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Abstract. We consider a singular elliptic equation, driven by the non-autonomous

(p, q)-operator and with a resonant perturbation. Using variational tools to-
gether with truncation and comparison techniques, we show that if the L∞-

norm of the coefficient of the singular term is small enough, then the problem

has at least two positive smooth solutions.

1. Introduction. Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω.
In this paper, we study the following nonlinear, non-autonomous singular Dirichlet
(p, q)-equation{

−∆α1
p u(z)−∆α2

q u(z) = ξ(z)u(z)−η + f(z, u(z)) in Ω,
u|∂Ω = 0, 0 < η < 1 < q < p, u > 0.

}
(1)

For α ∈ C0,1(Ω̄) with 0 < ĉ ≤ α(z) for all z ∈ Ω̄ and for s ∈ (1,∞), by ∆α
s we

denote the non-autonomous (weighted) s-Laplace differential operator defined by

∆α
s u = div(α(z)|Du|s−2Du) for all u ∈ W 1,s

0 (Ω).

Problem (1) is driven by the sum of two such operators with different exponents
(we have 1 < q < p) and in general with distinct weights α1, α2. The differential
operator governing (1) is non-autonomous and non-homogeneous. In the reaction
(right-hand side) of (1), we have the competing effects of a singular term u →
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ξ(z)u−η (with ξ ∈ L∞(Ω) \ {0}, ξ(z) ≥ 0 for a.a. z ∈ Ω and 0 < η < 1) and of a
Carathéodory perturbation f(z, x) (that is, for all x ≥ 0, z → f(z, x) is measurable
and for a.a. z ∈ Ω, x → f(z, x) is continuous). We assume that f(z, ·) is (p − 1)-
linear as x → +∞ and we can have resonance with respect to the first eigenvalue of
(−∆α1

p ,W 1,p
0 (Ω)). Moreover, f(z, ·) can change sign as we move on R+ = [0,+∞).

In the past most works on nonlinear singular elliptic problems, required that
the perturbation of the singular term is positive and (p − 1)-superlinear satisfy-
ing the well-known Ambrosetti-Rabinowitz condition (the AR-condition for short).
In fact in many papers this perturbation is simply of the power type. We men-
tion the works of Giacomoni-Schindler-Takáč [6], Giacomoni-Kumar-Sreenadh [5],
Irving-Koch [7], Leonardi-Papageorgiou [8], Papageorgiou-Rădulescu-Repovš [11],
Papageorgiou-Smyrlis [14], Papageorgiou-Winkert [15], Perera-Zhang [16] and the
references therein.

In the recent paper [3], Bobkov-Tanaka considered autonomous (p, q)-equation
with Dirichlet boundary condition and employed several minimax variational meth-
ods to determine three generally different ranges of parameters such that the prob-
lem admits a given number of distinct pairs of solutions with a prescribed sign
of energy. For a biharmonic problem with two weights, we refer readers to [18]
where existence and multiplicity of solutions were obtained via an alternative Ric-
ceri’s result. Recently, Arruda-Nascimento [1] and Bień-Majdak-Papageorgiou [2],
considered nonlinear autonomous singular equations with a (p− 1)-superlinear per-
turbation which can be sign changing (indefinite). Our work here complements the
two aforementioned papers, by considering non-autonomous equations with (p−1)-
linear, resonant perturbation. Using variational tools, we prove two multiplicity
theorems for the non-coercive resonant problem.

2. Mathematical background and hypothesis. In the study of problem (1),

the main function spaces are the Sobolev space W 1,p
0 (Ω) and the Banach space

C1
0 (Ω̄) = {u ∈ C1(Ω̄) : u|∂Ω = 0}. On account of the Poincaré inequality, on

W 1,p
0 (Ω) we can consider the norm

∥u∥ = ∥Du∥p for all u ∈ W 1,p
0 (Ω).

The space C1
0 (Ω̄) is an ordered Banach space with positive (order) cone C+ =

{u ∈ C1
0 (Ω̄) : u(z) ≥ 0 for all z ∈ Ω̄}. This cone has a nonempty interior given by

intC+ =

{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣
∂Ω

< 0

}
,

where
∂u

∂n
= (Du, n)RN with n(·) being the outward unit normal on ∂Ω.

Given α ∈ C0,1(Ω̄) with 0 < ĉ ≤ α(z) for all z ∈ Ω̄, we consider the following
nonlinear eigenvalue problem

−∆α
pu(z) = λ̂|u(z)|p−2u(z) in Ω, u|∂Ω = 0. (2)

From the Appendix of Liu-Papageorgiou [10], we know that problem (2) has a

smallest eigenvalue λ̂α
1 (p) > 0 which is isolated, simple and admits the following

variational characterization,

0 < λ̂α
1 (p) = inf

{∫
Ω
α(z)|Du|pdz

∥u∥pp
: u ∈ W 1,p

0 (Ω), u ̸= 0

}
. (3)



RESONANT SINGULAR NON-AUTONOMOUS (p, q)-EQUATIONS 3

The nonlinear regularity theory of Lieberman [9], implies that if u ∈ W 1,p
0 (Ω)

is an eigenfunction of (2), then u ∈ C1
0 (Ω̄). In particular, if u is an eigenfunction

corresponding to λ̂α
1 (p) > 0, then u has fixed sign and the nonlinear maximum

principle of Pucci-Serrin [17] implies that u ∈ intC+ or u ∈ −intC+ .

Let û1 denote the positive Lp normalized (that is, ∥û1∥p = 1) eigenfunction

corresponding to λ̂α
1 (p) > 0. Then û1 ∈ intC+ and realizes the infimum in (3).

We will also consider the following weighted version of (2),

−∆α
pu(z) = λ̃m(z)|u(z)|p−2u(z) inΩ, u|∂Ω = 0, (4)

with m ∈ L∞(Ω)\{0}, m(z) ≥ 0 for a.a. z ∈ Ω. We have the same spectral analysis

for (4) as for (3). So, (4) has a smallest eigenvalue λ̃α
1 (p,m) > 0, which is isolated,

simple and has the following variational characterization,

0 < λ̃α
1 (p,m) = inf

{∫
Ω
α(z)|Du|pdz∫

Ω
m(z)|u|pdz

: u ∈ W 1,p
0 (Ω), u ̸= 0

}
. (5)

Again, the corresponding eigenfunctions have fixed sign and belong in ±intC+.
We point out that for both problems (2) and (4), the principal eigenvalue is the
only eigenvalue with eigenfunctions of constant sign. All the other eigenvalues have
nodal (sign-changing) eigenfunctions. Using (5), we obtain easily the following

monotonicity property for the map m → λ̃α
1 (p,m).

Proposition 1. If m1,m2 ∈ L∞(Ω)\{0}, 0 ≤ m1(z) ≤ m2(z) for a.a. z ∈ Ω and
m1 ̸= m2, then

λ̃α
1 (p,m2) < λ̃α

1 (p,m1).

If X is a reflexive Banach space and V : X → X∗ is a continuous and mono-
tone map, then V (·) is maximal monotone (see [12, p. 117]. We say that V (·) is
“coercive”, if

∥u ∥X → ∞ =⇒∥V (u)∥X∗ → +∞.

We have the following surjectivity result (see [12, p. 135]).

Proposition 2. If X is a reflexive Banach space and V : X → X∗ is continuous,
monotone and coercive, then V (·) is surjective.

A useful tool in the study of singular problems, is the so called “Hardy’s inequal-
ity” (see Papageorgiou-Rădulescu-Repovš [12, p. 66])

Proposition 3. If d̂(z) = d(z, ∂Ω) for all z ∈ Ω̄, then∥∥∥∥ud̂
∥∥∥∥
p

≤ c∗∥Du∥p for some c∗ > 0 and all u ∈ W 1,p
0 (Ω), 1 < p < ∞.

For u ∈ L1(Ω), we write 0 ≺ u, if for all K ⊂ Ω compact, 0 < cK ≤ u(z) for a.a.
z ∈ K.

Our hypotheses on the weights α1, α2 and the coefficient ξ(·) are the following:

H0 : α1, α2 ∈ C0,1(Ω̄), 0 < ĉ ≤ α1(z), α2(z) for all z ∈ Ω̄ and ξ ∈ L∞(Ω) such
that 0 ≺ ξ.
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Let V : W 1,p
0 (Ω) → W−1,p′

(Ω) =
(
W 1,p

0 (Ω)
)∗

,
(

1
p + 1

p′ = 1
)

be the nonlinear

map defined by

⟨V (u), h⟩ =
∫
Ω

[
α1(z)|Du|p−2 + α2(z)|Du|q−2

]
(Du,Dh)dz, ∀ u, h ∈ W 1,p

0 (Ω).

This map has the following properties (see Gasinski-Papageorgiou [4, p. 279]).

Proposition 4. If hypotheses H0 hold, then V (·) is bounded (that is, maps bounded
sets to bounded sets), continuous, strictly monotone (thus, maximal monotone too)
and of type (S)+, that is,

“if un
w−→ u in W 1,p

0 (Ω) and lim sup
n→∞

⟨V (un), un − u⟩ ≤ 0,

then un → u in W 1,p
0 (Ω).”

Let X be a Banach space and φ ∈ C1(X). We say that φ(·) satisfies the “C-
condition”, if it has the following property:

“Every sequence {un}n∈N ⊂ X such that {φ(un)} ⊂ R is bounded

and (1 + ∥un∥X)φ′(un) → 0 inX∗ asn → ∞,

admits a strongly convergent subsequence.”

Also, we set

Kφ = {u ∈ X : φ′(u) = 0} (the critical set ofφ(·)).

Our hypotheses on the perturbation f(z, x) are the following:

H1 : f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for a.a.
z ∈ Ω and

(i) for every ρ > 0, there exists α̂ρ ∈ L∞(Ω) such that

|f(z, x)| ≤ α̂ρ(z) for a.a. z ∈ Ω, all 0 ≤ x ≤ ρ;

(ii) there exist l ∈ L∞(Ω) and τ ∈ (q, p) such that

λ̂α1
1 (p) ≤ lim inf

x→+∞

f(z, x)

xp−1
≤ lim sup

x→+∞

f(z, x)

xp−1
≤ l(z) uniformly for a.a. z ∈ Ω,

and if F (z, x) =
∫ x

0
f(z, s)ds, then

0 < β̂ ≤ lim inf
x→+∞

pF (z, x)− f(z, x)x

xτ
uniformly for a.a. z ∈ Ω;

(iii) there exists δ > 0 such that

−ξ(z) ≤ f(z, x) ≤ γθ < 0 for a.a. z ∈ Ω, all 0 < ϑ ≤ x ≤ δ;

(iv) for every ρ > 0, there exists ξ̂ρ > 0, such that for a.a. z ∈ Ω, the function

x → f(z, x) + ξ̂ρx
p−1

is nondecreasing on [0, ρ].
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Remark 1. Since we look for positive solutions of (1) and the above hypotheses
concern the positive semiaxis R+ = [0,+∞), we may assume that f(z, x) = 0 for
a.a. z ∈ Ω, all x ≤ 0. Hypotheses H1 (i), (ii) imply that f(z, ·) is (p − 1)-linear
as x → +∞, and we can have resonance with respect to the principal eigenvalue

λ̂α1
1 (p) > 0 of (−∆α1

p ,W 1,p
0 (Ω)). As we will see in the process of the proof (see the

proof of Proposition 10), the resonance occurs from the right of λ̂α1
1 (p) in the sense

that

λ̂α1
1 (p)xp − pF (z, x) → −∞ uniformly for a.a. z ∈ Ω, as x → +∞.

and this makes the relevant energy functional noncoercive.

3. Auxiliary problems. In this section, we consider two auxiliary problems, the
solutions of which will provide an ordered pair of upper and lower solutions for
problem (1). Then in section 4 using these solutions and truncation and comparison
techniques, we will show the existence and multiplicity of positive solutions for
problem (1).

First we consider the following auxiliary Dirichlet problem:

−∆α1
p u(z)−∆α2

q u(z) = ξ(z) in Ω, u|∂Ω = 0. (6)

Using Proposition 2 (see also Papageorgiou-Rădulescu-Repovš [11, Proposition
10]), we have the following result concerning problem (6).

Proposition 5. If hypotheses H0 hold, then problem (6) has a unique solution
uξ ∈ intC+ and

uξ → 0 in C0,1(Ω̄) as ∥ξ∥∞ → 0.

On account of this proposition, we can find γ1 > 0 such that

∥ξ∥∞ < γ1 =⇒ ξ(z) < ξ(z)u−η
ξ (z) for a.a. z ∈ Ω. (7)

We consider a second auxiliary Dirichlet problem

−∆α1
p u(z)−∆α2

q u(z) = ξ(z)u−η(z) in Ω, u|∂Ω = 0. (8)

For this problem, we have a similar result.

Proposition 6. If hypotheses H0 hold, then problem (8) has a unique solution
ūξ ∈ intC+ and

ūξ → 0 in C0,1(Ω̄) as ∥ξ∥∞ → 0.

Proof. We know that uξ ∈ intC+ (see Proposition 5). So, using [12, Proposition
4.1.22, p. 274], we can find c1 > 0 such that

d̂ ≤ c1uξ ( recall that d̂(z) = d(z, ∂Ω) for all z ∈ Ω̄). (9)
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Then for every h ∈ W 1,p
0 (Ω), we have∣∣∣∣∫

Ω

ξ(z)u−η
ξ hdz

∣∣∣∣
≤ ∥ξ∥∞

∫
Ω

u1−η
ξ

h

uξ

dz

≤ c2∥ξ∥∞
∫
Ω

h

d̂
dz for some c2 > 0 (see (9) and recall that uξ ∈ intC+)

≤ c3∥ξ∥∞∥h∥ (see Proposition 3),

⇒ξ(z)u−η
ξ ∈ W−1,p′

(Ω) =
(
W 1,p

0 (Ω)
)∗

.

(10)

We write problem (8) in the following form

V (u) = ξ(·)u−η in W−1,p′
(Ω) =

(
W 1,p

0 (Ω)
)∗

. (11)

Invoking Propositions 2 and 4, we can find ūξ ∈ W 1,p
0 (Ω) solution of (1). More-

over, the strict monotonicity of V (·) implies that this solution is unique. Using (9),
we have

0 ≤ ξ(z)u−η
ξ (z) ≤ c4d̂

−η for some c4 > 0.

Since ξ(·)u−η
ξ (·) ∈ L∞

loc(Ω), we can use Theorem B1 of Giacomoni-Schindler-

Takáč [6] (see also Giacomoni-Kumar-Sreenadh [5], Theorem 1.7) and obtain that
ūξ ∈ C+ \ {0}. We have

−∆α1
p ūξ −∆α2

q ūξ ≤ 0 in Ω

⇒ūξ ∈ intC+ ( see Pucci-Serrin [17, pp. 111, 120]).

Next we show the last assertion of the proposition. We have

⟨V (ūξ) , h⟩ =
∫
Ω

ξ(z)u−η
ξ (z)hdz for all h ∈ W 1,p

0 (Ω). (12)

In (12) we use the test function h = ūξ ∈ W 1,p
0 (Ω). We obtain

ĉ ∥ūξ∥p ≤
∫
Ω

α(z) |Dūξ|p dz ⩽ c3∥ξ∥∞∥ūξ∥ (see (10) and hypotheses H0),

⇒∥ūξ∥ → 0 as ∥ξ∥∞ → 0.

(13)

Then as before, invoking Theorem B.1 of [6] (see also Theorem 1.7 of [5]), we
can find α ∈ (0, 1) and c5 > 0 such that

ūξ ∈ C1,α
0 (Ω̄), ∥ūξ∥C1,α

0 (Ω̄) ≤ c5. (14)

We know that C1,α
0 (Ω̄) ↪→ C1

0 (Ω̄) compactly (Arzela-Ascoli theorem). Then from
(13) and (14), we infer that

ūξ → 0 in C1
0 (Ω̄) as ∥ξ∥∞ → 0.

This completes the proof. □
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Propositions 5 and 6 imply that we can find 0 < γ2 ≤ γ1 (see (7)) such that

∥ξ∥∞ < γ2 =⇒ ∥ūξ∥∞ <

(
1

2

) 1
η

, 0 ≤ ūξ ≤ δ for all z ∈ Ω̄, (15)

with δ > 0 as postulated by hypothesis H1(iii).

Proposition 7. If hypotheses H0 hold and ∥ξ∥∞ < γ2, then uξ(z) ≤ ūξ(z) for all

z ∈ Ω̄.

Proof. On account of (7), we have

V (uξ) = ξ(·) ≤ ξ(·)ū−η
ξ = V (ūξ) in W−1,p′

(Ω).

By the weak comparison principle (see Pucci-Serrin [17, Theorem 3.4.1, p. 61]),
we conclude that uξ ≤ ūξ. □

4. Positive solutions. In this section, using the results from section 3, we prove
existence and multiplicity of positive solutions for problem (1). In what follows[

uξ, ūξ

]
=

{
u ∈ W 1,p

0 (Ω) : uξ(z) ≤ u(z) ≤ ūξ(z) for a.a. z ∈ Ω
}
,

and intC1
0 (Ω̄)

[
uξ, ūξ

]
= interior in C1

0 (Ω̄) of
[
uξ, ūξ

]
∩ C1

0 (Ω̄).

Proposition 8. If hypotheses H0, H1 hold and ∥ξ∥∞ < γ2, then problem (1) has
a solution u0 ∈ intC1

0 (Ω̄)

[
uξ, ūξ

]
.

Proof. From Proposition 7, we know that

uξ ≤ ūξ (recall 0 < γ2 ≤ γ1) . (16)

So, we can introduce the Carathéodory function ĝ(z, x) defined by

ĝ(z, x) =


ξ(z)u−η

ξ (z) + f(z, uξ(z)) if x < uξ(z),

ξ(z)x−η + f(z, x) if uξ(z) ≤ x ≤ ūξ(z),

ξ(z)ū−η
ξ (z) + f(z, ūξ(z)) if ūξ(z) < x.

(17)

We set Ĝ(z, x) =
∫ x

0
ĝ(z, s)ds and consider the functional φ̂ : W 1,p

0 (Ω) → R
defined by

φ̂(u) =
1

p

∫
Ω

α1(z)|Du|pdz+ 1

q

∫
Ω

α2(z)|Du|qdz−
∫
Ω

Ĝ(z, u)dz for all u ∈ W 1,p
0 (Ω).

From Papageorgiou-Smyrlis [14, Proposition 3], we know that φ̂ ∈ C1
(
W 1,p

0 (Ω)
)
.

From (17) and hypotheses H0, we see that φ̂(·) is coercive. Also using the Sobolev
embedding theorem, we see that φ̂(·) is sequentially weakly lower semicontinuous.

So, by the Weierstrass-Tonelli theorem, we can find u0 ∈ W 1,p
0 (Ω) such that

φ̂(u0) = inf
{
φ̂(u) : u ∈ W 1,p

0 (Ω)
}
,

⇒
〈
φ̂

′
(u0), h

〉
= 0 for all h ∈ W 1,p

0 (Ω),

⇒⟨V (u0), h⟩ =
∫
Ω

ĝ(z, u0)hdz for all h ∈ W 1,p
0 (Ω).

(18)
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In (18) first we use the test function h = (u0 − ūξ)
+ ∈ W 1,p

0 (Ω). We have〈
V (u0), (u0 − ūξ)

+
〉

=

∫
Ω

[
ξ(z)ū−η

ξ + f(z, ūξ)
]
(u0 − ūξ)

+dz (see (17))

≤
∫
Ω

ξ(z)ū−η
ξ (u0 − ūξ)

+dz (see (15) and hypothesis H1(iii))

=
〈
V (ūξ), (u0 − ūξ)

+
〉
(see Proposition 6)

⇒u0 ≤ ūξ (see Proposition 4).

Next we test (18) with h = (uξ − u0)
+ ∈ W 1,p

0 (Ω). We have〈
V (u0), (uξ − u0)

+
〉

=

∫
Ω

[
ξ(z)u−η

ξ + f(z, uξ)
]
(uξ − u0)

+dz (see (17))

≥
∫
Ω

ξ(z)
[
u−η
ξ − 1

]
(uξ − u0)

+dz (see (15) and hypothesis H1(iii))

≥
∫
Ω

ξ(z)(uξ − u0)
+dz (since u−η

ξ − 1 > 1, see (15))

=
〈
V (uξ), (uξ − u0)

+
〉
(see Proposition 5)

⇒uξ ≤ u0 (see Proposition 4).

We have proved that

u0 ∈
[
uξ, ūξ

]
.

The nonlinear regularity theory of Lieberman [9], implies that

u0 ∈
[
uξ, ūξ

]
∩ C1

0 (Ω̄). (19)

Let ρ = ∥ūξ∥∞ and let ξ̂ρ > 0 be as postulated by hypothesis H1(iv). We have

−∆α1
p u0 −∆α2

q u0 + ξ̂ρu
p−1
0 − ξ(z)u−η

0

= f(z, u0) + ξ̂ρu
p−1
0

≤ f(z, ūξ) + ξ̂ρū
p−1
ξ (see (19) and hypothesis H1(iv))

≤ ξ̂ρū
p−1
ξ (see (15) and hypothesis H1(iii))

= −∆α1
p ūξ −∆α2

q ūξ + ξ̂ρū
p−1
ξ − ξ(z)ū−η

ξ (see Proposition 6).

It follows from H1(iii) and (15) that 0 ≺ −f(z, ūξ), then from Proposition 7 of
Papageorgiou-Rădulescu-Repovš [11], we obtain

ūξ − u0 ∈ intC+. (20)
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Also we have

−∆α1
p u0 −∆α2

q u0 + ξ̂ρu
p−1
0 − ξ(z)u−η

0

= f(z, u0) + ξ̂ρu
p−1
0

≥ f(z, uξ) + ξ̂ρu
p−1
ξ (see (15), (16) and hypothesis H1(iv))

≥ −ξ(z) + ξ̂ρu
p−1
ξ (see (15) and hypothesis H1(iii))

≥ ξ(z)
[
1− u−η

ξ

]
+ ξ̂ρu

p−1
ξ (see (15))

= −∆α1
p uξ −∆α2

q uξ + ξ̂ρu
p−1
ξ − ξ(z)u−η

ξ .

Note that −ξ(z) − ξ(z)
[
1− u−η

ξ

]
= ξ(z)

[
u−η
ξ − 2

]
≻ 0 and so Proposition 7 of

[11] implies that

u0 − uξ ∈ intC+. (21)

From (20) and (21), we conclude that

u0 ∈ intC1
0 (Ω̄)

[
uξ, ūξ

]
. (22)

The proof is now complete. □

We will use u0 to produce a second positive smooth solution of (1).

We introduce the Carathéodory function g(z, x) defined by

g(z, x) =

{
ξ(z)u−η

ξ (z) + f(z, uξ(z)) if x ≤ uξ(z),

ξ(z)x−η + f(z, x) if uξ(z) < x.
(23)

We set G(z, x) =
∫ x

0
g(z, s)ds and consider the functional φ : W 1,p

0 (Ω) → R
defined by

φ(u) =
1

p

∫
Ω

α1(z)|Du|pdz+ 1

q

∫
Ω

α2(z)|Du|qdz−
∫
Ω

G(z, u)dz for all u ∈ W 1,p
0 (Ω).

We have φ ∈ C1
(
W 1,p

0 (Ω)
)
(see [14]). In what follows we define[

uξ

)
=

{
u ∈ W 1,p

0 (Ω) : uξ(z) ≤ u(z) for a.a. z ∈ Ω
}
,

Proposition 9. If hypotheses H0, H1 hold, ∥ξ∥∞ < γ2 and u0 ∈ intC+ is the
solution of (1) from Proposition 8, then

Kφ̂ ⊂
[
uξ, ūξ

]
∩ C1

0 (Ω̄), Kφ ⊂
[
uξ

)
∩ C1

0 (Ω̄) and u0 is a local minimizer of φ(·).

Proof. That Kφ̂ ⊂
[
uξ, ūξ

]
∩ C1

0 (Ω̄) and Kφ ⊂
[
uξ

)
∩ C1

0 (Ω̄), follow from (17) and
(23) as in the proof of Proposition 8. Note that

φ̂
∣∣
[uξ,ūξ]

= φ
∣∣
[uξ,ūξ]

. (24)
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From the proof of Proposition 8, we know that u0 is a minimizer of the functional
φ̂. From (22) and (24), we infer that

u0 is a local C1
0 (Ω̄)-minimizer of φ(·),

⇒u0 is a local W 1,p
0 (Ω)-minimizer of φ(·),

(see Papageorgiou-Rădulescu-Zhang [13, Proposition A3]).

(25)

This completes the proof. □

On account of Proposition 9, we see that we may assume that

Kφ ∩
[
uξ, ūξ

]
= {u0} and Kφ is finite. (26)

Otherwise it is clear from (23) that we already have at least one more nontrivial
positive smooth solution. Moreover, from (25), (26) and Papageorgiou-Rădulescu-
Repovš [12, Theorem 5.7.6, p. 449], we see that we can find ρ ∈ (0, 1) small such
that

φ (u0) < inf {φ(u) : ∥u− u0∥ = ρ} = m0. (27)

Proposition 10. If hypotheses H0, H1 hold and ∥ξ∥∞ < γ2, then

φ(tû1) → −∞ as t → +∞.

Proof. HypothesisH1(ii) implies that given β̂0 ∈ (0, β̂), we can findM = M(β̂0) > 0
such that

β̂0x
τ ≤ pF (z, x)− f(z, x)x for a.a. x ∈ Ω, all x ≥ M. (28)

Note that

d

dx

F (z, x)

xp
=

f(z, x)xp − pxp−1F (z, x)

x2p

=
f(z, x)x− pF (z, x)

xp+1

≤ − β̂0

xp+1−τ
for a.a. z ∈ Ω, all x ≥ M (see (28)),

⇒ F (z, x)

vp
− F (z, x)

xp
≤ β̂0

p− τ

[
1

vp−τ
− 1

xp−τ

]
for a.a. z ∈ Ω, all v ≥ x ≥ M. (29)

Hypothesis H1(ii) implies that

1

p
λ̂α1
1 (p) ≤ lim inf

x→+∞

F (z, x)

xp
uniformly for a.a. z ∈ Ω. (30)

So, if in (29) we pass to the limit as v → +∞ and use (30), we obtain

λ̂α1
1 (p)

p
− F (z, x)

xp
≤ − β̂0

p− τ

1

xp−τ
,

⇒λ̂α1
1 (p)xp − pF (z, x) ≤ − pβ̂0

p− τ
xτ for a.a. z ∈ Ω, all x ≥ M.

(31)

Note that since ∥û1∥p = 1, we have

φ(tû1) =
λ̂α1
1 (p)tp

p
+

tq

q

∫
Ω

α2(z)|Dû1|qdz −
∫
Ω

G(z, tû1)dz for all t > 0. (32)
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We estimate the integral
∫
Ω
G(z, tû1)dz. From (23), we have∫

Ω

G(z, tû1)dz

=

∫
{tû1≤uξ}

[
ξ(z)u−η

ξ + f(z, uξ)
]
(tû1)dz +

∫
{uξ≤tû1}

ξ(z)

1− η

[
(tû1)

1−η − u1−η
ξ

]
dz

+

∫
{uξ≤tû1}

ξ(z)ξ1−ηdz +

∫
{uξ≤tû1}

[
F (z, tû1)− F (z, uξ)

]
dz

+

∫
{uξ≤tû1}

f(z, uξ)uξdz

≥
∫
Ω

F (z, tû1)dz − c6(t+ 1) for some c6 > 0 (see hypotheses H1(i), (iii)).

(33)

Using (31), (32) and (33), we obtain

φ(tû1) ≤
1

p

∫
Ω

[
λ̂α1
1 (p)(tû1)

p − pF (z, tû1)
]
dz + c7(t

q + 1) for some c7 > 0, all t ≥ 1.

⇒φ(tû1)

tτ
≤ − β̂0

p− τ
∥û1∥ττ +

c8
tτ−q

for some c8 > 0, all t ≥ 1,

⇒ lim sup
t→+∞

φ(tû1)

tτ
= −ϑ̂ < 0,

⇒φ(tû1) → −∞ as t → +∞,

which completes the proof. □

Remark 2. Included in the above proof is the fact that the resonance at λ̂α1
1 (p)

occurs from the right of the principal eigenvalue, that is

λ̂α1
1 (p)xp − pF (z, x) → −∞ uniformly for a.a. z ∈ Ω as x → +∞ (see (31)).

This means that the functional φ(·) can not be coercive and so the second solution
can not be obtained using the direct method of the calculus of variations.

Proposition 11. If hypotheses H0, H1 hold and ∥ξ∥∞ < γ2, then the functional
φ(·) satisfies the C-condition.

Proof. We consider a sequence {un}n∈N ⊂ W 1,p
0 (Ω) such that

|φ(un)| ≤ c9 for some c9 > 0, all n ∈ N, (34)

(1 + ∥un∥)φ′(un) → 0 in W−1,p′
(Ω) as n → ∞. (35)

From (35) we have

⟨V (un), h⟩ −
∫
Ω

g(z, un)hdz ≤ εn∥h∥
1 + ∥un∥

for all h ∈ W 1,p
0 (Ω), with εn → 0+. (36)

In (36) we choose h = −u−
n ∈ W 1p

0 (Ω). Then

ĉ
∥∥u−

n

∥∥p ≤ εn −
∫
Ω

[
ξ(z)u−η

ξ + f
(
z, uξ

)]
u−
n dz

⩽ εn + c10∥u−
n ∥ for some c10 > 0, all n ∈ N,
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⇒ {u−
n }n∈N ⊂ W 1,p

0 (Ω) is bounded. (37)

We will show that {u+
n }n∈N ⊆ W 1,p

0 (Ω) is bounded, too. We argue by contradic-
tion. So, suppose that at least for a subsequence, we have

∥u+
n ∥ → ∞ as n → ∞. (38)

We set yn =
u+
n

∥u+
n ∥ , n ∈ N. Then ∥yn∥ = 1, yn ≥ 0 for all n ∈ N. Hence we may

assume that

yn
w−→ y in W 1,p

0 (Ω), yn → y in Lp(Ω), y ≥ 0. (39)

From (36) and (37), we have〈
V (u+

n ), h
〉
−
∫
Ω

g(z, u+
n )hdz ≤ c11∥h∥ for some c11 > 0, all n ∈ N. (40)

Let Aα1
p : W 1,p

0 (Ω) → R and Aα2
q : W 1,q

0 (Ω) → R be the bounded, continuous,
strictly monotone, (S)+-type maps defined by

⟨Aα1
p (u), h⟩ =

∫
Ω

α1(z)|Du|p−2(Du,Dh)RNdz, ∀ u, h ∈ W 1,p
0 (Ω),

⟨Aα2
q (u), h⟩ =

∫
Ω

α2(z)|Du|q−2(Du,Dh)RNdz, ∀ u, h ∈ W 1,p
0 (Ω).

Evidently, V = Aα1
p +Aα2

q . From (40), we obtain〈
Aα1

p (yn) , h
〉
+

1∥∥u+
n

∥∥p−q

〈
Aα2

q (yn) , h
〉

≤ c11∥∥u+
n

∥∥p−1 ∥h∥+
∫
Ω

g (z, u+
n )∥∥u+

n

∥∥p−1hdz for all h ∈ W 1,p
0 (Ω), all n ∈ N.

(41)

Note that∫
Ω

g (z, u+
n )

∥u+
n ∥p−1

hdz

=
1∥∥u+

n

∥∥p−1

∫
{u+

n≤uξ}

[
ξ(z)u−η

ξ + f
(
z, uξ

)]
hdz

+
1∥∥u+

n

∥∥p−1

∫
{uξ<u+

n }
ξ(z)(u+

n )
−ηhdz +

∫
{uξ<u+

n }

f (z, u+
n )∥∥u+

n

∥∥p−1hdz

for all n ∈ N, all h ∈ W 1,p
0 (Ω) (see (23)).

(42)

We see that

1∥∥u+
n

∥∥p−1

∫
{u+

n⩽uξ}

[
ξ(z)u−η

ξ + f
(
z, uξ

)]
hdz → 0 as n → ∞ (see (10), (38)). (43)
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Also, we have

0 ≤ 1∥∥u+
n

∥∥p−1

∫
{uξ<u+

n }
ξ(z)

(
u+
n

)−η
hdz

≤ 1∥∥u+
n

∥∥p−1

∫
{uξ<u+

n }
ξ(z)u−η

ξ hdz

≤ 1∥∥u+
n

∥∥p−1

∫
Ω

ξ(z)u−η
ξ hdz

≤ c3∥ξ∥∞∥∥u+
n

∥∥p−1 ∥h∥ (see (10)) for all n ∈ N,

⇒ 1∥∥u+
n

∥∥p−1

∫
{uξ<u+

n }
ξ(z)

(
u+
n

)−η
hdz → 0 as n → ∞. (44)

Hypotheses H1(i),(ii) imply that{
f (·, u+

n (·))∥∥u+
n

∥∥p−1

}
n∈N

⊂ Lp′
(Ω) is bounded.

So, we may assume that

f (·, u+
n (·))∥∥u+

n

∥∥p−1

w−→ l̂(·)yp−1 in Lp′
(Ω) as n → ∞,

with λ̂α1
1 (p) ≤ l̂(z) ≤ l(z) for a.a. z ∈ Ω (see H1(ii)).

Recall that y ≥ 0 (see (39)). On {z ∈ Ω : y(z) > 0} we have u+
n (z) → +∞ and

so ∫
{uξ<u+

n }

f (z, u+
n )∥∥u+

n

∥∥p−1hdz →
∫
Ω

l̂(z)yp−1hdz as n → ∞. (45)

In (41) we choose the test function h = yn − y ∈ W 1,p
0 (Ω), pass to the limit as

n → ∞ and use (43), (44), (45), we obtain

lim
n→∞

〈
Aα1

p (yn) , yn − y
〉
= 0,

⇒yn → y in W 1,p
0 (Ω), ∥y∥ = 1, y ≥ 0.

(46)

If in (41) we pass to the limit as n → ∞ and use (43), (44), (45), (46), we obtain〈
Aα1

p (y), h
〉
=

∫
Ω

l̂(z)yp−1hdz for all h ∈ W 1,p
0 (Ω),

⇒−∆α1
p y(z) = l̂(z)y(z)p−1 in Ω, y|∂Ω = 0.

(47)

First suppose that l̂ ̸≡ λ̂α1
1 (p). We have

λ̃α1
1 (p, l̂) < λ̃α1

1 (p, λ̂α1
1 (p)) = 1 (see Proposition 1).

Then from (47) we infer that y = 0 or y is nodal (sign changing). Both possibilities
contradict (46).
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Next suppose that l̂ = λ̂α1
1 (p) for a.a. z ∈ Ω. From (47) and (46) it follows that

y = θû1 with θ > 1,

⇒y ∈ int C+.

We infer that u+
n (z) → +∞ for a.a. z ∈ Ω, as n → ∞. From (34) and (37), we

have for some c12 > 0,

−
∫
Ω

α1(z)|Du+
n |pdz −

p

q

∫
Ω

α2(z)|Du+
n |qdz +

∫
Ω

pG(z, u+
n )dz ≤ c12 for all n ∈ N.

(48)

Also, if in (36) we use the test function h = u+
n ∈ W 1,p

0 (Ω), then∫
Ω

α1(z)|Du+
n |pdz+

∫
Ω

α2(z)|Du+
n |qdz−

∫
Ω

g(z, u+
n )u

+
n dz ≤ εn for all n ∈ N. (49)

We add (48) and (49) and obtain∫
Ω

[
pG(z, u+

n )− g(z, u+
n )u

+
n

]
dz ≤ c13+

(
p

q
− 1

)∫
Ω

α2(z)|Du+
n |qdz

for some c13 > 0, all n ∈ N.
(50)

We have∫
Ω

[
pG(z, u+

n )− g(z, u+
n )u

+
n

]
dz

=

∫
{u+

n≤uξ}

[
pξ(z)u−η

ξ u+
n + f(z, u+

n )u
+
n

]
dz +

∫
{uξ<u+

n }
p
[
F (z, u+

n )− F (z, uξ)
]
dz

+

∫
{uξ<u+

n }
pf(z, uξ)uξdz −

∫
{u+

n≤uξ}

[
ξ(z)u−η

ξ u+
n + f(z, uξ)u

+
n

]
dz

−
∫
{uξ<u+

n }
ξ(z)(u+

n )
1−ηdz −

∫
{uξ<u+

n }
f(z, u+

n )u
+
n dz for all n ∈ N (see (23)),

≥
∫
{uξ<u+

n }

[
pF (z, u+

n )− f(z, u+
n )u

+
n

]
dz − c14

(
1 + ∥u+

n ∥1−η
)

for some c14 > 0, all n ∈ N,

≥
∫
Ω

[
pF (z, u+

n )− f(z, u+
n )u

+
n

]
dz − c15

(
1 + ∥u+

n ∥1−η
)

for some c15 > 0, all n ∈ N (see hypothesis H1(i)).

(51)

Using (51) in (50), we obtain∫
Ω

[
pF (z, u+

n )− f(z, u+
n )u

+
n

]
dz ≤ c16

(
1 + ∥u+

n ∥q
)
dz for some c16 > 0, all n ∈ N,

⇒
∫
Ω

pF (z, u+
n )− f(z, u+

n )u
+
n

(u+
n )τ

yτndz ≤ c16

(
1

∥u+
n ∥τ

+
1

∥u+
n ∥τ−q

)
for all n ∈ N.

(52)

In (52) we pass to the limit as n → ∞. Using Fatou’s lemma, hypothesis H1(ii)
and (38), we obtain

0 < β̂|Ω|N ≤ 0,
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a contradiction (here | · |N denotes the Lebesgue measure on RN ). Therefore

{u+
n }n∈N ⊆ W 1,p

0 (Ω) is bounded. So, we infer that {un}n∈N ⊆ W 1,p
0 (Ω) is bounded

(see (37)).

We may assume that

un
w−→ u in W 1,p

0 (Ω), un → u in Lp(Ω) as n → ∞. (53)

In (36), we choose the test function h = un − u ∈ W 1,p
0 (Ω) and pass to the limit

as n → ∞. We obtain

lim
n→∞

⟨V (un), un − u⟩ = 0,

⇒un → u in W 1,p
0 (Ω) (see Proposition 4).

This proves that the functional φ(·) satisfies the C-condition. □

Now we are ready for the multiplicity theorem.

Theorem 1. If hypotheses H0, H1 hold and ∥ξ∥∞ is small, then problem (1) has
at least two positive solutions

u0, û ∈ intC+, u0 ̸= û.

Proof. From Proposition 8, we already have one positive solution

u0 ∈ intC+.

Also (27) and Propositions 10 and 11 permit the use of the mountain pass theo-

rem. So we can find û ∈ W 1,p
0 (Ω) such that

û ∈ Kφ ⊂
[
uξ

)
∩ C1

0 (Ω̄), φ(u0) < m0 ≤ φ(û).

Therefore û ∈ intC+ is a second positive solution of (1) (see (23)) and u0 ̸= û. □
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