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Abstract
We investigate normalized solutions of the following Choquard equation perturbed by sat-
urable nonlinearity{

−�u + λu = (Iα ∗ |u|p) |u|p−2u + μ
g(x)+u2

1+g(x)+u2
u in R

N ,∫
RN u2dx = c > 0,

where 2α := N+α
N ≤ p ≤ 2∗

α := N+α
N−2 , μ ∈ R\{0}, and g(x) is a bounded intensity function

on R
N . Under different assumptions on p, μ and g(x), we prove several existence and

nonexistence results.We also describe someproperties on the associatedLagrangemultipliers
λ, including the asymptotic behavior as c → 0 and the relationship with the distribution
potential g(x).
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radulescu@inf.ucv.ro

Tsung-fang Wu
tfwu@nuk.edu.tw

1 School of Mathematics and Statistics, Shandong University of Technology, Zibo 255049, People’s
Republic of China

2 Faculty of Applied Mathematics, AGH University of Science and Technology, 30-059 Kraków,
Poland

3 Department of Mathematics, University of Craiova, 200585 Craiova, Romania

4 Department of Applied Mathematics, National University of Kaohsiung, 811 Kaohsiung, Taiwan

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-024-02925-z&domain=pdf
http://orcid.org/0000-0002-5837-1440


   61 Page 2 of 34 J. Sun et al.

3.1 The subcase 2α ≤ p ≤ p̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 The subcase p̄ < p < 2∗

α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 The case μ < 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1 The subcase p = 2α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 The subcase 2α < p ≤ p̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 The subcase p̄ < p < 2∗

α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 The subcase p = 2∗

α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

In this paper, we consider the Choquard equations with a saturable perturbation

i∂t� − �� = (Iα ∗ |�|p) |�|p−2� + μ
g(x) + |�|2

1 + g(x) + |�|2 �, ∀(t, x) ∈ R × R
N , (1)

where N ≥ 2, 2α ≤ p ≤ 2∗
α (2α = N+α

N , 2∗
α = N+α

N−2 if N ≥ 3 and 2∗
α = ∞ if N = 2), the

parameter μ ∈ R\{0} and Iα is the Riesz potential of order α ∈ (0, N ) defined by

Iα = A(N , α)

|x |N−α
with A(N , α) = �( N−α

2 )

πN/22α�(α
2 )

for each x ∈ R
N\{0}, (2)

and ∗ is the convolution product on R
N . The constant 2α = N+α

N is the lower critical
exponent and 2∗

α = N+α
N−2 is the upper critical exponent in the sense of Hardy-Littlewood-

Sobolev inequality. g(x) ∈ C(RN ,R) is a bounded function, which is usually called the
intensity (distribution) function.

In the case μ = 0, Eq. (1) becomes the well-known Choquard–Pekar equation. When
N = 3 and α = p = 2, this equation has several physical origins, such as the description
by Pekar of the quantum physics of a polaron at rest [26], and the model by Choquard of an
electron trapped in its own hole as a certain approximation to Hartree–Fock theory of one
component plasma [15].

An important topic on Eq. (1) is to study their standing wave solutions. A standing wave
solution of Eq. (1) is a solution of the form�(t, x) = e−iλt u(x), where λ ∈ R and u satisfies
the stationary equation

− �u + λu = (Iα ∗ |u|p) |u|p−2u + μ
g(x) + |u|2

1 + g(x) + |u|2 u in R
N . (3)

A possible choice is then to fix λ ∈ R, and to search for solutions to Eq. (3) as critical points
of the energy functional

E(u) := 1

2

∫
RN

(|∇u|2 + λ|u|2)dx − 1

2p

∫
RN

(
Iα ∗ |u|p) |u|pdx

− μ

2

∫
RN

[
|u|2 − ln

(
1 + |u|2

1 + g(x)

)]
dx .

Alternatively, one can search for solutions to Eq. (3) with the frequency λ unknown. In
this case λ ∈ R appears as a Lagrange multiplier and L2-norms of solutions are prescribed,
which are usually called normalized solutions. This study seems particularly meaningful
from the physical point of view, since solutions of Eq. (1 ) conserve their mass along time.
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In this paper we are concerned with this issue. For c > 0 given, we are interested in finding
solutions to {

−�u + λu = (Iα ∗ |u|p) |u|p−2u + μ
g(x)+|u|2

1+g(x)+|u|2 u in R
N ,∫

RN |u|2dx = c.
(Pc)

Solutions of problem (Pc) can be obtained as critical points of the energy functional J :
H1(RN ) → R defined by

J (u) := 1

2

∫
RN

|∇u|2dx− 1

2p

∫
RN

(
Iα ∗ |u|p) |u|pdx−μ

2

∫
RN

[
|u|2 − ln

(
1 + |u|2

1 + g(x)

)]
dx

(4)
on the constraint

S(c) := {u ∈ H1(RN ) |
∫
RN

|u|2dx = c}. (5)

Note that J is a well-defined and C1 functional on S(c) with Fré chet derivative

〈J ′(u), v〉 =
∫
RN

∇u · ∇vdx −
∫
RN

(
Iα ∗ |u|p) |u|p−2uvdx −μ

∫
RN

g(x) + |u|2
1 + g(x) + |u|2 uvdx

for any v ∈ H1(RN ).
In recent years, there has been much attention on normalized solutions to the Choquard

equation
− �u + λu = (Iα ∗ |u|p) |u|p−2u in R

N . (6)

When N = 3 and α = p = 2, the existence and uniqueness of normalized solutions for
Eq. (6) was proved by Lieb [15], and the orbital stability of the normalized ground states set
was studied by Lions [22] . Recently, the existence of normalized solutions for Eq. (6) was
established in [35], depending on the exponent 2α < p < 2∗

α. By considering the minimizer
of constrained on the Pohozaev manifold, Luo [24] obtained the existence and instability of
normalized ground state for Eq. (6) with p̄ := N+α+2

N < p < 2∗
α . It is remarkable that p̄ is

called the L2-critical exponent for Hartree type nonlinearity, which is the threshold exponent
for many dynamical properties such as global existence vs. blow-up, and the stability or
instability of ground states. For the generalized Choquard equation, we refer the reader to [2,
14].

Very recently, for Choquard equation with a power perturbation, there are some results
on normalized solutions, see for example, [3, 7, 12, 33, 34]. In particular, Li [12] considered
the upper critical Choquard equation with a power perturbation

− �u + λu =
(
Iα ∗ |u|2∗

α

)
|u|2∗

α−2u + μ|u|q−2u in R
N , (7)

where μ > 0 and 2 < q < 2 + 4
N . He proved the existence and orbital stability of the

normalized ground states for Eq. (7). Moreover, the second normalized solution was found
as well, which is positive, radial symmetric, exponential decay and orbital instable.

We note that in the existing literature there seems no result concerned on the Choquard
equationswith a saturable perturbation, i.e. Eq. (3),whetherλ is fixed or unknown. Inspired by
this fact, in this paperwewill exhaustively study the nonexistence and existence of normalized
solutions for this type of equations when the perturbation is focusing or defocusing, i.e.
problem (Pc) with μ > 0 or μ < 0. We will examine how the presence of a saturable
perturbation influences the situation in our context, particularly, when the exponent p is the
lower or upper critical exponent, in view of the fact that Eq. (6) with λ = 1 has no nontrivial
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smooth H1 solution [9, 25].Moreover, someproperties on the associatedLagrangemultipliers
λ, including the asymptotic behavior as c → 0 and the relationship with the function g(x),
are described.

We wish to point out that the saturable nonlinearity is used to describe photorefractive
media [5, 6]. From the mathematical point of view, it is a kind of asymptotically linear term
at infinity. Lin et al. [18] firstly studied normalized solutions for the Schrödinger equation
with saturable nonlinearity

− �u + λu = μ
g(x) + |u|2

1 + g(x) + |u|2 u in R
N , (8)

where μ > 0. It is true that the functional I corresponding to Eq. (8) is bounded from below
on S(c). Thus, one may consider the following minimization problem

σ(c) := inf
u∈S(c)

I (u) (9)

to get normalized ground states of Eq. (8). When g(x) ≡ 0, N = 2 and μ > � for some
� > 0, the existence of minimizer of problem (9) can be proved by Lin et al. [18] via the
energy estimate method. Moreover, Lin et al. [19] got the estimate of λ and the minimum
(ground state) energy σ(c) by developing a virial theorem.When g(x) becomes nonzero, Lin
et al. [20] employed a convexity argument to obtain the existence of minimizer of problem
(9) when μ > 0 is sufficiently large.

Let us get back to the problemwhat wewould like to study. Comparedwith the study of the
Choquard equation with or without a power perturbation, there seems to be more challenging
for problem (Pc). Firstly, when p = 2α and μ > 0, we find that the usual method can not be
used to rule out vanishing of the minimizing sequence when the concentration–compactness
principle is applied, due to the special structure of the nonlocal term. Secondly, a convexity
method by Lin et al. [20] can be used to rule out the dichotomy of the minimizing sequence
in studying normalized ground states of Eq. (8). However, for problem (Pc),when combined
nonlinearities appear, particularly when μ < 0, such an argument is not applicable directly.
Thirdly, as we will see, the functional J will no longer be bounded from below on S(c)when
p < p < 2∗

α. When the Pohozaev mainfold approach is used, the fibering map related to the
Pohozaev mainfold has an extremely complicated form arising from saturable nonlinearity,
which seems to have never been concerned before. In order to overcome these considerable
difficulties, new ideas and techniques have been explored. More details will be discussed in
the next sections.

Before stating our main results, we agree that when p = 2∗
α is involved, we always assume

that N ≥ 3. For the other cases, we require N ≥ 2. Next, we give the definition of ground
state in the following sense.

Definition 1.1 We say that u is a ground state of problem (Pc) if it is a solution to problem
(Pc) having minimal energy among all the solutions:

J |′S(c)(u) = 0 and J (u) = inf{J (v) | J |′S(c)(v) = 0 and v ∈ S(c)}.
We assume that the intensity function g(x) satisfies the following conditions:

(D1) The function g(x) ≡ g1 > −1 is a constant function;
(D2) The function g(x) = g(x1, x2, · · · , xN ) is periodic with period 1 with respect to

variables x1 to xN respectively, and satisfies −1 < g1 ≤ g(x) ≤ g2 for x ∈ R
N ,

where g1 and g2 are constants;
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(D3) The function g(x) satisfies −1 < g(x) ≤ lim|x |→∞ g(x) = g1 for x ∈ R
N , where

g1 is a constant;
(D4) The function g(x) satisfies g(x) ≥ lim|x |→∞ g(x) = g1 > −1 for x ∈ R

N , where
g1 is a constant.

Theorem 1.2 Let μ > 0. Then the following statements are true.
(i) Assume that p = 2α and one of conditions (D1) − (D4) holds. Then there exists

μ0 > 0 such that for every μ > μ0, the infimum

σ(c) < − 1

22α‖Q2α‖22α

2

c2α − μg1c

2(1 + g1)

is achieved by w ∈ S(c), which is a ground state of problem (Pc) with some

λ̄ >
1

2α‖Q2α‖22α

2

c2α−1 + μg1
1 + g1

,

where Q2α is given in (13) below;
(i i) Assume that 2α < p ≤ p and one of conditions (D1), (D3) holds. In addition, we

assume that if p = p̄, then c < ‖Q p̄‖4( p̄−1)/(N+α− p̄(N−2))
2 , where Q p̄ is given in (14) below.

Then the infimum

σ(c) < − μg1c

2(1 + g1)

is achieved by w ∈ S(c), which is a ground state of problem (Pc) with some λ̄ >
μg1
1+g1

.

(i i i) Assume that p < p < 2∗
α and condition (D1) with −1 < g1 ≤ 0 holds. Then there

exists c̄ > 0 such that for every c < c̄, problem (Pc) has a solution (w, λ̄) ∈ H1
r (RN )×R

+.

In particular, we have

J (w) > K1c
− N+α−p(N−2)

Np−N−α−2 − μc

2

and

λ̄ > K2c
− 2p−2

Np−N−α−2 − μ

1 + g1

(
Np

Np − N − α
− g1

)
,

where K1, K2 > 0 are two constants;

Theorem 1.3 Let μ < 0. Then the following statements are true.
(i) Assume that p = 2α and condition (D1) holds. Then the functional J has no critical

point on S(c). In other words, there is no solution for problem (Pc) for all λ ∈ R;
(i i) Assume that 2α < p ≤ p and one of conditions (D1), (D4) with g1 ≥

2c
ξ

− 1 holds, where ξ > 0 is given in (49) below. In addition, we assume that c <

‖Q p̄‖4( p̄−1)/(N+α− p̄(N−2))
2 if p = p̄. Then the infimum

σ(c) ≤ |μ|g1c
2(1 + g1)

is achieved by w ∈ S(c), which is a ground state of problem (Pc) with some λ̄ ≥ −|μ|.
(i i i) Assume that p < p < 2∗

α and condition (D1) with −1 < g1 ≤ 0 holds. Then there
exists c̃ > 0 such that for all c < c̃, problem (Pc) has a solution (w, λ̄) ∈ H1

r (RN ) × R
+.

Moreover, we have

J (w) > K3c
− N+α−p(N−2)

Np−N−α−2 − |μ|c
2(1 + g1)

(
Np − α

Np − N − α
− g1

)
,
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and
λ̄ > K4c

− 2p−2
Np−N−α−2 − |μ|,

where K3, K4 > 0 are two constants;
(iv) Assume that p = 2∗

α and condition (D1) holds. Then there is no solution for problem
(Pc) for all λ ≥ |μ|(N−2−2g1)

2(1+g1)
.

Remark 1.1 (I ) In Theorem 1.2 (i), we require the parameter μ > 0 large enough when
p = 2α due to the feature of the lower critical nonlocal term. However, for other cases of p,
i.e. Theorems 1.2 (i i) − (i i i) and 1.3 (i i) − (i i i), we do not need such assumption by using
the new estimate trick.

(I I ) From the above two theorems, we find that when p = 2α, there are opposite results
if the saturable perturbation is focuing or defocusing;

(I I I ) In Theorems 1.2 (i i i) and 1.3 (i i i), we only give the existence results of problem
(Pc)when the intensity function g(x) is a constant.When g(x) is not a constant function, such
as g(x) satisfies any of conditions (D2) − (D4), finding normalized solutions of problem
(Pc) would be an interesting issue.

2 Preliminaries

For convenience, we set

A(u) =
∫
RN

|∇u|2dx and B(u) =
∫
RN

(
Iα ∗ |u|p) |u|pdx .

Then the functional J defined in (4) can be reformulated as

J (u) = 1

2
A(u) − 1

2p
B(u) − μ

2

∫
RN

[
u2 − ln

(
1 + |u|2

1 + g(x)

)]
dx .

In what follows, we recall several important inequalities which will be often used in the
paper.

(1) Hardy-Littlewood-Sobolev inequality ([17]): Let t, r > 1 and 0 < α < N with
1/t+ (N −α)/N +1/r = 2. For f̄ ∈ Lt (RN ) and h̄ ∈ Lr (RN ), there exists a sharp constant
C(t, N , α, r) independent of u and v, such that∫

RN

∫
RN

f̄ (x)h̄(y)

|x − y|N−α
dxdy ≤ C(t, N , α, r)‖ f̄ ‖t‖h̄‖r . (10)

(2) Gagliardo-Nirenberg inequality ([32]): For every N ≥ 1 and s ∈ (2, 2∗), there exists
a constant CN ,s depending on N and on s such that

‖u‖s ≤ CN ,s‖∇u‖
N (s−2)

2s
2 ‖u‖1−

N (s−2)
2s

2 , ∀u ∈ H1(RN ). (11)

(3) Gagliardo-Nirenberg inequality of Hartree type ([16, 35]): Let N ≥ 1. For p = 2α,

it holds ∫
RN

(Iα ∗ |u|2α )|u|2αdx ≤ 1

‖Q2α‖22α

2

‖u‖22α

2 , (12)

where

Q2α = C

(
b̂

b̂2 + |x − â|2
)N/2

, (13)
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with C > 0 is a fixed constant, â ∈ R
N and b̂ > 0 are parameters. For 2α < p < 2∗

α , it holds∫
RN

(Iα ∗ |u|p)|u|pdx ≤ p

‖Qp‖2p−2
2

‖∇u‖Np−N−α
2 ‖u‖N+α−p(N−2)

2 , (14)

where Qp is a positive ground state solution of the following equation

−N (p − 1) − α

2
�u + −(N − 2)p + N + α

2
u = (Iα ∗ |u|p)|u|p−2u in R

N .

We now recall two known estimates on the saturable nonlinearity.

Lemma 2.1 [21, Lemma 2.2] For each 2 < q ≤ min{4, 2∗} (2∗ = ∞ if N = 1, 2; 2∗ = 2N
N−2

if N ≥ 3), there exists a constant

Aq =
{
1/2, if q = 4,
q(q−2)/2(4−q)(4−q)/2

2q , if 2 < q ≤ min{4, 2∗} and q �= 4,

such that

s2 − ln

(
1 + s2

1 + g(x)

)
≤ g(x)

1 + g(x)
s2 + Aq

(1 + g(x))q/2 s
q for all s ≥ 0.

Lemma 2.2 [21, Lemma 2.3] For each 2 < q ≤ min{4, 2∗} (2∗ = ∞ if N = 1, 2; 2∗ = 2N
N−2

if N ≥ 3), there exists a constant

Bq =
{
1, if q = 4;
32(q+4)/2(q−2)(5−q)/2(

√
q+14−3

√
q−2)(4−q)/2

q(
√
q+14−√

q−2)3
if 2 < q ≤ min{4, 2∗} and q �= 4,

such that
g(x) + s2

1 + g(x) + s2
s2 ≤ g(x)

1 + g(x)
s2 + Bq

(1 + g(x))q/2 s
q for all s ≥ 0.

Next,we show the variant of the classicalBrezis-Lieb lemma forRiesz potential as follows.

Lemma 2.3 [25, Lemma 2.4] Let α ∈ (0, N ), p ∈ [1,∞) and {un} be a bounded sequence

in L
2Np
N+α (RN ). If un → u a.e. on RN as n → ∞, then limn→∞ B(un)− B(un − u) = B(u).

Lemma 2.4 Assume that the function g(x) is weakly differentiable on RN . Let u ∈ H1(RN )

be a weak solution to the equation:

− �u + λu = (Iα ∗ |u|p) |u|p−2u + μ
g(x) + |u|2

1 + g(x) + |u|2 u. (15)

Then u satisfies the Pohozaev identity

N − 2

2
A(u) + N (λ − μ)

2

∫
RN

|u|2dx = N + α

2p
B(u) − μN

2

∫
RN

ln

(
1 + |u|2

1 + g(x)

)
dx

+μ

2

∫
RN

|u|2∇g(x) · x
(1 + g(x))(1 + g(x) + |u|2)dx .

Furthermore, it holds

A(u) − Np − N − α

2p
B(u) + μ

2

∫
RN

|u|2∇g(x) · x
(1 + g(x))(1 + g(x) + |u|2)dx

= μN

2

∫
RN

[
ln

(
1 + |u|2

1 + g(x)

)
− |u|2

1 + g(x) + |u|2
]
dx . (16)
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Proof We follow the argument of Lehrer andMaia [11, Proposition 2.1]. Bymultiplying both
sides of Eq. (15) by x · ∇u and integrating on RN , we easily get the Pohozaev identity

N − 2

2
A(u) + N (λ − μ)

2

∫
RN

|u|2dx = N + α

2p
B(u) − μN

2

∫
RN

ln

(
1 + |u|2

1 + g(x)

)
dx

+μ

2

∫
RN

|u|2∇g(x) · x
(1 + g(x))(1 + g(x) + |u|2)dx . (17)

Moreover, by multiplying both sides of Eq. (15) by u and integrating on RN , we have

A(u) + λ

∫
RN

|u|2dx − B(u) − μ

∫
RN

g(x) + |u|2
1 + g(x) + |u|2 |u|2dx = 0. (18)

Combining (17) and (18), it follows that

A(u) − Np − N − α

2p
B(u) + μ

2

∫
RN

|u|2∇g(x) · x
(1 + g(x))(1 + g(x) + |u|2)dx

= μN

2

∫
RN

[
ln

(
1 + |u|2

1 + g(x)

)
− |u|2

1 + g(x) + |u|2
]
dx .

We complete the proof. ��
Following the idea of Soave [27] and Cingolani and JeanJean [4], we will introduce a

natural constraint manifold M(c) that contains all the critical points of the functional J
restricted to S(c). For each u ∈ H1(RN )\{0} and t > 0, we consider the dilations

ut (x) := t
N
2 u(t x) for all x ∈ R

N .

Then a direct calculation shows that ‖ut‖22 = ‖u‖22, A(ut ) = t2A(u), B(ut ) =
t Np−N−αB(u), and∫

RN
ln

(
1 + |ut |2

1 + g(x)

)
dx = 1

t N

∫
RN

ln

(
1 + t N |u|2

1 + g(x/t)

)
dx .

Define the fibering map t ∈ (0,∞) → fu(t) := J (ut ) given by

fu(t) = t2

2
A(u) − t Np−N−α

2p
B(u) − μ

2

∫
RN

|u|2dx + μ

2t N

∫
RN

ln

(
1 + t N |u|2

1 + g(x/t)

)
dx .

(19)
By calculating the first and second derivatives of fu(t), we have

f ′
u(t) = t A(u) − (Np − N − α)t Np−N−α−1

2p
B(u) − μN

2t N+1

∫
RN

ln

(
1 + t N |u|2

1 + g(x/t)

)
dx

+μN

2t

∫
RN

|u|2
1 + g(x/t) + t N |u|2 dx + μ

2t

∫
RN

|u|2∇g(x/t) · x
(1 + g(x/t))(1 + g(x/t) + t N |u|2)dx

and

f ′′
u (t) = A(u) − (Np − N − α)(Np − N − α − 1)t Np−N−α−2

2p
B(u)

+μN (N + 1)

2t N+2

∫
RN

ln

(
1 + t N |u|2

1 + g(x/t)

)
dx − μN 2

2t2

∫
RN

|u|2
1 + g(x/t) + t N |u|2 dx

123



Choquard equations with saturable reaction Page 9 of 34    61 

+μN

2t2

∫
RN

|u|2∇g(x/t) · x
(1 + g(x/t))(1 + g(x/t) + t N |u|2)dx

−μN

2t2

∫
RN

|u|2
1 + g(x/t) + t N |u|2 dx + μN

2t2

∫
RN

u2∇g(x/t) · x
(1 + g(x/t) + t N |u|2)2 dx

−μN 2t N−2

2

∫
RN

|u|4
(1 + g(x/t) + t N |u|2)2 dx

− μ

2t2

∫
RN

u2∇g(x/t) · x
(1 + g(x/t))(1 + g(x/t) + t N |u|2)dx

+ μ

2t

∫
RN

u2(∇g(x/t) · x)t
(1 + g(x/t))(1 + g(x/t) + t N |u|2)dx

+ μ

2t2

∫
RN

u2(∇g(x/t) · x)2
(1 + g(x/t))2(1 + g(x/t) + t N |u|2)dx

+ μ

2t2

∫
RN

u2(∇g(x/t) · x)2
(1 + g(x/t))(1 + g(x/t) + t N |u|2)2 dx

−μNtN−2

2

∫
RN

u4∇g(x/t) · x
(1 + g(x/t))(1 + g(x/t) + t N |u|2)2 dx .

Notice that d
dt J (ut ) = f ′

u(t) = Q(ut )
t , where

Q(u) := A(u) − Np − N − α

2p
B(u) + μ

2

∫
RN

|u|2∇g(x) · x
(1 + g(x))(1 + g(x) + |u|2)dx

− μN

2

∫
RN

[
ln

(
1 + |u|2

1 + g(x)

)
− |u|2

1 + g(x) + |u|2
]
dx .

Actually Q(u) = 0 corresponds to the Pohozaev identity (16). Then we define

M(c) := {u ∈ S(c) | Q(u) = 0} = {u ∈ S(c) | f ′
u(1) = 0},

which appears as a natural constraint. We also recognize that for any u ∈ S(c), the function
ut = t N/2u(t x) belongs toM(c) if and only if t ∈ R

+ is a critical point of the fibering map
fu(t), namely f ′

u(t) = 0. In particular, u ∈ M(c) if and only if f ′
u(1) = 0. Thus, it is natural

to split M(c) into three parts corresponding to local maxima, local minima and points of
inflection. Following [29], we define

M+(c) := {u ∈ S(c) | f ′
u(1) = 0, f ′′

u (1) > 0
}
,

M0(c) := {u ∈ S(c) | f ′
u(1) = 0, f ′′

u (1) = 0
}
,

M−(c) := {u ∈ S(c) | f ′
u(1) = 0, f ′′

u (1) < 0
}
.

If we assume that g(x) ≡ g1 > −1 is a constant, then for each u ∈ M(c), we have

f ′′
u (1) = A(u) − (Np − N − α)(Np − N − α − 1)

2p
B(u) + μN (N + 1)

2

∫
RN

ln

(
1 + |u|2

1 + g1

)
dx

−μN (N + 1)

2

∫
RN

|u|2
1 + g1 + |u|2 dx − μN2

2

∫
RN

|u|4(
1 + g1 + |u|2)2 dx

= − (Np − N − α)(Np − N − α − 2)

2p
B(u) + μN (N + 2)

2

∫
RN

ln

(
1 + |u|2

1 + g1

)
dx
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−μN (N + 2)

2

∫
RN

|u|2
1 + g1 + |u|2 dx − μN2

2

∫
RN

|u|4(
1 + g1 + |u|2)2 dx (20)

= −(Np − N − α − 2)A(u) + μN (Np − α)

2

∫
RN

[
ln

(
1 + |u|2

1 + g1

)
− |u|2

1 + g1 + |u|2
]
dx

−μN2

2

∫
RN

|u|4(
1 + g1 + |u|2)2 dx (21)

= (N + 2)A(u) − (Np − α)(Np − N − α)

2p
B(u) − μN2

2

∫
RN

|u|4(
1 + g1 + |u|2)2 dx . (22)

Furthermore, following the argument of Soave [27], we have the following lemma.

Lemma 2.5 If M0(c) = ∅, then M(c) is a submanifold of codimension 2 of H1(RN ) and a
submanifold of codimension 1 in S(c).

Next, we shall give a general minimax theorem to establish the existence of a Palais-Smale
sequence.

Definition 2.6 [8, Definition 3.1] Let � be a closed subset of a metric space X ⊂ H1(RN ).
We say that a class F of compact subsets of X is a homotopy-stable family with closed
boundary � provided that

(a) every set in F contains �;
(b) for any set H ∈ F and any η ∈ C([0, 1] × X , X) satisfying η(s, x) = x for all

(s, x) ∈ ({0} × X) ∪ ([0, 1] × �), we have that η({1} × H) ∈ F .

Lemma 2.7 [8, Theorem 3.2] Let ϕ be a C1-functional on a complete connected C1-Finsler
manifold X (without boundary) and consider a homotopy stable familyF of compact subsets
of X with a closed boundary �. Set

θ = θ(ϕ,F) = inf
H∈F max

u∈H ϕ(u)

and suppose that supϕ(�) < θ. Then for any sequence of sets {Hn} in F such that
limn→∞ supHn

ϕ = θ , there exists a sequence {un} in X such that
(i) limn→∞ ϕ(un) = θ; (i i) limn→∞

∥∥ϕ′(un)
∥∥ = 0; (i i i) limn→∞ dist(un, Hn) = 0.

Furthermore, if ϕ′ is uniformly continuous, then un can be chosen to be in Hn for each n.

Lemma 2.8 Assume that μ ∈ R\{0}, p̄ < p < 2∗
α and condition (D1) with 1 < g1 ≤ 0

holds. Let {un} ⊂ M−(c) ∩ H1
r (RN ) be a bounded Palais-Smale sequence for J restricted

to S(c) at level β. In addition, we assume that one of the two following conditions holds:

(i) β >
μ|g1|c
2(1+g1)

and c < c∗
0 for some c

∗
0 > 0 if μ > 0;

(i i) β >
|μ|c
2 and c < c1 for some c1 > 0 if μ < 0.

Then up to a subsequence, un → u0 strongly in H1(RN ) and u0 ∈ S(c) is a solution of
problem (Pc) for some λ̄ > 0.

Proof Since {un} ⊂ M−(c) is bounded and the embedding H1
r (RN ) ↪→ Ls(RN ) is compact

for s ∈ (2, 2∗), there exists u0 ∈ H1
r (RN ) such that un⇀u0 weakly in H1

r (RN ), un → u0
strongly in Ls(RN ) for s ∈ (2, 2∗), and a.e. in R

N . By the Lagrange multipliers rule, there
exists λn ∈ R such that for every ϕ ∈ H1(RN ),∫

RN
(∇un∇ϕ + λnunϕ)dx −

∫
RN

(
Iα ∗ |un |p

) |un |p−2unϕdx

123
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−μ

∫
RN

g1 + |un |2
1 + g1 + |un |2 unϕdx = o(1)‖ϕ‖, (23)

where o(1) → 0 as n → ∞. In other words, un solves

− �un + λnun = (Iα ∗ |un |p
) |un |p−2un + μ

g1 + |un |2
1 + g1 + |un |2 un in R

N . (24)

In particular, we have

λnc = −A(un) + B(un) + μ

∫
RN

g1 + |un |2
1 + g1 + |un |2 |un |2dx + o(1). (25)

We note that

μ

∫
RN

g1 + |un |2
1 + g1 + |un |2 |un |2dx < μ

∫
RN

|un |2dx = μc if μ > 0, (26)

and

μ

∫
RN

g1 + |un |2
1 + g1 + |un |2 |un |2dx = μc − μ

∫
RN

1

1 + g1 + |un |2 |un |2dx

≤ − g1
1 + g1

|μ|c if μ < 0. (27)

Then it follows from (14) and (25–27) that {λn} is bounded, since {un} ⊂ M−(c) is bounded.
So we can assume that λn → λ̄ ∈ R as n → ∞. In the following we shall determine the sign
of λ̄ by considering two seperate cases.

Case (I ) : μ > 0. By Lemma 2.2 one has

s4(
1 + g1 + s2

)2 ≤ s4(
1 + g1 + s2

)
(1 + g1)

= g1 + s2

1 + g1 + s2
s2 − g1

1 + g1
s2

≤ Bq

(1 + g1)q/2 s
q for s ≥ 0, (28)

where 2 < q ≤ min{4, 2∗}. For {un} ⊂ M−(c) ∩ H1
r (RN ), by (14), (22) and (28), we have

A(un) <
(Np − α)(Np − N − α)

2p(N + 2)
B(un) + μN 2

2(N + 2)

∫
RN

|un |4(
1 + g1 + |un |2

)2 dx
≤ c

N+α−p(N−2)
2 (Np − α)(Np − N − α)

2(N + 2)‖Qp‖2p−2
2

A(un)
Np−N−α

2

+μBq N 2Cq
N ,qc

2N−q(N−2)
4

2(N + 2)(1 + g1)q/2 A(un)
N (q−2)

4 .

For the convenience of calculation, we choose q = q̄ = 2 + 4
N . Then the above inequality

becomes

A(un) <
c

N+α−p(N−2)
2 (Np − α)(Np − N − α)

2(N + 2)‖Qp‖2p−2
2

A(un)
Np−N−α

2 + μBq̄ N 2Cq̄
N ,q̄ c

2/N

2(N + 2)(1 + g1)q̄/2 A(un),
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which implies that

A(un) > �c :=
⎡
⎣‖Qp‖2p−2

2

(
2(N + 2)(1 + g1)q̄/2 − μBq̄ N 2Cq̄

N ,q̄ c
2/N
)

c
N+α−p(N−2)

2 (1 + g1)q̄/2(Np − α) (Np − N − α)

⎤
⎦

2
Np−N−α−2

> 0,

(29)
since

c < c0 :=
⎛
⎝2(N + 2)(1 + g1)q̄/2

μBq̄ N 2Cq̄
N ,q̄

⎞
⎠

N/2

. (30)

It is clear that �c → ∞ as c → 0. By the facts of Q(un) = o(1) and of ln(1 + x) < x for
x > 0 and (29), we have

λnc = −A(un) + B(un) + μ

∫
RN

g1 + |un |2
1 + g1 + |un |2 |un |2dx + o(1)

= −A(un) + 2p

Np − N − α
A(un) + μ

∫
RN

g1 + |un |2
1 + g1 + |un |2 |un |2dx

− μNp

Np − N − α

∫
RN

[
ln

(
1 + |un |2

1 + g1

)
− |un |2

1 + g1 + |un |2
]

+ o(1)

>
N + α − p(N − 2)

Np − N − α
A(un) − μNp

Np − N − α

∫
RN

|un |4
(1 + g1)(1 + g1 + |un |2)dx

+μ

∫
RN

g1 + |un |2
1 + g1 + |un |2 |un |2dx + o(1)

>
N + α − p(N − 2)

Np − N − α
A(un) − μNp

Np − N − α

∫
RN

|un |4
(1 + g1)(1 + g1 + |un |2)dx

+μ

∫
RN

g1|un |2 + |un |4 + g21 |un |2 + g1|un |4
(1 + g1)(1 + g1 + |un |2) dx + o(1)

= N + α − p(N − 2)

Np − N − α
A(un) + μg1

1 + g1

∫
RN

|un |2dx

− μ(N + α)

(1 + g1)(Np − N − α)

∫
RN

|un |4
1 + g1 + |un |2 dx + o(1)

≥ N + α − p(N − 2)

Np − N − α
�c + μg1

1 + g1
c − μ(N + α)

(1 + g1)(Np − N − α)
c + o(1),

which implies that there exists a positive constant c∗
0 ≤ c0 such that

λ̄ ≥ N + α − p(N − 2)

c(Np − N − α)
�c + μg1

1 + g1
− μ(N + α)

(1 + g1)(Np − N − α)
> 0 for c < c∗

0 .

Case (I I ) : μ < 0. Since Q(un) = o(1), by (14) and the fact of

ln
(
1 + s

a

)
− s

a + s
≥ 0 for s ≥ 0 and a > 0, (31)

we have

A(un) = Np − N − α

2p
B(un) + μN

2

∫
RN

[
ln

(
1 + |un |2

1 + g1

)
− |un |2

1 + g1 + |un |2
]
dx

123
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≤ Np − N − α

2p
B(un)

≤ Np − N − α

2‖Qp‖2p−2
2

A(un)
N (p−1)−α

2 c
N+α−p(N−2)

2 ,

which implies that

A(un) ≥
(

2‖Qp‖2p−2
2

Np − N − α
c− N+α−p(N−2)

2

) 2
N (p−1)−α−2

. (32)

Then it follows from (25), (31), (32) and the fact of Q(un) = o(1) that

λnc = −A(un) + B(un) + μ

∫
RN

g1 + |un |2
1 + g1 + |un |2 |un |2dx + o(1)

= N + α − p(N − 2)

Np − N − α
A(un) + μ

∫
RN

g1 + |un |2
1 + g1 + |un |2 |un |2dx

− μNp

Np − N − α

∫
RN

[
ln

(
1 + |un |2

1 + g1

)
− |un |2

1 + g1 + |un |2
]

+ o(1)

≥ N + α − p(N − 2)

Np − N − α
A(un) − |μ|c + o(1)

≥ N + α − p(N − 2)

Np − N − α

[
2‖Qp‖2p−2

2

Np − N − α
c− −(N−2)p+N+α

2

] 2
N (p−1)−α−2

− |μ|c + o(1),

which implies that λ̄ > 0 for

c < c1 :=
[
N + α − p(N − 2)

|μ|(Np − N − α)

] N (p−1)−α−2
2p−2

[
2‖Qp‖2p−2

2

Np − N − α

] 1
p−1

.

Next,we claim that u0 �≡ 0.Assume on the contrary. Then by ( 10),we have B(un) = o(1).
Next we consider two separate cases depending on μ.

Case (i) : μ > 0. By Q(un) = o(1) and the fact that ln(1 + s) < s for all s > 0, we
deduce that

β + o(1) = J (un)

= 1

2
A(un) − 1

2p
B(un) − μ

2

∫
RN

[
|un |2 − ln

(
1 + |un |2

1 + g1

)]
dx

= Np − N − α − 2

4p
B(un) − μ

2

∫
RN

[
|un |2 − ln

(
1 + |un |2

1 + g1

)]
dx

+μN

4

∫
RN

[
ln

(
1 + |un |2

1 + g1

)
− |un |2

1 + g1 + |un |2
]
dx

< −μ

2

∫
RN

[
|un |2 − |un |2

1 + g1

]
dx + μN

4

∫
RN

(
1

1 + g1
− 1

1 + g1 + |un |2
)

|un |2dx + o(1)

= − μg1c

2(1 + g1)
+ μN

4

∫
RN

(
g1 + |un |2

1 + g1 + |un |2 − g1
1 + g1

)
|un |2dx + o(1)

≤ − μg1c

2(1 + g1)
+ μNBq

4(1 + g1)q/2

∫
RN

|un |qdx + o(1)
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≤ μ|g1|c
2(1 + g1)

+ o(1),

where we have used Lemma 2.2 with 2 < q < min{4, 2∗}. Clearly, this is a contradiction
with β >

μ|g1|c
2(1+g1)

, and so u0 �≡ 0.
Case (i i) : μ < 0. Using the fact of Q(un) = o(1) and (31) gives

β + o(1) = J (un)

= Np − N − α − 2

4p
B(un) − μ

2

∫
RN

[
|un |2 − ln

(
1 + |un |2

1 + g1

)]
dx

+μN

4

∫
RN

[
ln

(
1 + |un |2

1 + g1

)
− |un |2

1 + g1 + |un |2
]
dx

<
|μ|
2

∫
RN

|un |2dx + o(1)

= |μ|c
2

+ o(1),

which contradicts with β >
|μ|c
2 , and so u0 �≡ 0.

Finally, let us prove that un → u0 in H1(RN ). Since un⇀u0 in H1
r (RN ) and λn → λ̄ ∈ R

as n → ∞, by (23) one has∫
RN

(∇u0∇ϕ + λ̄u0ϕ)dx −
∫
RN

(
Iα ∗ |u0|p

) |u0|p−2u0ϕdx

−μ

∫
RN

g1 + |u0|2
1 + g1 + |u0|2 u0ϕdx = o(1), (33)

for every ϕ ∈ H1(RN ). Taking ϕ = un − u0 in (23) and (33), and subtracting, we get

o(1) =
∫
RN

(|∇(un − u0)|2 + λ̄|un − u0|2)dx − (B ′(un) − B ′(u0))(un − u0)

−μ

∫
RN

(
g1 + |un |2

1 + g1 + |un |2 un − g1 + |u0|2
1 + g1 + |u0|2 u0

)
(un − u0)dx . (34)

By [13, Lemma 2.4], we have

(B ′(un) − B ′(u0))(un − u0) = o(1). (35)

Next, we claim that∫
RN

(
g1 + |un |2

1 + g1 + |un |2 un − g1 + |u0|2
1 + g1 + |u0|2 u0

)
(un − u0)dx = o(1). (36)

We observe that if −1 < g1 ≤ 0, then there exists C̄ > 0 such that

g1 + s2

1 + g1 + s2
≤ C̄s2 for s > 0. (37)

Then by (37) and the Hölder inequality, we have∣∣∣∣
∫
R3

g1 + |un |2
1 + g1 + |un |2 un(un − u0)dx

∣∣∣∣
≤
(∫

R3
|un − u0|p dx

)1/p
(∫

R3

∣∣∣∣ g1 + |un |2
1 + g1 + |un |2 un

∣∣∣∣
q

dx

)1/q

123
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≤
(∫

R3
|un − u0|p dx

)1/p
(∫

R3

∣∣∣∣ g1 + |un |2
1 + g1 + |un |2

∣∣∣∣
q

|un |qdx
)1/q

≤ C̄

(∫
R3

|un − u0|p dx
)1/p (∫

R3
|un |2q |un |qdx

)1/q

= C̄

(∫
R3

|un − u0|p dx
)1/p (∫

R3
|un |3qdx

)1/q

≤ C̃

(∫
R3

|un − u0|p dx
)1/p

< ε, (38)

where p ∈ (2, 6) and q = p
p−1 ∈ ( 65 , 2). Similarly, we also have∣∣∣∣
∫
R3

g1 + |u0|2
1 + g1 + |u0|2 u0(un − u0)dx

∣∣∣∣ < ε. (39)

Thus, using (38) and (39) leads to∣∣∣∣
∫
R3

(
g1 + |un |2

1 + g1 + |un |2 un − g1 + |u0|2
1 + g1 + |u0|2 u

)
(un − u0)dx

∣∣∣∣
≤
∣∣∣∣
∫
R3

g1 + |un |2
1 + g1 + |un |2 un(un − u0)dx

∣∣∣∣+
∣∣∣∣
∫
R3

g1 + |u0|2
1 + g1 + |u0|2 u0(un − u0)dx

∣∣∣∣
< 2ε.

Since ε > 0 is arbitrary, we complete the claim of (36). Hence, it follows from (34–36) that∫
RN

(|∇(un − u0)|2 + λ̄|un − u0|2)dx = o(1),

which implies that un → u0 in H1(RN ), since λ̄ > 0. We complete the proof. ��

3 The case � > 0

3.1 The subcase 2˛ ≤ p ≤ p̄

In this subsection, we consider the case of 2α ≤ p ≤ p̄. As we will see, the functional J is
bounded below on S(c). We have the following result.

Lemma 3.1 Assume that μ > 0, 2α ≤ p ≤ p̄ and one of conditions (D1) − (D4) holds. In
addition, we assume that c < ‖Q p̄‖4( p̄−1)/(N+α− p̄(N−2))

2 if p = p̄. Then the functional J is
bounded from below and coercive on S(c).

Proof For u ∈ S(c), it follows from (12) and (14) that

J (u) = 1

2
A(u) − 1

2p
B(u) − μ

2

∫
RN

[
|u|2 − ln

(
1 + |u|2

1 + g(x)

)]
dx

≥

⎧⎪⎨
⎪⎩

1
2 A(u) − 1

22α‖Q2α ‖22α2

c2α − μc
2 , if p = 2α,

1
2 A(u) − c

N+α−p(N−2)
2

2‖Qp‖2p−2
2

A(u)
Np−N−α

2 − μc
2 , if 2α < p ≤ p̄,
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which implies that J is coercive and bounded from below on S(c). We complete the proof. ��
Now we are ready to prove Theorem 1.2 (i) − (i i). In the following, we only give the

proof when g(x) satisfies condition (D1), since the other cases are similar.
Let {un} ⊂ S(c) be a minimizing sequence for σ(c) on H1(RN ). Then {un} is bounded

on H1(RN ) by Lemma 3.1. First of all, we claim that

η := lim
n→∞ sup

y∈RN

∫
B1(y)

|un |2dx > 0. (40)

We consider two seperate cases.
Case (i) : p = 2α. There exists a constant μ0 > 0 such that for all μ > μ0,

σ (c) < − 1

22α‖Q2α‖22α

2

c2α − μg1c

2(1 + g1)
. (41)

Indeed, we can fix some u ∈ S(c) and choose a constant μ0 > 0 such that

1

2
A(u) − 1

22α

(
B(u) − 1

‖Q2α‖22α

2

c2α

)
− μ0

2

∫
RN

[ |u|2
1 + g1

− ln

(
1 + |u|2

1 + g1

)]
dx < 0,

where we have used the fact of ln(1 + x) < x for all x > 0. Using the above inequality,
together with (12) gives

σ(c) ≤ 1

2
A(u) − 1

22α

B(u) − μ

2

∫
RN

[
|u|2 − ln

(
1 + |u|2

1 + g1

)]
dx

<
1

2
A(u) − 1

22α

(
B(u) − 1

‖Q2α‖22α

2

c2α

)
− 1

22α‖Q2α‖22α

2

c2α

−μ0

2

∫
RN

[ |u|2
1 + g1

− ln

(
1 + |u|2

1 + g1

)]
dx − μg1

2(1 + g1)

∫
RN

|u|2dx

< − 1

22α‖Q2α‖22α

2

c2α − μg1c

2(1 + g1)
for all μ > μ0. (42)

For μ > μ0 fixed, we assume on the contrary that η = 0. By Lions’s lemma [31], one has
‖un‖s → 0 as n → ∞ for any 2 < s < 2∗. Then it follows from (12) and Lemma 2.1 with
2 < q < min{4, 2∗} that
σ(c) + o(1) = J (un)

= 1

2
A(un) − 1

22α
B(un) − μ

2

∫
RN

[
|un |2 − ln

(
1 + |un |2

1 + g1

)]
dx

≥ 1

2
A(un) − 1

22α‖Q2α ‖22α
2

c2α − μg1
2(1 + g1)

∫
RN

|un |2dx − μAq

2(1 + g1)q/2

∫
RN

|un |qdx

≥ 1

2
A(un) − 1

22α‖Q2α ‖22α
2

c2α − μg1
2(1 + g1)

∫
RN

|un |2dx + o(1)

≥ − 1

22α‖Q2α ‖22α
2

c2α − μg1c

2(1 + g1)
+ o(1), (43)

which contradicts with (42). Thus, (40) holds.
Case (i i) : 2α < p ≤ p̄. Fix u ∈ S(c), by the fact of ln(1 + x) < x for x > 0 we have

σ(c) ≤ J (ut ) = t2

2
A(u) − t Np−N−α

2p
B(u) − μc

2
+ μ

2t N

∫
RN

ln

(
1 + t N |u|2

1 + g1

)
dx
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<
t2

2
A(u) − t Np−N−α

2p
B(u) − μc

2
+ μ

2

∫
RN

|u|2
1 + g1

dx

→ − μg1c

2(1 + g1)
as t → 0,

which implies that

σ(c) < − μg1c

2(1 + g1)
. (44)

Assume on the contrary that η = 0. By Lions’s lemma [31], one has ‖un‖s → 0 as
n → ∞ for 2 < s < 2∗, which implies that B(un) = o(1) by (10). Using this, together with
Lemma 2.1 with 2 < q < min{4, 2∗}, yields

σ(c) + o(1) = J (un)

= 1

2
A(un) − 1

2p
B(un) − μ

2

∫
RN

[
|un |2 − ln

(
1 + |un |2

1 + g1

)]
dx

= 1

2
A(un) − μg1

2(1 + g1)

∫
RN

|un |2dx − μAq

2(1 + g1)q/2

∫
RN

|un |qdx + o(1)

≥ − μg1c

2(1 + g1)
+ o(1),

which contradicts with (44). Thus, (40) holds.
According to (40), there exists yn ∈ R

N such that

lim sup
n→∞

∫
B1(yn)

|un |2dx ≥ η

2
. (45)

Let wn(x) := un(x + yn). Then it holds A(wn) = A(un), B(wn) = B(un), and∫
RN

[
|wn |2 − ln

(
1 + |wn |2

1 + g1

)]
dx =

∫
RN

[
|un |2 − ln

(
1 + |un |2

1 + g1

)]
dx .

Moreover, {wn} is also a bounded minimizing sequence for σ(c) on S(c), and

lim sup
n→∞

∫
B1(0)

|wn |2dx ≥ η

2
.

Then, we can assume that wn⇀w in H1(RN ), wn → w �= 0 in L2(B1(0)) and wn(x) →
w(x) �= 0 a.e. on B1(0). By Egoroff’s theorem we can find a constant δ > 0 such that

wn(x) → w(x) uniformly in E, and meas(E) > 0, (46)

where E ⊂ {x | |w(x)| ≥ δ, x ∈ B1(0)} ⊂ B1(0).
Next, we prove that ‖w‖22 = c. Assume on the contrary that ρ := ‖w‖22 ∈ (0, c). Let

w̃ = w√
1 + g1

and ṽn = wn − w√
1 + g1

.

From (46) it follows that

w̃2 = w2

1 + g1
≥ δ2

1 + g1
> 0 in E (47)

and

ṽ2n = (wn − w)2

1 + g1
→ 0 in E . (48)
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Let h(s) = s − ln(1 + s) for s ≥ 0. By (46–48), applying [20, Lemma 5.2], we can find a
constant ξ > 0 such that

∫
E
h

(
ρ

c

(
(
√
cw̃)2

‖w‖22

)
+ c − ρ

c

(
√
cṽn)2

‖wn − w‖22

)
dx

≤ −ξ + ρ

c

∫
E
h

(
(
√
cw̃)2

‖w‖22

)
dx + c − ρ

c

∫
E
h

(
(
√
cṽn)2

‖wn − w‖22

)
dx, (49)

as n → ∞. Using this, together with Brizes-Lieb lemma and Lemma 2.3, one has

σ(c) = J (wn) + o(1)

= 1

2
A(wn) − 1

2p
B(wn) − μ

2

∫
RN

[
|wn |2 − ln

(
1 + |wn |2

1 + g1

)]
dx + o(1)

= ρ

2c
A

(√
cw

‖w‖2
)

+ c − ρ

2c
A

(√
c(wn − w)

‖wn − w‖2
)

− 1

2p

(ρ

c

)p
B

(√
cw

‖w‖2
)

− 1

2p

(
c − ρ

c

)p

B

(√
c(wn − w)

‖wn − w‖2
)

−μ

2

∫
RN

h

(
ρ

c

(
(
√
c|w̃|)2

‖w‖22

)
+
(
c − ρ

c

)
(
√
c|ṽn |)2

‖wn − w‖22

)
dx

−μI1
2

∫
RN

(|w̃|2 + |ṽn |2)dx + o(1)

≥ ρ

2c
A

(√
cw

‖w‖2
)

+ c − ρ

2c
A

(√
c(wn − w)

‖wn − w‖2
)

− ρ

2pc
B

(√
cw

‖w‖2
)

− 1

2p

(
c − ρ

c

)
B

(√
c(wn − w)

‖wn − w‖2
)

−μ

2

∫
RN

h

(
ρ

c

(
(
√
cw̃)2

‖w‖22

)
+
(
c − ρ

c

)
(
√
cṽn)2

‖wn − w‖22

)
dx

−μI1
2

∫
RN

(|w̃|2 + |ṽn |2)dx + o(1)

≥ ρ

c
J

(√
cw

‖w‖2
)

+ c − ρ

c
J

(√
c(wn − w)

‖wn − w‖2
)

+ μξ

2
+ o(1)

≥ σ(c) + μξ

2
+ o(1),

which is a contradiction. Thus, we have wn → w in L2(RN ). Using this, combining with
the generalized Lebesgue dominated convergence theorem [30, Lemma 2.22] and (14), we
deduce that

lim
n→∞

∫
RN

[
|wn |2 − ln

(
1 + |wn |2

1 + g1

)]
dx =

∫
RN

[
|w|2 − ln

(
1 + |w|2

1 + g1

)]
dx . (50)

and limn→∞ B(wn − w) = 0 for 2α ≤ p ≤ p̄, which implies that

lim
n→∞ B(wn) = B(w) (51)
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via Lemma 2.3. Moreover, since wn⇀w in H1(RN ), we have

A(w) ≤ lim inf
n→∞ A(wn). (52)

Hence, it follows from (50–52) that

σ(c) = lim
n→∞ J (wn)

= lim
n→∞

(
1

2
A(wn) − 1

2p
B(wn) − μ

2

∫
RN

[
|wn |2 − ln

(
1 + |wn |2

1 + g1

)]
dx

)

≥ 1

2
A(w) − 1

2p
B(w) − μ

2

∫
RN

[
|w|2 − ln

(
1 + |w|2

1 + g1

)]
dx

≥ σ(c),

which indicates that σ(c) is achieved at w �= 0 and ‖wn − w‖H1 → 0 as n → ∞.
Since w is a critical point of J restricted to S(c), there exists a Lagrange multiplier λ̄ ∈ R

such that J ′(w) + λ̄w = 0. In particular, we have

λ̄c = −A(w) + B(w) + μ

∫
RN

g1 + |w|2
1 + g1 + |w|2 |w|2dx

= −2σ(c) + p − 1

p
B(w) + μ

∫
RN

[
ln

(
1 + |w|2

1 + g1

)
− |w|2

1 + g1 + |w|2
]
dx

> −2σ(c),

where we have used (31). This indicates that

λ̄ >
1

2α‖Q2α‖22α

2

c2α−1 + μg1
1 + g1

by (42) when p = 2α, and

λ̄ >
μg1

1 + g1

by (44) when 2α < p ≤ p̄. We complete the proof.

3.2 The subcase p̄ < p < 2∗
˛

In this subsection, we consider the case of p̄ < p < 2∗
α . For this case, the functional J is

unbounded from below on S(c), and it is not possible to look for a global minimizer on S(c).
So we shall use the Pohozaev manifold M(c) defined in Section 2 to find critical points of
J .

Lemma 3.2 Assume that μ > 0, p̄ < p < 2∗
α and condition (D1) holds. Then the functional

J is coercive and bounded from below on M(c) for all c > 0. Furthermore, there exists a
constant c2 > 0 such that for 0 < c < c2, J is bounded from below by a positive constant
on M−(c).

Proof For each u ∈ M(c), we have

A(u) − Np − N − α

2p
B(u) − μN

2

∫
RN

[
ln

(
1 + |u|2

1 + g1

)
− |u|2

1 + g1 + |u|2
]
dx = 0.
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Using this, together with (31), leads to

J (u) = 1

2
A(u) − 1

2p
B(u) − μ

2

∫
RN

[
|u|2 − ln

(
1 + |u|2

1 + g1

)]
dx

=
(
1

2
− 1

Np − N − α

)
A(u) − μ

2

∫
RN

g1 + |u|2
1 + g1 + |u|2 |u|2dx

+μ

2

(
1 + N

Np − N − α

)∫
RN

[
ln

(
1 + |u|2

1 + g1

)
− |u|2

1 + g1 + |u|2
]
dx

≥
(
1

2
− 1

Np − N − α

)
A(u) − μ

2

∫
RN

|u|2dx

=
(
1

2
− 1

Np − N − α

)
A(u) − μc

2
, (53)

which implies that J is bounded from below and coercive on M(c).
For u ∈ M−(c), similar to the argument in Lemma 2.8, we have

A(u) > �c > 0 for c < c0, (54)

where �c and c0 are as (29) and (30), respectively. Note that A(u) → +∞ as c → 0. Then
it follows from (53) that there exist two constants c2 < c0 and D0 := D0(μ) >

μ|g1|c
2(1+g1)

such
that J (u) > D0 for all c < c2. ��
Lemma 3.3 Assume that μ > 0, p̄ < p < 2∗

α and condition (D1) holds. Then we have
M0(c) = ∅ for c < c0.

Proof Suppose on the contrary. Let u ∈ M0(c). Similar to the argument of Lemma 3.2, we
deduce that for c < c0,

A(u) ≥
⎡
⎣‖Qp‖2p−2

2

(
2(N + 2)(1 + g1)q̄/2 − μBq̄ N 2Cq̄

N ,q̄ c
2/N
)

c
N+α−p(N−2)

2 (1 + g1)q̄/2(Np − α)(Np − N − α)

⎤
⎦

2
Np−N−α−2

→ +∞ as c → 0 if p̄ < p < 2∗
α. (55)

On the other hand, by (21) and the fact of ln(1 + x) < x for all x > 0, we have

(Np − N − α − 2)A(u) = μN (Np − α)

2

∫
RN

[
ln

(
1 + |u|2

1 + g1

)
− |u|2

1 + g1 + |u|2
]
dx

−μN 2

2

∫
RN

|u|4(
1 + g1 + |u|2)2 dx

<
μN (Np − α)

2(1 + g1)

∫
RN

|u|4
1 + g1 + |u|2 dx

<
μN (Np − α)c

2(1 + g1)
,

which implies that

A(u) <
μN (Np − α)c

2(Np − N − α − 2)(1 + g1)
→ 0 as c → 0. (56)

Thus, from (55–56) we arrive at a contradiction on A(u). We complete the proof. ��
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According to Lemma 3.3, it holdsM(c) = M+(c)∪M−(c),which is a natural constraint
manifold. Next, let us prove that the submanifold M−(c) is nonempty. Set

c∗
2 := (1 + g1)2

μC4
2,4

,

where C2,4 is the best constant in (11) with N = 2 and s = 4.

Lemma 3.4 Assume that μ > 0, p̄ < p < 2∗
α and condition (D1) holds. In addtion, we

further assume that c < c∗
2 if N = 2. Then for any u ∈ S(c), there exists a constant t−u > 0

such that ut
−
u ∈ M−(c). In particular, t−u is a local maximum point of fu(t).

Proof Note that for u ∈ S(c) and t > 0, ut ∈ M(c) if and only if f ′
u(t) = 0. By the fact of

ln(1 + x) < x for all x > 0, a direct calculation shows that

f ′
u(t) = t A(u) − Np − N − α

2p
t Np−N−α−1B(u) − μN

2t N+1

∫
RN

ln

(
1 + t N |u|2

1 + g1

)
dx

+μN

2t

∫
RN

|u|2
1 + g1 + t N |u|2 dx

≥ t A(u) − Np − N − α

2p
t Np−N−α−1B(u) − μN

2t

∫
RN

|u|2
1 + g1

dx

+μN

2t

∫
RN

|u|2
1 + g1 + t N |u|2 dx

= t A(u) − Np − N − α

2p
t Np−N−α−1B(u) − μN

2t

∫
RN

[
|u|2

1 + g1
− |u|2

1 + g1 + t N |u|2
]
dx

= t A(u) − Np − N − α

2p
t Np−N−α−1B(u) − μN

2

∫
RN

t N−1|u|4
(1 + g1)(1 + g1 + t N u2)

dx

≥ t A(u) − Np − N − α

2p
t Np−N−α−1B(u) − μNtN−1

2(1 + g1)2

∫
RN

|u|4dx . (57)

If N ≥ 3, then it is clear that f ′
u(t) > 0 for t > 0 small enough by (57). If N = 2, then from

(11) and (57) we have

f ′
u(t) ≥

[
1 − cμC4

2,4

(1 + g1)2

]
t A(u) − Np − N − α

2p
t N (p−1)−α−1B(u),

which implies that f ′
u(t) > 0 for t > 0 small enough, since c < c∗

2.
On the other hand, it follows from (31) that

f ′
u(t) = t A(u) − Np − N − α

2p
t Np−N−α−1B(u) − μN

2t N+1

∫
RN

ln

(
1 + t N |u|2

1 + g1

)
dx

+μN

2t

∫
RN

|u|2
1 + g1 + t N |u|2 dx

= t A(u) − Np − N − α

2p
t Np−N−α−1B(u)

− μN

2t N+1

∫
RN

[
ln

(
1 + t N |u|2

1 + g1

)
− t N |u|2

1 + g1 + t N |u|2
]
dx
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≤ t A(u) − Np − N − α

2p
t Np−N−α−1B(u),

which implies that f ′
u(t) < 0 for t > 0 large enough, since p > p̄. Therefore, there exists

a constant t−u > 0 such that f ′
u(t

−
u ) = 0 and f ′′

u (t−u ) < 0, which means that ut
−
u ∈ M−(c)

and t−u is a local maximum point of fu(t). We complete the proof. ��
Remark 3.1 From Lemma 3.4 one can see that it is difficult for us to prove the uniqueness of
t−u , due to the complex form of fibering map arising from saturable nonlinearity. Moreover,
we even can not prove that the submanifold M+(c) is nonempty.

We now define

Sr (c) := S(c) ∩ H1
r (RN ), Mr (c) := M(c) ∩ H1

r (RN ) and M−
r (c) := M−(c) ∩ H1

r (RN ).

(58)
By virtue of Lemmas 3.2 and 3.4 one has

m−
r (c) := inf

u∈M−
r (c)

J (u) ≥ inf
u∈M−(c)

J (u) > 0.

Next we apply Lemma 2.7 to construct a Palais–Smale sequence {un} ⊂ M−
r (c) for J

restricted to S(c). Our arguments are inspired by [1, 4]. Observe that � = ∅ is admissible.
First of all, we introduce the following lemma.

Lemma 3.5 The map u ∈ Sr (c) �→ t−u ∈ R is of class C1.

Proof Consider the C1 function φ : R × Sr (c) → R defined by φ(t, u) = f ′
u(t). Since

φ(t−u , u) = 0, ∂tφ(t−u , u) = f ′′
u (t−u ) < 0 and M0(c) = ∅, the proof is complete by using

the implicit function theorem. ��
Now we define the functional G− : Sr (c) → R by G−(u) = J (ut

−
u ). Clearly, it follows

from Lemma 3.5 that the functional G− is of class C1. We also need the following result.

Lemma 3.6 The map� : TuSr (c) → T
ut

−
u
Sr (c) defined byψ → ψ t−u is isomorphism, where

Tu Sr (c) denotes the tangent space to Sr (c) in u.

Proof For ψ ∈ TuSr (c), we have∫
RN

ut
−
u (x)ψ t−u (x)dx =

∫
RN

(t−u )N/2u(t−u x)(t−u )N/2ψ(t−u x)dx =
∫
RN

u(y)ψ(y)dy = 0,

which implies that ψ t−u ∈ T
ut

−
u
Sr (c), and thus the map � is well defined. Moreover, for

∀ψ1, ψ2 ∈ TuSr (c) and ∀k ∈ R, it holds

�(ψ1+ψ2) = (ψ1+ψ2)
t−u = (t−u )N/2(ψ1(t

−
u x)+ψ2(t

−
u x)) = ψ

t−u
1 +ψ

t−u
2 = �(ψ1)+�(ψ2)

and �(kψ1) = (kψ1)
t−u = kψ

t−u
1 = k�(ψ1). This shows that the map � is linear. Finally,

let us claim that the map � is a bijection. For ∀ψ1, ψ2 ∈ TuSr (c) with ψ1 �= ψ2, by the fact
of t−u > 0, we have

�(ψ1) = (t−u )N/2ψ1(t
−
u x) �= (t−u )N/2ψ2(t

−
u x) = �(ψ2).

Moreover, let χ ∈ T
ut

−
u
Sr (c). Clearly,

(
(t−u )−N/2χ( x

t−u
)
)t−u = χ(x) and∫

RN
(t−u )−N/2χ

(
x

t−u

)
u(x)dx =

∫
RN

χ(y)(t−u )N/2u(t−u y)dy =
∫
RN

χ(y)ut
−
u (y)dy = 0,
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leading to (t−u )−N/2χ
(

x
t−u

)
∈ TuSr (c). So, � is a bijection. We complete the proof. ��

Lemma 3.7 It holds (G−)′(u)[ψ] = J ′(ut−u )[ψ t−u ] for any u ∈ Sr (c) and ψ ∈ TuSr (c).

Proof The proof is similar to that of [4, Lemma 3.15] (or [1, Lemma 3.2]), and we omit it
here. ��
Lemma 3.8 Assume thatμ > 0, p̄ < p < 2∗

α and condition (D1) holds. LetF be a homotopy
stable family of compact subsets of Sr (c) with closed boundary � and let

e−
F := inf

H∈F max
u∈H G−(u).

Suppose that� is contained ina connected component ofM−
r (c)and thatmax{supG−(�), 0}

< e−
F < ∞. Then there exists a Palais-Smale sequence {un} ⊂ M−

r (c) for J restricted to
Sr (c) at level e

−
F .

Proof First of all, we take {Dn} ⊂ F such that maxu∈Dn G
−(u) < e−

F + 1
n and define

η : [0, 1] × S(c) → S(c) by
η(s, u) = u1−s+st−u .

Note that η is continuous. Since t−u = 1 for any u ∈ M−
r (c) and � ⊂ M−

r (c), we have
η(s, u) = u for (s, u) ∈ ({0} × Sr (c)) ∪ ([0, 1] × �). Then, according to the definition of
F , one has

An := η({1} × Dn) = {ut−u | u ∈ Dn} ∈ F .

Clearly, An ⊂ M−
r (c) for all n ∈ N. Let v ∈ An , that is v = ut

−
u for some u ∈ Dn . Then

G−(u) = J (ut
−
u ) = J (v) = G−(v), which shows that maxAn G

− = maxDn G
−. Thus,

{An} ⊂ M−
r (c) is another minimizing sequence of e−

F . By Lemma 2.7, we obtain a Palais-
Smale sequence {vn} for G− on Sr (c) at level e

−
F satisfying dist(vn,An) → 0 as n → ∞.

For vn ∈ Sr (c), there exists a constant t−vn > 0 such that un := t−vnvn ∈ M−
r (c).

Next we claim that there exists a constant C0 > 0 such that

1

C0
≤ (t−vn )

2 ≤ C0 for n ∈ N. (59)

Indeed, it holds

(t−vn )
2 = A(v

t−vn
n )

A(vn)
.

Since J (v
t−vn
n ) = G−(vn) → e−

F , it follows from Lemma 3.2 that there exists a constant
M0 > 0 such that

1

M0
≤ A(v

t−vn
n ) ≤ M0. (60)

On the other hand, since {An} ⊂ M−
r (c) is a minimizing sequence for e−

F and J is coercive
onM−(c), we have {An} is uniformly bounded in H1(RN ). Note that dist(vn,An) → 0 as
n → ∞. Then supn A(vn) < ∞. Also, since An is compact for every n ∈ N, there exists a
v̄n ∈ An such that dist(vn,An) = ‖v̄n − vn‖H1 . Then by Lemma 3.2, we obtain that for a
constant δ > 0,

A(vn) ≥ A(v̄n) − A(vn − v̄n) ≥ δ

2
. (61)

Thus, by (60) and (61), we prove the claim.
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Next, we show that {un} ⊂ M−
r (c) is a Palais-Smale sequence for J on Sr (c) at level

e−
F . Denote the norm of space Tun (Sr (c)) and dual space of Tun (Sr (c)) by ‖ · ‖ and ‖ · ‖∗,
respectively. Then we have

‖J ′(un)‖∗ = sup
ψ∈Tun Sr (c),‖ψ‖≤1

|〈J ′(un), ψ〉| = sup
ψ∈Tun Sr (c),‖ψ‖≤1

|〈J ′(un), (ψ−t−vn )t
−
vn 〉|.

(62)
By Lemma 3.6, we know that the map � : Tvn Sr (c) → T

v
t−vn
n

Sr (c) defined by ψ → ψ t−vn is

isomorphism. Moreover, it follows from Lemma 3.7 that 〈(G−)′(vn), ψ−t−vn 〉 = 〈J ′(un), ψ〉.
Then by (62), we have

‖J ′(un)‖∗ = sup
ψ∈Tun Sr (c),‖ψ‖≤1

|〈J ′(un), ψ〉| = sup
ψ∈Tun Sr (c),‖ψ‖≤1

|〈(G−)′(vn), ψ−t−vn 〉|.
(63)

Note that ‖ψ−t−vn ‖ ≤ C‖ψ‖ ≤ C by (59). Thus, from (63) it follows that {un} ⊂ M−
r (c) is

a Palais-Smale sequence for J on Sr (c) at level e
−
F . We complete the proof. ��

Lemma 3.9 Assume that μ > 0, p̄ < p < 2∗
α and condition (D1) holds. Then there exists a

Palais-Smale sequence {un} ⊂ M−
r (c) for J restricted to Sr (c) at level m−

r (c) >
μ|g1|c
2(1+g1)

.

Proof By Lemma 3.8, we choose the set F of all singletons belonging to Sr (c) and � = ∅,
which is clearly a homotopy stable family of compact subsets of Sr (c) (without boundary).
Note that e−

F = infH∈F maxu∈H G−(u) = infu∈Sr (c) G−(u) = infu∈M−
r (c) J (u) = m−

r (c).
Then the lemma follows directly from Lemma 3.8. We complete the proof. ��

Now we are ready to prove the Theorem 1.2 (iii). By Lemma 3.9, there exists a Palais–
Smale sequence {un} ⊂ M−

r (c) for J restricted to S(c) at level m−
r (c) >

μ|g1|c
2(1+g1)

, which is

bounded in H1
r (RN ) via Lemma 3.2. So, for p̄ < p < 2∗

α, according to Lemma 2.8, for

c < c̄ :=
{
min{c∗

0, c2, c
∗
2} if N = 2,

min{c∗
0, c2} if N ≥ 3,

Problem (Pc) admits a radially symmetric solution w satisfying J (w) = m−
r (c) >

μ|g1|c
2(1+g1)

for some λ̄ > 0.
Next, we give the asymptotic behavior of J (w) and λ̄ as c → 0. Since w ∈ M−

r (c), by
(54) one has

A(w) > �c =
⎡
⎣‖Qp‖2p−2

2

(
2(N + 2)(1 + g1)q̄/2 − μBq̄ N 2Cq̄

N ,q̄ c
2/N
)

c
N+α−p(N−2)

2 (1 + g1)q̄/2(Np − α) (Np − N − α)

⎤
⎦

2
Np−N−α−2

.

(64)
It follows from (53) and (64) that

J (w) ≥
(
1

2
− 1

Np − N − α

)
A(w) − μc

2

> K1c
− N+α−p(N−2)

Np−N−α−2 − μc

2
,

where

K1 :=
[
Np − N − α − 2

2(Np − N − α)

]⎡⎣‖Qp‖2p−2
2

(
2(N + 2)(1 + g1)q̄/2 − μBq̄ N 2Cq̄

N ,q̄ c
2/N
)

(1 + g1)q̄/2(Np − α) (Np − N − α)

⎤
⎦

2
Np−N−α−2
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→
[
Np − N − α − 2

2(Np − N − α)

][
2‖Qp‖2p−2

2 (N + 2)(1 + g1)q̄/2

(1 + g1)q̄/2(Np − α)(Np − N − α)

] 2
Np−N−α−2

as c → 0.

Moreover, since Q(w) = 0, by (64) and the fact of ln(1 + x) < x for all x > 0 one has

λ̄c = N + α − p(N − 2)

Np − N − α
A(w) + μ

∫
RN

g1 + |w|2
1 + g1 + |w|2 |w|2dx

− μNp

Np − N − α

∫
RN

[
ln

(
1 + |w|2

1 + g1

)
− |w|2

1 + g1 + |w|2
]
dx

> K2c
− 2p−2

Np−N−α−2+1 − μc

1 + g1

(
Np

Np − N − α
− g1

)
, (65)

where

K2 :=
[
N + α − p(N − 2)

Np − N − α

]⎡⎣‖Qp‖2p−2
2

(
2(N + 2)(1 + g1)q̄/2 − μBq̄ N 2Cq̄

N ,q̄ c
2/N
)

(1 + g1)q̄/2(Np − α) (Np − N − α)

⎤
⎦

2
Np−N−α−2

→
[
N + α − p(N − 2)

Np − N − α

][
2‖Qp‖2p−2

2 (N + 2)(1 + g1)q̄/2

(1 + g1)q̄/2(Np − α)(Np − N − α)

] 2
N (p−1)−α−2

as c → 0.

This indicates that

λ̄ > K2c
− 2p−2

Np−N−α−2 − μ

1 + g1

(
Np

Np − N − α
− g1

)
.

We complete the proof.

4 The case � < 0

4.1 The subcase p = 2˛

Proof of Theorem 1.3 (i). Let u ∈ S(c) and t > 0. Since p = 2α and μ < 0, it follows from
(31) that

f ′
u(t) = t A(u) + |μ|N

2t N+1

∫
RN

ln

(
1 + t N |u|2

1 + g1

)
dx − |μ|N

2t

∫
RN

|u|2
1 + g1 + t N |u|2 dx

= t A(u) + |μ|N
2t N+1

∫
RN

[
ln

(
1 + t N |u|2

1 + g1

)
− t N |u|2

1 + g1 + t N |u|2
]
dx

> 0,

which implies that the fibering map fu(t) = J (ut ) is strictly increasing on t . This means that
the functional J has no critical point on S(c). In other words, problem (Pc) has no solution
for any λ ∈ R. We complete the proof. ��

4.2 The subcase 2˛ < p ≤ p̄

Lemma 4.1 Assume that μ < 0, 2α < p ≤ p̄ and one of conditions (D1), (D4) holds. In
addition, we assume that c < ‖Q p̄‖4( p̄−1)/(N+α− p̄(N−2))

2 if p = p̄. Then the functional J is
coercive and bounded from below on S(c).

123



   61 Page 26 of 34 J. Sun et al.

Proof For u ∈ S(c), by (14) and the fact of ln(1 + x) < x for x > 0, we have

J (u) = 1

2
A(u) − 1

2p
B(u) + |μ|

2

∫
RN

[
u2 − ln

(
1 + |u|2

1 + g(x)

)]
dx

≥ 1

2
A(u) − c

N+α−p(N−2)
2

2‖Qp‖2p−2
2

A(u)
Np−N−α

2 − |μ|
2

∫
RN

|u|2
1 + g(x)

dx

≥ 1

2
A(u) − c

N+α−p(N−2)
2

2‖Qp‖2p−2
2

A(u)
Np−N−α

2 − |μ|c
2(1 + g1)

,

which implies that J is coercive and bounded from below on S(c). We complete the proof. ��
Now we give the proof of Theorem 1.3 (i i). In the following, we proceed our argument

only under condition (D1), since the other case is similar. For u ∈ S(c) fixed, by (31) and
Lebesgue’s dominated convergence theorem one has

σ(c) ≤ J (ut ) = t2

2
A(u) − t Np−N−α

2p
B(u) + |μ|c

2
− |μ|

2t N

∫
RN

ln

(
1 + t N |u|2

1 + g1

)
dx

<
t2

2
A(u) − t Np−N−α

2p
B(u) + |μ|c

2
− |μ|

2

∫
RN

|u|2
1 + g1 + t N |u|2 dx

→ g1|μ|c
2(1 + g1)

as t → 0,

which implies that

σ(c) ≤ g1|μ|c
2(1 + g1)

. (66)

Let {un} ⊂ S(c) be a minimizing sequence for σ(c) on H1(RN ). Then {un} is bounded on
H1(RN ) by Lemma 4.1. Next we claim that

η := lim
n→∞ sup

y∈RN

∫
B1(y)

|un |2dx > 0. (67)

Assume on the contrary that η = 0. By Lions’s lemma in [31], one has ‖un‖s → 0 as n → ∞
for 2 < s < 2∗, which implies that B(un) = o(1) by (10). Using this, together with the fact
of ln(1 + x) < x for all x > 0, leads to

σ(c) + o(1) = J (un) = 1

2
A(un) − 1

2p
B(un) + |μ|

2

∫
RN

[
|un |2 − ln

(
1 + |un |2

1 + g1

)]
dx

= 1

2
A(un) + |μ|g1

2(1 + g1)

∫
RN

|un |2dx

+|μ|
2

∫
RN

[ |un |2
1 + g1

− ln

(
1 + |un |2

1 + g1

)]
dx + o(1)

>
|μ|g1c

2(1 + g1)
+ o(1),

which contradicts with (66). Thus, (67) holds. Nowwe define translations of {un} bywn(x) =
un(x + yn). Clearly, {wn} is also a minimizing sequence for σ(c) on S(c) and wn is bounded
in H1(RN ). By (67), we have

lim sup
n→∞

∫
B1(0)

|wn |2dx ≥ η

2
.
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Thus, we can assume that wn⇀w in H1(RN ), wn → w �= 0 in L2(B1(0)) and wn(x) →
w(x) �= 0 a.e. on B1(0).

Next, we prove that ‖w‖22 = c. Otherwise, assume that ρ = ‖w‖22 ∈ (0, c). Let

w̃ = w√
1 + g1

and ṽn = wn − w√
1 + g1

.

Similar to the argument of Theorem 1.2(i) − (i i), it follows from ( 49) that

σ(c) + o(1) = J (wn)

= 1

2
A(wn) − 1

2p
B(wn) + |μ|

2

∫
RN

[
|wn |2 − ln

(
1 + |wn |2

1 + g1

)]
dx

= 1

2
A(wn) − 1

2p
B(wn) − |μ|

2

∫
RN

[
|wn |2 − ln

(
1 + |wn |2

1 + g1

)]
dx

+|μ|
∫
RN

[
|wn |2 − ln

(
1 + |wn |2

1 + g1

)]
dx

= ρ

2c
A

(√
cw

‖w‖2
)

+ c − ρ

2c
A

(√
c(wn − w)

‖wn − w‖2
)

− 1

2p

(ρ

c

)p
B

(√
cw

‖w‖2
)

− 1

2p

(
c − ρ

c

)p

B

(√
c(wn − w)

‖wn − w‖2
)

−|μ|
2

∫
RN

h

(
ρ

c

(
(
√
cw̃)2

‖w‖22

)
+ c − ρ

c

(
√
cṽn)2

‖wn − w‖22

)
dx− |μ|I1

2

∫
RN

(|w̃|2 + |ṽn |2)dx

+|μ|
∫
RN

[
|wn |2 − ln

(
1 + |wn |2

1 + g1

)]
dx

≥ ρ

2c
A

(√
cw

‖w‖2
)

+ c − ρ

2c
A

(√
c(wn − w)

‖wn − w‖2
)

− γρ

2pc
B

(√
cw

‖w‖2
)

− γ (c − ρ)

2pc
B

(√
c(wn − w)

‖wn − w‖2
)

− |μ|g1
2

∫
RN

(|w̃|2 + |ṽn |2)dx

−|μ|
2

∫
RN

[
ρ

c
h

(
(
√
cw̃)2

‖w‖22

)
+ c − ρ

c
h

(
(
√
cṽn)2

‖wn − w‖22

)]
dx + |μ|ξ

2

+|μ|
∫
RN

[
|wn |2 − ln

(
1 + |wn |2

1 + g1

)]
dx + o(1)

= ρ

2c
A

(√
cw

‖w‖2
)

+ c − ρ

2c
A

(√
c(wn − w)

‖wn − w‖2
)

− γρ

2pc
B

(√
cw

‖w‖2
)

− γ (c − ρ)

2pc
B

(√
c(wn − w)

‖wn − w‖2
)

+|μ|ρ
2c

∫
RN

[(√
c|w|

‖w‖2
)2

− ln

(
1 + 1

1 + g1

(√
c|w|

‖w‖2
)2
)]

dx

+|μ|(c − ρ)

2c

∫
RN

[(√
c|wn − w|

‖wn − w‖2
)2

− ln

(
1 + 1

1 + g1

(√
c|wn − w|

‖wn − w‖2
)2
)]

dx

+K (wn, w) + o(1)

>
ρ

c
J

(√
cw

‖w‖2
)

+ c − ρ

c
J

(√
c(wn − w)

‖wn − w‖2
)

+ K (wn, w) + o(1)

>
ρ

c
J

(√
cw

‖w‖2
)

+ c − ρ

c
J

(√
c(wn − w)

‖wn − w‖2
)

+ o(1),
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≥ σ(c) + o(1).

Clearly, this is a contradiction. Here note that

K (wn, w) := |μ|ξ
2

+ |μ|
∫
RN

[
|wn |2 − ln

(
1 + |wn |2

1 + g1

)]

− |μ|ρ
c

∫
RN

[(√
c|w|

‖w‖2
)2

− ln

(
1 + 1

1 + g1

(√
c|w|

‖w‖2
)2)]

dx

− |μ|(c − ρ)

c

∫
RN

[(√
c|wn − w|

‖wn − w‖2
)2

− ln

(
1 + 1

1 + g1

(√
c|wn − w|

‖wn − w‖2
)2)]

dx

>
|μ|ξ
2

+ |μ|g1c
1 + g1

− |μ|c

= |μ|ξ
2

− |μ|c
1 + g1

≥ 0 if g1 ≥ 2c

ξ
− 1.

So we have wn → w in L2(RN ). Hence, it follows from (50–52) that

σ(c) = lim
n→∞ J (wn)

= lim
n→∞

(
1

2
A(wn) − 1

2p
B(wn) − μ

2

∫
RN

[
|wn |2 − ln

(
1 + |wn |2

1 + g1

)]
dx

)

≥ 1

2
A(w) − 1

2p
B(w) − μ

2

∫
RN

[
|w|2 − ln

(
1 + |w|2

1 + g1

)]
dx

≥ σ(c),

which indicates that σ(c) is achieved at w �= 0 and ‖wn − w‖H1 → 0 as n → ∞.
since w is a critical point of J restricted to S(c), there exists a Lagrange multiplier λ̄ ∈ R

such that J ′(w) + λ̄w = 0. In particular, by (66) and the fact of ln(1+ x) < x for all x > 0
one has

λ̄c = −A(w) + B(w) − |μ|
∫
RN

g1 + |w|2
1 + g1 + |w|2 |w|2dx

= −2pσ(c) + (p − 1)A(w) + |μ|(p − 1)
∫
RN

|w|2dx

−|μ|p
∫
RN

ln

(
1 + |w|2

1 + g1

)
dx + |μ|

∫
RN

|w|2
1 + g1 + |w|2 dx

> −2pσ(c) + |μ|(p − 1)c − |μ|pc
1 + g1

≥ −|μ|c,
leading to λ̄ > −|μ|. We complete the proof.

4.3 The subcase p̄ < p < 2∗
˛

Lemma 4.2 Assume that μ < 0, p̄ < p < 2∗
α and condition (D1) holds. Then the functional

J is coercive and bounded from below on M(c) for all c > 0. Furthermore, there exists
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c3 > 0 such that for every c < c3,

J (u) ≥ |μ|c
2

on M−(c).

Proof For u ∈ M(c), it holds

A(u) − Np − N − α

2p
B(u) + |μ|N

2

∫
RN

[
ln

(
1 + |u|2

1 + g1

)
− |u|2

1 + g1 + |u|2
]
dx = 0.

Using this, together with the fact of ln(1 + x) ≤ x for x ≥ 0, leads to

J (u) = 1

2
A(u) − 1

2p
B(u) + |μ|

2

∫
RN

[
|u|2 − ln

(
1 + |u|2

1 + g1

)]
dx

= Np − N − α − 2

2(Np − N − α)
A(u) + |μ|

2

∫
RN

g1 + |u|2
1 + g1 + |u|2 |u|2dx

− |μ|(Np − α)

2(Np − N − α)

∫
RN

[
ln

(
1 + |u|2

1 + g1

)
− |u|2

1 + g1 + |u|2
]
dx

>
Np − N − α − 2

2(Np − N − α)
A(u) − |μ|(Np − α)

2(Np − N − α)

∫
RN

|u|2
1 + g1

dx

−|μ|
2

∫
RN

|u|2
1 + g1 + |u|2 dx + |μ|c

2

≥ Np − N − α − 2

2(Np − N − α)
A(u) − |μ|c

2(1 + g1)

(
Np − α

Np − N − α
− g1

)
, (68)

which implies that J is bounded from below and coercive on M(c) , since p > p̄.
For u ∈ M−(c), it follows from (14) and (22) that

A(u) <
(Np − α)(Np − N − α)

2p(N + 2)
B(u) + μN 2

2(N + 2)

∫
RN

|u|4(
1 + g1 + |u|2)2 dx

≤ (Np − α)(Np − N − α)c
N+α−p(N−2)

2

2(N + 2)‖Qp‖2p−2
2

A(u)
Np−N−α

2 ,

which implies that

A(u) >

[
2(N + 2)‖Qp‖2p−2

2

(Np − α)(Np − N − α)

] 2
Np−N−α−2

c− N+α−p(N−2)
Np−N−α−2 . (69)

Note that A(u) → +∞ as c → 0, and together with ( 68), there exists a constant c3 > 0
such that

J (u) > K3c
− N+α−p(N−2)

Np−N−α−2 − |μ|c
2(1 + g1)

(
Np − α

Np − N − α
− g1

)
≥ |μ|c

2

for all c < c3, where

K3 :=
[
Np − N − α − 2

2(Np − N − α)

][
2(N + 2)‖Qp‖2p−2

2

(Np − α)(Np − N − α)

] 2
Np−N−α−2

> 0. (70)

We complete the proof. ��
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Lemma 4.3 Assume that μ < 0, p̄ < p < 2∗
α and condition (D1) holds. Then M0(c) = ∅.

Proof Suppose on the contrary. Let u ∈ M0(c). By (14) and ( 22), similar to the argument
of Lemma 4.2, we have

A(u) ≥
[

2(N + 2)‖Qp‖2p−2
2

(Np − α)(Np − N − α)

] 2
Np−N−α−2

c− N+α−p(N−2)
Np−N−α−2

and further
A(u) → +∞ as c → 0. (71)

On the other hand, using (21) and (31) gives

(Np − N − α − 2) A(u) = −|μ|N (Np − α)

2

∫
RN

[
ln

(
1 + |u|2

1 + g1

)
− |u|2

1 + g1 + |u|2
]
dx

+|μ|N 2

2

∫
RN

|u|4(
1 + g1 + |u|2)2 dx

≤ |μ|N 2

2

∫
RN

|u|4(
1 + g1 + |u|2)2 dx

≤ |μ|N 2c

2(1 + g1)
,

that is

A(u) ≤ |μ|N 2c

2(1 + g1) (Np − N − α − 2)
,

which implies that
A(u) → 0 as c → 0.

Clearly, this contradicts with (71). We complete the proof. ��
By virtue of Lemma 4.3, it holdsM(c) = M+(c)∪M−(c),which is a natural constraint

manifold. Next, let us prove that the submanifold M−(c) is nonempty.

Lemma 4.4 Assume that μ < 0, p̄ < p < 2∗
α and condition (D1) holds. Then for u ∈ S(c),

there exists a constant t̄−u > 0 such that ut̄
−
u ∈ M−(c). In particular, t̄−u is a local maximum

point of fu(t).

Proof Note that for u ∈ S(c) and t > 0, ut ∈ M(c) if and only if f ′
u(t) = 0. It follows from

(31) that

f ′
u(t) = t A(u) − Np − N − α

2p
t Np−N−α−1B(u) + |μ|N

2t N+1

∫
RN

ln

(
1 + t N |u|2

1 + g1

)
dx

−|μ|N
2t

∫
RN

u2

1 + g1 + t N |u|2 dx

= t A(u) − Np − N − α

2p
t Np−N−α−1B(u)

+ |μ|N
2t N+1

∫
RN

[
ln

(
1 + t N |u|2

1 + g1

)
− t N |u|2

1 + g1 + t N |u|2
]
dx
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≥ t A(u) − Np − N − α

2p
t Np−N−α−1B(u),

which implies that f ′
u(t) > 0 for t > 0 small enough, since p > p̄. On the other hand, by

the fact of ln(1 + s) < s for all s > 0, we deduce that

f ′
u(t) = t A(u) − Np − N − α

2p
t Np−N−α−1B(u) + |μ|N

2t N+1

∫
RN

ln

(
1 + t N |u|2

1 + g1

)
dx

−|μ|N
2t

∫
RN

|u|2
1 + g1 + t N |u|2 dx

≤ t A(u) − Np − N − α

2p
t Np−N−α−1B(u) + |μ|N

2t

∫
RN

|u|2
1 + g1

dx

−|μ|N
2t

∫
RN

u2

1 + g1 + t N u2
dx

≤ t A(u) − Np − N − α

2p
t Np−N−α−1B(u) + |μ|N

2t

∫
RN

[ |u|2
1 + g1

− |u|2
1 + g1 + t N |u|2

]
dx

= t A(u) − Np − N − α

2p
t Np−N−α−1B(u) + |μ|N

2(1 + g1)

∫
RN

t N−1|u|4
(1 + g1 + t N |u|2)dx

≤ t A(u) − Np − N − α

2p
t Np−N−α−1B(u) + |μ|Nc

2(1 + g1)t
,

which implies that f ′
u(t) < 0 for t > 0 large enough, since p > p̄. Therefore, according to

the continuity of fu(t), there exists a constant t̄−u > 0 such that f ′
u(t̄

−
u ) = 0 and f ′′

u (t̄−u ) < 0,
that is ut̄

−
u ∈ M−(c). We complete the proof. ��

By virtue of Lemmas 4.2 and 4.4 one has

m−
r (c) := inf

u∈M−
r (c)

J (u) ≥ inf
u∈M−(c)

J (u) ≥ |μ|c
2

> 0,

where M−
r (c) is defined as (58). Similar to the arguments in Sect. 3.2, we also apply

Lemma 2.7 to construct a Palais-Smale sequence {un} ⊂ M−
r (c) for the functional J

restricted to Sr (c) defined as (58). Here we only give the conclusions without proof.

Lemma 4.5 The map u ∈ Sr (c) �→ t̄−u ∈ R is of class C1.

Lemma 4.6 The map TuSr (c) → T
ut̄

−
u
Sr (c) defined by ψ → ψ t̄−u is isomorphism, where

Tu Sr (c) denotes the tangent space to Sr (c) in u.

Lemma 4.7 It holds (G−)′(u)[ψ] = J ′(ut̄−u )[ψ t̄−u ] for any u ∈ Sr (c) and ψ ∈ TuSr (c),
where the functional G− : Sr (c) → R is defined by G−(u) = J (ut̄

−
u ).

Lemma 4.8 Assume thatμ < 0, p̄ < p < 2∗
α and condition (D1) holds. LetF be a homotopy

stable family of compact subsets of Sr (c) with closed boundary � and let

e−
F := inf

H∈F max
u∈H G−(u).

Suppose that� is contained ina connected component ofM−
r (c)and thatmax{supG−(�), 0}

< e−
F < ∞. Then there exists a Palais-Smale sequence {un} ⊂ M−

r (c) for J restricted to
Sr (c) at level e

−
F .

According to Lemma 4.8, similar to the argument of Lemma 3.9, we have the following
result.
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Lemma 4.9 Assume that μ < 0, p̄ < p < 2∗
α and condition (D1) holds. Then there exists a

Palais-Smale sequence {un} ⊂ M−
r (c) for J restricted to Sr (c) at level m−

r (c) ≥ |μ|c
2 .

Now we are ready to prove Theorem 1.3 (i i i). It follows from Lemma 4.9 that there
exists a Palais-Smale sequence {un} ⊂ M−

r (c) for J restricted to Sr (c) st level m−
r (c) >

|μ|c
2 , which is bounded in H1(RN ) via Lemma 4.1. According to Lemmas 2.8 and 4.2, for

c < c̃ := min{c1, c3}, problem (Pc) admits a radially symmetric solution w satisfying

J (w) = m−
r (c) > K3c

− N+α−p(N−2)
Np−N−α−2 − |μ|c

2(1 + g1)

(
Np − α

Np − N − α
− g1

)
≥ |μ|c

2

for some λ̄ > 0, where K3 > 0 is as in (70). Moreover, since Q(w) = 0, by (31) and (69)
one has

λ̄c = N + α − p(N − 2)

Np − N − α
A(w) − |μ|

∫
RN

g1 + |w|2
1 + g1 + w2 |w|2dx

+ |μ|Np

Np − N − α

∫
RN

[
ln

(
1 + |w|2

1 + g1

)
− |w|2

1 + g1 + |w|2
]
dx

>
N + α − p(N − 2)

Np − N − α
A(w) − |μ|c

> K4c
− 2p−2

Np−N−α−2+1 − |μ|c,
leading to

λ̄ > K4c
− 2p−2

Np−N−α−2 − |μ|,
where

K4 :=
(
N + α − p(N − 2)

Np − N − α

)[
2(N + 2)‖Qp‖2p−2

2

(Np − α)(Np − N − α)

] 2
Np−N−α−2

.

We complete the proof.

4.4 The subcase p = 2∗
˛

Proof of Theorem 1.3 (iv). Assume on the contrary. Let u ∈ H1(RN ) be a nontrivial solution
of Problem (Pc) for some λ̄ ≥ |μ|(N−2−2g1)

2(1+g1)
. Then we have

A(ū) + λ̄

∫
RN

|u|2dx − B(u) + |μ|
∫
RN

g1 + |u|2
1 + g1 + |u|2 |u|2dx = 0

and

N − 2

2
A(u)+N (λ̄ + |μ|)

2

∫
RN

|u|2dx−N + α

22∗
α

B(u)−|μ|N
2

∫
RN

ln

(
1 + |u|2

1 + g1

)
dx = 0.

Using the above two equalities, together with the fact of ln(1 + x) < x for x > 0 gives

λ̄

∫
RN

u2dx = −|μ|N
2

∫
RN

|u|2dx + |μ|N
2

∫
RN

ln

(
1 + |u|2

1 + g1

)
dx

+|μ|(N − 2)

2

∫
RN

g1 + |u|2
1 + g1 + |u|2 |u|2dx
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< − |μ|Ng1
2(1 + g1)

∫
RN

|u|2dx + |μ|(N − 2)

2

∫
RN

|u|2dx

−|μ|(N − 2)

2

∫
RN

|u|2
1 + g1 + |u|2 dx

= |μ|(N − 2 − 2g1)

2(1 + g1)

∫
RN

|u|2dx − |μ|(N − 2)

2

∫
RN

|u|2
1 + g1 + |u|2 dx,

which implies that(
λ̄ − |μ|(N − 2 − 2g1)

2(1 + g1)

)∫
RN

|u|2dx < −|μ|(N − 2)

2

∫
RN

|u|2
1 + g1 + |u|2 dx .

This is a contradiction, since λ̄ ≥ |μ|(N−2−2g1)
2(1+g1)

and u ∈ S(c). We complete the proof. ��
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was supported by grant “Nonlinear Differential Systems in Applied Sciences” of the Romanian Ministry of
Research, Innovation and Digitization, within PNRR-IIIC9- 2022-I8/22. T.F. Wu was supported in part by the
Ministry of Science and Technology, Taiwan (Grant No. 112-2115-M-390-001-MY3).

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

Conflicts of Interest The authors confirm that there is no conflict of interest.

References

1. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger
equations and systems, J. Funct. Anal. 272, 4998–5037 (2017) & Correction to: “A natural constraint
approach to normalized solutions of nonlinear Schrödinger equations and systems”, J. Funct. Anal. 272
(2017) 4998–5037, J. Funct. Anal. 275 (2018) 516–521

2. Bartsch, T., Liu, Y., Liu, Z.: Normalized solutions for a class of nonlinear Choquard equations. SN Partial
Differ. Equ. Appl. 1, 34 (2020)

3. Bhattarai, S.: On fractional Schrödinger systems of Choquard type. J. Diff. Equ. 263, 3197–3229 (2017)
4. Cingolani, S., Jeanjean, L.: Stationary waves with prescribed L2-norm for the planar Schrödinger-Poisson

system. SIAM J. Math. Anal. 51, 3533–3568 (2019)
5. Efremidis, N.K., Hudock, J., Christodoulides, D.N., Fleischer, J.W., Cohen, O., Segev, M.: Two-

dimensional optical lattice solitons. Phys. Rev. Lett. 91, 213906 (2003)
6. Efremidis, N.K., Sears, S., Christodoulides, D.N., Fleischer, J.W., Segev, M.: Discrete solitons in pho-

torefractive opti-cally induced photonic lattices. Phys. Rev. E 66, 046602 (2002)
7. Feng, B., Chen, R., Ren, J.: Existence of stable standing waves for the fractional Schrödinger equations

with combined power-type and Choquard-type nonlinearities. J. Math. Phys. 60, 051512 (2019)
8. Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge University Press,

Cambridge (1993)
9. Gao, F., Yang, M.: On nonlocal Choquard equations with Hardy–Littlewood–Sobolev critical exponents.

J. Math. Anal. Appl. 448, 1006–1041 (2017)
10. Kwong, M.K.: Uniqueness of positive solution of �u − u + u p = 0 in R

3. Arch. Ration. Mech. Anal.
105, 243–266 (1989)

11. Lehrer, R., Maia, L.A.: Positive solutions of asymptotically linear equations via Pohozaev manifold. J.
Funct. Anal. 266, 213–246 (2014)

12. Li, X.: Standing waves to upper critical Choquard equation with a local perturbation: multiplicity, quali-
tative properties and stability. Adv. Nonlinear Anal. 11, 1134–1164 (2022)

13. Li, X., Ma, S., Zhang, G.: Existence and qualitative properties of solutions for Choquard equations with
a local term. Nonlinear Anal. Real World Appl. 45, 1–25 (2019)

123



   61 Page 34 of 34 J. Sun et al.

14. Li, G., Ye, H.: The existence of positive solutions with prescribed L2-norm for nonlinear Choquard
equations. J. Math. Phys. 55, 121501 (2014)

15. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud.
Appl. Math. 57, 93–105 (1976)

16. Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118,
349–374 (1983)

17. Lieb, E.H., Loss, M.: Analysis, in: Graduate Studies in Mathematics, vol. 14, American Mathematical
Society, Providence, RI, (4) (2001)
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