
2 . When t belongs to the interval

(
τr
2 , τ

)
, we apply the first subcase with

t := τ to arrive at

sup
x∈Bt

|u(x)−Du(0) · x| ≤ sup
x∈Bτ

|u(x)−Du(0) · x|

≤ C

(
2

r

)1+α (τr
2

)1+α

≤ C

(
2

r

)1+α

t1+α =: Ct1+α.

Here note r is a universal constant. At this time, we infer u is of class C1,α at the origin in
Case 1.

Case 2. |Du(0)| > κρα. In this scenario, consider a function

v(x) =
κρα

|Du(0)|
u(x),

and then |Dv(0)| = κρα, which is back to Case 1. The proof is complete now. □

4. C1,α-regularity for the case σ ∈ (1, 2)

In this part, we under the condition σ ∈ (1, 2) analyze the regularity theory for Eq. (1.1)
via approximated viscosity solutions.

Lemma 4.1. Let the hypotheses (A1), (A2) be in force. Suppose that u ∈ C(B1) is an
approximated viscosity solution of (2.1) with a continuous function Φ. Then u is a viscosity
solution to (2.1) as well.

Proof. We only prove u is a viscosity subsolution because the case of supersolution is analo-
gous. Let x0 ∈ B1 and φ be a test function such that u−φ attains its local maximum at x0.
Through Definition 2.2 there is a sequence {uk} satisfying uk → u locally uniformly in B1,
so we have that there exists a sequence of smooth functions {φk} such that φk → φ locally
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uniformly in B1 and uk − φk reaches its local maximum at some point xk with xk → x0.
Owing to uk a viscosity solution of (2.2), then

−Φ(xk, |Dφk(xk) + ηk|+ dk)I(uk, φk, xk) ≤ f(xk),

where ηk → η and dk → 0. Remember that the functions Φ and f are continuous, and that
the convergence relation I(uk, φk, xk) → I(u, φ, x0) follows from [20, Lemma 5]. Then we
pass to the limit as k → ∞ and derive

−Φ(x, |Dφ(x0) + η|)I(u, φ, x0) ≤ f(x0).

The proof is finished now. □

Lemma 4.2. Suppose that {uk} ⊂ C(B1) and {ηk} ⊂ RN satisfy

−Φk(x, |Duk + ηk|)I(uk, x) = fk in B1

in the approximated viscosity solution sense, where fk ∈ C(B1) ∩ L∞(B1) and Φk fulfills
(A3), (A4) for all k ∈ N. In addition, assume that there is such a function u ∈ C(B1) ∩
L1
σ(RN ) that uk → u locally uniformly in B1 and ∥fk∥L∞(B1) ≤

1
k . Then, u is a viscosity

solution to
I(u, x) = 0 in B1.

Proof. Via the definition of approximated viscosity solution, we can find sequences {uik}i ⊂
C(B1)∩L1

σ(RN ), {ηik}i ⊂ RN and {di}i ⊂ R+, satisfying that uik → uk locally uniformly in
B1 and di → 0 and ids2i → ∞ as i→ ∞, such that uik solves in viscosity sense

−Φk(x, |Duik + ηik|+ di)I(uik, x) = fk in B1

for each fixed k. Now consider the sequence {ukk}, the elements of which are the solutions
to

−Φk(x, |Dukk + ηkk |+ dk)I(ukk, x) = fk in B1

for every k. Obviously, ukk converges uniformly to u locally in B1. Besides, we can see

−I(ukk, x) ≤
∥fk∥L∞(B1)

Φk(x, |Dukk + ηkk |+ dk)

≤
MM∥fk∥L∞(B1)

min{(|Dukk + ηkk |+ dk)s1 , (|Dukk + ηkk |+ dk)s2}

≤ MM

kds2k
,

where we have utilized the properties of Φk, and the relations 0 ≤ s1 ≤ s2 and 0 < dk < 1
as k is large enough. It follows from the fact kds2k → ∞ (k → ∞) in Definition 2.2 that u
is a viscosity subsolution of −I(u, x) ≤ 0 in B1. The result that u is a supersolution could
be shown similarly. □

Next, consider the following equation

−Φ(x, |Duk|+ dk)I(uk, x) = f(x) in B1 (4.1)

for any k ∈ N. The forthcoming lemma states the viscosity solutions of (4.1) are locally
Lipschitz continuous, which allows us to pass to the limit of the sequence of solutions {uk}
by compactness argument.

Lemma 4.3. Let the hypotheses (A1)–(A4) hold true. Suppose that uk ∈ C(B1) is a
viscosity solution to (4.1). Then uk has local Lipschitz continuity in B1, that is,

|uk(x)− uk(y)| ≤ C|x− y| for x, y ∈ B 1
2
.

Here the positive constant C is independent of dk.
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The proof of this lemma is almost the same as that of Proposition 3.1, so we drop the
details here. We now present an important result on the existence of approximated viscosity
solutions to Eq. (1.1).

Proposition 4.4. Assume that the preconditions (A1)–(A4) are in force. Then we can find
at least one approximated viscosity solution of (1.1).

Proof. Introduce the approximation problem−Φ
(
x, |Duk|+

(
1
k

) 1
2s2

)
I(uk, x) = f(x) in B1,

uk(x) = g(x) on RN \B1,

where the boundary datum satisfies

|g(x)| ≤ 1 + |x|1+α for x ∈ RN

with any 1+α ∈ (0, σ). The existence of viscosity solution uk to the equation above follows
from the paper [10], because of the nonlocal operator I here carrying uniform ellipticity.
Besides, recalling Lemma 4.3, we know that the viscosity solution uk is locally Lipschitz
continuous in B1 with the Lipschitz constant not depending on k. As a consequence, this

guarantees that there is a function u∞ ∈ C0,β
loc (B1) for some β ∈ (0, 1) such that uk converges

locally uniformly to u∞ in B1, and u∞ = g on RN \B1. Observe that by Definition 2.2 and

via choosing dk =
(
1
k

) 1
2s2 in (2.2) with kds2k = k

1
2 → ∞, we immediately see that u∞ is an

approximated viscosity solution of Eq. (1.1). □

In what follows, we are going to utilize the compactness argument to establish the ap-
proximation result below that is a crucial ingredient for showing Theorem 1.3.

Lemma 4.5. Suppose that the assumptions (A1)–(A4) are satisfied. Let u ∈ C(B1) be a
normalized approximated viscosity solution of (2.1). Then for given µ, ε > 0, there is a
κ > 0, depending on N,λ,Λ,M,M, s2, σ, ε, µ, such that if

∥f∥L∞(B1) ≤ κ

and
|u(x)| ≤ µ(1 + |x|1+α̂) for x ∈ RN

with some α̂ ∈ (0, 1), then there exists an Iσ-harmonic function h ∈ C1,α̂
loc (B1) fulfilling

∥u− h∥L∞(B3/4) ≤ ε.

Proof. Argue by contradiction. On the contrary, we suppose this statement fails. Then,
there exist µ0, ε0 > 0 for which we can find the sequences of functions {fk}, {Φk} and
{uk} ⊂ C(B1) ∩ L1

σ(RN ), a sequence of vectors {ηk}, such that uk is an approximated
viscosity solution of

−Φk(x, |Duk + ηk|)I(uk, x) = fk(x) in B1, (4.2)

where

∥fk∥L∞(B1) ≤
1

k
and

∥uk∥L∞(B1) ≤ 1, |uk(x)| ≤ µ0(1 + |x|1+α̂) for x ∈ RN .

Here the continuous function Φk(x, t) satisfies that M
−1 ≤ Φk(x, 1) ≤ M in B1, and the

map t→ Φk(x,t)
ts1 is almost non-decreasing and the map t→ Φk(x,t)

ts2 is almost non-increasing
with the same constant M ≥ 1 in (A4). Nonetheless,

∥uk − h∥L∞(B3/4) > ε0 (4.3)
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for any function h ∈ C1,α̂
loc (B1).

We have known from Lemma 4.1 that the approximated viscosity solutions of (4.2) are
viscosity solutions of such equation as well. In turn, making use of Lemma 4.3, we could
find such a continuous function u∞ that uk converges uniformly to u∞ locally in B1 by
compactness. At this stage, it yields using the stability of approximated viscosity solutions
(Lemma 4.2) and the preceding assumptions that u∞ is a viscosity solution of

−Iσ(u∞, x) = 0 in B 7
8

from (4.2). Here it is well known that u∞ is of class C1,α̂
loc (B7/8). Hence there is a contra-

diction with (4.3) by selecting h := u∞ for k large enough. □

Lemma 4.6. Let u ∈ C(B1) be a normalized approximated viscosity solution of (1.1).
Under the assumptions of Lemma 4.5, for given µ > 0, one can find a κ > 0, depending on
N,λ,Λ,M,M, s2, σ, α, µ, such that whenever

∥f∥L∞(B1) ≤ κ

and

|u(x)| ≤ µ(1 + |x|1+α̂) for x ∈ RN

with α̂ from Lemma 4.5, then there is a constant ρ ∈
(
0, 12
)
depending only on N,λ,Λ, α, σ

and a sequence of affine functions {lk} with the form lk(x) := ak + pk · x such that

sup
x∈B

ρk

|u(x)− lk(x)| ≤ ρk(1+α),

where

|ak+1 − ak|+ ρk|pk+1 − pk| ≤ Cρk(1+α) (4.4)

for any

α ∈ (0, α̂) ∩
(
0,
σ − 1

1 + s2

]
.

Here the constant C ≥ 1 depends on N,λ,Λ, σ.

Proof. The proof of this lemma is analogous to that of Lemma 3.3, so we sketch it here.

Step 1. First, we claim that there exists an affine map l(x) and a number 0 < ρ < 1
2

such that

sup
x∈Bρ

|u(x)− l(x)| ≤ ρ1+α.

For ε > 0 to be determined a posteriori, we suppose h is an Iσ-harmonic function that is
ε-close to u in L∞(B3/4) (i.e., ∥u− h∥L∞(B3/4) ≤ ε). Owing to Lemma 4.5, the existence of

such function h could be assured, provided κ > 0 is sufficiently small.
With the help of the C1,α̂-regularity of h, there is an absolute constant C ≡ C(N,λ,Λ, σ)

satisfying

sup
x∈Bρ

|h(x)− (h(0) +Dh(0) · x)| ≤ Cρ1+α̂

with

|h(0)|+ |Dh(0)| ≤ C.

Set an affine function l(x) := a+ p · x := h(0) +Dh(0) · x. Via the triangular inequality,

sup
x∈Bρ

|u(x)− l(x)| ≤ sup
x∈Bρ

|u(x)− h(x)|+ sup
x∈Bρ

|h(x)− l(x)|

≤ ε+ Cρ1+α̂

≤ ρ1+α,
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where we have taken ρ =
(

1
2C

) 1
α̂−α and ε = 1

2ρ
1+α. The universal choice of ε determines

the value of κ by Lemma 4.5.

Step 2. We proceed by induction. Suppose this assertion holds for k = 1, 2, · · · , n. Next,
we prove this in the case k = n+ 1. Define a function un : RN → R as

un(x) :=
u(ρnx)− ln(ρ

nx)

ρn(1+α)
.

Hereafter, the subsequent processes are the same as the proof of Step 2 in Lemma 3.3
virtually, so we omit the details here. □

Proof of Theorem 1.3. Since the sequences {ak}, {pk} are Cauchy sequences from (4.4),
then we may pick a∞ ∈ R, p∞ ∈ RN such that

|ak − a∞|+ |pk − p∞| → 0 (k → ∞),

and further

|ak − a∞|+ ρk|pk − p∞| ≤ Cρk(1+α).

For any r ∈
(
0, 12

]
, select k ∈ N such that ρk+1 < r ≤ ρk with ρ a fixed sufficiently small

number. Then, let l∞(x) = a∞ + p∞ · x and we evaluate

sup
x∈Br

|u(x)− l∞(x)| ≤ sup
x∈B

ρk

|u(x)− lk(x)|+ sup
x∈B

ρk

|lk(x)− l∞(x)|

≤ Cρ−(1+α)ρ(k+1)(1+α)

≤ Cr1+α,

which indicates u is of class C1,α; see for instance [16]. So far, we have demonstrated the
approximated viscosity solutions are locally C1,α-regular. On the other hand, employing
Proposition 4.4, the existence of such solutions can be guaranteed. Moreover, it follows
from Lemma 4.1 that approximated viscosity solutions are viscosity solutions as well. As a
result, we verify the existence of viscosity solution with C1,α

loc (B1)-regularity to (1.1).

5. Hölder continuity of solutions

We in this section provide the proof of local Hölder regularity for viscosity solutions to
(1.1) by using Ishii-Lions argument again and elliptic estimates in the direction of gradient
shown in [9, 11].

Proof of Theorem 1.4. (1) The proof of this theorem is analogous to that of Proposition
3.1, so we profile it and follow the notations there. Especially, we stress that for t ∈ [0,+∞)

ω(t) = Ltσ

with σ ∈ (0, 1) at this time. For the function with “double variables”

Ψ(x, y) = u(x)− u(y)− φ(x, y),

it attains maximum in B1 × B1 at (x, y) by continuity. In the sequel, we focus on demon-
strating Ψ(x, y) ≤ 0 via arguing by contradiction. Suppose Ψ(x, y) > 0. Then we can
obtain the following information:

x ̸= y, y ∈ B 3
4

and |x− y| ≤
(
L−1 osc

B1

u

)σ−1

and further

|x| ≤ 3

4
+

(
L−1 osc

B1

u

)σ−1

≤ 7

8
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via selecting L ≥ 8σ osc
B1

u.

Through applying the fact that Ψ has its maximum at (x, y) ∈ B1×B1 and the definition
of the solution, we arrive at the viscosity inequalities

−Φ(x, |Dxφ(x, y)|)Iδ(u, φ(·, y), x) ≤ f(x)

and

−Φ(y, | −Dyφ(x, y)|)Iδ(u,−φ(x, ·), y) ≥ f(y)

for each δ ∈ (0, 1). Compute the partial derivative of φ,Dxφ(x, y) = σL|x− y|σ−2(x− y),

Dyφ(x, y) = −σL|x− y|σ−2(x− y) +Dh(y).

Furthermore, we can find that, by taking such large L ≥ 1 that C(N)
(
osc
B1

u+1
)
≤ 2σ−2σL,

|Dxφ(x, y)| = σL|x− y|σ−1 ≥ 2σ−1σL

|Dyφ(x, y)| ≥ σL|x− y|σ−1 −
(
osc
B1

u+ 1
)
|Dψ(y)| ≥ 2σ−1σL− C(N)

(
osc
B1

u+ 1
)
≥ 2σ−2σL.

Based on the structural conditions on Φ and the lower bound on |Dxφ(x, y)| or |Dyφ(x, y)|,
we can infer

−Iδ(u, φ(·, y), x) ≤
∥f∥L∞(B1)

Φ(x, |Dxφ(x, y)|)
≤
C∥f∥L∞(B1)

(2σ−2σL)s1

and

−Iδ(u,−φ(x, ·), y) ≥ −
∥f∥L∞(B1)

Φ(y, |Dyφ(x, y)|)
≥ −

C∥f∥L∞(B1)

(2σ−2σL)s1
,

that is,

Iδ(u, φ(·, y), x)− Iδ(u,−φ(x, ·), y) ≥ −
C∥f∥L∞(B1)

Ls1
,

where the constant C > 0 depends on σ, s1, N,M,M .
When evaluating the nonlocal term on the left-hand side of the last display, we can use

the estimates of T2 in Step 3 of Theorem 1-(i) in [11]. Then we choose L sufficiently large
to obtain a contradiction. Then the Hölder continuity is proved, and the upper bound on
Hölder norm is indeed the L. Here let us mention that the subsequent procedure is the
same as that in Proposition 3.1.

(2) For the case σ = 1, the proof is very similar to that in the scenario σ ∈ (0, 1). It
is worth stressing that we need to introduce the auxiliary function ω(t) = Ltα with any
α ∈ (0, 1). □

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.
12071098, 11871134) and the Young talents sponsorship program of Heilongjiang Province
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[5] D. Araújo, D. dos Prazeres, E. Topp, On fractional quasilinear equations with elliptic degeneracy,
arXiv:2306.15452, 2023.

[6] S. Baasandorj, S. Byun, K. Lee, S. Lee, C1,α-regularity for a class of degenerate/singular fully non-linear
elliptic equations, Interfaces Free Bound. 26 (2) (2024) 189–215.

[7] S. Baasandorj, S. Byun, K. Lee, S. Lee, Global regularity results for a class of singular/degenerate fully
nonlinear elliptic equations, Math. Z. 306 (1) (2024) 26 pp.

[8] S. Baasandorj, S. Byun, J. Oh, Second derivative Lδ-estimates for a class of singular fully nonlinear
elliptic equations, Nonlinear Anal. 249 (2024) 113630.

[9] G. Barles, E. Chasseigne, A. Ciomaga, C. Imbert, Lipschitz regularity of solutions for mixed integro-
differential equations, J. Differential Equations 252 (2012) 6012–6060.

[10] G. Barles, E. Chasseigne, C. Imbert, On the Dirichlet problem for second-order elliptic integro-
differential equations, Indiana Univ. Math. J. 57 (1) (2008) 213–246.
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[13] G. Barles, S. Koike, O. Ley, E. Topp, Regularity results and large time behavior for integro-differential
equations with coercive Hamiltonians, Calc. Var. Partial Differential Equations 54 (1) (2015) 539–572.
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[18] L. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations, American Mathematical Society Collo-

quium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995.
[19] L. Caffarelli, L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Commun.

Pure Appl. Math. 62 (5) (2009) 597–638.
[20] L. Caffarelli, L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Ration.

Mech. Anal. 200 (1) (2011) 59–88.
[21] A. Ciomaga, On the strong maximum principle for second-order nonlinear parabolic integro-differential

equations, Adv. Differential Equations 17 (7-8) (2012) 635–671.
[22] M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal.

215 (2015) 443–496.
[23] C. De Filippis, Regularity for solutions of fully nonlinear elliptic equations with nonhomogeneous de-

generacy, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021) 110–132.
[24] C. De Filippis, G. Mingione, Lipschitz bounds and nonautonomous integrals, Arch. Ration. Mech. Anal.

242 (2) (2021) 973–1057.
[25] L. Del Pezzo, A. Quaas, The fundamental solution of the fractional p-Laplacian, arXiv:2307.07621v1,

2023.
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