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1 Introduction

1.1 Functional Analysis Preliminaries

Let Ω be a bounded, connected, open subset of RN whose boundary Γ is Lipschitz con-
tinuous, the set Ω being locally on a single side of Γ . Let n denote the outer unit normal
to Γ . The boundary Γ is composed of two disjoints subsets Γ0 and Γ1, the dΓ -measure of
Γ0 being positive.

Consider the function space

H(div;Ω) := {
y ∈ (

L2(Ω)
)N ∣∣ div y ∈ L2(Ω)

}
. (1)

Then H(div;Ω) is a Hilbert space when endowed with the norm

‖y‖H(div;Ω) := (|y|2
L2 + |div y|2

L2

)1/2
.

As argued in Lions & Magenes [28] for smooth bodies and in Girault & Raviart [24]
for Lipschitz continuous domains (see also Ciarlet, Geymonat & Krasucki [20, 21]), for all
y ∈ H(div;Ω) we can define its “outer normal component” 〈y,n〉Γ along Γ as an element
of H−1/2(Γ ) such that the following Green formula holds:

∫

Ω

grad θ · ydΩ +
∫

Ω

θ div ydΩ = 〈θ,yn〉Γ , ∀(θ,y) ∈ H 1(Ω) × H(div;Ω). (2)

We have denoted by grad θ · y the scalar product in R
N between grad θ and y. The duality

pairing between H−1/2(Ω) and H 1/2(Ω) is denoted 〈·, ·〉Γ . The above definition makes
sense because 〈y,n〉Γ ∈ L2(Γ ) ⊂ H−1/2(Γ ). We refer to Allaire [1, Sect. 4.4.2] for related
properties of the function space H(div;Ω).

The definition of the function space H(div;Ω) in relation (1) and the statement of the
Green formula in (2) are appropriate for modelling the heat conduction phenomena with
N = 2 or 3. In elasticity, H(div;Ω) is generalized as

H(div;Ω) := {
y ∈ (

L2(Ω)
)d; div y ∈ (

L2(Ω)
)N}

, (3)

where d = N(N + 1)/2. Accordingly, the Green formula reads
∫

Ω

y : ∇udΩ +
∫

Ω

u · (div y) dΩ = 〈y n, u〉Γ

for all (u,y) ∈ (
H 1(Ω)

)N × H(div;Ω), (4)

where y : ∇u denotes the double contracted product of the stress tensor y and the displace-
ment gradient tensor ∇u. We refer to Amrouche, Ciarlet, Gratie & Kesavan [3, 4] for more
details and related properties.

1.2 Dirichlet-Neumann Problem

Let Φ :RN →R be a convex and differentiable potential and let Φ∗ be its Legendre-Fenchel
transform [31], namely

Φ∗(y) = sup
x∈RN

{
x · y − Φ(y)

}
.

Author's personal copy



New Variational Principles for Solving Extended Dirichlet-Neumann. . . 3

Remark 1 In the Green formula (4) the tensor y is symmetric and the double contracted
product y : ∇u can be replaced by y : ∇su, where ∇su is the symmetric part of ∇u.

Consider the following Dirichlet-Neumann problems.

1. Heat conduction case. Assume that there are given three functions: Q ∈ L2(Ω), q ∈
L2(Γ1), and θ0 ∈ L2(Γ0). Find (y, θ) ∈ H(div;Ω) × H 1(Ω) satisfying the partial differ-
ential equation

div y + Q = 0 in Ω (5)

subjected to the boundary conditions

y · n = q on Γ1 (6a)

tr θ = θ0 on Γ0 (6b)

and the constitutive law

y = DΦ(grad θ), (7)

where tr denotes the trace operator in L2(Γ0).
2. Elasticity case. Assume that there are given three functions: f ∈ L2(Ω), F ∈ L2(Γ1),

and u0 ∈ L2(Γ0). Find (y,x) ∈ H(div;Ω) × H 1(Ω) satisfying the partial differential
equation

div y + f = 0 in Ω (8)

subjected to the boundary conditions

y · n = F on Γ1 (9a)

u = u0 on Γ0 (9b)

and the constitutive law

y = DΦ (x). (10)

1.3 Examples of Linear Fourier’s Heat Conduction Law

1.3.1 Isotropic Case

In the particular case where N = 3 and θ is the temperature, the potential is

Φ(grad θ) = 1

2
λ|grad θ |2, (11)

where λ > 0 is the Fourier heat condition coefficient. The vector y = λgrad θ is the opposite
of the heat flux density vector, the normal component 〈y,n〉 = n · (λgrad θ) of y is given
(=q) on a part Γ1 of the boundary, and θ is given (= θ0) on the complementary part Γ0. The
heat equation with source term Q reads

div(λgrad θ) + Q = 0 in Ω.

Author's personal copy



4 C. Vallée et al.

1.3.2 Anisotropic Case

In the anisotropic linear case, the potential equation (11) is replaced by

Φ(grad θ) = 1

2
(S grad θ) · grad θ,

where S stands for the heat conduction tensor, which is either homogeneous or non-
homogeneous, but it is symmetric and positive definite. In both isotropic and anisotropic
cases, the vector y is linked to the gradient of the temperature by a constitutive law of the
type Eq. (7).

1.4 Primal Method

A primal method to find θ consists in minimizing the energy functional

G(θ) =
∫

Ω

Φ(grad θ) dΩ −
∫

Ω

Qθ dΩ −
∫

Γ1

qθ dΓ

in the class of θ satisfying the condition (6b).
The stationarity conditions of the functional G are equivalent to (5), (6a) and (7).

1.5 Dual Method

A dual method consists in finding directly y by minimizing the functional

H(y) =
∫

Ω

Φ∗(y) dΩ −
∫

Γ0

θ0〈y,n〉dΓ

for all y satisfying (5) and (6a).
The stationarity conditions of the functional H assert the existence of a scalar field θ

satisfying both equation

grad θ = DΦ∗(y) (12)

and relation (6b).
Hence θ is viewed as the solution of the primal problem. As one determines numerically

y, the field grad θ follows from Eq. (12). Next, since θ is given on Γ0, then θ is determined.

1.6 Primal-Dual Method

We associate to the problem governed by Eq. (7) the natural optimization problem: minimize
the energy functional

F(θ,y) =
∫

Ω

[
Φ(grad θ) + Φ∗(y)

]
dΩ −

∫

Γ0

θ0 〈y,n〉dΓ −
∫

Γ1

qθ dΓ −
∫

Ω

Qθ dΩ (13)

with respect to all θ satisfying (6b) and all y satisfying (5) and (6a).

Theorem 1 Let Φ be strictly convex and differentiable. Then the minimization of the glob-
ally convex functional F defined in (13) solves the initial Dirichlet-Neumann problem.

Author's personal copy
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Proof Expression (13) shows clearly that F is globally convex. Next, we show that F is
non-negative. For this purpose we combine the Fenchel inequality

Φ (grad θ) + Φ∗(y) ≥ y · grad θ,

the tensorial calculus formula

y · grad θ = div(θy) − θ div y

and the Green formula (2). It follows that

F(θ,y) ≥
∫

Γ1

θ
(〈y,n〉 − q

)
dΓ +

∫

Γ0

(θ − θ0)〈y,n〉dΓ −
∫

Ω

θ(div y + Q)dΩ = 0.

In the above formula the equality holds solely if the Fenchel inequality reduces to the equal-
ity

Φ(grad θ) + Φ∗(y) = y · grad θ,

hence if the constitutive law is fulfilled as Eq. (7) or equivalently Eq. (12). �

Remark 2 Numerically it is appropriate to perform this minimization by an Uzawa type
algorithm alternating successive refinements of the fields θ and y.

1.7 Maximal Cyclically Monotone Constitutive Laws

When the potential Φ is not differentiable, but only convex and semi-continuous, the three
variational methods (primal, dual, and primal-dual) subsist with the same energy functional
(see Moreau [30]). For many materials the constitutive law (see Sect. 2.1.1) is multivalued,
that is,

y ∈ A(grad θ) (14)

where A is a set-valued function. When A is maximal cyclically monotone (see Sect. 2.2),
there exists a proper convex and lower semi-continuous function Φ such that Eq. (14) be-
comes

y ∈ ∂Φ (grad θ). (15)

In the above subdifferential inclusion, ∂Φ stands for the subdifferential of the function Φ .
The constitutive law (15) can be easily inverted as

grad θ ∈ ∂Φ∗(y). (16)

Theorem 2 Let Φ be strictly convex and differentiable. Then the minimization of the glob-
ally convex functional F defined by (13) solves the initial Dirichlet-Neumann problem.

Proof The extension of the proof of Theorem 1 is based on the equivalence between the
subdifferential inclusions (15) and (16) with the Fenchel scalar condition

Φ(grad θ) + Φ∗(y) = y · grad θ, (17)

as observed by Moreau [31]. �

Author's personal copy
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In Deformable Solid Mechanics such kind of laws apply to Generalized Standard Mate-
rials (GSM) (see Sect. 2.1.3). This concludes the formulation of the primal, dual and primal-
dual methods for solving the Dirichlet-Neumann problem. We refer to the reference books
by Ciarlet [18, 19], which develop several related results, including the primal-dual principle
(Hellinger-Reissner energy) for the elasticity problem.

It may happen that the graph of the operator A relying the flux vector y with the gradient
vector x = grad θ is only k-monotone up to a finite integer n, k does not run up to infinity as
for cyclically monotone operators (see Sect. 2.1).

In the next section we will ask us if there is a variational principles to solve primal, dual
or primal-dual Dirichlet-Neumann problem.

2 n-Monotone Constitutive Laws

The constitutive laws of Standard Materials are described by differentiable potentials. Cycli-
cally monotone set-valued constitutive laws characterize Generalized Standard Materials
(GSM) and are modeled by convex lower semi-continuous potentials. However, this exten-
sion fails to describe some important models, including the Coulomb dry friction law. In
1991, considering an implicit constitutive law, de Saxcé & Feng [37] proposed a new exten-
sion. This new class, called Implicit Standard Material (ISM), is modeled by a bipotential.
In the particular case corresponding to a Generalized Standard Material, the bipotential re-
duces to the sum of the potential and its Legendre-Fenchel conjugate. Independently, in
order to simplify the study of monotone operators, Fitzpatrick [22] proposed to replace the
n-monotone operators by point-to-point functions, nowadays called Fitzpatrick’s functions.
It appears that Fitzpatrick’s functions are special bipotentials [39].

In this section we develop the main mathematical tools necessary for the qualitative anal-
ysis of GSM and ISM, in relationship with the theory developed by Fitzpatrick.

2.1 Generalized and Implicit Standard Materials

2.1.1 Constitutive Laws

Let X be a real Banach space and let X∗ be its dual space. We denote by 〈·, ·〉 the duality
pairing between X∗ and X.

A constitutive law relating an extensive variable x ∈ X and an intensive variable y ∈ X∗
can be regarded as a subset of X × X∗. This subset is seen as the graph G(T ) of a multi-
valued operator T : X → 2X∗

, where

G(T ) := {
(x, y) ∈ X × X∗; y ∈ T x

}
.

Example 1 For heat conduction x is grad θ , while for elasticity x is ∇su.

2.1.2 Standard Materials

The constitutive law is of the type

y = DΦ(x) (18)

where the potential Φ is differentiable and convex (see Eq. (7)). The inverse constitutive law
reads (see Eq. (12))

x = DΦ∗(y). (19)

Author's personal copy
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A material whose behaviour is governed by such a constitutive law is referred to as a Stan-
dard Material.

2.1.3 Generalized Standard Materials

Equations (18) and (19) describe single-valued relations between variables x and y. How-
ever, for many materials, such relations reveal to be multi-valued.

The constitutive law defined by the formula Eq. (15) is generalized in

y ∈ ∂Φ(x) (20)

where the potential is convex and l.s.c. The inverse constitutive law reads

x ∈ ∂Φ∗(y). (21)

As in Eq. (17) the constitutive law can be summarized by a scalar relation

Φ(x) + Φ∗(y) = 〈x, y〉. (22)

2.1.4 Implicit Standard Materials

Equation (22) can be seen as an extremal case of Fenchel’s inequality

Φ(x) + Φ∗(y) ≥ 〈x, y〉, (23)

which holds for all x ∈ X and y ∈ X∗.
In relationship with applications to the dry friction phenomenon, G. de Saxcé observed

that Eq. (23) can be weakened to

b(x, y) ≥ 〈x, y〉,
where the function b(x, y) called bipotential is assumed to be

(i) convex and l.s.c. in x;
(ii) convex and l.s.c. in y;

(iii) bounded from below by the duality product, i.e., b(x, y) ≥ 〈x, y〉.
In the particular case of Generalized Standard Materials the bipotential reduces to the sum
of the potential and its conjugate.

A material is referred as to an Implicit Standard Material if it is described by one of the
following equivalent implicit constitutive laws:

(i) y belongs to the subdifferential of b(ξ, y) with respect to ξ at x,
(ii) x belongs to the subdifferential of b(x, η) with respect to η at y,

(iii) b(x, y) = 〈x, y〉.
We refer to Buliga, de Saxcé & Vallée [14–16] for more details about Implicit Standard

Materials. We just point out that this model is relevant to describe various phenomena, such
as generalized Drücker-Prager plasticity [36], unilateral contact with Coulomb dry friction
[37], modified Cam-Clay model [25, 36], non-associated plasticity of soils [10], nonlinear
kinematical hardening rule for cyclic plasticity of metals [27], Lemaître’s plastic-ductile
damage law [26], and shakedown of non-standard elasto-plastic materials [11].

Author's personal copy



8 C. Vallée et al.

2.2 Monotone Maximal Operators

2.2.1 Monotonicity

Let T : X → 2X∗
be a multi-valued operator. Then T is monotone if

〈x2 − x1, y2 − y1〉 ≥ 0 for all x1, x2 ∈ X, y1 ∈ T x1, y2 ∈ T x2.

Example 2 Assume that T is single-valued, linear and positive. Then T is monotone.

Example 3 Let Φ : X → R be convex and lower semi-continuous. Then T := ∂Φ is mono-
tone. We point out that a monotone multifunction is not necessarily the subdifferential of a
convex lower semi-continuous potential. We refer to Moreau [31] and Rockafellar [34] for
details and related properties.

2.2.2 Maximality

Assume that T : X → 2X∗
is a monotone operator. Then T is said to be maximal monotone

if there is no monotone proper enlargement of T . In other words the maximal monotone
operators are monotone multi-valued operators whose graphs cannot be enlarged without
destroying monotonicity. In other to prove that T is maximal monotone one must establish
that

(x, y) /∈ G(T ) =⇒ ∃ (x1, y1) ∈ G(T ) such that 〈x − x1, y − y1〉 < 0.

In [33, 38] it has been established that the maximality assumption is equivalent to one of the
following statements:
[
(x, y) ∈ X × X∗ and 〈x − x1, y − y1〉 ≥ 0, ∀ (x1, y1) ∈ G(T )

] =⇒ (x, y) ∈ G(T );
[
(x, y) ∈ X × X∗ and inf

y1∈T x1
〈x − x1, y − y1〉 ≥ 0

]
=⇒ (x, y) ∈ G(T ).

Example 4 If X is a real Hilbert space then any linear positive single-valued operator T :
X → X is maximal monotone.

Example 5 (Rockafellar [34, 35]) If Φ : X → R∪ {+∞} is a proper lower semi-continuous
convex function, then T = ∂Φ is a maximal monotone operator.

2.2.3 Properties

We conclude with the following useful properties for testing the maximality of monotone
operators:

(i) (x, y) ∈ G(T ) =⇒ inf
y1∈T x1

〈x − x1, y − y1〉 = 0;

(ii) (x, y) /∈ G(T ) =⇒ inf
y1∈T x1

〈x − x1, y − y1〉 < 0;

(iii) ∀x ∈ X,∀y ∈ X∗, inf
y1∈T x1

〈x − x1, y − y1〉 ≤ 0.

For detailed proofs and related properties we refer to Phelps & Simons [33] and Simons
[38].

Author's personal copy
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2.3 Finite Monotonicity

2.3.1 n-Cyclically Monotonicity

For an integer n ≥ 2, a multifunction T : X → 2X∗
is n-cyclically monotone [7], provided

that

(xi, yi) are n pairs of G(T )

(xn+1, yn+1) = (x1, y1)

}
=⇒

n∑

i=1

〈xi+1 − xi, yi〉 ≤ 0.

This definition shows that 2-cyclically monotonicity simplifies to ordinary monotonicity.
We also observe that (n + 1)-cyclically monotonicity implies n-cyclically monotonicity.

2.3.2 Examples

The first example expresses the finite monotonicity of positive semi-definite symmetric lin-
ear mappings [39].

Example 6 Let X be a real Hilbert space and let S : X → X be a linear symmetric single-
valued operator. Assume that S is positive definite. Then the single-valued operator T de-
fined by T x = {Sx} is n-cyclically monotone for all n ≥ 2.

We have seen in Example 5 that the subdifferential of a convex lower semi-continuous
function is maximal monotone. The following example establishes an important converse of
this property (see Rockafellar [34]).

Example 7 Let Φ : X → R ∪ {+∞} be a proper lower semi-continuous convex function.
Then T = ∂Φ is a maximal monotone operator. Conversely, assume that T : X → 2X∗

is
a multi-valued operator. In order that there exists a lower semi-continuous proper convex
function Φ on X such that T = ∂Φ , it is necessary and sufficient that T be a maximal
cyclically monotone operator. Moreover, in this case T determines Φ uniquely up to an
additive constant. We refer to Sect. 2.4.5 for a related result in relationship with the recovery
of the Generalized Standard Material.

We conclude with the following condition for the n-cyclically monotonicity of a 2 × 2
matrix.

Example 8 Let A be a 2 × 2 matrix with a positive definite symmetric part S and a skew-
symmetric part

W =
[

0 −r

r 0

]
= r

[
0 −1
1 0

]
= rJ,

where r ∈R \ {0}. Define α ∈ (0,π/2) such that

|r| = √
detS tanα.

Then the operator T defined by T x = {Ax} is strictly n-cyclically monotone if and only if
nα < π [39, 40].

Author's personal copy
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2.4 Fitzpatrick Sequences

2.4.1 Definition of the Fitzpatrick Function

Let T be a maximal monotone multifunction. Then its associated Fitzpatrick function is
defined in [22] by

FT,2(x, y) = 〈x, y〉 − inf
y1∈T x1

〈x − x1, y − y1〉.
According to Sect. 2.2.3 we have

FT,2(x, y) = 〈x, y〉 if (x, y) ∈ G(T )

FT,2(x, y) > 〈x, y〉 if (x, y) /∈ G(T ).

We also observe that FT,2 is globally lower semi-continuous and convex. Indeed,

FT,2(x, y) = sup
(x1,y1)∈G(T )

[〈x, y1〉 + 〈x1, y〉 − 〈x1, y1〉
]

is the supremum of a family of continuous affine real-valued functions, hence FT,2 is convex
and lower semi-continuous on X × X∗.

2.4.2 Definition of the Fitzpatrick Sequence

For n ≥ 2 and (x, y) ∈ X × X∗, let (xi, yi) be n − 1 pairs of the graph G(T ) indexed from
i = 1 to i = n − 1, insert (xn, yn) = (x, y), and close the loop by (xn+1, yn+1) = (x1, y1).
Then the Fitzpatrick sequence is defined (see Bartz, Bauschke, Borwein, Reich & Wang [7])
by

FT,n(x, y) = 〈x, y〉 + sup
yi∈T xi

n∑

i=1

〈xi+1 − xi, yi〉.

For n = 2 we recover the case section 2.4.1 originally proposed by Fitzpatrick [22] to
study monotone operators.

2.4.3 Basic Properties

The main properties of Fitzpatrick’s sequence are the following:

(i) FT,n is globally convex and lower semi-continuous. Indeed, from the definition, as ob-
served for FT,2, the function FT,n is the upper hull of a family of continuous and affine
real-valued functions. Thus, FT,n is convex and lower semi-continuous on X × X∗.

(ii) Every function of Fitzpatrick’s sequence is bounded from below by the duality product,
namely

FT,n(x, y) ≥ 〈x, y〉,
with equality if and only if (x, y) ∈ G(T ). This result was essentially unnoticed for
several years, until it was rediscovered by Martinez-Legal & Théra [29] and, indepen-
dently, by Burachik & Svaiter [17].

(iii) Fitzpatrick’s sequence is increasing [7]: for all x ∈ X, y ∈ X∗, and n ≥ 2,

FT,n(x, y) ≤ FT,n+1(x, y).

Author's personal copy
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(iv) Recursion formula [9]: if T : X → 2X∗
is (n + 1)-cyclically monotone (n ≥ 2), then

FT,n+1(x, y) = sup
η∈T ξ

[
FT,n(ξ, y) + 〈x − ξ, η〉].

(v) If T : X → 2X∗
is n-cyclically maximal monotone, then [7]

G(T ) = {
(x, y) ∈ X × X∗; FT,n(x, y) = 〈x, y〉}.

FT,n(x, y) > 〈x, y〉 for all (x, y) /∈ G(T ).

(vi) Each function of the Fitzpatrick’s sequence is a bipotential that represents the constitu-
tive law associated with the multi-valued operator T .

We refer to Bauschke, Borwein & Wang [8] for properties of monotone operators in
relationship with Fitzpatrick’s sequence.

2.4.4 Examples

Example 9 (Bartz, Bauschke, Borwein, Reich & Wang [7]) Assume that the potential Φ is
the indicator function iK of a convex set K . Then the Fitzpatrick sequence of T := ∂Φ is
given by

FT,n(x, y) = iK(x) + i∗
K(y) for all n ≥ 2.

By duality, the same property holds for Φ = i∗
K .

Example 10 Let X be a real Hilbert space and let S : X → X be a linear symmetric single-
valued operator. We have seen in Example 6 that if S is positive definite, then the (single-
valued) operator T defined by T x = {Sx} is n-cyclically monotone for all n ≥ 2. The asso-
ciated Fitzpatrick sequence is [7, 39, 40]

FT,n(x, y) = 〈x, y〉 + n − 1

2n

〈
y − Sx,S−1(y − Sx)

〉
.

This sequence admits as pointwise limit

FT,∞(x, y) = 1

2
〈x,Sx〉 + 1

2

〈
y,S−1y

〉
.

Example 11 Let X be a real Hilbert space and let A : X → X be a linear but not necessarily
symmetric operator. Let T be the operator defined by T x = {Ax}. Let S be the symmetric
part of A. Then the Fitzpatrick sequence associated with T is given by

FT,k(x, y) = 〈x, y〉 + 1

4

〈
y − Sx,H−1

k (y − Sx)
〉
,

where the matrix Hk is constructed from the matrix H2 = S by the recursion formula [39]

Hk = S − 1

4
AtH−1

k−1A for 3 ≤ k ≤ n.

Author's personal copy



12 C. Vallée et al.

Example 12 Returning to Example 8 and assuming that nα < π , the associated Fitzpatrick
sequence is, for all 2 ≤ k ≤ n [39, 40],

FT,k(x, y) = 〈x, y〉 + 1

2

sin(k − 1)α

sinkα
cosα

〈
y − Ax,S−1(y − Ax)

〉
.

We observe that if α tends to 0, then A tends to S and sin(k−1)α

sinkα
cosα tends to (k − 1)/k.

Thus, the Fitzpatrick sequence becomes

FS,k(x, y) = 〈y, x〉 + 1

2

k − 1

k

〈
(y − Ax),S−1(y − Ax)

〉
,

which, as k tends to infinity, tends to

FS,∞(x, y) = 〈y, x〉 + 1

2

〈
(y − Ax),S−1(y − Ax)

〉
.

This is the sum of the functionals

Φ(x) = 1

2

〈
x,S(x)

〉

and

Φ∗(y) = 1

2
y · S−1y,

as in Example 10.

2.4.5 Recovery of the Potential of GSM

As stated in Bartz, Bauschke, Borwein, Reich & Wang [7], every n-cyclically monotonicity
is captured by the Fitzpatrick function FT,n(x, y). When the constitutive law of a General-
ized Standard Material is described by a convex, lower semi-continuous and proper potential
Φ , then (by Remark 7) the multi-valued operator T = ∂Φ is maximal monotone and cycli-
cally monotone, hence maximal cyclically monotone. The Fitzpatrick sequence {FT,n(x, y)}
admits a pointwise limit FT,∞(x, y) = supn≥2 FT,n(x, y), which is nothing else than the sum
Φ(x) + Φ∗(y) of the potential and its conjugate. In such a way we recover the Generalized
Standard Materials specific separated potentials.

Conversely, if a multi-valued operator T is maximal cyclically monotone, Rockafellar
[34, 35] and Moreau [31] established independently constructive theorems to prove the ex-
istence of a proper, convex, and lower semi-continuous potential Φ such that T = ∂Φ . In
fact, the method for retrieving Φ(x) consists in fixing y in FT,∞(x, y). By duality, Φ∗(y)

is recovered by fixing x. Actually, the construction of the Fitzpatrick sequence is a clever
rewriting of the Moreau-Rockafellar theorem.

3 Extended Dirichlet-Neumann Problem

Let Ω be a bounded, connected, open subset of RN whose boundary Γ is Lipschitz contin-
uous, the set Ω being locally on a single side of Γ . Let n denote the outer unit normal to
Γ . The boundary Γ is composed of two disjoints subsets Γ0 and Γ1, the dΓ -measure of Γ0

being positive.

Author's personal copy



New Variational Principles for Solving Extended Dirichlet-Neumann. . . 13

Assume that there are given three functions: Q ∈ L2(Ω), q ∈ L2(Γ1), and θ0 ∈ L2(Γ0).
Consider the following extended Dirichlet-Neumann problem: find (y, θ) ∈ H(div;Ω)×

H 1(Ω) such that
⎧
⎨

⎩

(i) div y + Q = 0 in Ω,

(ii) grad θ = x in Ω,

(iii) y ∈ T x,

(24)

where T is a maximal strictly n-monotone multifunction relating the vectors x(ω) and y(ω)

for each point ω ∈ Ω . Mixed boundary conditions of Dirichlet-Neumann type are imposed
as follows:

{
(iv) 〈y,n〉 = q on Γ1,

(v) tr θ = θ0 on Γ0.
(25)

A basic result of this paper is the following property.

Theorem 3 (Extended Variational Principle) Among all functions θ and vector fields y sat-
isfying the above conditions (i), (ii), (iv), and (v), the minimum of the energy functional

J (θ,y) =
∫

Ω

FT,n(grad θ,y) dΩ −
∫

Γ0

θ0 〈y,n〉dΓ −
∫

Γ1

qθ dΓ −
∫

Ω

Qθ dΩ

is attained when the constitutive law (iii) is additionally satisfied.

Proof Indeed, the Fitzpatrick function being globally convex, the integral functional J is
convex. Next, since

FT,n(x,y) ≥ 〈x,y〉 = 〈grad θ,y〉 = div (θy) − θ div y,

then the Green formula (2) yields

J (θ,y) ≥
∫

Ω

div (θ y) dΩ −
∫

Ω

θ(div y + Q)dΩ −
∫

Γ0

θ0 〈y,n〉dΓ −
∫

Γ1

qθ dΓ

=
∫

Γ0

(θ − θ0) 〈y,n〉dΓ +
∫

Γ1

(〈y,n〉 − q
)
θ dΓ −

∫

Ω

θ (div y + Q)dΩ.

Thus, the functional J is non negative over the convex part defined by the conditions (i),
(ii), (iv), and (v). The Fitzpatrick function FT,n(x,y) reduces to the inner product 〈x,y〉 if
and only if x and y satisfy the constitutive law (iii), the minimum zero is attained for (θ,y)

being solution of the above extended Dirichlet-Neumann problem. �

Remark 3 The ordinary Dirichlet-Neumann problem (7) concerns GSM for which the Fitz-
patrick function FT,n(x,y) can be replaced by Φ(grad θ) + Φ∗(y). The functional J (θ,y)

reduced to the function F(θ,y) defined in (13) and Theorem 1.
We point out that Theorem 3 generalizes the primal-dual two-field variational principle

established by Moreau [30, 31] for Generalized Standard Materials.

3.1 Numerical Implementation

The extended Dirichlet-Neumann problem can be solved in the framework of Finite Element
Method by implementing an Uzawa-type algorithm. The consideration of Uzawa algorithms
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14 C. Vallée et al.

on infinite-dimensional Hilbert spaces is that they give the right strategy for discretizing the
considered partial differential equation. We refer to Arrow, Hurwicz & Uzawa [5], Bacuta
[6], Brezzi & Fortin [13], Ciarlet [18], Fortin & Glowinski [23] for advances in the numerical
implementation of Uzawa algorithms in partial differential equations.

3.2 Application to Heat Conduction

Assume that problem (24) modells the heat conduction phenomenon for N = 2. The func-
tion θ is the temperature, the vector field x is the temperature gradient, the vector field y
is the opposite heat flow, the function Q is the heat source applied to the domain Ω , the
function q is the heat flux applied over the part Γ1 of the boundary, and the function θ0 is
the assigned temperature on the complementary part Γ0. The heat conduction constitutive
law enacted between x and y is linear but not symmetric. However, this law is assumed to
be strictly n-cyclically monotone. The nth Fitzpatrick function is as in Example 12. The
integral functional is as in Theorem 3. The numerical approximation of the temperature
distribution will be obtained by developing an Uzawa-type algorithm.

If α �= 0, then the Fitzpatrick sequence FA,k(x,y) stops at k = n and FA,n(x,y) is not
the sum of a function of x and a function of y. There is neither primal variational principle
to find only θ nor dual variational principle to find y. However, there are mixed variational
principles to find simultaneously grad θ and y. Such a case consists in minimizing the func-
tional

∫

Ω

FA,k(grad θ,y) dΩ −
∫

Ω

Qθ dΩ −
∫

Γ0

θ0 〈y,n〉dΓ −
∫

Γ1

qθ dΓ.

4 Extended Two Fields Primal-Dual Variational Principles in Elasticity

Let Ω be a bounded, connected, open subset of R2 (or R3) whose boundary Γ is Lipschitz
continuous, the set Ω being locally on a single side of Γ . The boundary Γ is composed of
two disjoints subsets Γ0 and Γ1, the dΓ -measure of Γ0 being positive. The outer unit normal
to Γ is denoted n. The inner product in the space R

2 (or R3) is denoted by a dot between
the two vectors.

Assume there are given the three functions: f ∈ (L2(Ω))N , F ∈ (L2(Γ1))
N , and u0 ∈

(L2(Γ0))
N (N ∈ {2,3}).

Consider the following extended Dirichlet-Neumann problem arising in elasticity: find
(u,y) ∈ (H 1(Ω))N × H(div;Ω) such that

⎧
⎨

⎩

(i) div y + f = 0 in Ω,

(ii) 1
2 [∇u + (∇u)t ] = x in Ω,

(iii) y ∈ T x,

(26)

where T is a maximal strictly n-monotone multifunction relating the symmetric tensor fields
x(ω) and y(ω) for each point ω ∈ Ω . Mixed boundary conditions of Dirichlet-Neumann type
are imposed as follows:

{
(iv) y · n = F on Γ1,

(v) u = u0 on Γ0.
(27)
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4.1 Extended Variational Principle

Theorem 4 Among all functions u and vector fields y satisfying the conditions (i), (ii), (iv),
and (v) of problem (26)–(27), the minimum of the energy functional

J (u,y) =
∫

Ω

FT,n

(
1

2

[∇u + (∇u)t
]
,y

)
dΩ −

∫

Γ0

〈yu0,n〉dΓ

−
∫

Γ1

F · udΓ −
∫

Ω

f · udΩ

is attained when additionally the constitutive law (iii) is satisfied.

Proof Let us recall the tensorial formula

tr (xy) = tr

(
1

2

[∇u + (∇u)t
]
y
)

= y : ∇u.

Therefore

J (u,y) ≥
∫

Ω

y : ∇udΩ −
∫

Γ0

yn · udΓ −
∫

Γ1

F · udΓ −
∫

Ω

f · udΩ.

Thus, combining the Green formula (4) with the fact that the Fitzpatrick function
FT,n(x,y) is bounded from below by the inner product, we obtain

J (u,y) ≥ −
∫

Ω

(div y + f ) · udΩ + 〈yn, u〉Γ −
∫

Γ0

yu0 · ndΓ −
∫

Γ1

F · udΓ

Remark that (see [2])

〈yn, u〉Γ = 〈yn, u〉Γ0 + 〈yn, u〉Γ1

=
∫

Γ1

yn · udΓ +
∫

Γ0

yn · udΓ.

Hence

J (u,y) ≥
∫

Γ0

〈
y(u − u0),n

〉
dΓ +

∫

Γ1

〈u,yn − F 〉dΓ −
∫

Ω

〈u,div y + f 〉dΩ.

Therefore, the functional J is non negative over the convex set defined by the conditions
(i), (iv) and (v) of the problem (26)–(27). Since the Fitzpatrick function FT,n(x,y) reduces to
the inner-product tr (xy) if and only if x and y satisfy the constitutive law (iii), we conclude
that the minimum zero is attained for (u,y) being solution of (26)–(27). �

4.2 Special Case of Generalized Standard Materials

The extended variational principle stated in Theorem 4 generalizes the primal-dual two-field
variational principle introduced by Moreau [30] for Generalized Standard Materials. In this
case, the Fitzpatrick function FT,n(x,y) is replaced by the sum Φ(x)+Φ∗(y) of the potential
and its conjugate, see Moreau [30, 31].
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4.3 Numerical Implementation

The extended elasticity problem can be solved in the framework of Finite Element Method
by implementing an Uzawa-type algorithm.

4.4 Application to Elasticity

The vector field u is the displacement vector, problem (26) is the equilibrium equation, the
tensor field x is the strain tensor, the tensor field y is the stress tensor, the vector field f

is the specific force applied to the domain Ω , and the vector field F is the force density
applied over the part Γ1 of the boundary. The vector field u0 is the assigned displacement
on the complementary part Γ0. The dimension is 3. The elastic constitutive law enacted
between x and y is linear but not symmetric. However it is assumed to be strictly n-cyclically
monotone. The nth Fitzpatrick function is as in Example 12. The integral functional is as
in Theorem 4. The numerical approximation of the displacement vector will be obtained by
developing an Uzawa-type algorithm.

5 Conclusion and Perspectives

The class of n-monotone materials for which the constitutive law is described by an n-
cyclically monotone operator is larger than the class of Generalized Standard Materials. The
integer n can be regarded as a characteristic of these materials. The equilibrium equation
of such n-monotone material is a partial differential equation that can be described by a
primal-dual two-fields variational principle, cf. Visintin [41]. The functional of this princi-
ple is an integral of the two fields. The integrand involved the nth Fitzpatrick function. In
the present paper we deal with a new kind of calculus of variations allowing to solve the
thermal or the mechanical problems by Uzawa-type algorithms as easily as for Generalized
Standard Materials. However, in mechanical and civil engineering, the constitutive laws of
most materials (ductile metals, metal matrix composites, wet clays, plastic soils, granular
materials, etc.) are not monotone.

The class of Implicit Standard Materials is larger than the class of n-monotone materials.
Every Fitzpatrick’s function is globally convex and lower semi-continuous, but the modeling
of Implicit Standard Materials only requires bipotentials that are partially convex and lower
semi-continuous. It would be interesting to generalize the concept of Fitzpatrick’s sequence
to the case of non-monotone operators.

We hope that this kind of extension of Fitzpatrick sequences will reveal very helpful to
produce relevant bipotentials for representing the non-associated constitutive laws of the
Implicit Standard Materials evoked in de Saxcé & Bousshine [36]: unilateral contact with
Coulomb’s dry friction [37], generalized Drücker-Prager plasticity [36], modified Cam-Clay
model [25, 36], non-associated plasticity of soils [10], nonlinear kinematical hardering rules
for cyclic plasticity of metals [30], Lemaître’s plastic-ductile damage law [26], and shake-
down analysis on non-standard elasto-plastic materials [11].

The use of Fitzpatrick sequences allows us to extend the application of energy methods
to the resolution of the Dirichlet-Neumann problem

div(Agrad θ) + Q = 0

in the case where the single valued operator A is not cyclically monotone but only n-
cyclically monotone for n finite.
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Finally, we point out that an extended primal-dual variational principle based on Fitz-
patrick sequences can be developed to study the Cauchy problem

⎧
⎨

⎩
y ∈ ∂x

∂t
+ T x in H−1(Ω), a.e. in (0, T )

x(0) = x0,

(28)

for any fixed y ∈ L2(0, T ;H−1(Ω)) and x0 ∈ L2(Ω).
As proved in Visintin [41] (extended Brezis-Ekeland-Nayroles principle, see Brezis &

Ekeland [12] and Nayroles [32]), problem (28) is equivalent to the null-minimization prob-
lem of the convex and lower semi-continuous functional

J : {v ∈ L2
(
0, T ;H 1(Ω)

) ∩ H 1
(
0, T ;H−1(Ω)

); v(0) = x0

} → R∪ {+∞}
defined by

J (v) :=
∫ T

0

[
FT,2(v,y − Dtv) − 〈y,v〉]dt + 1

2

∣∣v(T )
∣∣2

L2(Ω)
− 1

2
|x0|2L2(Ω)

.
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