A MULTIPLICITY THEOREM
FOR LOCALLY LIPSCHITZ PERIODIC FUNCTIONALS

Petru MIRONESCU and Vicentiu D. RADULESCU
Laboratoire d’Analyse Numérique, Tour 55-65
Université Pierre et Marie Curie
4, place Jussieu, 75252 Paris Cedex 05, France

Abstract. We prove in this paper a multiplicity theorem of the Ljusternik-Schnirel-
mann type for locally Lipschitz periodic functionals and related results. The key argument
in our proofs is the Ekeland’s Variational Principle and a non-smooth Pseudo-Gradient
Lemma. As application of these abstract results we solve a non-linear setvalued elliptic
problem.

Introduction

In PDE, two important tools for proving existence of solutions are the Mountain-
Pass Theorem of Ambrosetti and Rabinowitz (and its various generalizations) and the
Ljusternik-Schnirelmann Theorem. These results apply to the case when the solutions of
the given problem are critical points of an appropriate functional of energy f, which is
supposed to be real and C!, or even differentiable, on a real Banach space X. One may
ask what happens if f, which often is associated to the original equation in a canonical way,
fails to be differentiable. In this case the gradient of f must be replaced by a generalized
one, in a sense which is to be defined.

The first approach is due to Chang [8] and Aubin and Clarke [2], who considered the
case of a locally Lipschitz function f. For such functions, Clarke [11] defined a generalized
gradient, which coincides to the usual ones if f is differentiable or convex. Still denoting
this generalized gradient by df, critical points of f are all points x such that 0 € df(x).
In this setting, Chang [8] proved a version of the Mountain Pass Lemma, in the case when
X is reflexive. For this aim, he used a “Lipschitz version” of the Deformation Lemma.
The same result was used for the proof of the Ljusternik-Schnirelmann Theorem in the
Lipschitz case. As observed by Brézis, the reflexivity assumption on X is not necessary.

Our main result is a multiplicity theorem for locally Lipschitz periodic functionals,
their set of periods being a discrete subgroup of the space where they are defined. This
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result can be regarded as a Ljusternik-Schnirelmann type theorem for non-differentiable
functionals.

After recalling a well known theorem due to Choulli, Deville and Rhandi [9] and giving
some consequences of this Mountain Pass type theorem for locally Lipschitz functionals, we
present the connection between their theorem and our main result by solving a non-smooth
problem that generalizes the forced-pendulum equation.

Following [8], authors usually impose measurability conditions to some a priori un-
known functions in order to be able to find 0f. We first show that these conditions are
automatically fullfilled and then we prove the existence of critical points, which are shown
to be solutions of a multivalued PDE.

1. The theoretical setting

Throughout, X will be a real Banach space. Let X* be its dual and (z*, z), for x € X,
x € X*, denote the duality pairing between X* and X. We say that a function f: X - R
is locally Lipschitz (f € Lip;,.(X,R)) if, for each z € X, there is a neighbourhood V of z
and a constant k = k(V') depending on V' such that

[f ) = f) < klly ==zl ,

for each y,z € V.

We recall in what follows the definition of the Clarke subdifferential and some of its
most important properties (see [10] for details).

For each z,v € X, we define the generalized directional derivative at x in the direction
v of a given f € Lip,;,.(X,R) as

fO(LE, v) = lim sup fly+ )‘1))\) — fy)
A0

Then f9(z,v) is a finite number and |f°(z,v)| < k||v||. The mapping v — f9(z,v)
is positively homogeneous and subadditive, hence convex continuous. The generalized
gradient (the Clarke subdifferential) of f at x is the subset 0f(z) of X* defined by

of(z) ={z* € X*; f%=z,v)> (z*,v), forallve X} .

If f is convex, df(xz) coincides with the subdifferential of f at z in the sense of convex
analysis.

The fundamental properties of the Clarke subdifferential are:

a) For each x € X, 0f(z) is a nonempty convex weak-+x compact subset of X*.

b) For each z,v € X, we have

2z, v) = max{(z*,v); z* € 0f(x)} .
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c¢) The set-valued mapping z — 9 f(x) is upper semi-continuous in the sense that for
each zg € X,e > 0,v € X, there is 6 > 0 such that for each z* € 0f(z) with ||z — x| < 4,
there exists zf € 0f(x¢) such that |(z* — z§,v)| < e.

d) The function f°(-,-) is upper semi-continuous.

e) If f achieves a local minimum or maximum at z, then 0 € 9f(z).

f) The function

Ao)= _min_ "]

exists and is lower semi-continuous.

g) Lebourg’s Mean Value Theorem: If z and y are distinct points in X, then there is
a point z in the open segment between z and y such that

fy)— f(z) € (0f(2),y—z) -

Definition 1. A point u € X is said to be a critical point of f € Lip;,.(X,R) if
0 € f(u), namely f°(u,v) > 0 for every v € X. A real number c is called a critical value
of f if there is a critical point u € X such that f(u) = c.

Definition 2. If f € Lip,,.(X,R) and c is a real number, we say that f satisfies the
Palais-Smale condition at the level ¢ (in short (PS).) if any sequence (z,) in X with the
properties lim f(z,) = c and lim A(z,) = 0 has a convergent subsequence. The function

n— o0 n—00

f is said to satisfy the Palais-Smale condition (in short (PS)) if each sequence (z,,) in X
such that (f(xy,)) is bounded and lim A(z,) = 0 has a convergent subsequence.
n—00

Let Z be a discrete subgroup of X, that is

inf |[z]| >0 .
z€Z\{0}

A function f : X — R is said to be Z-periodic if f(x + z) = f(x), for every z € X
and z € Z.

If f € Lip;,.(X,R) is Z-periodic, then z — f°(z,v) is Z-periodic, for all v € X and
Of is Z-invariant, that is 0f(z + z) = df(x), for every x € X and z € Z. These implies
that X\ inherits the Z-periodicity property.

If 7 : X — X/Z is the canonical surjection and x is a critical point of f, then 7= (n(z))
contains only critical points. Such a set is called a critical orbit of f. Note that X/Z is a
complete metric space endowed with the metric

d(r(z),n(y)) = inf lz —y —z|| .

Definition 3. A locally Lipschitz Z-periodic function f : X — R is said to satisfy the
(PS)z - condition provided that, for each sequence (x,,) in X such that (f(zy,)) is bounded
and A(z,) — 0, then (w(zy)) is relatively compact in X /Z. If ¢ is a real number, then f is
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said to satisfy the (PS)z . - condition if, for any sequence (x,) in X such that f(x,) — ¢
and \(z,,) — 0, there is a convergent subsequence of (7(zy)).

Denote Cr (f,c) the set of critical points of the locally Lipschitz function f: X — R
at the level ¢ € R, that is

Cr (f,c)={x € X; f(x)=c and A(z)=0} .

2. The main result

Theorem 1. Let f : X — R be a bounded below locally Lipschitz Z-periodic function
with the (PS)z-property. Then f has at least n+ 1 distinct critical orbits, where n is the
dimension of the vector space generated by the discrete subgroup Z.

Before beginning the proof, we shall recall the notion of category and some of its
properties, which will be required by the proof of the main result.
A topological space X is said to be contractible if the identity of X is homotopical to
a constant map, that is there exist up € X and a continuous map F : [0,1] x X — X such
that
F(0,-)=idx and F(1,:)=wup .

A subset M of X is said to be contractible in X if there exist ug € X and a continuous
map F :[0,1] x M — X such that

F(0,-)=idy and F(1,-)=wup .

If A is a subset of X, we define the category of A in X as follows:

Catx(A) =0, if A=0 .

Catx(A) = n, if n is the smallest integer such that A can be covered by n closed
sets which are contractible in X.

Catx(A) = oo, otherwise.

Lemma 1. Let A and B subsets of X. Then the following hold:

i) If A C B, then Catx(A) < Catx(B).

ﬁ) CatX(A U B) < Catx(A) —+ Catx(B)

iii) Let h : [0,1] x A — X be a continuous mapping such that h(0,x) = x for every
x € A. If A is closed and B = h(1, A), then Catx (A) < Catx (B)

iv) If n is the dimension of the vector space generated by the discrete group Z, then,
for each 1 <1 <mn+ 1, the set

Ai ={AC X; A is compact and Cat,x)m(A) > i}
is nonempty. Obviously, A1y D As D ... D Apy1 -
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The only nontrivial part is iv) , which can be found in [19].
The following two Lemmas are proved in [26].

Lemma 2. For each 1 < j < n+ 1, the space A; endowed with the Hausdorff metric

d(A, B) = max{sup dist(a,B) , sup dist(b, A)}
a€A beB

is a complete metric space.

Lemma 3. If 1 <i<n+1 and f € C(X,R), then the function n : A; - R defined
by

1(4) = max f (2)

is lower semi-continuous.
If n is the dimension of the vector space generated by the discrete group Z, one sets

foreach1 <i<n+1

Ci:Alélin(A) .

For each ¢ € R we denote [f < c]={z € X; f(z) <c}.

3. Proof of Theorem 1

It follows from Lemma 1 iv) and the lower boundedness of f that
—oco<cr << < cepg1 <00 .

It is sufficient to show that, if 1 <7 < j < m+1 and ¢; = ¢; = ¢, then the set
Cr(f,c) contains at least j — i + 1 distinct critical orbits. We argue by contradiction and
suppose that, for some i < j, Cr(f,c) has k < j — 4 distinct critical orbits, generated by
x1,...,zk € X. We construct first an open neighbourhood of Cr(f, ¢) of the form

k
V}:U U B(z; + z,7) .

I1=1z€Z

Moreover, we may suppose that 7 > 0 is chosen such that 7 is one-to-one on B(z, 2r).
This condition ensures that Cat,(x)(w(B(z1,2r))) = 1, for each | = 1,...,k. Here V, =0
if k =0.

Step 1. We prove that there exists 0 < ¢ < min{i,7} such that, for each

z€c—e< f<c+e|]\V,, one has

A(z) > Ve . (1)



Indeed, if not, there is a sequence (z,,) in X \ V,. such that, for each m > 1,

1 1 1
c— < flzm) <c+ p” and  A(zy,) < N

Since f satisfies (PS)z , it follows that, up to a subsequence, w(z,,) — w(z) as
m — oo, for some x € X \ V. By the Z-periodicity of f and A, we can assume that
Ty — x as m — oo. The continuity of f and the lower semi-continuity of A imply f(z) = ¢
and A(z) = 0, which is a contradiction, since x € X \ V.

Step 2. For € found above and according to the definition of c;, there exists A € A;
such that

2
gleaj(f(a:) <c+e® .

Setting B = A\ Va,, we get by Lemma 1 that
j < Ca‘tw(X) (W(A)) < Ca‘tﬂ'(X)(ﬂ-(B) U 71-(727‘)) <

< Cat,r(X) (W(B)) + Catﬂ-(X)(ﬂ'(VQT)) < Cat,r(X)(W(B)) + k< Cat,r(X)(ﬂ'(B)) +5—1.

Hence, Cat, x)(m(B)) > i, that is B € A;.

Step 3. For € and B as above we apply the Ekeland’s Principle to the functional 7
defined in Lemma 3. It follows that there exists C' € A; such that, for each D € A;,
D # C,

n(C) <n(B) <n(A) <c+e?

(5(3,0) <e,
n(D) >n(C) —eé(C, D) . (2)

Since BN Vs, =0 and 6(B,C) < e < r, it follows that C NV, = (. In particular, the
set F=[c—e < f]NC is contained in [c —e < f <c+¢€]and FNV, = 0.

Lemma 4. Let M be a compact metric space and let ¢ : M — 2% be a set-valued
mapping which is upper semi-continuous (in the sense of c¢)) and with weak-x compact
convex values. Fort € M denote

() = inf{|lz*[; =% € ()}

and

v=jnf () .

Then, given € > 0, there exists a continuous function v : M — X such that for all
t € M and z* € (1),
lo@)ll <1 and (a*,0(t)) >vy—c .
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Proof of Lemma. We may suppose v > 0 and 0 < € < 7. If B, denotes the open
ball in X* centered at 0 with radius r, then, for each ¢ € M, one has

B,Y_% N (p(t) =0 .

Since ¢(t) and B,_z are convex, weak-x compact and disjoint, it follows from the
Theorem 3.4 in [24], applied to the space (X*, o(X*, X)) and from the fact that the dual
space of the above one is X, that:

for every t € M, there is some vy € X, ||v¢]| = 1 such that

<€7Ut> < <"B*7'Ut> ’

for each £ € By_< and z* € ¢(t). Therefore, for each z* € ¢(t),

2
9

@) > s (o) =y .
fEB,Y_s

2

Because of the upper semi-continuity of ¢, there is an open neighbourhood V (¢) of ¢
such that, for each ¢’ € V(t) and each z* € ¢(t),

(" v) >y —¢€ .

Since M is compact and M = U V(t), we can find a finite subcovering {V1, ..., V,,}

teM
of M. Let vy, ...,v, be on the unit sphere of X such that (z*,v;) >y —¢, forall 1 <i<

n, t € V; and z* € ¢(t).
If p;(t) = dist(t, 0V;), define

Q-(t):% and v(t):;g(t)vi .

The function v is the desired mapping. 7

Applying Lemma 4 to ¢ = 0f on F, we find a continuous map v : F' — X such that,
for all x € F and z* € 0f(x),

lv(z)]| <1 and (z*,v(z))> 116111;)\(:10) —e> 11612)\(3:) —e>Ve—¢ ,

where the last inequality is justified by (1).
It follows that, for each z € F and z* € df(x),

0 * . *
z,—v(x)) = max (z*,—v(x))=— min (z",v(x)) <e—+e < —¢,
Pole, (@) = max (o' o) = min (" 0() <e Ve
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from our choice of ¢.
From the upper semi-continuity of f° and the compactness of F, there exists § > 0
such that if x € F', y € X, ||y — || <9, then

Py, —v(@) < —e . (3)

Since CNCr(f,c) = 0 and C is compact, while Cr(f, ¢) is closed, there is a continuous
extension w : X — X of v such that w|c(s,) =0 and ||w(z)|| < 1, for all z € X.

Let o : X — [0, 1] be a continuous Z-periodic function such that « =1 on [f > ¢| and
a=0on[f<c—¢]. Let h:[0,1] x X — X be the continuous mapping defined by

h(t,z) = z — tda(x)w(z) .
If D =h(1,C), it follows from Lemma 1 that
Ca’t'/r(X) (T(D)) > Catw(X) (W(O)) >

which shows that D € A;, since D is compact.
Step 4. By Lebourg’s mean value Theorem we get that, for each x € X, there exists
6 € (0,1) such that

f(h(1,2)) = f(R(0, 7)) € (Of(h(0,2)), —da(z)w(z)) .

Hence, there is some z* € df(h(0,x)) such that

f(h(L,2)) = F((0, 7)) = o) (2", —dw(x)) .
It follows by (3) that, if z € F, then

f(h(1,z)) = f(R(0, 2)) = da(x){z", —w(z)) < (4)

< da(z) oz — 00a(x)w(z), —v(z)) < —eda(z) .
It follows that, for each x € C,
f(r(1,2)) < f(=z) .
Let z¢ € C be such that f(h(1,z¢)) = n(D). Hence,
c < f(h(1,20)) < f(zo) -

By the definition of o and F, it follows that a(zp) = 1 and z¢ € F. Therefore, by (4),
we get

f(h(1,20)) — f(mo) < —€0 .
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Thus,
n(D) +ed < f(wo) < n(C) . (5)

Taking into account the definition of D, it follows that

d(C,D)<§ .
Therefore,
n(D) +ed(C, D) <n(C) ,
so that (2) implies C = D, which contradicts (5). 3

4. A multivalued generalized version of the forced-pendulum problem

As an application of the above results, we shall study the periodic multivalued problem
of the forced-pendulum

{ﬂ?"(t) + f(t) € [g(=(2),g(z())] , ae. t €(0,1) (6)
z(0) ==z(1) ,
where:
feLP(0,1) forsome p>1 (7)
g€ L*R), glu+T)=g(u) forsome T >0, ae. u€ R , (8)
g(u) = il\I‘I(l) essinf{g(u); |u—v| <e} glu)= gl\r‘% esssup{g(u); |[u—v| <e} ,
T 1
| stdu= [ war=o Q

We shall prove

Theorem 2. If f, g are as above, then the problem (6) has at least two solutions in
— gl — 1 . —

which are distinct in the sense that their difference is not an integer multiple of T'.

Define the functional ¢ in L*°(0,1) by

Y(x) = /01 (/Om(S)g(u)du)ds .

It is obvious that 1) is a Lipschitz map on L°°(0,1).
u

Let G(u) :/0 g(v)dv.
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The following results show that the description of 9% given in [8] holds without further
assumptions on g.

Lemma 5. Let g be a locally bounded measurable function defined on R and g, g as
above. Then the Clarke subdifferential of G is given by

0 G(u) = [g(u), g(u)] ueR .

Proof. The required equality is equivalent to G°(u,1) = g(u) and G°(u, —1) = g(u).

As a matter of facts, examining the definitions of G°, g and g, it follows that g(u) =
—(=9)(u) and G°(u, —1) = —(—G)°(u, 1), so that the second required equality is equivalent
to the first one.

Now the inequality G°(u, 1) < g(u) can be found in [8], so we have only to prove that
G°(u,1) > g(u). Suppose that G°(u,1) = g(u) — ¢ for some £ > 0. Let § > 0 be such that

G(t+ ) — G(7) €

if [T —u|<dand 0 < A< 4. Then

1 T+A €
X/ g(s)ds < g(u) — 3 if [7—ul<éd, A>0 (10)

We claim that there exist A, \, 0 such that
1 T+>\n
. / g(s)ds —> g(t) ae. 7€ (U—0,u+9d) . (11)

Suppose for the moment that (11) has already been proved. Now (10) and (11) show
that

g(r) <G — 2 if T€@—dutd)

so we obtain the contradictory inequalities
€
g(u) < esssup{g(s); s € [u—0,u+0]} <g(u) -5

All it remains to be proved is (11). Note that we may cut g in order to suppose that
g € LN L'. Then (11) is nothing that the classical fact that for each ¢ € L'(R),

Ta(p) =9 as ANO0 (12)

where

u+A
Tro(u) = —/ o(s)ds for A>0, ueR, pe L'(R) .
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Indeed, it can be easily seen that T} is linear and continuous in L!(R) and )1‘1{‘1}) Trp =

¢ in D(R) for ¢ € D(R). Now (14) follows by a density argument. _

Returning to our problem, it follows by Theorem 2.1. in [8] that

Oy () C 0Y() (13)

In order to obtain information on 0, we shall need an improvement of the Theorem
2.1. in [8].

Theorem 3. If x € L*°(0,1), then
0y () (1) C [g(=(t)),9(x(t))] ae t€(0,1) ,

in the sense that if w € 0v(x) then

9(z(t)) <w(t) <g(z(t)) ae te(0,1) (14)

Proof. Let h be a Borel function such that h = g a.e. on R. It follows that the set

A={te(0,1); g(=(t)) # h(x(t))}
is a null set. (A similar reasoning can be done for g and h).

Therefore we may suppose that g is a Borel function. We would like to deal with

1
/ g(z(t))dt, so we have to prove that g is a Borel function.
0

Lemma 6. Let g : R — R be a locally bounded Borel function. Then g is a Borel
function.

Proof of Lemma. Since the requirement is local, we may suppose that g is bounded
by 1, for example, and it is nonnegative. Since

g= lim lim g,
71— 00 M —>00 ’

where

t+1 X
G, 8) = ( / ™ (z, 5)|ds )=
-3

it suffices to prove that g, , is Borel.
Let
M={g: QxR —-R; |g|<1 and g is a Borel function}

N={geM,; gmn isa Borel function}
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It is known (see [3], p. 178) that M is the smallest set of functions having the following
properties:

i) {1 C(AxR,R); [g/<1}CM

ii) gk LA g imply g € M. Note that here we have an ”each point” convergence.

Since N contains obviously the continuous functions and ii) is also true for A/, by the
Dominated Convergence Theorem, it follows that M = N. 7

Proof of Theorem 3 continued. Let v € L*>(2), v > 0. Then, for suitable A; N\, 0
and h; — 0 in LPT1(Q) one has

u(z)+h;(z)+A;v(x)
Y0 (u,v) = lim —/ / 9(z, s)ds dz
()+hi(z)

We may suppose that h; — 0 a.e., so that

u(z)+h;(z)+X;v(x)
$%(u,v) = lim —/ / g(x,s)ds do <
i—00 A [v>0] Ju

(®)+h:(z)
1 u(z)+h;(z)+Aiv(x)
g/ (lim sup / g(z, s)ds)dz <
w>0]  isoo AN Ju(@)+hs(z)

< / gz, u(x))o(z)da
[v>0]
so that

WO (u, v) < / (@, u(z))v(z)ds (15)

[v>0]
for such v.

Suppose now that (21) is false, that is, for example, there exist € > 0, a set E with
|E| > 0 and w € 0¢(u) such that

w(z) > g(z,u(z))+e onE (16)
Now (15) with v = 15 shows that
(w,v) = /Ew < °(u,v) < /Eg(x,u(a:))dx

which contradicts (16). 0

Proof of Theorem 2. Define on the space X = H}, (0,1) the locally Lipschitz

per

o(z) = / Bt — / F(t)z(t)dt + / Gt
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The critical points of ¢ are solutions of (6). Indeed, it is obvious that
8g0(a:) =2+ f- 8¢|H;w(071) (.73) n H_l((), 1)

If o is a critical point of ¢ it follows that there exists w € 81/)|H1}6T(0, 1)(zo) such
that
"+ f=w in H 0,1)

Since p(z + T) = ¢(z), we are going to use the Theorem 1. All we have to do is
to verify the (PS)z,. condition, for each ¢, and to prove that (6) has a solution z( that
minimizes ¢ on H,.(0,1). Note first that every z € H},,(0,1) can be written

per
1
z(t) = / z(s)ds +z(t)dt with z € H3(0,1).
0

Hence, by the Poincaré’s inequality,
1 1 1 1
ola) = 5 / Z2()dt — / F)F()dt + / G (t))dt
0 0 0

> S E2Ze = Ifllze - 17l o = Gllz

DO | =

1
> S E2172 = Clifllze - [17 N2 = 1G]l — 00 as ||Z]|m — oo,

where p’ denotes the conjugated exponent of p.
We verify in what follows the (PS)z,. condition, for each c¢. Let (z,) C X be such
that

o(zy) = ¢ (17)
AMzy,) — 0. (18)

Let w, € d¢(z,) C L*(0,1) (because g oz, < w, < gozy, and g, € L*(R)) be
such that
Mzp) =2l +f —w, =0 in H1(0,1)

Then, multiplying (18) by z,, we get

1 1 1
[ @t~ [ foa+ [ wnsn = o)l
0 0 0

—%/Ol(a:’n)Q+/01farn—/01G(a:n),—>c
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so that there exist positive constants C1,Cy such that

1
| @2 < 1+ Gl
0

Note that G is also T-periodic; hence it is bounded.
Replacing z,, by z,, + kT for a suitable integer k£, we may suppose that

xn(0) € [0, T]

so that () is bounded in H}).
Let 2 € Hy be such that, up to a subsequence, z, — = and ,(0) — 2(0). Then

1 1
/ (z0)? = (—a:;;—f+wn,a:n—a:)+/ Wy (T, — T)—
0 0

1 1 1
—/ f(:cn—x)—i-/ $;1$I—>/ z'?
0 0 0

because x,, — z in Lp’, where p’ is the conjugated exponent of p. It follows that z,, — =
in H ;. _
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