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We discuss the existence and uniqueness of the weak solution of the following nonlinear
parabolic problem:

(PT )

8>>><
>>>:

ut −∇ · a(x,∇u) = f(x, u) in QT
def
= (0, T ) × Ω,

u = 0 on ΣT
def
= (0, T ) × ∂Ω,

u(0, x) = u0(x) in Ω,

which involves a quasilinear elliptic operator of Leray–Lions type with variable expo-
nents. Next, we discuss the global behavior of solutions and in particular the convergence
to a stationary solution as t → ∞.
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1. Introduction and Main Results

Let Ω ⊂ Rd (d ≥ 2) be a bounded domain with smooth boundary (at least C2). Our
main goal in this paper is to study the existence, uniqueness and global behavior of
the weak solutions to the following problem involving a quasilinear elliptic operator
of Leray–Lions type with variable exponents:

(PT )




ut −∇ · a(x,∇u) = f(x, u) in QT := (0, T ) × Ω,

u = 0 on ΣT := (0, T ) × ∂Ω,

u(x, 0) = u0(x) in Ω.

We assume that f : Ω × R �→ R satisfies

(f1) 0 �≡ f : (x, s) → f(x, s) is a Carathéodory function and t �→ f(x, t) is locally
Lipschitz uniformly in x ∈ Ω;

and a(x, ξ) = (aj(x, ξ))j with aj(x, ξ) = φ(x, |ξ|)ξj , j = 1, . . . , d be defined for all
ξ ∈ Rd, such that φ is differentiable on Ω × (0,∞) and φ(x, s) > 0 for (x, s) ∈
Ω × (0,∞). We assume that a satisfies the following structural conditions:

(A1) aj(x,0) = 0, for all a.e. x ∈ Ω,
(A2) aj ∈ C1(Ω × (Rd\{0})) ∩ C0(Ω × Rd),

(A3)
∑d

i,j=1
∂aj(x,ξ)

∂ξi
ηiηj ≥ γ|ξ|p(x)−2 · |η|2, ∀x ∈ Ω, , ∀ ξ ∈ Rd\{0}, ∀ η ∈ Rd,

(A4)
∑d

i,j=1 |∂aj(x,ξ)
∂ξi

| ≤ Γ|ξ|p(x)−2, ∀x ∈ Ω, ξ ∈ Rd\{0},
where p : Ω �→ ]1, +∞[ is a Lebesgue measurable function satisfying 1 < p− :=
infΩ̄ p(x) ≤ p(x) ≤ p+ := supΩ̄ p(x) < ∞. More precisely, throughout the paper,
we assume that

p ∈ C(Ω) ∩ P log(Ω) such that 1 < p− ≤ p+ < d,

where

P log(Ω) def=
{

q ∈ P(Ω) :
1
q

globally log-Hölder continuous
}

.

In particular, for any p ∈ P log(Ω), there exists a function w such that for all
(x, y) ∈ Ω2

|p(x) − p(y)| ≤ w(|x − y|) and lim sup
t→0+

(−w(t) ln t) < +∞.

The natural function spaces to study problem (PT ) are the variable expo-
nent Lebesgue space Lp(x)(Ω) and the corresponding Sobolev space W 1,p(x)(Ω)
defined by

Lp(x)(Ω) =
{

u |u is measurable on Ω and
∫

Ω

|u|p(x)dx < ∞
}
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and

W 1,p(x)(Ω) def= {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}.
We recall that Lp(x)(Ω) and W 1,p(x)(Ω) are normed linear spaces equipped respec-
tively with the (Luxemburg) norms

‖u‖Lp(x)(Ω) = inf
{

λ > 0 :
∫

Ω

∣∣∣u
λ

∣∣∣p(x)

dx ≤ 1
}

and

‖u‖W 1,p(x) = ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω).

Under the above assumptions on p, we define W
def= W

1,p(x)
0 (Ω) the closure of

C∞
0 (Ω) in W 1,p(x)(Ω). Since Ω is a bounded domain, the Poincaré inequality holds

and a natural norm of W is ‖u‖W = ‖∇u‖Lp(x)(Ω.
Now, we define the even function Φ : Ω × R → R by Φ(x, t) =

∫ t

0 φ(x, |s|)s ds,

which is increasing on R+, and for a.e. x ∈ Ω, ξ → A(x, ξ) def= Φ(x, |ξ|).
Furthermore, from (A1), (A3) and (A4), A is strictly convex and satisfies for

any fixed x ∈ Ω

γ

p+ − 1
|ξ|p(x) ≤ A(x, ξ) ≤ Γ

p− − 1
|ξ|p(x) for all ξ ∈ R

d. (1.1)

These inequalities are a direct consequence of Taylor’s formula combined with (A3)
and (A4), which yield

γ

p+ − 1
|ξ|p(x) ≤ A(x, ξ) − A(x,0) − 〈∂ξA(x,0), ξ〉 ≤ Γ

p− − 1
|ξ|p(x)

for all (x, ξ) ∈ Ω×Rd. Similarly, using (A4), we deduce that there exists a positive
constant c1 such that

|a(x, ξ)| ≤ c1|ξ|p(x)−1, φ(x, |ξ|) ≤ c1|ξ|p(x)−2 for all x ∈ Ω and ξ ∈ R
d. (1.2)

We assume that

(A5) (0,∞) � t → Φ(x,
√

t) is convex for a.e. x ∈ Ω+ def= {z ∈ Ω; p(z) ≥ 2}.
From the above assumption together with Φ(x, 0) = 0 and Φ(x, ·) increasing,

we obtain a Clarkson-type inequality for the function Φ (see [26, Lemma 2.1] for
the proof). More precisely, we have

1
2

[∫
Ω+

Φ(x, |∇u|) dx +
∫

Ω+
Φ(x, |∇v|) dx

]

≥
∫

Ω+
Φ
(

x,
|∇(u + v)|

2

)
dx +

∫
Ω+

Φ
(

x,
|∇(u − v)|

2

)
dx (1.3)

for all u, v ∈ W.
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From the pointwise version of (1.3) (see [26, Lemma 2.1, p. 459]) and from (1.1),
we deduce that for x ∈ Ω+, A(x, ·) is p(x)-uniformly convex (see [12, 17, Definition
2.2]), that is,

for any ξ, η ∈ R
d, A

(
x,

ξ + η

2

)
≤ 1

2
(A(x, ξ) + A(x, η)) − c0|ξ − η|p(x) (1.4)

with c0 = γ

2p+ (p+−1)
.

Remark 1.1. From the Clarkson inequality (see [9, p. 96]), relation (1.4) is satisfied
by A(x, ξ) = |ξ|p(x) with p satisfying p(x) ≥ 2. In the case 1 < p(x) < 2, a similar
inequality (namely, the Morawetz inequality) can be derived (see [22, Lemma 4.1]).

Remark 1.2. (1) Prototype examples satisfying conditions (A1)–(A5) below are:
(a) φ(x, t) = φ1(x, t) def= tp(x)−2, (b) φ(x, t) = φ2(x, t) def= (1 + t2)

p(x)−2
2 .

(2) Assumption (A4) can be replaced by (A4′) for the validity of the results in
Sec. 1: there exists c > 0 such that |φ(x, s)s| ≤ c(1 + |s|p(x)−1) for all x ∈ Ω
and s ∈ R.

There is an abundant literature devoted to questions on existence and unique-
ness of solutions to (PT ) for φ(x, ξ) = |ξ|p(x)−2 and p(x) ≡ p (see for instance [6]
and references therein). More recently, parabolic and elliptic problems with variable
exponents have been studied quite extensively, see for example [1, 4, 2, 5, 11, 21,
27, 31]. The importance of investigating these problems lies in their occurrence in
modeling various physical problems involving strong anisotropic phenomena related
to electrorheological fluids (an important class of non-Newtonian fluids) [1, 30, 31],
image processing [11], elasticity [35], the processes of filtration in complex media [3],
stratigraphy problems [22] and also mathematical biology [19].

Regarding the existing literature on quasilinear parabolic equations with vari-
able exponent, we consider in the present paper a more general class of operators of
Leray–Lions type than the p(x)-Laplace operator and prove new local existence and
regularity results for (PT ) (see Theorems 1.2 and B.2). By constructing new barrier
functions, we also provide global existence results (see Theorems 1.3 and 1.4) for
the general class of quasilinear parabolic problems considered in the paper that are
not known in the literature.

A natural issue is to consider the asymptotic behavior of the obtained global
solutions. For this purpose, introducing a homogeneity condition, say (A7), we
prove new uniqueness results for the stationary equation associated to (PT ) (see
Theorem 1.5). The proof of the uniqueness results uses the extension of convexity
properties of the associated energy functional, in the spirit of works [10] and [13],
proved in [23]. Combining Theorems 1.5 and B.2, we are able to prove under suit-
able assumptions the asymptotic convergence to the stationary solution for global
solutions to (PT ) (see Theorem 1.6), extending significantly former results proved
in [21]. More precisely, regarding the main results established in [21], we first extend
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by using monotone methods the local existence results for the general class of oper-
ators satisfying (A1)–(A5) (see Theorems 1.2 and 1.1 below). Next, in respect
to [21], using new barrier functions and new uniqueness results for the stationary
equation (see Theorem 1.5 below), we improve essentially global existence results
and asymptotic convergence to a stationary solution (see below Theorems 1.3, 1.4
and 1.6, respectively). We point out that even if restricting to the p(x)-operator,
these results are new.

We now state the main results that we will prove in the next sections.
We first consider the following problem:

(LT )




ut −∇ · a(x,∇u) = h(x, t) in QT ,

u = 0 on ΣT ,

u(x, 0) = u0(x) in Ω,

where T > 0, h ∈ L2(QT ) ∩ Lq(QT ), q >
d

p−
.

Considering the initial data u0 ∈ W ∩ L∞(Ω), we study the weak solutions of
problem (LT ) defined as follows.

Definition 1.1. A weak solution to (LT ) is any function u ∈ L∞(0, T ; W) such
that ut ∈ L2(QT ) and satisfying for any ϕ ∈ C∞

0 (QT )∫ T

0

∫
Ω

utϕdxdt +
∫ T

0

∫
Ω

a(x,∇u) · ∇ϕdxdt =
∫ T

0

∫
Ω

h(x, t)ϕdxdt

and u(0, .) = u0 a.e. in Ω.

We define in a similar way the notion of weak solutions to the problem (PT ) as
follows.

Definition 1.2. A solution to (PT ) is a function u ∈ L∞(0, T ; W) such that ut ∈
L2(QT ), f(·, u) ∈ L∞(0, T, L2(Ω)) and for any ϕ ∈ C∞

0 (QT )∫ T

0

∫
Ω

utϕdxdt +
∫ T

0

∫
Ω

a(x,∇u) · ∇ϕdxdt =
∫ T

0

∫
Ω

f(x, u)ϕdxdt

and u(0, ·) = u0 a.e. in Ω.

According to the above definitions, we establish the following local existence
result proved in Sec. 2 and which extends [21, Theorem 2.3].

Theorem 1.1. Assume that conditions (A1)–(A5) are satisfied and p− > 2d
d+2 .

Let T > 0, u0 ∈ W ∩ L∞(Ω) and h ∈ L2(QT ) ∩ Lq(QT ), q > d
p− . Then prob-

lem (LT ) admits a unique solution u in the sense of Definition 1.1. Moreover, u ∈
C([0, T ], W).

Next, we deal with the local existence of solutions of problem (PT ) proved in
Sec. 3 (Sec. 3.1) which improves [21, Theorem 2.4].

1750065-5



October 12, 2018 11:2 WSPC/S0219-1997 152-CCM 1750065
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Theorem 1.2. Assume that conditions (A1)–(A5) are fulfilled. Let f : Ω×R �→ R

satisfying (f1) and :

(f2) there exists s0 ∈ R such that x �→ f(x, s0) ∈ L2(Ω) ∩ Lq(Ω), q > d
p− .

Assume in addition that one of the following hypotheses holds :

(H1) there exists a nondecreasing locally Lipschitz function L0 such that

|f(x, v)| ≤ L0(v), a.e. (x, v) ∈ Ω × R;

(H2) there exist two nondecreasing locally Lipschitz functions L1 and L2 such that

L1(v) ≤ f(x, v) ≤ L2(v), a.e. (x, v) ∈ Ω × R.

Then, for any u0 ∈ W ∩ L∞(Ω), there exists T̃ ∈ (0, +∞] such that for any T ∈
[0, T̃ ), problem (PT ) admits a unique solution u in the sense of Definition 1.2.
Moreover, for any r > 1, we have u ∈ C([0, T ]; Lr(Ω)) ∩ C([0, T ]; W).

In Appendix B, using the theory of m-accretive operators, we also provide addi-
tional regularity results for weak solutions to (PT ) (see in particular Theorem B.2).

Under additional hypothesis about the growth of f and regularity of the initial
data, we are able to prove the existence of global solutions. Precisely, we have the
following results showed in Sec. 3 (Sec. 3.2) which gives sharper conditions on f

than those in [21, Theorem 2.5].

Theorem 1.3. Assume that conditions (A1)–(A5) are fulfilled. Let f : Ω×R �→ R

satisfying (f1) and :

(f3) there exists s1 ∈ R such that x �→ f(x, s1) ∈ L∞(Ω);
(f4) uniformly with respect to x ∈ Ω, we have

lim sup
|s|→∞

|f(x, s)|
|s|p−−1

< γΛp−
(pc)−

where Λ := (sup‖u‖W=1 ‖u‖Lp−(Ω))
−1 and (pc)− = p−

p+−1 ;
(f5) uniformly with respect to x ∈ Ω, we have

lim inf
s→0

|f(x, s)|
|s|p−−1

> ΓΛp−
(p−)c

where (p−)c = p−

p−−1 .

Assume in addition that

(C1) u0 ∈ W such that ∇ · a(x,∇u0) ∈ Lq(Ω) where q > d
p− ;

Then, for any T > 0, problem (PT ) admits a unique weak solution in the sense of
Definition 1.2. Moreover, u ∈ C([0, T ]; W).

1750065-6
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Furthermore, under the following new hypothesis:

(A6)
d∑

i=1

∣∣∣∣∂φ(x, s)
∂xi

∣∣∣∣ ≤ C1(1 + |ln(s)|)φ(x, s) for all x ∈ Ω, s ∈ (0,∞)

and constructing a suitable supersolution, we prove the existence of bounded global
solutions of (PT ) with a regular initial data and releasing hypothesis on f .

Theorem 1.4. Assume conditions (A1)–(A6) and p ∈ Cβ(Ω), β ∈ (0, 1). Let
f : Ω × R �→ R satisfying (f1), (f3) and (f4). Assume in addition

(C2) u0 ∈ C1
0 (Ω).

Then, for any T > 0, problem (PT ) admits a unique bounded weak solution in the
sense of Definition 1.2. Moreover, u ∈ C([0, T ]; W).

Example. A prototype example for f satisfying all conditions (f1)–(f5) is f(x, t) =
h(x)tr(x)−1 with 0 �≡ h ∈ L∞(Ω) nonnegative, r ∈ C(Ω) such that 1 < r(x) < p−

for all x ∈ Ω.

Remark 1.3. In the case φ(x, t) = |t|p(x)−2, p belonging to C1(Ω) is a sufficient
condition to have (A6).

In Sec. 4, we discuss the question of the asymptotic behavior of solutions to
(PT ). For this purpose, under suitable conditions, we prove the existence and the
uniqueness of the positive stationary solution. Precisely, assuming in addition

(f6) the function s �→ f(x,s)

sp−−1 is nonincreasing for a.e. x ∈ Ω,

we have the following result, even new for the p(x)-operator (i.e. A(x, ξ) = |ξ|p(x)).

Theorem 1.5. Assume that p ∈ Cβ(Ω), β ∈ (0, 1) such that p(·) �≡ p−. Let
f : Ω× [0, +∞) �→ [0, +∞) be a nonnegative function satisfying (f1), (f4)–(f6) and
f(x, 0) = 0. Assume conditions (A1)–(A4) and (A6). We suppose in addition that

(A7) ξ �→ A(x, ξ) is p(x)-homogeneous, that is,

A(x, ξ) = A

(
x,

ξ

|ξ|
)
· |ξ|p(x), for all ξ ∈ R

N\{0};

Then, the stationary problem associated with (PT ) possesses a unique nonnegative
and nontrivial weak solution u ∈ W ∩ L∞(Ω). This solution belongs to the class
C1+α(Ω), for some α ∈ (0, 1), and satisfies the Hopf maximum principle, namely

u(x) > 0 for all x ∈ Ω and
∂u

∂ν
(x) < 0 for all x ∈ ∂Ω.

The above uniqueness result implies the following result which improves signif-
icantly [21, Theorem 2.10].

Theorem 1.6. Assume hypothesis in Theorem 1.5 and (A5) be satisfied. Let u0 ∈
C1,+

0 (Ω) where C1,+
0 (Ω) denotes the interior of the positive cone of C1

0 (Ω). Then, for

1750065-7
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any T > 0, there exists a unique weak solution, u ∈ C([0, T ], W)∩L∞(QT ), to (PT )
with initial data u0 and such that ∂u

∂t ∈ L2(QT ) and u > 0 in QT . Furthermore, u

verifies

u(t) → u∞ in L∞(Ω) as t → ∞,

where u∞ is the unique positive stationary solution to (PT ) given in Theorem 1.5.

Remark 1.4. Alternatively to the hypothesis p(.) �≡ p− in Theorems 1.5 and 1.6,
we can assume instead of (f6), (f ′

6): the function s �→ f(x,s)

sp−−1 is strictly decreasing
for a.e. x ∈ Ω.

Remark 1.5. Theorems 1.5 and 1.6 hold for other kind of nonlinearities. Indeed, let
f : Ω×(0,∞) → R be defined as f(x, t) = h(x)tr(x)−1−g(x)ts(x)−1 with r, s ∈ C(Ω)
satisfying 1 < r(x) ≤ p− ≤ s(x) with r+ �= s− in Ω. Suppose that h, g ∈ L∞(Ω),
are nonnegative and such that h �≡ 0 and h(x)

g(x) bounded in Ω. Then, statements of
Theorems 1.5 and 1.6 hold and their proofs are similar. We point out that any weak
solution u satisfies the uniform bound u(t, x) ≤ (‖h

g ‖L∞(Ω) + 1
) 1

s−−r+ in Ω.

Remark 1.6. Under an additional asymptotic super homogeneous growth assump-
tion on f and for initial data large enough, blow up in finite time of solutions can
also occur. For instance, let f(x, v) = vq with q > p+ and define the energy func-
tional

E(u) def=
∫

Ω

A(x,∇u) dx −
∫

Ω

uq+1

q + 1
dx.

Then, using a well-known energy method and for any initial data u0 satisfying
E(u0) < 0, the weak solution to (PT ) blows up in finite time. For further discus-
sions of global behavior of solutions (blow up, localization of solutions, extinction
of solutions) to quasilinear anisotropic parabolic equations involving variable expo-
nents, we refer to [2, 5].

Remark 1.7. Condition (A7) implies that A(x, ξ) = 1
p(x) 〈a(x, ξ), ξ〉. Examples

satisfying (A1)–(A5) and (A7) are given by functions of the form φ(x, t) =
h(x)tp(x)−2 where h ∈ L∞(Ω) such that h ≥ c > 0.

2. Existence of Solution to (LT )

For the proof of Theorem 1.1, we first consider the following quasilinear elliptic
problem:

(P )

{
u − λ∇ · a(x,∇u) = g in Ω

u = 0 on ∂Ω

with λ > 0 and g a measurable function. So we have the following lemma.

1750065-8
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Lemma 2.1. Assume conditions (A1)–(A4). Let g ∈ Lq(Ω), q > d
p− . Then for

any λ > 0, problem (P) admits a unique weak solution u ∈ W satisfying∫
Ω

uϕdx + λ

∫
Ω

a(x,∇u) · ∇ϕdx =
∫

Ω

gϕdx, ∀ϕ ∈ W.

Furthermore, u ∈ L∞(Ω).

Proof. We define the energy functional Jλ associated to (P) given by

Jλ(u) =
1
2

∫
Ω

u2 dx + λ

∫
Ω

A(x,∇u) dx −
∫

Ω

gu dx.

From (1.1), Jλ is well-defined and continuously differentiable on W. Indeed, q > d
p−

and 1 < p(.) < d a.e. in Ω imply that Lq ⊂ (Lp∗(x))′. By (1.1), for ‖u‖W ≥ 1:

Jλ(u) =
1
2

∫
Ω

u2 dx + λ

∫
Ω

A(x,∇u)dx −
∫

Ω

gu dx ≥ λγ

p+(p+ − 1)
‖u‖p−

W
− C‖u‖W.

Thus, Jλ is coercive. Hence Jλ admits a global minimizer u ∈ W which is a weak
solution to (P). By (A3), Jλ is strictly convex on W, which guarantees the unique-
ness of the critical point and the uniqueness of the solution to (P).

To conclude, Corollary A.2 in Appendix A implies u ∈ L∞(Ω).

Proof of Theorem 1.1. This proof follows the proof of [21, Theorem 2.3]. How-
ever, the steps 3 and 4 are different due to the more general operator a. For the
reader’s convenience, we have included the complete proof.

We perform the proof along four steps.

Step 1. Time-discretization of (LT ).
Let N ∈ N∗, T > 0 and set ∆t = T

N . For 0 ≤ n ≤ N , we define tn = n∆t and for
n ∈ {1, . . . , N}, for (t, x) ∈ [tn−1, tn) × Ω

h∆t(t, x) = hn(x) :=
1

∆t

∫ tn

tn−1

h(s, x) ds.

The Jensen’s inequality implies that ‖h∆t‖Lq(QT ) ≤ ‖h‖Lq(QT ) and we have h∆t →
h in Lq(QT ).

Now, we define the iterative scheme

u0 = u0 and for n ≥ 1, un is solution of

×




un − un−1

∆t
−∇ · a(x,∇un) = hn in Ω,

un = 0 on ∂Ω.

(2.1)

The sequence (un)n∈{1,...,N} is well-defined because existence and uniqueness of
u1 ∈ W ∩ L∞(Ω) follow from Lemma 2.1 with g = ∆th

1 + u0 ∈ Lq(Ω) and by
induction we obtain in the same way the existence of (un), for any n = 2, . . . , N .

1750065-9



October 12, 2018 11:2 WSPC/S0219-1997 152-CCM 1750065
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For n = 1, . . . , N and t ∈ [tn−1, tn), we define the functions

u∆t(t) = un and ũ∆t(t) =
(t − tn−1)

∆t
(un − un−1) + un−1, (2.2)

which satisfy
∂ũ∆t

∂t
−∇ · a(x,∇u∆t) = h∆t in QT . (2.3)

Step 2. A priori estimates for u∆t and ũ∆t .
Multiplying the equation in (2.1) by (un − un−1) and summing from n = 1 to

N ′ ≤ N , we get
N ′∑

n=1

∆t

∫
Ω

(
un − un−1

∆t

)2

dx +
N ′∑

n=1

∫
Ω

a(x,∇un) · ∇(un − un−1) dx

=
N ′∑

n=1

∫
Ω

hn(un − un−1) dx, (2.4)

hence by Young’s inequality, we obtain

1
2

N ′∑
n=1

∆t

∫
Ω

(
un − un−1

∆t

)2

dx +
N ′∑

n=1

∫
Ω

a(x,∇un) · ∇(un − un−1) dx

≤ 1
2
‖h‖2

L2(QT ).

Thus, we obtain(
∂ũ∆t

∂t

)
∆t

is bounded in L2(QT ) uniformly in ∆t. (2.5)

Since A is strictly convex and from (1.1), we obtain for any N ′

1
2
‖h‖2

L2(QT ) ≥
N ′∑

n=1

∫
Ω

a(x,∇un) · ∇(un − un−1) dx

≥
N ′∑

n=1

∫
Ω

A(x,∇un) − A(x,∇un−1) dx

=
∫

Ω

A(x,∇uN ′
) dx −

∫
Ω

A(x,∇u0) dx

≥ γ

p+ − 1

∫
Ω

|∇uN ′ |p(x) dx −
∫

Ω

A(x,∇u0) dx.

We conclude that

(u∆t) and (ũ∆t) are bounded in L∞(0, T, W) uniformly in ∆t. (2.6)

Furthermore, using (2.5), we have

sup
[0,T ]

‖u∆t − ũ∆t‖L2(Ω) ≤ max
n=1,...,N

‖un − un−1‖L2(Ω) ≤ C∆1/2
t . (2.7)
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Therefore, for ∆t → 0, we deduce that there exist u, v ∈ L∞(0, T, W) such that (up
to a subsequence)

ũ∆t

∗
⇀ u in L∞(0, T, W), u∆t

∗
⇀ v in L∞(0, T, W), (2.8)

and
∂ũ∆t

∂t
⇀

∂u

∂t
in L2(QT ). (2.9)

Inequality (2.7) implies that u ≡ v. By (2.8), for any r ≥ 1

ũ∆t , u∆t ⇀ u in Lr(0, T, W). (2.10)

Step 3. u satisfies (LT ).
Since p− > 2d

d+2 , Theorem A.1 gives the embedding W
1,p(x)
0 (Ω) ↪→ L2(Ω) is com-

pact. Hence, plugging (2.5), (2.6) the compactness Aubin–Simon’s result (see [32])
implies that (up to a subsequence),

ũ∆t → u ∈ C([0, T ], L2(Ω)). (2.11)

Equation (2.3) multiplied by (u∆t − u) yields∫ T

0

∫
Ω

∂ũ∆t

∂t
(u∆t − u) dxdt +

∫ T

0

∫
Ω

a(x,∇u∆t) · ∇(u∆t − u) dxdt

=
∫ T

0

∫
Ω

h∆t(u∆t − u)dxdt.

Rearranging the terms in the last equations and using (2.7)–(2.10), we have∫ T

0

∫
Ω

(
∂ũ∆t

∂t
− ∂u

∂t

)
(ũ∆t − u) dxdt +

∫ T

0

∫
Ω

(a(x,∇u∆t)

− a(x,∇u)) · ∇(u∆t − u) dxdt = o∆t(1),

where o∆t(1) → 0 as ∆t → 0+. Thus, we get

1
2

∫
Ω

|ũ∆t(T ) − u(T )|2dx +
∫ T

0

∫
Ω

(a(x,∇u∆t)

− a(x,∇u)) · ∇(u∆t − u) dxdt = o∆t(1).

Using (2.11), we obtain∫ T

0

∫
Ω

(a(x,∇u∆t) − a(x,∇u)) · ∇(u∆t − u) dxdt → 0 as ∆t → 0+. (2.12)

We now prove that∫ T

0

∫
Ω

|∇(u∆t − u)|p(x) dxdt → 0 as ∆t → 0+. (2.13)

To establish (2.13), the general form of a do not allow to use the algebraic inequali-
ties of [33] as in the proof of [21, Theorem 2.3]. The convexity of Φ and assumption
(A3) bring the arguments to conclude.
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Indeed for this purpose, we distinguish two cases: (i) p < 2 and (ii) p ≥ 2. Let
us first consider the case p < 2. Setting q(x) = p(x)(2−p(x))

2 and Ω− = {x ∈ Ω :
p(x) < 2}, since u, u∆t ∈ L∞(0, T, W) we have from the Hölder inequality∫

Ω−
|∇(u − u∆t)|p(x) dx

≤ C

∥∥∥∥ |∇(u − u∆t)|p(x)

(|∇u| + |∇u∆t |)q(x)

∥∥∥∥
L

2
p(x) (Ω−)

‖(|∇u| + |∇u∆t |)q(x)‖
L

2
2−p(x) (Ω−)

≤ C̃

∥∥∥∥ |∇(u − u∆t)|p(x)

(|∇u| + |∇u∆t |)q(x)

∥∥∥∥
L

2
p(x) (Ω−)

def= C̃I.

Integrating in time the previous inequality and splitting the integral of the right-
hand side, we obtain∫ T

0

∫
Ω−

|∇(u − u∆t)|p(x) dxdt

≤ C

∫
I≤1

(∫
Ω−

|∇(u − u∆t)|2
(|∇u| + |∇u∆t |)2−p(x)

dx

)2−1 sup
Ω−

p(x)
dt

+ C

∫
I>1

(∫
Ω−

|∇(u − u∆t)|2
(|∇u| + |∇u∆t |)2−p(x)

dx

) p−
2

dt. (2.14)

In the other hand, using assumption (A3), we deduce that

γ

∫
Ω−

|∇(u − u∆t)|2
(|∇u| + |∇u∆t |)2−p(x)

dx ≤
∫

Ω

(a(x,∇u∆t) − a(x,∇u)) · ∇(u∆t − u) dx.

(2.15)

Hence, plugging (2.14), (2.15) and Hölder’s inequality, (2.12) implies∫ T

0

∫
Ω−

|∇(u − u∆t)|p(x) dxdt → 0 as ∆t → 0. (2.16)

We now deal with the case p(x) ≥ 2 and proceed as in [28] (see also [29] for other
related issues). From the convexity of Φ, we obtain∫

Ω+
Φ(x, |∇u|) dx ≤

∫
Ω+

Φ
(

x,
|∇(u + u∆t)|

2

)
dx +

1
2

∫
Ω+

a(x,∇u) · ∇(u − u∆t) dx

and similarly∫
Ω+

Φ(x, |∇u∆t |) dx

≤
∫

Ω+
Φ
(

x,
|∇(u + u∆t)|

2

)
dx +

1
2

∫
Ω+

a(x,∇u∆t) · ∇(u∆t − u) dx.
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Adding both above relations, we get

1
2

∫
Ω+

(a(x,∇u) − a(x,∇u∆t)) · (∇u −∇u∆t) dx

≥
∫

Ω+
Φ(x, |∇u|)dx +

∫
Ω+

Φ(x, |∇u∆t |) dx

− 2
∫ T

0

∫
Ω+

Φ
(

x,
|∇(u + u∆t)|

2

)
dx. (2.17)

Using (1.3), we have∫
Ω+

Φ(x, |∇u|) dx +
∫

Ω+
Φ(x, |∇u∆t |) dx

≥ 2
∫

Ω+
Φ
(

x,
|∇(u + u∆t)|

2

)
dx + 2

∫
Ω+

Φ
(

x,
|∇(u − u∆t)|

2

)
dx.

Therefore, plugging the two last inequalities and (1.1), we deduce that∫
Ω+

(a(x,∇u) − a(x,∇u∆t)) · ∇(u − u∆t) dx

≥ 4
∫

Ω+
Φ
(

x,
|∇(u − u∆t)|

2

)
dx ≥ 4γ

2p+(p+ − 1)

∫
Ω+

|∇(u − u∆t)|p(x) dx.

(2.18)

Now from (2.12), (2.18) combining with (2.16), we obtain (2.13). This implies that
∇u∆t converges to ∇u in Lp(x)(QT ) and u∆t converges to u in W. Furthermore,

a(x,∇u∆t) → a(x,∇u) in (Lpc(x)(QT ))d (2.19)

with pc(x) = p(x)
p(x)−1 the conjugate exponent of p. Indeed, we observe that from

(2.13) we get

|∇u∆t |p(x) → |∇u|p(x) in L1((0, T ) × Ω) as ∆t → 0+.

Using [9, Theorem 4.9], we have for a subsequence {∆tn},
∇u∆tn

→ ∇u a.e. in (0, T ) × Ω and |∇u∆tn
|p(x) ≤ g ∈ L1((0, T )× Ω).

Using the dominated convergence theorem and observing that from (1.2):

|a(x,∇u∆tn
)| ≤ c1|∇u∆tn

|p(x)−1 ≤ g
p(x)−1

p(x) ∈ Lpc(x),

we obtain

a(x,∇u∆tn
) → a(x,∇u) in (Lpc(x)(QT ))d

from which together with a classical compactness argument we get (2.19).
Finally, Step 1, (2.9) and (2.19) allow to pass to the limit, in the distribution

sense, in Eq. (2.3) and we conclude that u is a weak solution of (LT ).
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Assume that there exist u and v weak solutions of (LT ). Thus,∫ T

0

∫
Ω

∂(u − v)
∂t

(u − v) dxdt −
∫ T

0

(a(x,∇u) − a(x,∇v)) · ∇(u − v) dt = 0.

Since u(0) = v(0), the above equality implies that u ≡ v and we deduce the unique-
ness.

Step 4. u belongs to C([0, T ]; W).
Since u ∈ C([0, T ]; L2(Ω)) ∩ L∞([0, T ]; W) and p ∈ P log(Ω), u : t ∈ [0, T ] �→ W

is weakly continuous.
Define Ψ : W � u �→ ∫

Ω Φ(x, |∇u|) dx =
∫
Ω A(x,∇u) dx. Then Ψ is differentiable

and Ψ′(u) = −∇ · a(x,∇u) ∈ W′. Note that Ψ is a semimodular on W and thus is
weakly lower semicontinuous (see [14, Theorem 2.2.8]). Hence, fixing t0 ∈ [0, T ], we
have ∫

Ω

A(x,∇u(t0)) dx ≤ lim inf
t→t0

∫
Ω

A(x,∇u(t)) dx.

From (2.4) with
∑N ′

n=N ′′ for 1 ≤ N ′′ ≤ N ′ and the convexity of Ψ, it follows that
u satisfies for any t ∈ [t0, T ]:∫ t

t0

∫
Ω

(
∂u

∂t

)2

dxds +
∫

Ω

A(x,∇u(t)) dx

≤
∫ t

t0

∫
Ω

h
∂u

∂t
dxds +

∫
Ω

A(x,∇u(t0)) dx. (2.20)

Passing to the limit, we obtain

lim sup
t→t+0

∫
Ω

A(x,∇u(t)) dx ≤
∫

Ω

A(x,∇u(t0)) dx.

Thus, we get limt→t+0

∫
Ω

A(x,∇u(t)) dx =
∫
Ω

A(x,∇u(t0)) dx. Hence from (1.1)

and the dominated convergence theorem, we also obtain limt→t+0

∫
Ω

|∇u(t)|p(x)

p(x) dx =∫
Ω

|∇u(t0)|p(x)

p(x) dx.
Now, we prove the left continuity. Let 0 < k ≤ t − t0. Multiplying (LT ) by

τk(u)(s) = u(s+k)−u(s)
k and integrating over (t0, t) × Ω, the convexity gives∫ t

t0

∫
Ω

τk(u)
∂u

∂t
dxds +

∫ t+k

t

∫
Ω

A(x,∇u(t))
k

dxds −
∫ t0+k

t0

∫
Ω

A(x,∇u(t0))
k

dxds

≥
∫ t

t0

∫
Ω

τk(u)h dxdt. (2.21)

By the dominated convergence theorem as k → 0+, we have∫ t+k

t

∫
Ω

A(x,∇u(s))
k

dxds →
∫

Ω

A(x,∇u(t)) dx,

∫ t0+k

t0

∫
Ω

A(x,∇u(s))
k

dxds →
∫

Ω

A(x,∇u(t0)) dx.
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Hence, (2.21) yields∫ t

t0

∫
Ω

(
∂u

∂t

)2

dxds +
∫

Ω

A(x,∇u(t)) dx ≥
∫ t

t0

∫
Ω

h
∂u

∂t
dxds +

∫
Ω

A(x,∇u(t0)) dx.

From the above inequality, we deduce that we have the equality in (2.20). Using
the dominated convergence theorem, we obtain that

lim
t→t0

∫
Ω

A(x,∇u(t)) dx =
∫

Ω

A(x,∇u(t0)) dx

and thus

lim
t→t0

∫
Ω

|∇u(t)|p(x) dx =
∫

Ω

|∇u(t0)|p(x) dx.

Then from the uniform convexity of W we deduce that u ∈ C([0, T ]; W).

3. Existence of Solutions to (PT )

3.1. Existence of a local solution

In the first part, we prove Theorem 1.2. For this purpose, we proceed as in the
proof of Theorem 1.1 splitting the proof in several steps. The proof of Theo-
rem 1.2 is almost similar as the proof of [21, Theorem 2.5]. Several differences
appear in Step 3 due to the general form of a. For sake of clarity, we give the entire
proof.

Step 1. Existence of barrier functions.
Consider the equations, for i ∈ {0, 1, 2}


dvi

dt
= Li(vi),

vi(0) = (−1)iν,

(3.1)

where ν = ‖u0‖∞.
For i ∈ {0, 1, 2}, the Cauchy–Lipschitz theorem gives the existence of Tmax

i ∈
(0, +∞] and a unique maximal solution vi to (3.1) on [0, T max

i ).
If (H1) holds, we take T ∈ (0, Tmax

0 ) otherwise, if (H2) holds, we take T ∈
(0, min(T max

1 ; T max
2 )).

Let N ∈ N∗. Set ∆t = T
N and consider the family (vn

i ) defined by vn
i = vi(tn) =

vi(n∆t) for n ∈ {1, . . . , N}. Hence for any i ∈ {0, 1, 2}

vn+1
i = vn

i +
∫ tn+1

tn

Li(vi(s)) ds, ∀n ∈ {0, . . . , N − 1}.

Replacing L1 (respectively, L2) by min(L1, 0) (respectively, max(L2, 0)) in (H2), we
can assume that L1 ≤ 0 and L2 ≥ 0. We get for n ∈ {0, . . . , N}, v1(T ) ≤ vn

1 ≤ −ν

and for i = 0 or i = 2, ν ≤ vn
i ≤ vi(T ).
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Step 2. Semi-discretization in time of (PT ). Introduce the following iterative
scheme (un) defined as

u0 = u0 and

{
un − ∆t∇ · a(x,∇un) = un−1 + ∆tf(x, un−1) in Ω,

un = 0 on ∂Ω.
(3.2)

We just prove the existence of u1. The conditions (f1) and (f2) insure that f(., u0) ∈
Lq(Ω) with q > d

p− . Thus, Lemma 2.1 applied with g = u0 + ∆tf(x, u0) ∈ Lq(Ω)
gives the existence of u1 ∈ W ∩ L∞(Ω).

Let u∆t and ũ∆t be defined as in (2.2) and for t < 0, u∆t(t) = u0. Thus, (2.3)
is satisfied with h∆t(t)

def= f(x, u∆t(t − ∆t)).

Step 3. (un) is bounded in L∞(Ω) uniformly in ∆t.
We first consider the case where (H1) is valid. We claim that for all n, |un| ≤ vn

0

in Ω. We just prove it in case of n = 1. Since L0 and v0 are nondecreasing, we get

u1 − v1
0 − ∆t∇ · a(x,∇u1) =

∫ ∆t

0

(f(x, u0) − L0(v0(s))) ds + u0 − v0
0 ≤ 0.

Multiplying the previous inequality by (u1−v1
0)

+ = max(u1−v1
0, 0) and integrating

on ω = {x ∈ Ω |u1(x) > v1
0}, we get∫

ω

(u1 − v1
0)2 dx + C∆t

∫
ω

|∇u1|p(x) dx

≤
∫

ω

(u1 − v1
0)2 dx + ∆t

∫
ω

a(x,∇u1)∇u1 dx ≤ 0.

Hence, u1 ≤ v1
0 and by the same method we have −v1

0 ≤ u1.
For (H2), we claim that for all n, vn

1 ≤ un ≤ vn
2 in Ω. Let n = 1. Since L1, L2,

−v1 and v2 are nondecreasing:

u1 − v1
1 − ∆t∇ · a(x,∇u1) =

∫ ∆t

0

(f(x, u0) − L1(v1(s))) ds + u0 − v0
1 ≥ 0,

u1 − v1
2 − ∆t∇ · a(x,∇u1) =

∫ ∆t

0

(f(x, u0) − L2(v2(s))) ds + u0 − v0
2 ≤ 0.

Multiplying the first inequality by (v1
1−u1)+ and the second inequality by (u1−v1

2)
+

and integrating respectively on ω1 = {x ∈ Ω | v1
1 > u1(x)} and ω2 = {x ∈ Ω | v1

2 <

u1(x)} and using (1.2), we get

−
∫

ω1

(u1 − v1
1)

2 dx − C∆t

∫
ω1

|∇u1|p(x) dx

≥ −
∫

ω1

(u1 − v1
1)2 dx − ∆t

∫
ω1

a(x,∇u1)∇u1 dx ≥ 0,

∫
ω2

(u1 − v1
2)2 dx + C∆t

∫
ω2

|∇u1|p(x) dx

≤
∫

ω2

(u1 − v1
2)

2 dx + ∆t

∫
ω2

a(x,∇u1)∇u1 dx ≤ 0.
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Then v1
1 ≤ u1 ≤ v1

2 . By induction, we deduce that for n ∈ {0, . . . , N}, vn
1 ≤ un ≤ vn

2

in Ω.
Therefore,

(u∆t), (ũ∆t) are bounded in L∞(QT ) uniformly in ∆t (3.3)

and

(h∆t) is bounded in L2(QT ) uniformly in ∆t.

Indeed, either (H1) holds which implies

|f(x, un)| ≤ L0(un) ≤ L0(v0(T ))

or (H2) holds, we have

|f(x, un)| ≤ max(−L1(un), L2(un)) ≤ max(−L1(v1(T )), L2(v2(T ))).

Hence

‖h∆t‖2
L2(QT ) = ∆t

N∑
n=1

‖f(x, un−1)‖2
L2(Ω) ≤ C.

Step 4. End of the proof.
By the same computations of Step 2 of the proof of Theorem 1.1, we obtain

estimates and we prove that there exists u ∈ L∞(0, T, W) such that

ũ∆t , u∆t

∗
⇀ u in L∞(0, T, W) and

∂ũ∆t

∂t
⇀

∂u

∂t
in L2(QT ).

Relation (2.5) implies that (ũ∆t) is equicontinuous in C([0, T ]; Lr(Ω)) for 1 ≤ r ≤ 2.
By the interpolation inequality and (3.3), we obtain that (ũ∆t) is equicontinuous
in C([0, T ]; Lr(Ω)) for any r > 1.

By (2.6) and Step 3, we deduce applying the Ascoli–Arzela theorem that (up to
a subsequence) for any r > 1

ũ∆t → u in C([0, T ]; Lr(Ω)).

Since (u∆t) is uniformly bounded in L∞(QT ), (f1) implies

‖h∆t(t) − f(., u(t))‖L2(Ω) ≤ C‖u∆t(t − ∆t) − u(t)‖L2(Ω).

Hence we deduce that h∆t → f(·, u) in L∞(0, T, L2(Ω)). Next, we follow Step 4 of
Theorem 1.1 and obtain that u is a weak solution to (PT ).

Now, we prove the uniqueness of the solution to (PT ). Let w be another weak
solution of (PT ). By (f1), for t ∈ [0, T ]:

1
2
‖u(t) − w(t)‖2

L2(Ω) −
∫ t

0

〈a(x,∇u) − a(x,∇w), u − w〉ds

=
∫ T

0

∫
Ω

(f(x, u) − f(x, w))(u − w) dxds ≤ C

∫ t

0

‖u(s) − w(s)‖2
L2(Ω) ds.

Since u → −∇ · a(x,∇u) is a monotone operator from W to W′, the second term
in the left-hand side is nonnegative. Then, by Gronwall’s lemma, we deduce that
u ≡ w.
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Step 5 of the proof of Theorem 1.1 again goes through and completes the
proof.

3.2. Existence of global solution of (PT )

Now, we prove Theorems 1.3 and 1.4. To ensure the existence of barrier functions,
we will need the following lemma.

Lemma 3.1. Assume conditions (A1)–(A4). Let f : Ω × R �→ R be a function
satisfying (f1), (f3)–(f5) and h ∈ Lq(Ω) with q > d

p− . Assume that f and h are
nonnegative functions. Then the stationary problem

(S)

{
−∇ · a(x,∇u) = f(x, u) + h in Ω,

u = 0 on ∂Ω

admits a nontrivial weak solution u ∈ W. Furthermore, u ∈ L∞(Ω).

We define the notion of weak solution to (S) as follows.

Definition 3.1. Any function w ∈ W is called a weak solution to (S) if for all
ϕ ∈ W, ∫

Ω

a(x,∇w) · ∇ϕdx =
∫

Ω

(f(x, w) + h)ϕdx.

Proof. Consider the energy functional E associated to (S) given by

E(u) =
∫

Ω

A(x,∇u) dx −
∫

Ω

F (x, u) dx −
∫

Ω

hu dx,

where F (x, t) =
∫ t

0
f(x, s) ds.

Define

α∞ := sup
x∈Ω

lim sup
|s|→∞

|f(x, s)|
|s|p−−1

and β0 := inf
x∈Ω

lim inf
s→0

|f(x, s)|
|s|p−−1

.

By (f3) and (f4), for ε > 0, there exists a constant M = M(ε) large enough
such that for any (x, t) ∈ Ω × R, |F (x, t)| ≤ M |t| + α∞+ε

p− |t|p−
and such that

α∞ + ε < γΛp−
(pc)−. Hence, E is well-defined and continuous on W. Moreover, by

(1.1), for ‖u‖W ≥ 1, there exists C > 0 such that

E(u) ≥ γ

p+ − 1

∫
Ω

|∇u|p(x) dx − M

∫
Ω

|u| dx − α∞ + ε

p−

×
∫

Ω

|u|p−
dx − C‖h‖Lq(Ω)‖u‖W

≥ γ

p+ − 1
‖u‖p−

W
− α∞ + ε

p−
‖u‖p−

Lp−(Ω)
− M̃‖u‖W

≥
(

γ

p+ − 1
− α∞ + ε

Λp−p−

)
‖u‖p−

W
− M̃‖u‖W.
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Condition (f4) implies that E is coercive. Thus, E admits a global minimizer u ∈ W

which is a weak solution of (S).
We claim that u �≡ 0. We need to consider two cases f(., 0) + h �≡ 0 and h ≡ 0.
In the first case, this is obvious. For the second case, we establish that there

exists v ∈ W such that E(v) < 0. Consider ε > 0 and vε ∈ C1
0 (Ω) such that

β0 > Γ(Λ + ε)p−
(p−)c, ‖vε‖W = 1 and ‖vε‖Lp−(Ω) >

1
Λ + ε

. (3.4)

By (f5), for η > 0, there exists sη > 0 small enough such that for any x ∈ Ω and
0 < s ≤ sη

|f(x, s)| ≥ (β0 − η)|s|p−−1.

Hence we obtain using (1.1) and (3.4), θ = θ(η) > 0 small enough such that

E(θvε) ≤ θp−
(

Γ
p− − 1

∫
Ω

|∇vε|p(x) dx − β0 − η

p−

∫
Ω

|vε|p−
dx

)

≤ θp−
(

Γ
p− − 1

− β0 − η

p−

(
1

Λ + ε

)p−)
.

Choosing η small enough and using the first inequality in (3.4), we conclude
that E(θvε) < 0 and we deduce that u �≡ 0. Finally, by Corollary A.2, u ∈ L∞(Ω).

Lemma 3.2. Let p ∈ Cβ(Ω), β ∈ (0, 1). Assume conditions (A1)–(A4) and (A6).
Let λ ∈ R+ such that

λ ≥ λ∗ :=
γ(pc)−

2|Ω|1/dC0

where C0 is the best embedding constant of W 1,1
0 (Ω) ⊂ L

d
d−1 (Ω). Let wλ ∈ W ∩

L∞(Ω) be the unique solution of

(Eλ)

{−∇ · a(x,∇wλ) = λ in Ω,

wλ = 0 on ∂Ω.

Then, there exist two constants C1 and C2 which do not depend to λ such that

‖wλ‖L∞ ≤ C1λ
1

(p−−1) and wλ(x) ≥ C2λ
1

p+−1+µ ρ(x) (3.5)

where µ ∈ (0, 1) and ρ(x) = d(x, ∂Ω) denotes the distance of x ∈ Ω to the boundary
of Ω.

Proof. We first prove the upper bound of (3.5). For that we follow closely the proof
of [16, Lemma 2.1], Let u be the solution to (Eλ) for a fixed λ satisfying assumptions
of the lemma. By the maximum principle, u ≥ 0. Using classical regularity results
(see [15, 18]), u ∈ C1,α(Ω) and from [34] u > 0 in Ω and satisfies the Hopf maximum
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principle. Now, for k ≥ 0, set Ak = {x ∈ Ω : u(x) > k}. Using (u−k)+ as a testing
function together with (1.1) and the Young inequality, we obtain for any ε > 0:

γ

p+ − 1

∫
Ak

|∇u|p(x) dx ≤
∫

Ak

a(x,∇u) · ∇u dx = λ

∫
Ak

(u − k) dx

≤ λ|Ak| 1d |(u − k)+|
L

d
d−1 (Ω)

≤ λ|Ak|1/dC0

∫
Ak

|∇u| dx

≤ λ|Ak|1/dC0

p−

∫
Ak

εp(x)|∇u|p(x) dx

+
λ|Ak|1/dC0

(p+)c

∫
Ak

ε−pc(x) dx. (3.6)

Taking ε = (λ∗
λ )1/p−

, we have

λ|Ak|1/dC0

p−

∫
Ak

εp(x)|∇u|p(x) dx ≤ γ

2(p+ − 1)

∫
Ak

|∇u|p(x) dx

which implies together with (3.6)∫
Ak

|∇u|p(x) dx ≤ 2λC0(p+ − 1)|Ak|1/d

γ(p+)c

∫
Ak

ε−pc(x) dx ≤ 2λC0(p+ − 1)
γ(p+)cε(p

−)c
|Ak|1+ 1

d .

(3.7)

From (1.2), (3.6) and (3.7), we get∫
Ak

(u − k) dx =
1
λ

∫
Ak

a(x,∇u) · ∇u dx ≤ c1

λ

∫
Ak

|∇u|p(x) dx ≤ K̃|Ak|1+ 1
d , (3.8)

where K̃ = 2c1C0(p+−1)

γ(p+)cε(p−)c
. By in [25, Lemma 5, Chap. 2] and (3.8), we deduce that

‖u‖L∞(Ω) ≤ K̃(d + 1)
d+1

d |Ω|1/d

from which we easily obtain that ‖u‖L∞(Ω) ≤ C1λ
1

p−−1 where C1 does not depends
on λ. Next, we show the lower bound estimate. Since ∂Ω is C2, there exists � ∈ (0, 1)
small enough such that ρ is C2 and

|∇ρ| ≡ 1 in {x ∈ Ω : ρ(x) < 3�} (3.9)

(see [24, Lemma 14.16, p. 355]). As in [34], we introduce the following function: let
κ > 0,

v1(x) =




κρ(x), ρ(x) < �,

κ� + κ

∫ ρ(x)

�

m(t) dt, � ≤ ρ(x) ≤ 2�,

κ� + κ

∫ 2�

�

m(t) dt, 2� ≤ ρ(x),

where m(t) = (2�−t
� )

2
p−−1 .
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Next, we show that for a suitable value of κ, v1 ∈ C1(Ω) is a subsolution to
(Eλ). Precisely,

∇ · a(x,∇v1) =
d∑

i=1

∂ai

∂xi
(x,∇v1) +

d∑
i,j=1

∂ai

∂ξj
(x,∇v1)

∂2v1

∂xi∂xj
(x).

Using the definition of v1, (3.9) and noting that for any i, j ∈ {1, . . . , d}
∂ai

∂ξj
(x, ξ) =

1
|ξ|

∂φ

∂ξj
(x, |ξ|)ξiξj + φ(x, |ξ|)δij ,

where δij is the Kronecker symbol, we get

∇ · a(x,∇v1(x)) =




κ

d∑
i=1

∂φ

∂xi
(x, |κ|) ∂ρ

∂xi
(x) + κφ(x, |κ|)∆ρ if ρ(x) < �,

0 if 2� ≤ ρ(x)

and in {x ∈ Ω : � ≤ ρ(x) ≤ 2�},

∇ · a(x,∇v1) = κm(ρ)
d∑

i=1

∂φ

∂xi
(x, |κ|m(ρ))

∂ρ

∂xi
(x) + κ

d∑
i,j=1

∂ai

∂ξj
(x, κm(ρ)∇ρ)

×
(

m′(ρ)
∂ρ

∂xi
(x)

∂ρ

∂xj
(x) + m(ρ)

∂2ρ

∂xi∂xj
(x)
)

.

Then, using hypotheses (A4), (A6) and relations (1.2) and (3.9), we obtain that
|∇a(x,∇v1(x))| ≤ Cκp(x)−1+µ a.e. on Ω, for any µ ∈ (0, 1), where C = C(�, µ, p, Ω)
and independent of κ. Choosing κ such that 2Cκp+−1+µ = λ, we have that v1 is a
subsolution to (Eλ) and since wλ ≥ v1, the lower bound in (3.5) is proved.

Remark 3.1. About the C1,α(Ω)-regularity of the solution of (Eλ), we apply [15,
Theorem 1.2]. More precisely, we need the condition on a: for δ ∈ (0, 1), there exists
c̃ > 0 such that for any x, y ∈ Ω, η ∈ Rd:

|a(x, η) − a(y, η)| ≤ c̃|x − y|β(1 + |η|p+−1+δ),

where β is the Hölder exponent of p. Obviously, condition (A6) implies the above
inequality.

Now, we give the proof of the existence of global solutions.

Proof of Theorems 1.3 and 1.4. We consider the stationary quasilinear elliptic
problem associated to (PT ):

(P∞)

{−∇ · a(x,∇u) = f(x, u) in Ω,

u = 0 on ∂Ω.

Thus, we claim that if (C1) or (C2) hold then there exist u, u ∈ W∩L∞(Ω), a sub-
and a supersolution of (P∞) such that u ≤ u0 ≤ u.
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First, consider that (C1) holds. For (x, s) ∈ Ω × R, define

G(x, s) = |∇ · a(x,∇u0(x))| + |f(x, s)|.
Consider the following problems:{−∇ · a(x,∇u) = −G(x, u) in Ω,

u = 0 on ∂Ω
and

{−∇ · a(x,∇u) = G(x, u) in Ω,

u = 0 on ∂Ω.

Lemma 3.1 implies the existence of u and u ∈ W ∩ L∞(Ω). Moreover,

−∇ · a(x,∇u) = −G(·, u) ≤ −∇ · a(x,∇u0) and

−∇ · a(x,∇u) = G(·, u) ≥ −∇ · a(x,∇u0) a.e in Ω.

Hence the weak comparison principle implies u ≤ u0 and u is a subsolution of (P∞).
Similarly, we have that u ≥ u0 and u is a supersolution of (P∞).

Now, if (C2) holds, we use Lemma 3.2 above. Precisely, from assumptions (f3)
and (f4), for ε > 0 there exists M0 = M0(α∞, ε) > 0 such that for any M ≥ M0

|f(x, s)| ≤ M + (α∞ + ε)|s|p−−1 for any (x, s) ∈ Ω × R.

From Lemma 3.1, there exists a positive solution, w̃M,ε ∈ W ∩ L∞(Ω) to{
−∇ · a(x,∇w) = M + (α∞ + ε)|w|p−−1 in Ω,

w̃ = 0 on ∂Ω.
(3.10)

Moreover, we have w̃M,ε ∈ C1(Ω) (see [15, Theorem 1.2; 18, Theorem 4.4]).
Fix 0 < λ < M , let wλ be the solution of (Eλ). By Lemma 3.2, we deduce that

‖wλ‖L∞(Ω) → ∞ as λ → ∞. From the weak comparison principle, wλ ≤ w̃M,ε.
Therefore,

‖w̃M,ε‖L∞(Ω) → ∞ as M → ∞.

Moreover, since u0 ∈ C1
0 (Ω), there exists K > 0 such that for any x ∈ Ω, |u0(x)| ≤

Kdist(x, ∂Ω). Hence choosing λ and M large enough, we have by Lemma 3.2:
w̃M,ε ≥ wλ ≥ |u0| in Ω.

Set u = w̃M and u = −w̃M,ε. We deduce for M large enough, u and u are
respectively a super- and a subsolution of (P∞) such that u ≤ u0 ≤ u.

Now, we proceed as in the proof of Theorem 1.2. We define the sequence (un)
as follows: {

un − ∆t∇ · a(x,∇un) = un−1 + ∆tf(x, un−1) in Ω,

un = 0 on ∂Ω

for n = 1, 2, . . . , N with u0 = u0. we prove for n ≥ 1, u ≤ un ≤ u in Ω. Indeed for
n = 1, we have

u − u1 − ∆t(∇ · a(x,∇u) −∇ · a(x,∇u1)) ≤ u − u0 + ∆t(f(x, u0) − f(x, u)).

Since s �→ f(x, s) is Lipschitz on [−M1, M1] uniformly in x ∈ Ω, where M1 is the
maximum of ‖u‖L∞ and ‖u‖L∞ thus, for ∆t small enough, the function Id − ∆tf
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is nondecreasing. Then we have

u − u1 − ∆t(∇ · a(x,∇u) −∇ · a(x,∇u1)) ≤ (Id − ∆tf)(u − u0).

Hence the right-hand side of the above inequality is nonpositive and thus by the
weak comparison principle we have u ≤ u1. Similarly, we prove u1 ≤ u.

By induction, for n ≥ 1, u ≤ un ≤ u in Ω. Thus, (un) is uniformly bounded
in L∞(Ω). The rest of the proof follows from steps 3 and 4 of the proof of
Theorem 1.2.

4. Stabilization

4.1. Existence and uniqueness of the solution of the

stationary problem

In the purpose of investigating the behavior of the global solution to (PT ) as t → ∞,
we consider the stationary problem:

(P+)



−∇ · a(x,∇u) = f(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

We define the notion of a weak solution as follows:

Definition 4.1. Any positive function w ∈ W ∩ L∞(Ω) is called a weak solution
to (P+) if for any ϕ ∈ W,∫

Ω

a(x,∇w) · ∇ϕdx =
∫

Ω

f(x, w)ϕdx.

We first discuss the existence and the uniqueness of the weak solution to (P). In
the proof of Theorem 1.5, we will use the following ray-strict convexity result on
the energy functional proved in [23]. We start by a definition.

Definition 4.2. Let X be vector space. A functional W :
•
V

def= {v : Ω →
(0,∞) : v ∈ X} → R will be called ray–strictly convex (strictly convex, respectively)

if it satisfies for all v1, v2 ∈
•
V and for all θ ∈ (0, 1)

W((1 − θ)v1 + θv2) ≤ (1 − θ) · W(v1) + θ · W(v2), (4.1)

where the inequality is strict unless v2/v1 is a constant (always strict if v1 �= v2,
respectively).

With the above definition, we have the following theorem.

Theorem 4.1. Let r ∈ [1,∞) and p : Ω → (1,∞) satisfy 1 < p− ≤ p+ <

∞ and r ≤ p−. Assume that A : Ω × Rd → R+ is continuous satisfying (A7) and

(A8) ξ �→ N(x, ξ) def= A(x, ξ)r/p(x) : Rd → R+ is strictly convex for every x ∈ Ω.
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Then (the restriction of) the functional WA : X
def= {v ∈ Lp(x)/r(Ω) : |v|1/r ∈

W} → R+ defined by

WA(v) def=
∫

Ω

A(x, ∇(|v(x)|1/r)) dx

to the convex cone
•
V is ray-strictly convex on

•
V .

Furthermore, if p(x) �≡ r in Ω, i.e. if r = p− ≡ p(x) ≡ p+ does not hold in Ω,

then WA is even strictly convex on
•
V .

Remark 4.1. We note that the function ξ �→ A(x, ξ) = N(x, ξ)p(x)/r : Rd →
R+ is strictly convex for each fixed x ∈ Ω, thanks to the power function t �→
tp(x)/r : R+ → R+ being strictly monotone increasing and convex. Consequently,
A(x, ξ) > A(x,0) = 0 for all x ∈ Ω and ξ ∈ Rd\{0}, and A : Ω × Sd−1 → R+ is
bounded below and above on the compact set Ω×Sd−1 ⊂ Rd×Rd by some positive
constants; hence, the “coefficient” A(x, ξ

|ξ| ), if ξ = ∇(|v|1/r) �= 0, is bounded from
below and above by some positive constants. Consequently, we recover that the ratio
of the functionals in

∫
Ω A(x,∇u) dx and

∫
Ω |∇u|p(x) dx is bounded from below and

above by the same positive constants as in (1.1).
Conversely, if we assume that ξ �→ A(x, ξ) is strictly convex for each fixed

x ∈ Ω, then for any 1 < r ≤ p−, ξ �→ N(x, ξ) is strictly convex if r �= 1. Indeed
applying [8, Lemma 2.1] to the function F (ξ) = A(x, ξ)1/p(x), we deduce that F is
convex and thus, for any r > 1, ξ �→ N(x, ξ) = (F (ξ))r is strictly convex.

For the reader’s convenience, we give the proof.

Proof of Theorem 4.1. Recalling Definition 4.2, let us consider any v1, v2 ∈
•
V

and θ ∈ (0, 1). Let us denote v = (1 − θ)v1 + θv2; hence, v ∈
•
V . We obtain easily

∇(vi(x)1/r) =
v
1/r
i

r

∇vi

vi
for i = 1, 2

and

∇(v(x)1/r) =
1
r

(1 − θ)∇v1 + θ∇v2

((1 − θ)v1 + θv2)1−(1/r)

=
v1/r

r

(1 − θ)∇v1 + θ∇v2

v

=
v1/r

r

(
(1 − θ)

v1

v
· ∇v1

v1
+ θ

v2

v
· ∇v2

v2

)
(4.2)

with the convex combination of coefficients (1 − θ) v1
v and θ v2

v ,

(1 − θ)
v1

v
+ θ

v2

v
= 1.
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Now, let x ∈ Ω be fixed. Since ξ �→ N(x, ξ) is strictly convex, by our hypothesis,
we may apply the identities from above to conclude that

N

(
x, (1 − θ)

v1

v
· ∇v1

v1
+ θ

v2

v
· ∇v2

v2

)

≤ (1 − θ)
v1

v
· N

(
x,

∇v1

v1

)
+ θ

v2

v
· N
(

x,
∇v2

v2

)
. (4.3)

The equality holds if and only if

∇v1(x)
v1(x)

=
∇v2(x)
v2(x)

, which is equivalent to ∇
(

v2(x)
v1(x)

)
= 0. (4.4)

Note that the homogeneity conditions (A7) and (A8) yield

N(x, tξ) = |t|r N(x, ξ) for all t ∈ R, ξ ∈ R
d. (4.5)

Consequently, plugging (4.2), (4.3) and (4.5), we obtain

N(x,∇(v(x)1/r)) =
v

rr
· N
(

x, (1 − θ)
v1

v
· ∇v1

v1
+ θ

v2

v
· ∇v2

v2

)

≤ (1 − θ)
v1

rr
· N
(

x,
∇v1

v1

)
+ θ

v2

rr
· N
(

x,
∇v2

v2

)

= (1 − θ) · N
(
x,∇(v1(x)1/r)

)
+ θ · N

(
x,∇(v2(x)1/r)

)
. (4.6)

Finally, by Remark 4.1, we conclude that inequality (4.6) entails

A(x,∇(v(x)1/r)) ≤ (1 − θ) · A(x,∇(v1(x)1/r)) + θ · A(x,∇(v2(x)1/r)). (4.7)

We integrate the last inequality (4.7) over Ω to derive the convexity of the restriction

of the functional WA to the convex cone
•
V ⊂ X .

To derive that WA is even ray-strictly convex on
•
V , let us consider any pair

v1, v2 ∈
•
V with v1 �≡ v2 in Ω. We observe that the equality in the convexity

inequality (4.1) forces both conditions, (4.4) and p(x)/r = 1, to hold simultaneously
at almost every point x ∈ Ω. These conditions are then equivalent with v2/v1 ≡
const (�= 1) in Ω and p(x) ≡ r in Ω. Thus, if p(x) �≡ r in Ω, then WA is even strictly

convex on
•
V .

A consequence of Theorem 4.1 is the following extension of Dı́az–Saa inequality
also proved in [23] in a weaker form.

Theorem 4.2. Let r ∈ [1,∞) and p : Ω → (1,∞) satisfy conditions in Theo-
rem 4.1. Assume that A : Ω × Rd → R+ satisfies (A1)–(A4), (A7). Then the
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following inequality:∫
Ω

(
−div a(x,∇v1(x))

v1(x)r−1
+

div a(x,∇v2(x))
v2(x)r−1

)
(vr

1 − vr
2) dx ≥ 0 (4.8)

holds (in the sense of distributions) for all pairs v1, v2 ∈ W, such that v1 > 0, v2 > 0
a.e. in Ω and both v1/v2, v2/v1 ∈ L∞(Ω). Moreover, if the equality in (4.8) occurs,
then we have the following two statements :

(a) v2/v1 ≡ const > 0 in Ω.
(b) If also p(x) �≡ r in Ω, then even v1 ≡ v2 holds in Ω.

Proof. Recalling Definition 4.2, let us consider any pair w1, w2 ∈ W, such that
w1 > 0, w2 > 0 a.e. in Ω and both w1/w2, w2/w1 ∈ L∞(Ω). Consequently, there is
a sufficiently small number δ ∈ (0, 1) such that

v
def= (1 − θ)wr

1 + θwr
2 ∈

•
V and v1/r ∈ W for all θ ∈ (−δ, 1 + δ).

The function

θ �→ W (θ) def= W(v) = WA((1 − θ)wr
1 + θwr

2) : (−δ, 1 + δ) → R+

is convex and differentiable with the derivative

W ′(θ) =
∫

Ω

a(x,∇(v(x)1/r)) · ∇
(

wr
2 − wr

1

v1− 1
r

)
dx.

The monotonicity of the derivative θ �→ W ′(θ) : (−δ, 1 + δ) �→ R yields W ′(0) ≤
W ′(1), which is equivalent with∫

Ω

a(x,∇w1(x)) · ∇
(

w1 − wr
2

wr−1
1

)
dx ≥

∫
Ω

a(x,∇w2(x)) · ∇
(

wr
1

wr−1
2

− w2

)
dx,

(4.9)

thanks to v = wr
1 if θ = 0, and v = wr

2 if θ = 1.
It is now easy to see that inequality (4.8) is a distributional interpretation of

(4.9) after integration by parts.
Finally, let us assume that the equality in (4.8) is valid. This forces W ′(0) =

W ′(1) above; hence, W ′(θ) = W ′(0) for all θ ∈ [0, 1], by the monotonicity of
W ′ : [0, 1] �→ R. It follows that W : [0, 1] → R must be linear, i.e. W (θ) = (1 −
θ)W (0) + θW (1) ∈ R for all θ ∈ [0, 1]. Recalling our definition of W , Remark 4.1,
assumption (A3) (which implies the strict convexity of ξ �→ A(x, ξ) for each fixed
x ∈ Ω) and Theorem 4.1, we conclude that w2/w1 ≡ const > 0 in Ω. This proves
statement (a).

To verify statement (b), suppose that the constant above w2/w1 ≡ const �= 1 in
Ω. Then the equality in both inequalities, (4.6) and (4.7), is possible only if p(x) ≡ r

in Ω. Statement (b) follows.
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Remark 4.2. An alternative proof of Theorem 4.2 is to show a Picone inequality
in a similar fashion as in [8] (see Proposition 2.9 and Remark 2.10). Precisely, we
can derive the following Picone inequality:

A(x,∇v2)p(x)−r/p(x)A(x,∇v1)r/p(x) ≥
〈

1
p(x)

∂ξA(x,∇v2),∇(vr
1/vr−1

2 )
〉

=
〈

1
p(x)

a(x,∇v2),∇(vr
1/vr−1

2 )
〉 (4.10)

for any v1, v2 satisfying assumptions in Theorem 4.2 and each fixed x ∈ Ω. Com-
bining (4.10), Remark 1.7 and the Young inequality, we then easily derive (4.9)
and (4.8). Note that inequality (4.10) being pointwise is stronger than the Diaz–
Saa inequality (4.8) and is of independent interest.

Proof of Theorem 1.5. Let u be a weak solution to (P+). From (f1), (f3) and
(f6), there exists M > 0 large enough such that

0 ≤ f(x, s) ≤ M + |s|p−−1 ∀ s ≥ 0 and x ∈ Ω. (4.11)

Hence, from [18, Theorem 4.1, p. 312], it follows that u is bounded and from [15,
Theorem 1.2], belongs to C1,α(Ω). From the Hopf boundary point lemma in [34]
(see Theorems 1.2), u satisfies ∂u/∂ν < 0 on ∂Ω. Therefore, for any pair u, v of
weak solutions to (P+), u/v and v/u belongs to L∞(Ω). Then let Jp− defined in
•
V by

Jp−(w) def=
∫

Ω

A(x,∇(w1/p−
)) dx −

∫
Ω

F (x, w1/p−
) dx,

where F (x, t) =
∫ t

0
f(x, s) ds.

From Theorem 4.1 and (f6), J is strictly convex on
•
V . Let w1 = up−

and
w2 = vp−

. Hence, the function Jp− : t → Jp−(w2 + t(w1 − w2)+) is well defined,
convex and differentiable on [0, 1]. Since u, v are weak solutions to (P+), J ′

p−(0) =
J ′

p−(1) = 0.
According to Theorem 4.2 with v1 = w2 + t(w1 − w2)+ and v2 = w2, assertion

(b) implies (w1 −w2)+ ≡ 0, that is u ≤ v. Interchanging the role of u and v, we get
u = v. This proves the uniqueness of the weak solution to (P+).

Now, supposing that (f4), (f5) and f(x, 0) = 0 are satisfied. Extending f by
f(x, s) = 0 for s ≤ 0, we apply Lemma 3.1, with h = 0 to obtain the existence
of a solution u ∈ W ∩ L∞(Ω). From the strong maximum principle given by [34,
Theorem 1.1], u is positive in Ω and then a weak solution to (P+). This completes
the proof of Theorem 1.5.

4.2. Proof of Theorem 1.6

Let T > 0. Note that from assumptions (f1), (f6), f(x, 0) = 0 and since f is locally
Lipschitz in respect to the second variable uniformly in x ∈ Ω, there exists M > 0
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large enough such that (4.11) is still valid. The existence of u ∈ W 1,2(0, T ; L2(Ω))∩
C([0, T ], W) ∩ L∞(QT ), unique weak solution to (PT ) with initial data u0 ∈ W ∩
L∞(Ω) and T small enough follows from Theorem 1.2. The L∞ bound is provided
by the barrier function v solution to


dv

dt
= M + vp−−1, t ∈ (0, T ),

v(0) = ‖u0‖∞.

Note that the uniqueness of the weak solution and the statement u ≤ v in QT

follow from the local Lipschitz property of f and the monotonicity of ∇ · a(x,∇·).
To get the existence of global weak positive solutions to (PT ), we need to construct
a subsolution u and a supersolution ū independent of t:{

−∇ · a(x,∇u) = λup−−1 in Ω,

u = 0 on ∂Ω

and ū = w̃M,ε defined in (3.10) where λ > 0 is small enough and M > 0 large
enough. From [18, Theorem 4.1], u and ū are bounded. From [15, Theorem 1.2]
and [34, Theorems 1.1 and 1.2], they belong to C1,+

0 (Ω) ∩ C1,α(Ω) for some
α ∈ (0, 1). Hence, it is easy to prove that ‖u‖C1(Ω) → 0 as λ → 0+. From
Lemma 3.2, we have that there exist C1, C2 > 0 independent of M such that
C1M

1
p+−1+ν ρ(x) ≤ ū(x) for some 0 < ν < 1. Therefore, from (f4) and (f5) for λ

small enough and M large enough we have that u (respectively, ū) is a subsolution
(respectively, a supersolution) to (P+) and u ≤ u0 ≤ ū. Thus, u is a global weak
solution to (PT ) and using the weak comparison principle on the discrete time-
approximated scheme (3.2) we obtain u ≤ u(t) ≤ ū for any 0 ≤ t < ∞. Using
Theorem B.2, we obtain that u1 (respectively, u2) the weak solution to (PT ) with
initial data u (respectively, ū) is a mild solution. Then, u1 (respectively, u2) belongs
to C([0,∞), C0(Ω)) and since u (respectively, ū) is a subsolution (respectively, a
supersolution) [0,∞) � t → u1(t) (respectively, [0,∞) � t → u2(t)) is nonde-
creasing (respectively, nonincreasing). Hence, u1 and u2 converge (pointwise) to a
positive steady state as t → ∞. From Theorem 1.5, (PT ) admits a unique positive
and continuous stationary (weak) solution u∞ and hence by Dini’s theorem we infer
that

‖u1(t) − u∞‖L∞(Ω) → 0, ‖u2(t) − u∞‖L∞(Ω) → 0 as t → ∞
which reveals ‖u(t) − u∞‖L∞(Ω) → 0 as t → ∞ since u1(t) ≤ u(t) ≤ u2(t).

Appendix A. Regularity Result

We begin by recalling the following compactness embedding.

Theorem A.1. Let p ∈ P log(Ω) satisfies 1 ≤ p− ≤ p+ < d. Then, W 1,p(x)(Ω) ↪→
Lα(x)(Ω) for any α ∈ L∞(Ω) such that for all x ∈ Ω, α(x) ≤ p∗(x) = d p(x)

d−p(x) . Also,

the previous embedding is compact for α(x) < p∗(x) − ε a.e. in Ω for any ε > 0.
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Next, we recall the regularity result due to Fan and Zhao [18]:

Proposition A.1 ([18, Theorem 4.1]). Assume conditions (A1)–(A4). Let p ∈
C(Ω) and u ∈ W satisfying∫

Ω

a(x,∇u) · ∇ϕdx =
∫

Ω

f(x, u)ϕdx, ∀ϕ ∈ W,

where f satisfies for all (x, t) ∈ Ω × R, |f(x, t)| ≤ c1 + c2|t|r(x)−1 with r ∈ C(Ω)
and ∀x ∈ Ω, 1 < r(x) < p∗(x). Then u ∈ L∞(Ω).

For f(x, ·) = f(x), we have the following proposition.

Proposition A.2. Assume conditions (A1)–(A4). Let p ∈ C(Ω̄) with p− < d and
u ∈ W satisfying ∫

Ω

a(x,∇u) · ∇ϕdx =
∫

Ω

fϕdx, ∀ϕ ∈ W, (A.1)

where f ∈ Lq(Ω), q > d
p− . Then u ∈ L∞(Ω).

To prove Proposition A.2, we have the following regularity lemma (see Fusco
and Sbordone [20] and Giacomoni et al. [21])

Lemma A.1. Let u ∈ W 1,p
0 (Ω), 1 < p < d, satisfying for any BR, R < R0, and

for all σ ∈ (0, 1), and any k ≥ k0 > 0∫
Ak,σR

|∇u|p dx ≤ C

[∫
Ak,R

∣∣∣∣ u − k

R(1 − σ)

∣∣∣∣
p∗

dx + kα|Ak,R| + |Ak,R|
p

p∗ +ε

+

(∫
Ak,R

∣∣∣∣ u − k

R(1 − σ)

∣∣∣∣
p∗

dx

) p
p∗

|Ak,R|δ



where Ak,R = {x ∈ BR ∩ Ω |u(x) > k}, 0 < α < p∗ = dp
d−p and ε, δ > 0. Then

u ∈ L∞(Ω).

Proof of Proposition A.2. We follow the idea of the proof of [18, Theorem 4.1].
Let x0 ∈ Ω, BR the ball of radius R centered in x0 and KR := Ω ∩ BR. We

define

p+ := max
KR

p(x) and p− := min
KR

p(x)

and we choose R small enough such that p+ < (p−)∗ := dp−

d−p− . Fix (s, t) ∈ (R∗
+)2,

t < s < R then Kt ⊂ Ks ⊂ KR. Define ϕ ∈ C∞(Ω), 0 ≤ ϕ ≤ 1 such that

ϕ =

{
1 in Bt,

0 in Rd\Bs

satisfying |∇ϕ| � 1/(s − t). Let k ≥ 1, using the same notations as previously
Ak,λ = {y ∈ Kλ |u(y) > k} and taking ϕp+

(u − k)+ ∈ W in (A.1) as test function,
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we obtain∫
Ak,s

a(x,∇u) · ∇uϕp+
dx + p+

∫
Ak,s

a(x,∇u) · ∇ϕ (u − k)+ϕp+−1 dx

=
∫

Ak,s

fϕp+
(u − k) dx. (A.2)

Hence by Young’s inequality, for ε > 0, we have

p+

∫
Ak,s

a(x,∇u) · ∇ϕ(u − k)ϕp+−1 dx

≤ ε

∫
Ak,s

|a(x,∇u)| p(x)
p(x)−1 ϕ(p+−1) p(x)

p(x)−1 dx + cε−1

∫
Ak,s

(u − k)p(x)|∇ϕ|p(x) dx.

Since |∇ϕ| ≤ c/(s − t) and for any x ∈ KR, p+ ≤ (p+ − 1) p(x)
p(x)−1 , we have

ϕ(p+−1) p(x)
p(x)−1 ≤ ϕp+

.
Hence using (1.2), this implies

p+

∫
Ak,s

a(x,∇u) · ∇ϕ (u − k)ϕp+−1 dx

� ε

∫
Ak,s

|∇u|p(x)ϕp+
dx + ε−1

∫
Ak,s

(
u − k

s − t

)p(x)

dx. (A.3)

Using Hölder inequality, we estimate the right-hand side of (A.2) as follows:

∫
Ak,s

fϕp+
(u − k) dx ≤ ‖f‖Lq

(∫
Ak,s

(u − k)
q

q−1 dx

) q−1
q

.

Since q > d
p− , we have (p−)∗

p−
q−1

q > 1. So, applying once again the Hölder inequality,
we obtain

∫
Ak,s

fϕp+
(u − k) dx �

(∫
Ak,s

(u − k)
(p−)∗

p− dx

) p−
(p−)∗

|Ak,s|δ, (A.4)

where δ = q−1
q − p−

(p−)∗ > 0. Set {u− k > s− t} = {x ∈ KR | u(x)− k > s− t} and
its complement as {u− k ≤ s− t}. Now, we split the integral in the right-hand side
of (A.4) as follows:

∫
Ak,s∩{u−k>s−t}

(
u − k

s − t

) (p−)∗
p−

(s − t)
(p−)∗

p− dx

+
∫

Ak,s∩{u−k≤s−t}

(
u − k

s − t

) (p−)∗
p−

(s − t)
(p−)∗

p− dx

�
∫

Ak,s

(
u − k

s − t

)(p−)∗

dx + |Ak,s| := I. (A.5)
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In the same way, the second term in the right-hand side of (A.3) can be estimated
as follows.∫

Ak,s∩{u−k>s−t}

(
u − k

s − t

)p(x)

dx +
∫

Ak,s∩{u−k≤s−t}

(
u − k

s − t

)p(x)

dx � I. (A.6)

Moreover, we have∫
Ak,s

a(x,∇u) · ∇uϕp+
dx �

∫
Ak,s

|∇u|p(x)ϕp+
dx ≥ 0. (A.7)

Finally, plugging (A.3)–(A.7) and we obtain for ε small enough∫
Ak,s

|∇u|p(x)ϕp+
dx � I + |Ak,s|δI

p−
(p−)∗

where the constant depends on p, R and ε. Moreover, we have

I
p−

(p−)∗ �
(∫

Ak,s

(
u − k

s − t

)(p−)∗

dx

) p−
(p−)∗

+ |Ak,s|
p−

(p−)∗ .

Hence using the Young’s inequality, we obtain the following estimate:∫
Ak,t

|∇u|p−
dx ≤

∫
Ak,s

|∇u|p(x)ϕp+
dx + |Ak,s|

�
∫

Ak,s

(
u − k

s − t

)(p−)∗

dx + |Ak,s| + |Ak,s|
p−

(p−)∗ +δ

+ |Ak,s|δ
(∫

Ak,s

(
u − k

s − t

)(p−)∗

dx

) p−
(p−)∗

.

By Lemma A.1, we deduce that u bounded in Ω.

Combining Propositions A.1 and A.2, we have the following corollary.

Corollary A.2. Let p ∈ C(Ω̄) such that p− < d and u ∈ W
1,p(x)
0 (Ω) satisfying∫

Ω

a(x,∇u) · ∇ϕdx =
∫

Ω

(f(x, u) + g)ϕdx, ∀ϕ ∈ W,

where f satisfies |f(x, t)| ≤ c1 + c2|t|r(x)−1 with r ∈ C(Ω) and ∀x ∈ Ω, 1 < r(x) <

p∗(x) and g ∈ Lq, q > d
p− . Then u ∈ L∞(Ω).

Appendix B. Existence of Mild Solutions to (LT ) and (PT )

We use the theory of maximal accretive operators in Banach spaces (see [7, Chaps. 3
and 4]), which provides the existence of mild solutions. More precisely, observing
that the operator A0(·) def= −∇ · a(x,∇(·)), with Dirichlet boundary conditions, is
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m-accretive in L∞(Ω) with

D(A0) = {u ∈ W ∩ L∞(Ω) |A0u ∈ L∞(Ω)},
we get the following properties, which essentially follow from Theorem 1.1 with
Theorem 4.2 (p. 130) and [7, Theorem 4.4, p. 141]:

Theorem B.1. Assume conditions (A1)–(A5). Let T > 0, h ∈ L∞(QT ) and let

u0 be in W ∩ D(A0)
L∞

. Then,

(i) the unique weak solution u to (LT ) belongs to C([0, T ]; C0(Ω));

(ii) if v is another mild solution to (LT ) with the initial datum v0 ∈ W∩D(A0)
L∞

and the right-hand side k ∈ L∞(QT ), then the following estimate holds :

‖u(t) − v(t)‖L∞(Ω)

≤ ‖u0 − v0‖L∞(Ω) +
∫ t

0

‖h(s) − k(s)‖L∞(Ω) ds, 0 ≤ t ≤ T ; (B.1)

(iii) if u0 ∈ D(A0) and h ∈ W 1,1(0, T ; L∞(Ω)) then u ∈ W 1,∞(0, T ; L∞(Ω)) and
∇ · a(x,∇u) ∈ L∞(QT ), and the following estimate holds :∥∥∥∥∂u

∂t
(t)
∥∥∥∥

L∞(Ω)

≤ ‖∇ · a(x,∇u0) + h(0)‖L∞(Ω) +
∫ T

0

∥∥∥∥∂h

∂t
(t)
∥∥∥∥

L∞(Ω)

dτ.

(B.2)

The m-accretivity of A0 follows from the following proposition.

Proposition B.1. Assume conditions (A1)–(A4). Let f : Ω×R �→ R be a function
satisfying (f1) and nonincreasing with respect to the second variable. Assume further
that x → f(x, 0) belongs to L∞(Ω). Then, Af defined by Af (u) def= −∇ · a(·,∇u) −
f(·, u) is m-accretive in L∞(Ω).

Proof. First, let h ∈ L∞(Ω) and λ > 0. Then,{
u + λAf (u) = h in Ω,

u = 0, on ∂Ω

admits a unique solution, u ∈ W ∩ L∞(Ω). Indeed, for µ > 0 large enough µ

and −µ are respectively supersolution and subsolution to the above equation and
then from the weak comparison principle, u ∈ [−µ, µ] and u is obtained by a
minimization argument and a truncation argument. The uniqueness of the solution
follows from the strict convexity of the associated energy functional. Next, we prove
the accretivity of Af . Let h and g ∈ L∞(Ω) and set u and v the unique solutions to

u + λAfu = h in Ω,

v + λAfv = g in Ω.
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Subtracting the two above equations and using the test function w
def= (u−v−‖h−

g‖L∞(Ω))+, we get u− v ≤ ‖h− g‖L∞(Ω) and reversing the roles of u and v, we get
that ‖u − v‖L∞(Ω) ≤ ‖h− g‖L∞(Ω). This proves the proposition.

The proof of Theorem B.1, similar to the proof of [21, Theorem 2.8], is given
below.

Proof of Theorem B.1. We follow the approach developed in the proof of [7,

Theorems 4.2 and 4.4]. Let u0, v0 be in D(A0)
L∞(Ω)

. For z ∈ D(A0) and r, k in
L∞(QT ), set

ϑ(t, s) = ‖r(t) − k(s)‖L∞(Ω) ∀ (t, s) ∈ [0, T ]× [0, T ];

b(t, r, k) = ‖u0 − z‖L∞(Ω) + ‖v0 − z‖L∞(Ω) + |t|‖A0z‖L∞(Ω)

+
∫ t+

0

‖r(τ)‖L∞(Ω) dτ +
∫ t−

0

‖k(τ)‖L∞(Ω) dτ, t ∈ [−T, T ],

and

Υ(t, s) = b(t − s, r, k) +




∫ s

0

ϑ(t − s + τ, τ) dτ if 0 ≤ s ≤ t ≤ T,

∫ t

0

ϑ(τ, s − t + τ) dτ if 0 ≤ t ≤ s ≤ T,

the solution of


∂Υ
∂t

(t, s) +
∂Υ
∂s

(t, s) = ϑ(t, s) (t, s) ∈ [0, T ]× [0, T ],

Υ(t, 0) = b(t, r, k) t ∈ [0, T ],

Υ(0, s) = b(−s, r, k) s ∈ [0, T ].

(B.3)

Moreover, let us denote by (un
ε ) the solution of (2.1) with ∆t = ε, h = r,

rn = 1
ε

∫ nε

(n−1)ε
r(τ, ·) dτ and (un

η ) the solution of (2.1) with ∆t = η, h = k,
kn = 1

η

∫ nη

(n−1)η
k(τ, ·) dτ , respectively. For (n, m) ∈ N∗, elementary calculations

lead to

un
ε − um

η +
εη

ε + η
(A0u

n
ε − A0u

m
η )

=
η

ε + η
(un−1

ε − um
η ) +

ε

ε + η
(un

ε − um−1
η ) +

εη

ε + η
(rn − km),

and since A0 is m-accretive in L∞(Ω) we first verify that �ε,η
n,m = ‖un

ε − um
η ‖L∞(Ω)

obeys

�
ε,η
n,m ≤ η

ε + η
�

ε,η
n−1,m +

ε

ε + η
�

ε,η
n,m−1 +

εη

ε + η
‖rn − km‖∞,

�
ε,η
n,0 ≤ b(tn, rε, kη) and �

ε,η
0,m ≤ b(−sm, rε, kη),
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and thus, with an easy inductive argument, that �ε,η
n,m ≤ Υε,η

n,m where Υε,η
n,m satisfies

Υε,η
n,m =

η

ε + η
Υε,η

n−1,m +
ε

ε + η
Υε,η

n,m−1 +
εη

ε + η
‖hn

ε − hm
η ‖∞,

Υε,η
n,0 = b(tn, rε, kη) and Υε,η

0,m = b(−sm, rε, kη).

For (t, s) ∈ (tn−1, tn) × (sm−1, sm), set

ϑε,η(t, s) = ‖rε(t) − kη(s)‖∞,

Υε,η(t, s) = Υε,η
n,m,

bε,η(t, r, k) = b(tn, rε, kη)

and

bε,η(−s, r, k) = b(−sm, rε, kη).

Then Υε,η satisfies the following discrete version of (B.3):

Υε,η(t, s) − Υε,η(t − ε, s)
ε

+
Υε,η(t, s) − Υε,η(t, s − η)

η
= ϑε,η(t, s),

Υε,η(t, 0) = bε,η(t, r, k) and Υε,η(0, s) = bε,η(s, r, k),

and from bε,η(·, r, k) → b(·, r, k) in L∞([0, T ]). Furthermore,
Nn∑
n=1

∫ tn

tn−1

‖r(s) − rn‖∞ ds → 0, as ε → 0+,

Nm∑
m=1

∫ sm

sm−1

‖k(s) − km‖∞ dτ → 0 as η → 0+.

The above statements follow easily from the fact that r, k ∈ L1(0, T ; L∞(Ω)) and a
density argument.

We deduce that ρε,η = ‖Υε,η − Υ‖L∞([0,T ]×[0,T ]) → 0 as (ε, η) → 0 (see for
instance [7, Chap. 4, Lemma 4.3, p. 136] and [7, Chap. 4, proof of Theorem 4.1,
p. 138]). Then from

‖uε(t) − uη(s)‖∞ = �
ε,η(t, s) ≤ Υε,η(t, s) ≤ Υ(t, s) + ρε,η, (B.4)

we obtain with t = s, r = k = h, v0 = u0:

‖uε(t) − uη(t)‖L∞(Ω) ≤ 2‖u0 − z‖L∞(Ω) + ρε,η,

and since z can be chosen in D(A0) arbitrary close to u0, we deduce that uε is a
Cauchy sequence in L∞(QT ) and then that uε → u in L∞(QT ). Thus, passing to
the limit in (B.4) with r = k = h, v0 = u0 we obtain

‖u(t) − u(s)‖L∞(Ω) ≤ 2‖u0− z‖L∞(Ω) + |t − s|‖A0z‖L∞(Ω) +
∫ |t−s|

0

‖h(τ)‖L∞(Ω) dτ

+
∫ max(t,s)

0

‖h(|t − s| + τ) − h(τ)‖L∞(Ω) dτ,
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which, together with the density D(A0) in L∞(Ω) and h ∈ L1(0, T ; L∞(Ω)), yields
u ∈ C([0, T ]; L∞(Ω)). Analogously, from (B.4) with ε = η = ∆t, r = k = h, v0 = u0

and t = s + ∆t, we deduce that

‖u∆t(t) − ũ∆t(t)‖L∞(Ω) ≤ 2‖u∆t(t) − u∆t(t − ∆t)‖L∞(Ω)

≤ 4‖u0 − z‖L∞(Ω) + 2∆t‖A0z‖L∞(Ω)

+ 2
∫ ∆t

0

‖h(τ)‖L∞(Ω) dτ

+ 2
∫ t

0

‖h(∆t + τ) − h(τ)‖∞ dτ,

which gives the limit ũ∆t → u in C([0, T ]; L∞(Ω)) as ∆t → 0+. Note that since
ũ∆t ∈ C([0, T ]; C0(Ω)), the uniform limit u belongs to C([0, T ]; C0(Ω)). Moreover,
passing to the limit in (B.4) with t = s, we obtain

‖u(t) − v(t)‖L∞(Ω) ≤ ‖u0 − z‖L∞(Ω) + ‖v0 − z‖L∞(Ω) +
∫ t

0

‖r(τ) − k(τ)‖∞ dτ,

and (B.1) follows since we can choose z arbitrary close to v0. Finally, if A0u0 ∈
L∞(Ω) and h ∈ W 1,1(0, T ; L∞(Ω)) and if we assume (without loss of generality)
that t > s then with z = v0 = u(t− s) and (r, k) = (h, h(·+ t− s)) in the last above
inequality, we obtain

‖u(t) − u(s)‖L∞(Ω) ≤ ‖u0 − u(t − s)‖L∞(Ω)

+
∫ s

0

‖h(τ) − h(τ + t − s)‖L∞(Ω) dτ. (B.5)

From (B.1) with v = u0, k = A0u0:

‖u0 − u(t − s)‖L∞(Ω) ≤
∫ t−s

0

‖A0u0 − h(τ)‖L∞(Ω) dτ. (B.6)

Using (B.6) and gathering Fubini’s theorem and

h(τ) − h(τ + t − s) =
∫ τ+t−s

τ

dh

dt
(σ) dσ,

the right-hand side of (B.5) is smaller than

(t − s)‖A0u0 − h(0)‖L∞(Ω) +
∫ t−s

0

‖h(0) − h(τ)‖L∞(Ω) dτ

+
∫ s

0

‖h(τ) − h(τ + t − s)‖L∞(Ω) dτ.

Thus,

‖u(t) − u(s)‖L∞(Ω)

≤ (t − s)‖A0u0 − h(0)‖L∞(Ω) + (t − s)
∫ T

0

∥∥∥∥dh

dt
(τ)
∥∥∥∥

L∞(Ω)

dτ. (B.7)
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Dividing the expression (B.7) by |t − s|, we get that u is a Lipschitz function and
since ∂u

∂t ∈ L2(QT ), passing to the limit |t − s| → 0 we obtain that u(t)−u(s)
t−s → ∂u

∂t

as s → t weakly in L2(QT ) and *-weakly in L∞(QT ). Furthermore,∥∥∥∥∂u

∂t

∥∥∥∥
L∞(Ω)

≤ lim inf
s→t

‖u(t) − u(s)‖L∞(Ω)

|t − s| .

Therefore, we get u ∈ W 1,∞(0, T ; L∞(Ω)) as well as inequality (B.2).

Concerning problem (PT ), we deduce the following similar result.

Theorem B.2. Assume that conditions in Theorem B.1 and hypothesis on f in
Theorem 1.2 are satisfied. Let u0 ∈ W ∩D(A0)

L∞
. Then, the unique weak solution

to (PT ) belongs to C([0, T ]; C0(Ω)) and

(i) there exists ω > 0 such that if v is another weak solution to (PT ) with the initial

datum v0 ∈ W ∩ D(A0)
L∞

then the following estimate holds for T < T̃ :

‖u(t) − v(t)‖L∞(Ω) ≤ eωt‖u0 − v0‖L∞(Ω), 0 ≤ t ≤ T.

(ii) If u0 ∈ D(A0) then u ∈ W 1,∞(0, T ; L∞(Ω)) and ∇ · a(x,∇u) ∈ L∞(QT ), and
the following estimate holds :∥∥∥∥∂u

∂t
(t)
∥∥∥∥

L∞(Ω)

≤ eωt‖∇ · a(x,∇u0) + f(x, u0)‖L∞(Ω).
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[31] M. Růžic̆ka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture
Notes in Mathematics (Springer, Berlin, 2000).

1750065-37



October 12, 2018 11:2 WSPC/S0219-1997 152-CCM 1750065
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