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SOLUTIONS WITH BOUNDARY BLOW-UP FOR A CLASS OF
NONLINEAR ELLIPTIC PROBLEMS

FLORICA-CORINA ŞT. CÎRSTEA AND VICENŢIU D. RĂDULESCU

Communicated by Häım Brezis

Abstract. Let Ω be a smooth bounded domain in RN . We consider the

logistic equation ∆u + au = b(x)f(u) in Ω, where a is a real number, b is

continuous, b ≥ 0, b 6≡ 0, and f ∈ C1 is a positive function satisfying the

Keller–Osserman condition and such that f(u)/u is increasing on (0,∞). We

prove that a necessary and sufficient condition for the existence of a positive

solution blowing-up at the boundary of Ω is that a ∈ (−∞, λ∞,1), where

λ∞,1 is the first eigenvalue of (−∆) in H1
0 (Ω0) and Ω0 = int {x ∈ Ω; b(x) =

0}. Our framework includes the case when the potential b vanishes at some

points on ∂Ω or even on the whole boundary.

1. The Main Result

This paper originated with the recent work Alama–Tarantello [1] which con-
tains an exhaustive study of the logistic problem

(1)







∆u + λu = b(x)f(u) in Ω ,

u = 0 on ∂Ω ,

u > 0 in Ω ,

where Ω is a smooth bounded domain in RN (N ≥ 2), λ is a real parameter and
b ∈ C0,α(Ω), 0 < α < 1 satisfies b ≥ 0 and b 6≡ 0 in Ω. It is worth pointing out
here that if f(u) = u(N+2)/(N−2) (for N ≥ 3), then this equation originates from
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the Yamabe problem, which is a basic problem in Riemannian geometry (see, e.g.,
[9]).

The zero set
Ω0 := int {x ∈ Ω : b(x) = 0}

plays an important role in the understanding of this problem. We shall assume
throughout that Ω0 ⊂ Ω and b > 0 in Ω \ Ω0.

Suppose that f ∈ C1[0,∞) satisfies

(f1) f ≥ 0 and f(u)/u is increasing on (0,∞).

Following Alama–Tarantello [1], define by H∞ the Dirichlet Laplacian on the
set Ω0 ⊂ Ω as the unique self-adjoint operator associated to the quadratic form
ξ(u) =

∫

Ω
|∇u|2 dx with form domain

H1
D(Ω0) = {u ∈ H1

0 (Ω) : u(x) = 0 for a.e. x ∈ Ω \ Ω0}.

If ∂Ω0 satisfies an exterior cone condition, then H1
D(Ω0) coincides with H1

0 (Ω0)
and H∞ is the classical Laplace operator with Dirichlet condition on ∂Ω0 (see [1]).

Let λ∞,1 be the first Dirichlet eigenvalue of H∞ in Ω0. We understand λ∞,1 =
+∞ if Ω0 = ∅.

Set µ0 := limu↘0
f(u)

u and µ∞ := limu→∞
f(u)

u . The results of Alama and
Tarantello rely on the existence of a principal eigenvalue for the operator −∆+µb

in the limiting cases µ = µ0 and µ = µ∞. Denote by λ1(µ0) (resp., λ1(µ∞)) the
first eigenvalue of Hµ0 = −∆ + µ0b (resp., Hµ∞ = −∆ + µ∞b) in H1

0 (Ω). Recall
that λ1(+∞) = λ∞,1.

The main result of [1] (see also [6], [16]) asserts that problem (1) has a solution
uλ if and only if λ ∈ (λ1(µ0), λ1(µ∞)), and, moreover, uλ is the unique solution
of (1) (see [1, Theorem A (bis)]). We point out that neither assumption on the
smoothness of ∂Ω0 nor topological restriction on Ω are made in [1].

Our purpose is to give a corresponding necessary and sufficient condition, but
for solutions of the problem

(2)











∆u + au = b(x)f(u) in Ω ,

lim
dist (x,∂Ω)→0

u(x) = +∞ ,

u ≥ 0 in Ω ,

where a is a real parameter. A solution of (2) is called large (or explosive) solution.
There is a vast literature on nonlinear elliptic problems having solutions that blow-
up at the boundary, starting with the pioneering papers [14], [8], [13], [10]. We
also refer to the paper [15], where there are studied large solutions of the problem

∆u = b(x)u(N+2)/(N−2)
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in a ball, in particular for questions of existence, uniqueness and boundary be-
haviour.

We impose the natural Keller–Osserman condition

(f2)
∫ ∞

1

dt
√

F (t)
< ∞ , where F (t) =

∫ t

0

f(s) ds.

We recall (see [8, 13]) that this condition is necessary and sufficient for the exis-
tence of a large solution to problem ∆u = h(u), where h ∈ C1, h(0) = 0, h′ ≥ 0
and h > 0 on (0,∞).

Examples of non-linearities satisfying (f1) and (f2): (i) f(u) = eu − 1; (ii)
f(u) = up, p > 1; (iii) f(u) = u [ln(u + 1)]p, p > 2.

Remark 1. We have µ∞ := limu→∞ f(u)/u = limu→∞ f ′(u) = ∞. Indeed,
by l’Hospital’s rule, we have limu→∞ F (u)/u2 = µ∞/2. But, by (f2), we deduce
that µ∞ = ∞. Then, by (f1) we find that f ′(u) ≥ f(u)/u for any u > 0, which
shows that limu→∞ f ′(u) = ∞.

Our main result is

Theorem 1.1. Assume conditions (f1) and (f2) hold. Then problem (2) has a
solution if and only if a ∈ (−∞, λ∞,1). Moreover, in this case, the solution is
positive.

We point out that our framework in the above result includes the case when b

vanishes at some points on ∂Ω, or even if b ≡ 0 on ∂Ω. In this sense, our result
responds to a question raised to one of us by Professor Haim Brezis in Paris, May
2001.

Our result also applies to problems on Riemannian manifolds if ∆ is replaced
by the Laplace–Beltrami operator

∆B =
1√
c

∂

∂xi

(√
c aij(x)

∂

∂xi

)

, c := det (aij) ,

with respect to the metric ds2 = cij dxidxj , where (cij) is the inverse of (aij). In
this case our result applies to concrete problems arising in Riemannian geometry.
For instance, (cf. Loewner-Nirenberg [10]) if Ω is replaced by the standard N–
sphere (SN , g0), ∆ is the Laplace-Beltrami operator ∆g0 , a = N(N − 2)/4, and
f(u) = (N − 2)/[4(N − 1)]u(N+2)/(N−2), we find the prescribing scalar curvature
equation on SN .
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2. An auxiliary comparison principle

Lemma 1. Let ω ⊂ RN be a smooth bounded domain. Assume f is continuous
on (0,∞), f(u)/u is increasing on (0,∞), and p, q, r are C0,µ-functions on ω

such that r ≥ 0 and p > 0 in ω. Let u1, u2 ∈ C2(ω) be positive functions such
that

(3) ∆u1+q(x)u1−p(x)f(u1)+r(x) ≤ 0 ≤ ∆u2+q(x)u2−p(x)f(u2)+r(x) in ω

(4) lim sup
dist (x,∂ω)→0

(u2 − u1)(x) ≤ 0.

Then u1 ≥ u2 in ω.

Proof. We use the same method as in the proof of Lemma 1.1 in Marcus-Véron
[12] (see also [7, Lemma 2.1]), that goes back to Benguria-Brezis-Lieb [2].

By (3) we obtain, for any non-negative function φ ∈ H1(ω) with compact
support in ω,
(5)
∫

ω

(∇u1 · ∇φ− qu1φ + pf(u1)φ− rφ) ≥ 0 ≥
∫

ω

(∇u2 · ∇φ− qu2φ + pf(u2)φ− rφ) .

Let ε1 > ε2 > 0 and denote

ω(ε1, ε2) = {x ∈ ω : u2(x) + ε2 > u1(x) + ε1}

vi = (ui + εi)−1
(

(u2 + ε2)2 − (u1 + ε1)2
)+

, i = 1, 2.

Notice that vi ∈ H1(ω) and, in view of (4), it has compact support in ω. Using
(5) with φ = vi and taking into account that vi vanishes outside ω(ε1, ε2) we find
(6)

−
∫

ω(ε1, ε2)

(∇u2 · ∇v2 −∇u1 · ∇v1) dx ≥
∫

ω(ε1, ε2)

p(f(u2)v2 − f(u1)v1) dx

+
∫

ω(ε1, ε2)

q(u1v1 − u2v2) dx +
∫

ω(ε1, ε2)

r(v1 − v2) dx .

A simple computation shows that the integral in the left-hand side of (6) equals

−
∫

ω(ε1, ε2)

(

∣

∣

∣

∣

∇u2 −
u2 + ε2

u1 + ε1
∇u1

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∇u1 −
u1 + ε1

u2 + ε2
∇u2

∣

∣

∣

∣

2
)

dx ≤ 0 .

Passing to the limit as 0 < ε2 < ε1 → 0, the first term in the right hand-side
converges to

∫

ω(0, 0)

p

(

f(u2)
u2

− f(u1)
u1

)

(u2
2 − u2

1) dx ,
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the second term goes to 0, while the third one converges to
∫

ω(0, 0)

r(u2 − u1)2(u2 + u1)
u1u2

dx ≥ 0 .

Hence we avoid a contradiction only in the case when ω(0, 0) has measure 0, which
means that u1 ≥ u2 on ω. £

3. Proof of Theorem 1.1

A. Necessary condition. Let u∞ be a large solution of problem (2). We claim
that u∞ is positive. Indeed, since u∞(x) →∞ as dist (x, ∂Ω) → 0, there exists a
smooth open set ω ⊂⊂ Ω such that u∞ > 0 on Ω\ω. So, it is enough to show that
u∞ > 0 in ω. For this aim, set M0 := 1 + supω b > 0 and consider the problem

(7)







∆u = |a|u + M0f(u) in ω ,

u = u∞ on ∂ω ,

u ≥ 0 in ω .

By Proposition 2.1 in [11] (see also [5, Theorem 5]), this problem has a unique
solution u0 and, moreover, u0 > 0 in ω. But u∞ is supersolution for problem (7),
so u∞ ≥ u0 > 0 in ω and our claim is proved.

Suppose λ∞,1 is finite. Arguing by contradiction, let us assume a ≥ λ∞,1. Set
λ ∈ (λ1(µ0), λ∞,1) and denote by uλ the unique positive solution of problem (1).
We have







∆(Mu∞) + λ∞,1(Mu∞) ≤ b(x)f(Mu∞) in Ω ,

Mu∞ = ∞ on ∂Ω ,

Mu∞ ≥ uλ in Ω ,

where M := max {maxΩ uλ/ minΩ u∞; 1}. By the sub-super solutions method we
conclude that problem (1) with λ = λ∞,1 has at least a positive solution (between
uλ and Mu∞). But this is a contradiction. So, necessarily, a ∈ (−∞, λ∞,1).

B. Sufficient condition. This will be proved with the aid of several results.
From now on we assume throughout the paper that f satisfies (f1) and (f2).

Lemma 2. Let ω be a smooth bounded domain in RN . Assume p, q, r are C0,µ-
functions on ω such that r ≥ 0 and p > 0 in ω. Then for any non-negative
function 0 6≡ Φ ∈ C0,µ(∂ω) the boundary value problem

(8)







∆u + q(x)u = p(x)f(u)− r(x) in ω,

u > 0 in ω,

u = Φ on ∂ω,

has a unique solution.
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Proof. By Lemma 1, problem (8) has at most one solution. The existence of a
positive solution will be obtained by device of sub and super-solutions.

Set m := infω p > 0. Define f̄(u) = mf(u)−‖q‖∞ u−r̄, where r̄ := supω r+1 >

0. Let t0 be the unique positive solution of the equation f̄(u) = 0. By Remark 1
we derive that limu→∞

f̄(u)
f(u) = m > 0. Combining this with (f2), we conclude

that the function ϕ(w) = f̄(w + t0) defined for w ≥ 0 satisfies the assumptions
of Theorem III in [8]. It follows that there exists a positive large solution for the
equation ∆w = ϕ(w) in ω. Thus the function ū(x) = w(x) + t0, for all x ∈ ω, is
a positive large solution of the problem

(9) ∆u + ‖q‖∞ u = mf(u)− r̄ in ω.

By Proposition 2.1 in [11], the boundary value problem






∆u = ‖q‖∞ u + ‖p‖∞ f(u) in ω,

u > 0 in ω,

u = Φ on ∂ω,

has a unique classical solution u. By Lemma 1, we find that u ≤ u in ω and
u (resp., u) is a positive sub-solution (resp., super-solution) of problem (8). It
follows that (8) has a unique solution. £

Under the assumptions of Lemma 2 we obtain the following result which gen-
eralizes Lemma 1.3 in [12].

Corollary 1. There exists a positive large solution of the problem

(10) ∆u + q(x)u = p(x)f(u)− r(x) in ω.

Proof. Set Φ = n and let un be the unique solution of (8). By Lemma 1, un ≤
un+1 ≤ u in ω, where u denotes a large solution of (9). Thus limn→∞ un(x) =
u∞(x) exists and is a positive large solution of (10). Furthermore, every positive
large solution of (10) dominates u∞, i.e., the solution u∞ is the minimal large
solution. This follows from the definition of u∞ and Lemma 1. £

Lemma 3. If 0 6≡ Φ ∈ C0,µ(∂Ω) is a non-negative function and b > 0 on ∂Ω,
then the boundary value problem

(11)







∆u + au = b(x)f(u) in Ω,

u > 0 in Ω,

u = Φ on ∂Ω,

has a solution if and only if a ∈ (−∞, λ∞,1). Moreover, in this case, the solution
is unique.
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Proof. The first part follows with the same arguments as in the proof of Theo-
rem 1.1 (necessary condition).

For the sufficient condition, fix a < λ∞,1 and let λ∞,1 > λ∗ > max {a, λ1(µ0)}.
Let u∗ be the unique positive solution of (1) with λ = λ∗.

Let Ω i (i = 1, 2) be subdomains of Ω such that Ω0 ⊂⊂ Ω1 ⊂⊂ Ω2 ⊂⊂ Ω and
Ω \ Ω1 is smooth. We define u+ ∈ C2(Ω) as a positive function in Ω such that
u+ ≡ u∞ on Ω\Ω2 and u+ ≡ u∗ on Ω1. Here u∞ denotes a positive large solution
of (10) for p(x) = b(x), r(x) = 0, q(x) = a and ω = Ω \ Ω1. Using Remark 1 and
the fact that b0 := infΩ2\Ω1 b > 0, it is easy to check that if C > 0 is large enough
then vΦ = Cu+ satisfies











∆vΦ + avΦ ≤ b(x)f(vΦ) in Ω ,

vΦ = ∞ on ∂Ω .

vΦ ≥ max
∂Ω

Φ in Ω .

By Proposition 2.1 in [11], there exists a unique classical solution vΦ of the
problem







∆vΦ = |a|vΦ + ‖b‖∞ f(vΦ) in Ω,

vΦ > 0 in Ω,

vΦ = Φ on ∂Ω.

It is clear that vΦ is a positive sub-solution of (11) and vΦ ≤ max∂Ω Φ ≤ vΦ

in Ω. Therefore, by the sub-super solution method, problem (11) has at least
a solution vΦ between vΦ and vΦ. Next, the uniqueness of solution to (11) can
be obtained by using essentially the same technique as in [4, Theorem 1] or [3,
Appendix II]. £

Proof of Theorem 1.1 completed. Fix a ∈ (−∞, λ∞,1). Two cases may
occur:

Case 1: b > 0 on ∂Ω. Denote by vn the unique solution of (11) with Φ ≡ n.
For Φ ≡ 1, set v := vΦ and V := vΦ, where vΦ and vΦ are defined in the proof
of Lemma 3. The sub and super-solutions method combined with the uniqueness
of solution of (11) shows that v ≤ vn ≤ vn+1 ≤ V in Ω. Hence v∞(x) :=
limn→∞ vn(x) exists and is a solution of (2).

Case 2: b ≥ 0 on ∂Ω. Let zn (n ≥ 1) be the unique solution of (8) for
p ≡ b+1/n, r ≡ 0, q ≡ a, Φ ≡ n and ω = Ω. By Lemma 1, (zn) is non-decreasing.
Moreover, (zn) is uniformly bounded on every compact subdomain of Ω. Indeed, if
K ⊂ Ω is an arbitrary compact set, then d := dist (K, ∂Ω) > 0. Choose δ ∈ (0, d)
small enough so that Ω0 ⊂ Cδ, where Cδ = {x ∈ Ω : dist (x, ∂Ω) > δ}. Since
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b > 0 on ∂Cδ, Case 1 allows us to define z+ as a solution of (2) for Ω = Cδ. Using
Lemma 1 for p ≡ b + 1/n, r ≡ 0, q ≡ a and ω = Cδ we obtain zn ≤ z+ in Cδ, for
all n ≥ 1. So, (zn) is uniformly bounded on K. By the monotonicity of (zn), we
conclude that zn → z in L∞loc(Ω). Finally, standard elliptic regularity arguments
lead to zn → z in C2,α

loc (Ω). This completes the proof of Theorem 1.1.

Acknowledgements. We thank the referee for the careful reading of the manu-
script and for pointing out that the necessary condition a < λ∞,1 in the statement
of Theorem 1.1 may be deduced as a consequence of the anti-maximum principle,
after showing that the large solution is positive in Ω0.
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