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Abstract. We investigate the existence, asymptotic boundary behavior and

uniqueness of viscosity solutions u ∈ C0(�) of equations Ma(D2u) = f (u) + h(x)
in � ⊂ R

n such that u(x) → ∞ as x → ∂�. Such solutions are referred to as

large or boundary blow-up solutions. Here, � is a smooth bounded domain, Ma

is a weighted partial trace operator, f is a non-decreasing function that satisfies

the Keller–Osserman condition, and h is a continuous function in �. The main

difficulty in the investigation rests on the possibility that Ma is very degenerate

elliptic, and h is unbounded as well as sign-changing in �. To the best of our

knowledge, large solutions to equations involving partial trace operators have not

been investigated before.

1 Introduction

This paper is concerned with the infinite boundary-value problem

(PH)







Hu = h(x) in �,

u = ∞ on ∂�,

where � is a bounded open set, H is a second-order fully nonlinear (degenerate)

elliptic operator and h is a real-valued function defined in �. Moreover, u = ∞

means that u(x) → ∞ as x → ∂�. Solutions of (PH) are referred to as large

solutions, or boundary blow-up solutions.

If u ∈ C2(�), let λ1(D2u) ≤ · · · ≤ λn(D2u) be the eigenvalues of the Hessian

matrix D2u in non-decreasing order. As in [29], we define the weighted partial

trace operator

(1.1) Mau ≡ Ma(D2u) :=

n
∑

i=1

aiλi(D
2u)

with a = (a1, . . . , an) ∈ R
n. It is a (degenerate) elliptic operator if a ≥ 0, namely

ai ≥ 0 for all i = 1, . . . , n, which is non-uniformly elliptic if a ≥ 0 and ai = 0 for

some i = 1, . . . , n, even if ai > 0 for the remaining i’s. See [29].
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If a = 1 := (1, . . . , 1), we obtain the more familiar Laplace operator M1 ≡ 1,

uniformly elliptic. Let instead a ≥ 0 such that either ai = 0 or ai = 1, but a 6= 0

and a 6= 1. Then Mau is a partial trace of the Hessian matrix D2u, that is to say

a partial sum of eigenvalues, and so Ma is a degenerate, non-uniformly elliptic

operator. Taking a positive integer k < n, we obtain the sum of the smallest

or largest k eigenvalues of D2u, respectively M−
k u = λ1(D2u) + · · · + λk(D2u)

and M+
k u = λn−k+1(D2u) + · · · + λn(D2u), considered by Caffarelli–Li–Nirenberg

[12] and Harvey–Lawson [38]. Such operators arise, for instance, in geometric

problems involving mean partial curvature, and in differential games as two-player

zero-sum games. For further properties and known results on partial trace operators

we refer to [29, 45, 70, 71].

We are interested in the case Hu := Mau − f (u), where f is a real-valued

function defined in R, namely in the problem:

(Pa)







Mau = f (u) + h(x) in �,

u = ∞ on ∂�,

where f : R → R is continuous,� is a bounded open set in R
n, and

(f-1) f non-decreasing, f (0) = 0, f (t) > 0 for t > 0.

The study of large solutions of elliptic equations has a long history, but one

can safely state that a systematic and wide investigation of such solutions began

in 1957 with the independent works of J. B. Keller [44] and R. Osserman [62]. In

the papers [44, 62], it was shown that, for the equation 1u = f (u) to admit a large

solution in �, it is sufficient that

(f-2)

∫ ∞

1

dt
√

F(t)
< ∞, where F(t) =

∫ t

0

f (s) ds, ; t ≥ 0.

This, a nowadays classical condition, is known as the Keller–Osserman condition.

We point out that large solutions to semilinear equations like 1u = f (u) arise in

various problems of geometry, physics and other application areas. In fact, the

first existence result for problem (Pa), relying on the Keller–Osserman condition,

concerns the Laplacian, namely Mau = 1u. It is stated in Theorem III of [44]

in connection with a problem of electrohydrodynamics [43]: the equilibrium of

a charged gas in a perfectly conducting container. In that paper J. B. Keller

used the existence of large solutions to demonstrate that the density and pressure

cannot be made arbitrarily large in the interior region by putting more gas into the

container, and that most of the gas accumulates in a thin layer near the surface

of the container as the total mass increases. Large solutions have also found
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applications in geometry and mathematical physics. For instance, in [49], Loewner

and Nirenberg used large solutions to 1u = cu(n+2)/(n−2) for a positive constant c

in a given bounded smooth open set � ⊂ R
n, n ≥ 3, to construct a complete

Riemannian metric on � that is invariant under Möbius transformations.

Since the pioneering works of Keller [44] and Osserman [62], and due to their

wide applications the study of large solutions has attracted a lot of attention. An

exhaustive list of papers on large solutions is impossible. We only list some of the

papers we are largely familiar with: [1, 2, 5, 18, 19, 22, 23, 24, 33, 34, 35, 47,

48, 50, 51, 52, 55, 57, 58, 59, 64, 65, 67, 72, 75], and refer the interested reader

to the references therein. Among the aforementioned references, we detail some

works that are in line with the problem we wish to investigate. The existence and

uniqueness of large solutions to a uniformly elliptic equation

Tr(A(x)D2u) = |u|p−1u + h(x) with p > 1

was investigated by L. Véron [67]. In the paper [22], G. Dı́az and R. Letelier

studied large solutions of

div(|Du|p−2Du) = f (u) + h(x), p > 1,

using on f a Keller–Osserman type condition adapted to the p-Laplace operator,

with a non-negative h ∈ C(�). S. Alarcón and A. Quaas studied in [2] the exis-

tence, asymptotic boundary behavior and uniqueness of solutions of Problem (PH)

when Hu = H(D2u), with H uniformly elliptic, f satisfying the usual Keller–

Osserman condition and h ∈ C(�) non-positive. In a related work [72], one of the

authors, M. E. Amendola and G. Galise show that

Hu = ±|u|p−1u + |u|q−1 + h(x),

where Hu = H(Du,D2u), with H uniformly elliptic and “homogeneous" of de-

gree k ∈ [p, q], 0 < p < q, has at most one positive large solution on a bounded

domain � ⊂ R
n with the “local graph property" introduced by M. Marcus and

L. Véron [50]. In all the aforementioned works one common feature is that the

function h is restricted to have the same sign throughout�.

To the best of our knowledge, the first investigation when h is sign-changing

has been carried out in a recent paper of J. Garcı́a-Melián [34] for the equation

1u = |u|p−1u + h(x),

which was shown to possess a large solution also for unbounded h ∈ C(�),

while uniqueness holds when h is bounded from above in �. These results
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have been extended by one of the authors and G. Porru [57] to Problem (PH),

with Hu = Lu, a uniformly elliptic linear operator in non-divergence form with

lower-order terms, and f satisfying the Keller–Osserman condition, showing exis-

tence and also uniqueness for unbounded h ∈ C(�). This work has been further

extended by the authors of the present paper in [58] to the case where H is a fully

nonlinear uniformly elliptic operator, proving existence, asymptotic boundary be-

havior and uniqueness of large solutions.

It is worth recalling that Keller–Osserman condition (f-2) and its variants

have been used in studying various qualitative properties of solutions to elliptic

equations. For instance, in the well known paper [66] by Vázquez, it was used to

obtain a strong maximum principle. We refer to the excellent monograph of Pucci

and Serrin [63] for further results and a comprehensive treatment. See also [26]

and [60] for more recent results. The Keller–Osserman condition also appears in

the investigation of Harnack inequality to non-negative solutions of equations of

the form Lu = f (u,Du). We refer to the papers [21, 42, 54, 56] and their references.

A related issue is the existence and non-existence of entire solutions, that is

solutions defined in the whole space R
n. As also stated by Keller in [44, Theorem

II] and Osserman in [62, Theorem 1], the Keller–Osserman condition implies

the non-existence of entire subsolutions of the equation 1u = f (u) when f > 0.

Conversely, the negation of the Keller–Osserman condition implies the existence

of entire subsolutions for the equation Hu = f (u), where H is a fully nonlinear

uniformly elliptic operator. See for instance [27] and [15, 16, 17]. Particular

attention has been aroused by the case f (u) = |u|s−1u with s > 1, starting from a

well known paper of H. Brezis [10], where the existence of entire solutions of the

semilinear equation 1u − |u|s−1u = h(x) is proved without growth condition on h

at infinity. A generalization of this result to the fully nonlinear uniformly elliptic

case can be found in [25, 31, 30]. We refer to [4, 14] for related results.

Our investigation needs to overcome several challenges. The standard method

used in the literature to establish existence of large solutions exploits some level of

regularity of solutions to suitable Dirichlet problems. Unfortunately for the prob-

lem (Pa), due to the high degeneracy and non-uniform ellipticity of Ma with a ≥ 0,

as soon as one of the ai is zero, no meaningful regularity of solutions to Dirichlet

problems is known, in general (see Remark 4.5 in Section 4 below). The case an = 0

presents a special challenge that leads to some open problems that we will discuss

at the end of Section 3. Another obstacle comes from the presence of the possibly

sign-changing and unbounded term h. Allowing sign-changing and unbounded h

into Problem (Pa) demands careful considerations.
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The paper is organized as follows. In Section 2 we collect the main assumptions

that are at the core of all the discussion in our paper. All the main results of the

paper will be presented in Section 3. In Section 4 we will recall some results from

the literature that will aid in our work. Section 5 will be devoted to the proof of

existence of viscosity solutions to Problem (Pa). In Section 6, we will focus on the

asymptotic boundary behavior of solutions to (Pa). The question of uniqueness of

viscosity solutions to (Pa) will be dealt with in Section 7. We will conclude the

paper with an appendix where we prove a lemma used in Section 5, and subsequent

sections.

2 Basic assumptions

For ease of reference to the reader, in this section we will state all the basic

assumptions that will be used to state and prove the main results of our paper.

Assumptions on the open set �: In this paper, � will stand for an open

and bounded open subset of Rn.

For our proof of existence of a solution to (Pa) we will rely on a geometric

condition introduced by Blanc and Rossi in a recent paper [9]: whatever y ∈ ∂�

we take,

(G) ∀r > 0 ∃δ > 0 : ∀x ∈ Bδ(y) ∩� and ∀ℓ ∈ Lx ∃z ∈ ℓ : z ∈ Br(y) ∩ ∂�,

where Lx is the family of lines passing through the point x.

However, for investigating asymptotic boundary behavior and uniqueness we

will need better regularity.

Suppose that� has a C2 boundary ∂�. With d(x) denoting the distance between

x ∈ � and the boundary ∂�, it is well-known that there is a constant µ > 0 such

that d ∈ C2(�µ). Here �µ := {x ∈ � : d(x) < µ}. Let κ1(x), . . . , κn−1(x) be the

principal curvatures of ∂� at x ∈ ∂�. We should recall, see [36], that κj ≤ µ−1

on ∂� for all j = 1, . . . , n − 1. Given x ∈ �µ, let y(x) be the unique point on ∂�

such that d(x) = |x − y(x)|. In terms of the principal coordinate system at y(x), we

note that the gradient of d is Dd(x) = (0, . . . , 1) and its Hessian

D2d(x) = diag
( −κ1(y(x))

1 − d(x)κ1(y(x))
, . . . ,

−κn−1(y(x))

1 − d(x)κn−1(y(x))
, 0

)

.

We refer to [36, Section 14.6] for details. We recall that a C2 bounded open set �

is called uniformly convex if the principal curvatures of ∂� are all bounded away

from zero. Thus, a C2 open bounded set� is uniformly convex if and only if there

is a constant ν > 0 such that κj ≥ ν on ∂� for all j = 1, . . . , n − 1.
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Assumptions on the term f : The conditions (f-1) and (f-2) play an im-

portant role in establishing existence of solutions to Problem (Pa). In order to

study asymptotic boundary behavior and uniqueness, we will need additional con-

ditions on f . But first we will need to point out some useful consequences of the

assumptions (f-1) and (f-2) on f ∈ C0(R).

We begin with the following two limits:

(2.1) lim
t→∞

√
F(t)

f (t)
= 0; lim

t→∞

t

f (t)
= 0.

See [35, 37] for a proof.

Next, using the positivity of f in R+ := (0,∞) due to (f-1), and the Keller–

Osserman condition (f-2), we introduce the function 8 : R+ → R+ defined by

(2.2)

∫ ∞

8(t)

ds
√

2F(s)
= t, t > 0.

This is a non-increasing function such that

(2.3) lim
t→0+

8(t) = ∞, 8′(t) = −
√

2F(8(t)), 8′′(t) = f (8(t)).

The following conditions on f will be used to show existence of a viscosity

solution to (Pa) for an unbounded class of inhomogeneous terms h ∈ C0(�), in

the investigations of asymptotic boundary behavior, and uniqueness of solutions to

Problem (Pa).

(Asy-1) There exists a constant A+ > 0 such that

lim inf
t→∞

f (A+t)

A+f (t)
> an.

(Asy-2) Assuming that an > 0, there is a constant A− > 0 such that

lim sup
t→∞

f (A−t)

A−f (t)
< an.

For the statement of our other conditions, given θ > 1, let

ℓθ := lim inf
t→∞

f (θt)

θf (t)
.

Using the above notation, we consider the following condition:

(D-C) ℓθ > 1 for some θ > 1,

This was first introduced by Dindoš in the context of establishing Harnack inequal-

ity for non-negative solutions of1u = f (u), see [21]. We refer to (D-C) as Dindoš’

condition.
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We will also find the need for using a strengthened form of Dindoš condi-

tion (D-C) as follows:

(D-C)′ ℓθ > 1 for all θ > 1.

Let us make a few remarks about the above two conditions; (D-C) and (D-C)′.

Remark 2.1.

(a) If f is regularly varying with index p > 1 (the definition will be given below),

then f satisfies (D-C)′.

(b) If f satisfies (D-C), then we have

(2.4) lim inf
t→∞

f (θjt)

θjf (t)
≥ ℓ

j

θ, and lim sup
t→∞

f (θ−jt)

θ−jf (t)
≤ℓ

−j

θ ∀ j = 1, 2, 3, . . . .

As a result of (b) in Remark 2.1 above we observe that if ℓθ > 1, then the limit

infimum in (2.4) can be made arbitrarily large, and the limit supremum in (2.4) can

be made as small as we wish by appropriately taking j large enough. In other words,

when f satisfies (D-C), then constants A+ and A− that satisfy conditions (Asy-1)

and (Asy-2) can be found.

Knowing the relative growth rate of any two solutions of Problem (Pa) near

the boundary is precursor for the establishment of uniqueness. In this regard the

following additional conditions on f will be used:

(f-3) ℓi := lim inf
t→∞

F(t)

tf (t)
> 0.

For our uniqueness result, we will apply a stronger form of monotonicity of f :

(f-4) t 7→
f (t)

t
is non-decreasing on (0,∞).

Condition (f-4) can be also viewed as a sort of weaker version of condi-

tion (D-C)′ at all finite points t > 0, in the sense noted in the next remark.

Remark 2.2. Condition (f-4) is equivalent to assuming that f (θt)
θf (t)

≥ 1 for

all t>0 and all θ>1. In fact, s> t>0 if and only if s=θt for some θ>1 and so

f (θt)

θf (t)
≥ 1 ⇔

f (s)

s
≥

f (t)

t
.

Finally we introduce a class of functions that have some of the aforementioned

properties on the function f .

A function f : [α,∞) → R, where α > 0, is said to be regularly varying of

index p ∈ R if and only if

(2.5) lim
t→∞

f (ξt)

f (t)
= ξp, ∀ξ > 0.

The class of regularly varying functions of index p is denoted by RVp.

If f ∈ RVp is non-decreasing and of index p > 1, then f satisfies the Keller–

Osserman condition (f-2), see [5, pp. 13–14], or [53, Remark 2.1]
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Assumptions on the term h: Given a non-negative function η ∈ C0(�)

and a function g : R → R, we set

2g(η) := lim sup
d(x)→0

η(x)

g(8(d(x)))
.

For the identity function g(t) = t, we will simply write2(η) instead of2g(η). Note

that, if η is bounded in �, then 2(η) = 0.

Remark 2.3. We will assume in the sequel that 2(h−) < ∞. In this case,

for f : R → R that satisfies (f-1) and (f-2) we note that 2f (h
−) = 0.

This follows from the limits (2.1), (2.3), and the observation that

h−(x)

f (8(d(x)))
=

h−(x)

8(d(x))
·
8(d(x))

f (8(d(x)))
.

Next we introduce a condition that will allow us to consider unbounded

h∈C0(�) in Problem (Pa):

(D-h) The equation

λn(D2ψ) = −h

has a supersolution ψ ∈ C2(�) with ψ ≥ 0 in �.

A remark is in order concerning condition (D-h).

Remark 2.4. Let� be a bounded open set, and suppose sup� h <∞. Then it

is easily seen that there isψ ∈ C2(�) such that (D-h) holds. In fact, let α := sup� h,

and choose β large enough such that ψ ≥ 0 in �, where

ψ(x) := β−
α

2
|x|2.

Then λn(D2ψ) = −α ≤ −h in �, and ψ ∈ C2(�).

Suppose further that � is uniformly convex. Then (D-h) can be shown to hold

for a large class of unbounded functions h ∈ C0(�), namely

(2.6) h(x) ≤ Cd(x)α−1, x ∈ �,

for constants 0 < α ≤ 1 and C > 0, as it is shown in the Appendix.

We specify that � is called uniformly convex when it is of class C2, and the

principal curvatures of ∂� are bounded away from zero (see [36, page 283]), so

that there are constants τ > 0 and µ > 0 such that τ ≤ κj ≤ µ−1 on ∂� for all

j = 1, . . . , n − 1.
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3 Main results

Now we are ready to state our main results. Our first result deals with existence of

viscosity solutions to Problem (Pa) .

Theorem 3.1. Let� be a bounded domain of Rn endowed with the geometric

property (G). Let a 6= 0 such that a ≥ 0. Suppose that f ∈ C0(R) satisfies the

assumptions (f-1), (f-2), and h ∈ C0(�). Then the boundary blow-up problem (Pa)

has a viscosity solution.

The viscosity solution u obtained in Theorem 3.1 when 0 6= a ≥ 0 is in general

lower semicontinuous, by construction. See Remark 5.2 after the proof. It is

known that u is continuous in one of the following cases: a1 > a2 + · · · + an,

an > a1 + · · · + an−1 and a1an > 0. However, we cannot say that u is continuous in

the general case 0 6= a ≥ 0.

For a possibly unbounded h ∈ C0(�) we also have:

Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied, but h ∈ C0(�).

Suppose that there exists a subsolution w ∈ USC(�) of the equation

Mau = f (u) + h(x)

in � such that w = ∞ on ∂�. Then the boundary blow-up problem (Pa) has a

maximal viscosity solution.

As an application of Theorem 3.2 we state the following existence theorem for

unbounded h ∈ C0(�), by means of assumptions on a, f and h which provide the

existence of a subsolution as required in Theorem 3.2.

Theorem 3.3. Let the assumptions of Theorem 3.2 hold with an > 0, and

(1) condition (D-h) holds with ψ ∈ C2(�) ∩ C0(�), or

(2) f satisfies (Asy-2), limt→−∞ f (t) = −∞, and 2f (h) = 0.

Then Problem (Pa) has a maximal viscosity solution.

Our next set of results deals with the asymptotic boundary behavior of viscosity

solutions as well as uniqueness of non-negative solutions to Problem (Pa).

Here is now our first result on the asymptotic boundary behavior of subsolutions

and supersolutions of (Pa).
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Theorem 3.4. Let a ≥ 0 such that an > 0. Suppose f satisfies (f-1) and (f-2),

and � ⊂ R
n is a C2 bounded open set.

(1) If h ∈ C0(�) satisfies 2(h−) < ∞ and there is a constant A+ > 0 such that

(Asy-1) holds, then for any subsolution u of the equation Mau = f (u) + h we

have

(3.1) lim sup
d(x)→0

u∗(x)

8(d(x))
≤ A+.

(2) If h ∈ C0(�) satisfies (D-h), and there is a constant A− > 0 such that (Asy-2)

holds, then for any supersolution u of the equation Mau = f (u) + h such that

u = ∞ on ∂�, we have

(3.2) A− ≤
2(ψ)

|a|
+ lim inf

d(x)→0

u∗(x)

8(d(x))
,

where ψ is as given in (D-h).

For functions f in the class RVp with p > 1, we can find the following exact

boundary behavior of viscosity solutions to the boundary-value problem (Pa).

Theorem 3.5. Let a ≥ 0 such that a 6= 0. Let f satisfy (f-1), and sup-

pose f ∈ RVp for some p > 1. Then, 8 is regularly varying at zero with expo-

nent −2/(p − 1); that is

8(r) = 8(1)r
− 2

p−1 exp

(

−

∫ 1

r

c(s)

s
ds

)

, r > 0,

with c ∈ C0(R+) such that c(r) → 0 as r → 0+. Further, assume that h ∈ C0(�)

such that 2(h−) < ∞ and for which (D-h) holds. If 2(ψ) = 0, then for any

solution u of (Pa) there holds

lim
d(x)→0

u(x)

8(d(x))
= a

1
p−1
n

and so

u(x) ∼ a
1

p−1
n 8(1)d(x)

− 2
p−1 exp

(

−

∫ 1

d(x)

c(s)

s
ds

)

as d(x) → 0.

For a proof of the above representation of 8, we refer to the appendix, where

we also show a more explicit asymptotic behavior of 8 for a class of functions f

in RVp.
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Remark 3.6. We wish to emphasize here Theorem 3.5, and so Corollary 6.2

below, hold even when an = 0. In this case, any viscosity solution u of (Pa) satisfies

u(x) = o(8(d(x))) as d(x) → 0.

This, for instance, is the case for the lower-partial sum operator

M−
k (X) := λ1(X) + · · · + λk(X)

with k < n.

Differently, Theorem 3.4, part (2), and so Corollary 6.1 below, require an > 0

for the respective conclusions to hold. This assumption is satisfied for the higher-

partial sum operator M+
k (X) := λn−k+1(X) + · · · + λn(X), but fails for the aforemen-

tioned lower-partial sum operator M−
k (X), with k < n.

Theorem 3.7. Let � ⊆ R
n be a C2 bounded open set. Suppose that an > 0,

and f satisfies (f-1), (f-2), (f-3) and (D-C)′. Also suppose that h ∈ C0(�) satisfies

2(h−) < ∞, and (D-h) with 2(ψ) = 0. Let u and v be continuous viscosity

solutions of (Pa). Then

(3.3) lim
d(x)→0

u(x)

v(x)
= 1,

where d(x) = dist(x, ∂�).

Our last result states that Problem (Pa) admits a unique non-negative viscosity

solution provided that an > 0. This brings us to our main result on uniqueness.

Theorem 3.8. Suppose that the assumptions of Theorem 3.7 on a, f and �

are satisfied and that (f-4) holds as well. Also suppose h ∈ C0(�) to be such that

2(h−) < ∞ and (D-h) holds with ψ ∈ C2(�) and 2(ψ) = 0. Then Problem (Pa)

admits at most one non-negative continuous viscosity solution.

Before we conclude this section, we would like to point out two problems we

were not able to settle and wish to propose as open problems.

(a) In the case when an > 0 in the partial trace operator Ma, Theorem 3.8

establishes uniqueness for non-negative viscosity solutions of Problem (Pa).

The main difficulty to extend this to all viscosity solutions, regardless of

the sign, was the absence of a strong comparison theorem for partial trace

equations. We leave this issue as an open problem.

(b) Another natural question to raise, and which we are not able to address at

this time, is: does Theorem 3.8 remain true when an = 0?
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4 Notations and auxiliary results

Let � ⊂ R
n be an open set, and Sn be the set of n × n real symmetric matrices,

endowed with the following partial ordering: X ≤ Y if and only if Y −X is positive

semidefinite. We say that H : �× R × R
n × Sn → R is (degenerate) elliptic if

(4.1) X ≤ Y ⇒ H(x, t, ξ,X) ≤ H(x, t, ξ,Y) ∀(x, t, ξ) ∈ �×R×R
n, ∀ X,Y ∈ Sn.

Throughout this paper, H will be a continuous mapping. In the case that H

is independent of some variable, we simplify by omitting such a variable. For

instance, in the case of the trace operator Tr(X), we simply set H(X) = Tr(X).

If u∈C2(�), letting Du be the gradient and D2u the Hessian matrix of u, we write

(4.2) Hu := H(x, u,Du,D2u),

and we think of this operator as acting on C2(�) and refer to it as a fully nonlinear

(degenerate) elliptic operator. Similarly, given h ∈ C0(�), the equation

(4.3) Hu = h(x),

will be said (degenerate) elliptic.

We will also consider equations (4.3) when u is only continuous in �, passing

to a weak formulation in the viscosity sense. An upper semicontinuous function u

in �, written u ∈ USC(�), is a viscosity subsolution of (4.3) if for all x0 ∈ � and

ϕ of class C2 in a neighborhood of x0 such that u − ϕ has a local maximum equal

to zero at x0, which we sometimes describe by saying that ϕ touches u at x0 from

above, we have Hϕ(x0) ≥ h(x0). Similarly, a lower semicontinuous function u

in �, written u ∈ LSC(�), is a viscosity supersolution if for all x0 ∈ � and ϕ of

class C2 in a neighborhood of x0 such that u−ϕ has a local minimum equal to zero

at x0, or in other words, ϕ touches u at x0 from below, we have Hϕ(x0) ≤ h(x0).

We say u ∈ C0(�) is a viscosity solution of (4.3) if u is a viscosity subsolution and

a viscosity supersolution.

If a viscosity subsolution, resp. supersolution of Hu = h(x) belongs to C2(�),

thenHu ≥ h(x), resp.Hu ≤ h(x), in�. We will use the same notations for viscosity

subsolution, resp. supersolution, belonging only to USC(�), resp. LSC(�), even

though in this case the above differential inequalities are not satisfied by u, at points

where it is not sufficiently regular, but by the test functions ϕ, respectively.

Viscosity solutions can be defined also without requiring upper and lower

semicontinuity. Given a function u : � → R, we denote by

(4.4) u∗(x) := lim
δ→0+

sup
Bδ(x)

u, and u∗(x) := lim
δ→0+

inf
Bδ(x)

u,

the upper and lower semicontinuous regularization (or envelopes) of u, respectively.

We remark that, in fact, u∗ ∈ USC(�) and u∗ ∈ LSC(�).
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We say that u is a subsolution (resp. a supersolution) of Hu = h(x) in �, writ-

ten Hu ≥ h(x) (resp. Hu ≤ h(x)), in the general viscosity sense if u∗ is a viscosity

subsolution (resp. u∗ is a viscosity supersolution), according to the preceding def-

inition. So in the general case u is a viscosity solution of the equation Hu = h(x)

if Hu∗ ≥ h(x) and Hu∗ ≤ h(x) in the viscosity sense.

We will use the following general existence result. See [46, Theorem 4.3].

Theorem 4.1. Let � be an open set. Suppose that H is a degenerate elliptic

operator. Assume that there exist a viscosity subsolution U ∈ USC(�) and a vis-

cosity supersolution U ∈ LSC(�), both locally bounded, of the equation Hu = h(x)

in �. Then

u := sup{u ∈ USC(�) : u subsolution, U ≤ u ≤ U},

u := inf{u ∈ LSC(�) : u supersolution, U ≤ u ≤ U}
(4.5)

are viscosity solutions.

Note that (u)∗ ∈ USC(�) and (u)∗ ∈ LSC(�), but they are not necessarily

continuous in �.

Let a = (a1, . . . , an) ∈ R
n. We say that a ≥ 0 (resp. a > 0) if ai ≥ 0

(resp. ai > 0) for all i = 1, . . . , n. Let λ1(X) ≤ · · · ≤ λn(X) be the eigenvalues

of matrix X ∈ Sn. For a ≥ 0, the operators Mau defined in (1.1) are degenerate

elliptic. Moreover, in the case a > 0, they are uniformly elliptic, but this is no

longer true as soon as one of the ai is zero. See [29]. However, except in the

trivial case a = 0, we will see below that when a ≥ 0 these operators are more

than degenerate elliptic.

To be precise, let us say that H is non-totally degenerate elliptic, see [6], if

(4.6) H(x, t, ξ,X+rI)≥H(x, t, ξ,X)+αr ∀(x, t, ξ,X)∈�×R×R
n×Sn and ∀r≥0,

for some α > 0, where I is the n × n identity matrix.

Since λi(X + rI) = λi(X) + r for all r ∈ R, then for all a ≥ 0 such that |a| > 0,

the weighted partial trace operators Mau, and hence also the operator Mau − f (u),

are non-totally degenerate elliptic.

For such operators, as a particular case of [6, Theorem 3.1], we have the

following comparison principle.

Theorem 4.2. Let� be a bounded open set, Hu = Mau− f (u) with 0 ≤ a 6= 0

and f ∈ C0(R) non-decreasing, h ∈ C0(�). Let also u ∈ USC(�) and v ∈ LSC(�)

be such that Hu ≥ h(x) and Hv ≤ h(x) in � in the viscosity sense. Then

sup
�

(u − v) ≤ sup
∂�

(u − v).
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We recall the following existence result, Theorem 1 of [9].

Theorem 4.3. Let� ⊂ R
n be a bounded open set endowed with condition (G).

Then, for all g ∈ C(∂�), and all j = 1, . . . , n, the Dirichlet problem

(P0)







λj(D
2u) = 0 in �

u = g on ∂�

has a viscosity solution u ∈ C(�).

We will use in the sequel the cases j = 1 and j = n. In these cases the solutions

of (P0) are locally Lipschitz-continuous. See for instance [8] and [29]. The

following Lipschitz estimates are deduced from [29, Lemma 5.5] by rescaling.

Theorem 4.4. Let � ⊆ R
n be an open set, and h ∈ C0(�). Suppose that

u ∈ USC(�) (resp. u ∈ LSC(�)) is a locally bounded subsolution (resp. superso-

lution) of the equation λ1(D2u) = h(x) (resp. λn(D2u) = h(x)) in �. Let x0 ∈ �,

and 0 < r < dist(x0, ∂�). Let Br = {x ∈ � : |x − x0| < r}. Then there exists a

positive constant C, independent of u, such that

(4.7) sup
x,y∈Br/2

|u(x) − u(y)| ≤ C
(‖u‖L∞(Br)

r
+ r‖h‖L∞(Br)

)

|x − y|.

We point out that, in fact, interior C1,α estimates have been proved in [61].

Remark 4.5. Let 0 6= a ≥ 0. Lemma 5.5 of [29] also provides Hölder

estimates for locally bounded subsolutions, resp. supersolutions, of the equation

Mau = h(x) in the case a1>a2+· · ·+an>0, resp. in the case an>a1 + · · · + an−1>0:

(4.8) sup
x,y∈Br/2

|u(x) − u(y)| ≤ C
(‖u‖L∞(Br)

rα
+ r2−α‖h‖L∞(Br)

)

|x − y|α,

with some α ∈ (0, 1). Theorem 5.3 of [29] yields the same estimate for locally

bounded solutions of the equation Mau = h(x) in the case a1an > 0. But, as far as

we know, there are no similar estimates for a general a ≥ 0 such that a 6= 0.

For more properties of partial trace operators, including maximum and compar-

ison principles, existence, uniqueness, regularity, removable singularities, entire

solutions, we also refer to [3, 7, 8, 9, 12, 13, 28, 29, 31, 32, 38, 39, 40, 45, 68, 69,

70, 71].
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5 Existence results

We solve the boundary blow-up problem (Pa) in a bounded open set� by approx-

imation with bounded solutions satisfying continuous boundary conditions on ∂�.

In order to find the approximating functions the basic result is the following.

Theorem 5.1. Let 0 6= a ≥ 0, f ∈ C0(R) satisfying (f-1), and� be a bounded

open set endowed with the geometric property (G). Suppose h ∈ C0(�) is bounded

and φ ∈ C0(∂�). Then the boundary value problem

(Pa)c







Mau = f (u) + h(x) in �

u = φ on ∂�

has a viscosity solution u ∈ C0(�).

Proof. The proof makes use of the existence result of Theorem 4.3 and the

comparison principle of Theorem 4.2.

Step 1. There exists a subsolution, continuous up to the boundary, of the

equation λ1(D2u) = f (u) + h(x) in � such that u = φ on ∂�.

To see this, let k := f (Mφ) + Mh, where

Mφ := ‖φ‖L∞(∂�) and Mh := ‖h‖L∞(�).

By Theorem 4.3 the problem







λ1(D2v) = 0 in �

v = φ− 1
2

k|x|2 on ∂�

has a solution v ∈ C0(�). Set U := v + 1
2

k|x|2. Since by assumption f (t) ≥ 0

for t ≥ 0, then

λ1(D2U) = λ1(D2v + kI)

= λ1(D2v) + k = k ≥ 0 in �,
(5.1)

and

U = v +
1

2
k|x|2 = φ ≤ Mφ on ∂�.(5.2)

By (5.1), (5.2) and the maximum principle, namely using the comparison principle

of Theorem 4.2 to compare U with the constant function Mφ on�, we have U ≤ Mφ

in �. From this, since f is non-decreasing, we get f (Mφ) ≥ f (U) in �.

We deduce from (5.1) that λ1(D2U) ≥ k ≥ f (U) + h(x) in �. The boundary

condition U = φ on ∂� is provided by (5.2), and so we are done.
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Step 2. There exists a supersolution, continuous up to the boundary, of the

equation λn(D2u) = f (u) + h(x) in � such that u = φ on ∂�.

We argue in a similar manner as in Step 1, but solving by Theorem 4.3 the

problem






λn(D2v) = 0 in �,

v = φ + 1
2

k|x|2 on ∂�,

with k = −f (−Mφ) + Mh. By (f-1) we note that f (t) ≤ 0 for t ≤ 0. Therefore k ≥ 0.

We set U = v − 1
2

k|x|2, so that

λn(D2U) = −k ≤ 0 in �,(5.3)

and

U = φ ≥ −Mφ on ∂�,(5.4)

where Mφ is defined as in Step 1. By (5.3), (5.4) and the maximum principle, we

have U ≥ −Mφ in�. From this, since f is non-decreasing, we get f (−Mφ) ≤ f (U).

We deduce from (5.3) that λn(D2U) ≤ −k ≤ f (U) + h(x) in �. The boundary

condition U = φ on ∂� is provided by (5.4), and so we are done.

Step 3. Finally, we show that Problem (Pa)c has a unique viscosity solu-

tion u ∈ C0(�).

Let 0 6= a ≥ 0, and set |a| = a1 + · · · + an, so that |a| > 0. The func-

tions fa = f/|a| and ha = h/|a| satisfy the assumption of this theorem required of f

and h, respectively. Therefore Steps 1 and 2 provide a subsolution Ua ∈ C0(�)

of the equation |a|λ1(D2u) = f (u) + h(x) and a supersolution Ua ∈ C0(�) of the

equation |a|λn(D2u) = f (u) + h(x) in�, respectively, such that Ua = Ua = φ on ∂�.

Since

(5.5) |a|λ1(X) ≤ Ma(X) ≡

n
∑

i=1

aiλi(X) ≤ |a|λn(X),

then Ua ∈ C0(�) and Ua ∈ C0(�) are, respectively, a subsolution and a superso-

lution of the equation Mau = f (u) + h(x) in �, and Ua = Ua = φ on ∂�.

From this, using Theorem 4.1, we deduce that the equation Mau = f (u) + h(x)

has a viscosity solution u in �, and Ua ≤ u ≤ Ua in �. Hence, by the continuity

of Ua and Ua, we get

(5.6) Ua ≤ u∗ ≤ u ≤ u∗ ≤ Ua in �.

We extend u∗, u and u∗ to �, setting u∗(x) = u(x) = u∗(x) = φ(x) for x ∈ ∂�.

Observing also that

Ua = Ua = φ on ∂�,
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then from (5.6) we obtain that u∗, u and u∗ are continuous at the points of the

boundary. Hence u∗ ∈ LSC(�) and u∗ ∈ USC(�). Moreover, recalling that, by

the general definition of viscosity solutions,

(5.7) Mau∗ ≤ f (u∗) + h(x), Mau∗ ≥ f (u∗) + h(x) in �,

we also have, by the comparison principle,

(5.8) u∗ ≤ u∗ in �.

Combining (5.8) with the reverse inequality u∗ ≤ u∗ of general validity, already

used above in (5.6), we get u∗ = u∗ = u in �, and so u ∈ C0(�). Since we

already know from the above that u is continuous at the points of ∂�, we conclude

that u ∈ C0(�).

Again by the comparison principle, the solution u is unique, and this finishes

the proof. �

Now, with the aid of Theorem 5.1, we prove the existence of solutions to the

boundary blow-up problem (Pa).

Proof of Theorem 3.1. Let us consider, by invoking Theorem 5.1, the

solutions ui ∈ C0(�), i ∈ N, of the approximating problems

(Pa)i







Mau = f (u) + h(x) in �,

u = i on ∂�.

By the comparison principle, Theorem 4.3, the sequence {ui}i∈N is non decreas-

ing, and we set

(5.9) u(x) := lim
i→∞

ui(x), x ∈ �.

Since for all i ∈ N we have lim infx→∂� u(x) ≥ limx→∂� ui(x) = i, the function u

satisfies the boundary blow-up condition:

(5.10) lim
x→∂�

u(x) = ∞.

Step 1. The function u(x) is locally bounded in �.

In fact, supposing that 0 ∈ �, as we may up to translations, let

v(x) := 8(R2 − r2) + C(R2 − r2),

where r = |x|, for a ball BR ⋐ � centered at 0 of radius R to be chosen suitably

small, and C ∈ R+ to be chosen suitably large. Note that by (2.3)

(5.11) lim
R→0+

inf
BR

v = lim
R→0+

8(R) = ∞.
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By direct computation using (2.3), the eigenvalues of the Hessian matrix D2v

are

(5.12) λ1 = · · · = λn−1 ≤ 2
√

2F(v) − 2C; λn ≤ 4f (v)r2 + 2
√

2F(v) − 2C.

Therefore

|a|λn(D2v(x)) ≤ 4|a|f (v(x))|x|2 + 2|a|
√

2F(v(x)) − 2|a|C

≤ |a|f (v)
{

4R2 +
2
√

2F(v)

f (v)

}

− 2|a|C,
(5.13)

where we can choose R > 0 small enough, by (2.1) and (5.11), such that

|a|
(

4R2 +
2
√

2F(v)

f (v)

)

≤ 1,

and 2|a|C ≥ − minBR
h, to obtain

(5.14) Ma(D2v) ≤ |a|λn(D2v) ≤ f (v) + h(x).

That is to say v is a supersolution of the equation Mav = f (v) + h(x) in any

ball BR ⋐ � with sufficiently small radius R, and by (2.3)

(5.15) lim
x→∂BR

v(x) = ∞,

Comparing the approximating solutions ui, i ∈ N, with v on BR, we get ui ≤ v

in BR, and

(5.16) u(x) = lim
i→∞

ui(x) ≤ v(x), x ∈ BR.

Let then K be a compact subset of �, and choose R eventually smaller in

order that R < dist(K, ∂�). Covering K with a finite number of balls BR/2 with

center xj ∈ K, we set vj(x) = v(x − xj). Reasoning as above in BR, and taking into

account that 8 is non-increasing, we have

u(x) ≤ vj(x) = 8(R2−|x−xj|
2)+C(R2−|x−xj|

2) ≤ 8
(3

4
R2

)

+CR2, x ∈ BR/2(xj),

so that

(5.17) u ≤ 8
(3

4
R2

)

+ CR2 in K.

Thus u is locally bounded above in �. On the other hand u ≥ u1. So u is

bounded below in �, and the claim of Step 1 is proved.
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Step 2. Proof of the theorem for Mau = λ1(D2u), that is a = e1 = (1, . . . , 0).

We start as at beginning with the solutions ui solving (Pe1
)i. Let us call U(x),

in this case, the limit function u(x) in (5.9).

By Step 1, U(x) is locally bounded in�. By the continuity of f and h, using the

local Lipschitz estimate of Theorem 4.4 with ui(x) instead of u, and f (ui(x)) + h(x)

instead of h(x), note that the ui’s are equi-bounded and equi-Lipschitz on each

compact subset of �. Therefore, passing to the limit as i → ∞, we also obtain

that U(x) is locally Lipschitz continuous. By Dini’s Theorem, since U(x) is the

limit of the non-decreasing sequence of continuous functions ui, then the ui’s are

locally uniformly convergent. By the stability results in the theory of viscosity

solutions, see for instance [20, Section 6], [11, Proposition 2.9], [46, Section 4.3],

then U(x) is a continuous viscosity solution of the equation λ1(D2u) = f (u) + h(x)

in �. Arguing as in the case of (5.10), U = ∞ on ∂�, and this finishes the proof.

Step 3. Proof of the theorem for Mau = λn(D2u), that is a = en = (0, . . . , 1).

Reasoning as in Step 2, let ui be the solutions of (Pen
)i. Let us call V(x), in this

case, the limit function u(x) in (5.9). The remaining part of the proof is the same

as Step 2 with λn and V(x) instead of λ1 and U(x).

Step 4. Proof of the theorem in the general case 0 6= a ≥ 0.

As in the proof of Theorem 5.1, Step 3, we observe that for c ∈ R+ the

functions fc = f/c and hc = h/c satisfy the same assumptions of f and h. Therefore

Step 2 and Step 3 yield continuous viscosity solutions of the equations

cλ1(D2u) = f (u) + h(x) and cλn(D2u) = f (u) + h(x) in �,

respectively, that go to infinity as x → ∂�.

This shows that the boundary blow-up problems (Pce1
) and (Pcen

) have a con-

tinuous viscosity solution for all c > 0.

From the hypothesis on a we deduce that |a| = a1 + · · · + an > 0. Then we

call Ua and Va such solutions for c = |a|, that is

|a|λ1(D2Ua) = f (Ua) + h(x) in �, Ua = ∞ on ∂�;

|a|λn(D2Va) = f (Va) + h(x) in �, Va = ∞ on ∂�.
(5.18)

By construction, Ua = limi→∞ ui, where

(5.19) |a|λ1(D2ui) = f (ui) + h(x) in �, ui = i on ∂�.

Observing that, since λ1 ≤ λn, the function ui is a viscosity subsolution of the

equation |a|λn(D2u) = f (u) + h(x) in �, and Va is a viscosity solution of the same

equation in� such that Va > ui on ∂�, by the comparison principle of Theorem 4.2
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we have ui ≤ Va in �. Hence, letting i → ∞, we get

(5.20) Ua ≤ Va, in �.

Moreover, by (5.5), Ua ∈ C0(�) and Va ∈ C0(�) are a subsolution and a

supersolution, respectively, of the equation Mau = f (u) + h(x) such that Ua ≤ Va

in �.

Hence by Theorem 4.1 there exists a viscosity solution u of the same equation

such that Ua ≤ u ≤ Va in� and so, by (5.18), u = ∞ on ∂�, finishing the proof.�

.

Remark 5.2. The viscosity solution u is the supremum of functions ui ∈ C(�),

and is in turn lower semicontinuous in �. It is known that u is continuous in one

of the following cases: a1 > a2 + · · · + an, an > a1 + · · · + an−1 and a1an > 0. See

the Lipschitz and the Hölder estimates of Remark 4.5 of Section 3.

Theorem 3.1 will be used now to prove Theorem 3.2 in the case h ∈ C0(�).

The proof is specular to that one of Theorem 3.1.

Proof of Theorem 3.2. Firstly, we construct by homothety an increasing

sequence of open subsets �j satisfying condition (G) such that �j ⋐ �j+1 ⋐ �,

j ∈ N, and
⋃

j�j = �.

So for all j ∈ N Theorem 3.1 provides solutions uj of the approximating

problems

(Pa)j







Mau = f (u) + h(x) in �j,

u = ∞ on ∂�j.

Let us fix j ∈ N. We recall that uj ∈ LSC(�), see Remark 5.2. Letting

Hu = Mau−f (u), by the general definition of viscosity solutions, see Section 4, we

have H(uj)∗ ≤ h in�j, as well as H(uj+1)∗ ≥ h in�j. Moreover (uj)∗ = ∞ on ∂�j,

while (uj+1)∗ ∈ USC(�j+1) is bounded above on ∂�j. Therefore by the comparison

principle, Theorem 4.3, we have (uj+1)∗ ≤ (uj)∗ in �j, and hence uj+1 ≤ uj in �j.

Let x be any point in �. There is jx ∈ N such that x ∈ �j for all j ≥ jx. By the

above, the sequence {uj(x)}j≥jx is non-increasing, and we set

(5.21) u(x) := lim
j→∞

uj(x).

Comparing the subsolutionw ∈ USC(�) of (Pa) in�, that exists by assumption,

and uj in�j for all j ≥ jx, Theorem 4.2 yields uj(x) ≥ w(x), and so, letting j → ∞,

(5.22) u(x) ≥ w(x) in �.
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Therefore, since lim infx→∂� u(x) ≥ limx→∂�w(x) = ∞, the function u satisfies

the boundary blow-up condition:

(5.23) lim
x→∂�

u(x) = ∞.

Step 1. The function u(x) is locally bounded in �.

To see this, we know that u(x) is locally bounded from below by (5.22). On the

other hand, let K be a compact subset of �. By construction there is jK ∈ N such

that K ⊂ �j for all j ≥ jK . Since uj(x) ≤ ujK (x) for all x ∈ �jK , and all j ≥ jK , then,

letting j → ∞, we have u ≤ ujK in K. Hence u(x) is locally bounded above, too,

and we are done.

Step 2. The theorem holds for Mau = λ1(D2u), that is a = e1 = (1, . . . , 0).

Let uj be the viscosity solution of the boundary blow-up problem (Pe1
)j, and let

us call U(x), in this case, the limit function u(x) in (5.21).

At this point, we can repeat verbatim the proof of Theorem 3.1, Step 2, refer-

ring to the non-increasing sequence uj instead of the non-decreasing sequence ui

addressed there, to show that U(x) is a continuous viscosity solution of the equa-

tion λ1(D2u) = f (u) + h(x) in �. Arguing as for the case leading to (5.23), we

get U = ∞ on ∂�, and this finishes the proof.

Step 3. Proof of the theorem for Mau = λn(D2u), that is a = en = (0, . . . , 1).

It is sufficient to repeat verbatim the proof of Theorem 3.1, Step 3, with (Pen
)j

and (5.21) instead of (Pen
)i and (5.9), respectively.

Step 4. Proof of the theorem in the general case 0 6= a ≥ 0.

Following the proofs of Theorem 5.1, Step 3, and of Theorem 3.1, Step 4, we

find a subsolution Ua and a supersolution Va of the equation Mau = f (u) + h(x) by

solving the boundary blow-up problems for the equations |a|λ1(u) = f (u) + h(x)

and |a|λn(u) = f (u) + h(x), respectively, as in the above Step 2 and Step 3.

By construction Va = limj→∞ uj, where

(5.24) |a|λn(D2uj) = f (uj) + h(x) in �j, uj = ∞ on ∂�j.

Since λ1 ≤ λn, the function uj is a viscosity supersolution of the equation

|a|λ1(D2u) = f (u) + h(x) in �j, while Ua is a viscosity solution of this equation

in�, and Ua < uj = ∞ on ∂�j. Then, by the comparison principle of Theorem 4.2

we have Ua ≤ uj in �j. Therefore, for any x ∈ �, we have Ua(x) ≤ uj(x) for

all j ≥ jx, where jx ∈ N is such that x ∈ �jx . It follows that, letting i → ∞,

(5.25) Ua(x) ≤ Va(x) for all x ∈ �.

We note by Theorem 4.1 that there exists a viscosity solution u of the equation

Mau = f (u) + h(x) in � such that Ua ≤ u ≤ Va in � and so u = ∞ on ∂�,

since Ua = ∞ = Va on ∂�. This completes the proof. �
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6 Asymptotic boundary behavior

First we begin by recalling the following eigenvalue inequalities for X ∈ Sn (see,

for instance, [74, Theorem 7.10]).

(6.1) λj(X) + λ1(Y) ≤ λj(X + Y) ≤ λj(X) + λn(Y), j = 1, . . . , n.

Consequently, for X,Z ∈ Sn we have

Ma(X + Z) =

n
∑

j=1

ajλj(X + Z) ≤

n
∑

j=1

aj[λj(X) + λn(Z)]

= Ma(X) + |a|λn(Z).(6.2)

Similarly,

Ma(X + Z) =

n
∑

j=1

ajλj(X + Z) ≥

n
∑

j=1

aj[λj(X) + λ1(Z)]

= Ma(X) + |a|λ1(Z).

Hence, we get the following inequalities, valid for all X,Y ∈ Sn.

(6.3) |a|λ1(Y − X) ≤ Ma(Y) − Ma(X) ≤ |a|λn(Y − X).

Thus, if u, v ∈ C(�) with u − v ∈ C2(�), then we find that

(6.4) |a|λ1(D2(u − v)) ≤ Ma(D2u) − Ma(D2v) ≤ |a|λn(D2(u − v)),

in the viscosity sense.

Proof of Theorem 3.4. We recall that f is assumed to satisfy (f-1) and (f-2).

Since � is a C2 bounded open set, we also recall that there is µ > 0 such

that d ∈ C2(�µ), and |Dd| = 1 in �µ. Here,

�µ := {x ∈ � : d(x) < µ}.

For any 0 < ρ < µ we consider the following subsets of �:

�−
ρ := {x ∈ � : ρ < d(x) < µ}, �+

ρ := {x ∈ � : 0 < d(x) < µ− ρ}.

With the function 8 defined in (2.2), we introduce

w−(x) := A+8(d(x)−ρ) for x∈�−
ρ and w+(x) := A−8(d(x) +ρ) for x∈�+

ρ,

where A+ and A− are the positive constants given in the hypotheses of the theorem.
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Note that

D2w− = A+8
′′(d(x) − ρ)Dd ⊗ Dd + A+8

′(d(x) − ρ)D2d, x ∈ �−
ρ

and

D2w+ = A−8
′′(d(x) + ρ)Dd ⊗ Dd + A−8

′(d(x) + ρ)D2d, x ∈ �+
ρ.

Given x ∈ �µ, there is a unique y(x) ∈ ∂� such that |x − y(x)| = d(x).

Let d±(x) := d(x) ± ρ. The eigenvalues of D2w− are

A+8
′′(d−(x)), and −

A+8
′(d−(x))κj(y(x))

1 − κj(y(x))d(x)
, j = 1, . . . , n − 1.

Similarly, the eigenvalues of D2w+ are

A−8
′′(d+(x)), and −

A−8
′(d+(x))κj(y(x))

1 − κj(y(x))d(x)
, j = 1, . . . , n − 1.

Here κ1 ≤ · · · ≤ κn−1 are the principal curvatures of ∂�. See [36, Section 14.6].

On recalling the limit in (2.1), we choose µ sufficiently small that, for

all j = 1, . . . , n − 1,

(6.5) −
8′(d±(x))

8′′(d±(x))

κj(y(x))

1−κj(y(x))d(x)
=

√
2F(8(d±(x)))

f (8(d±(x)))

κj(y(x))

1−κj(y(x))d(x)
≤1 (x∈�µ).

Thus,

(6.6) −
8′(d±(x))κj(y(x))

1 − κj(y(x))d(x)
≤ 8′′(d±(x)), j = 1, . . . , n − 1 (x ∈ �µ).

On recalling assumption (Asy-1), we fix ε > 0 such that

(6.7) an < an(1 + ε) < lim inf
t→∞

f (A+t)

A+f (t)
.

Then, by (2.3) we find the following for x ∈ �−
ρ :

Maw−+ h− =A+f (8(d−(x)))

×

[

an +

√
2F(8(d−(x)))

f (8(d−(x)))

n−1
∑

j=1

ajκj(y(x))

1 − κj(y(x))d(x)
+

h−(x)

A+f (8(d−(x)))

]

.

Using (2.1) and Remark 2.3, we see that the limit supremum, as d−(x) → 0, of

the expression in the bracket is an. Consequently, with µ taken as small as needed,

we have

Maw− + h− ≤ A+f (8(d−(x))an(1 + ε)

≤ f (A+8(d−(x)) = f (w−), by (6.7).
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Therefore we deduce that

(6.8) Maw− ≤ f (w−) − h− ≤ f (w−) + h, x ∈ �−
ρ .

Recall that by assumption

(6.9) Mau ≥ f (u) + h, x ∈ �,

in the general viscosity sense, and set θ+ := max{u∗(x) : d(x) ≥ µ}.

Then from (6.8) we find that

Ma(w− + |θ+|) = Maw−

≤ f (w− + |θ+|) + h, x ∈ �−
ρ .

(6.10)

We also observe, by construction, that u∗ ≤ w− + |θ+| on the boundary of �−
ρ .

Then, by (6.9) and (6.10), using the comparison principle, Theorem 4.2, we find

that u∗ ≤ w− + |θ+| in �−
ρ . That is

u∗(x)

8(d(x) − ρ)
−

|θ+|

8(d(x) − ρ)
≤ A+, x ∈ �−

ρ .

Letting ρ → 0+ we find that

u∗(x)

8(d(x))
−

|θ+|

8(d(x))
≤ A+, x ∈ �µ.

Then we let d(x) → 0 to conclude the assertion in (1) of the theorem.

Next, we proceed to establish (2). This time we use assumption (Asy-2) to

fix ε > 0 such that

(6.11) lim sup
t→∞

f (A−t)

A−f (t)
< (1 − ε)an < an.

Then, for sufficiently small ρ > 0, we have the following for x ∈ �+
ρ:

Maw+ = A−f (8(d+(x)))

[

an +

√
2F(8(d+(x)))

f (8(d+(x)))

n−1
∑

j=1

ajκj(y(x))

1 − κj(y(x))d(x)

]

≥ A−f (8(d+(x)))(1 − ε)an

≥ f (w+), by (6.11).

Setting θ− := A−8(µ), then we have

(6.12) Ma(w+ − θ−) ≥ f (w+ − θ−) in �+
ρ.

On the other hand, we use condition (D-h) to take a non-negative ψ ∈ C2(�)

such that λn(D2ψ) ≤ −h in �.
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Therefore, sinceMau ≤ f (u)+h in the general viscosity sense, we have, by (6.2),

the following in the viscosity sense:

Ma(u∗ + |a|−1ψ) ≤ Mau∗ + λn(D2ψ)

≤ Mau∗ − h, by (D-h)

≤ f (u∗)

≤ f (u∗ + |a|−1ψ).

(6.13)

Note that, by construction, since u = ∞ on ∂�, then w+ − θ− ≤ u∗ + |a|−1ψ

on ∂�+
ρ. By (6.12 and (6.13), again using the comparison principle, Theorem 4.2,

we conclude that w+ − θ− ≤ u∗ + |a|−1ψ in �+
ρ. Therefore, we have

A− ≤
u∗(x)

8(d(x) + ρ)
+

θ−

8(d(x) + ρ)
+

|a|−1ψ(x)

8(d(x) + ρ)
, x ∈ �+

ρ.

We let ρ → 0 to conclude that

A− ≤
u∗(x)

8(d(x))
+

θ−

8(d(x))
+

|a|−1ψ(x)

8(d(x))
, x ∈ �µ.

We assume that 2(ψ) < ∞, for otherwise the inequality (3.2) holds trivially.

We now take the limit infimum as d(x) → 0 to get the conclusion in (2) of the

theorem. �

Corollary 6.1. Let a ≥ 0 such that an > 0, and suppose h ∈ C0(�) such

that either sup� h < ∞ or � is uniformly convex and h satisfies (2.6). Also

suppose 2(h−) < ∞. Assume that conditions (f-1) and (f-2) hold and there are

positive constants A− and A+ such that (Asy-1) and (Asy-2) hold. Then, for any

viscosity solution u of Problem (Pa), we have

A− ≤ lim inf
d(x)→0

u∗(x)

8(d(x))
≤ lim sup

d(x)→0

u∗(x)

8(d(x))
≤ A+.

Proof. Since sup� h < ∞, or � is uniformly convex and h satisfies (2.6),

we recall from Remark 2.4 that condition (D-h) is satisfied with a non-negative

function ψ ∈ C2(�), so that 2(ψ) = 0 in �. Since 2(h−) < ∞, the desired

conclusion follows from Theorem 3.4. �

Proof of Theorem 3.5. Note that, since f ∈ RVp for p > 1, the function f

satisfies (f-2). First let us suppose that an > 0, and let us take any 0 < ε < an.

Since f ∈ RVp we see that (2.5) holds with ξ = (an ± ε)
1

p−1 so that

lim
t→∞

f ((an ± ε)
1

p−1 t)

f (t)
= (an ± ε)

p

p−1 .
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As a consequence, setting A± := (an ± ε)
1

p−1 , we can write

lim
t→∞

f (A±t)

A±f (t)
= an ± ε.

Therefore, we see that both conditions (Asy-1) and (Asy-2) hold with

A+ := (an + ε)
1

p−1 and A− := (an − ε)
1

p−1 ,

respectively. We point out that (Asy-1) still holds with A+ = ε
1

p−1 when an = 0. By

invoking Theorem 3.4, and using the assumption that 2(ψ) = 0, we obtain

(an − ε)
1

p−1 ≤ lim inf
d(x)→0

u∗(x)

8(d(x))
≤ lim sup

d(x)→0

u∗(x)

8(d(x))
≤ (an + ε)

1
p−1 .

Letting ε → 0, we get the desired limit when an > 0. If, on the other hand,

an = 0, then we see that

0 ≤ lim inf
d(x)→0

u∗(x)

8(d(x))
≤ lim sup

d(x)→0

u∗(x)

8(d(x))
≤ ε

1
p−1 ∀ ε > 0.

Again taking the limit as ε → 0 leads to the desired result. �

A simple consequence of Theorem 3.5 is the following.

Corollary 6.2. Let 0 6= a ≥ 0. Let h ∈ C0(�) such that either sup� h < ∞

or � is uniformly convex and h satisfies (2.6). Also suppose2(h−) < ∞. Assume

condition (f-1) and f ∈ RVp for some p > 1. Then for any viscosity solution u

of (Pa) we have

lim
d(x)→0

u(x)

8(d(x))
= a1/(p−1)

n .

Proof. We recall from Remark 2.4 that (D-h) holds, and that ψ ∈ C2(�).

Thus 2(ψ) = 0. Therefore, by Theorem 3.5 we conclude that the above limit

holds. �

We conclude this section with

Proof of Theorem 3.3. Let us begin with the assumption (1). Set

λ :=
an

n
, and 3 := |a|,

and fix v ∈ C(�), a large viscosity solution to

Pλ,3(D2v) = f (v) in �.
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See [59, Theorem 3.4] for the existence of such a solution. By assumption (D-h),

there exists a non-negative function ψ ∈ C2(�) ∩ C0(�) such that λn(D2ψ) = −h

in �. We now see that w := v − ψ/|a| satisfies

Maw = Ma

(

v −
ψ

|a|

)

≥ Mav + λ1(D2(−ψ))

= Mav − λn(D2(ψ))

≥ P−
λ,3(D2v) + h, by [29, (3.6)]

= f (v) + h

≥ f (w) + h.

Here, P−
λ,3 is the Pucci minimal operator with positive real numbers λ and 3 ≥ λ

(ellipticity constants) defined as

P−
λ,3(X) = λ

n
∑

i=1

λ+
i (X) −3

n
∑

i=1

λ−
i (X) = inf

A∈Sn
λ,3

Tr(AX),

where Sn
λ,3 is the set of n × n real symmetric matrices with eigenvalues between λ

and 3. Thus w is a subsolution of the equation Ma(u) = f (u) + h such that w = ∞

on ∂�. According to Theorem 3.2, Problem (Pa) admits a maximal viscosity

solution.

Now, we turn to the assumption (2). First, we recall that d ∈ C2(�µ) for µ > 0

small enough. Let 0 < σ < ρ < µ. We extend d as a C2 function to the entire

domain � by setting

(6.14) δ = (1 − ϕ)d + ϕ,

where ϕ ∈ C∞
0 (�) such that 0 ≤ ϕ ≤ 1 on � and

ϕ ≡ 1 on �
ρ

= {x ∈ � : d(x) ≥ ρ}, ϕ ≡ 0 on �σ = {x ∈ � : d(x) ≤ σ}.

By using assumption (Asy-2) we fix ε > 0 such that

lim sup
d(x)→0

f (A−8(d(x)))

A−f (8(d(x)))
< an(1 − ε) < an,

so that, taking a sufficiently small σ, we have

(6.15) an(1 − ε)A−f (8(d(x))) ≥ f (A−8(d(x))), x ∈ �σ.

Now let v(x) := A−8(δ(x)) for x ∈ �. Since δ = d in �σ, proceeding as in the

proof of Theorem 3.4 we find there

Mav−h=A−f (8(d(x)))

[

an+

√
2F(8(d(x)))

f (8(d(x)))

n−1
∑

j=1

ajκj(y(x))

1−κj(y(x))d(x)
−

h(x)

A−f (8(d(x)))

]

,
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and, by assumption 2f (h) = 0, the limit infimum of the expression in the bracket

above is an > 0. Therefore, eventually taking a smaller σ > 0, we find in �σ

Mav − h ≥ A−f (8(d(x)))(1 − ε)an ≥ f (v), by (6.15),

that is

(6.16) Mav ≥ f (v) + h in �σ.

On the other hand, noting that v ∈ C2(�
σ
) and h ∈ C0(�

σ
), we set

Mv = max
�
σ
v ; mF := min

�
σ
Mav ; Mh := max

�
σ

h.

By the assumption that f (t) → −∞ as t → −∞, we find tf ∈ R such that

f (t) ≤ mF − Mh for t ≤ tf . Therefore, picking θ ∈ R such that Mv− θ ≤ tf , we get

in �
σ

Ma(v − θ) ≥ mF = mF − Mh + Mh

≥ f (tf ) + h

≥ f (Mv − θ) + h

≥ f (v − θ) + h.

(6.17)

Thenw := v−θ is a subsolution of the equationMau ≥ f (u)+h in�. In addition,

w = ∞ on ∂�. Therefore, by Theorem 3.2, we conclude that Problem (Pa) admits

a solution. �

7 Uniqueness

In this section, we study uniqueness of non-negative solutions to Problem (Pa).

We remark that if we assume (f-1) and (f-2), then 0 ≤ ℓi ≤ 1
2
. See [59,

Remark 2.10].

Conditions (f-1), (f-2) and (f-3) yield the following inequalities: for any ρ > 1

there is a positive constant c8 = c8(ρ) such that

(7.1) 8(ρt) ≥ c88(t)

for sufficiently large t (see [59, Lemma 2.15]); for any κ > 0 there is a positive

constant cf = cf (κ) such that

(7.2) f (κt) ≥ cf f (t)
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for sufficiently large t (see [59, Lemma 2.12]);

(7.3) ℓf := lim sup
t→∞

t

f (t)(
∫ ∞

t ds/F(s)1/2)2
≤
ℓs

ℓ2
i

(1

2
− ℓi

)2

,

where

ℓs := lim sup
t→∞

F(t)

tf (t)
> 0

(see [59, Lemma 2.11]).

We recall, see [59, Remark 2.7], that if (D-C)′ holds, then ℓθ is a non-decreasing

function of θ, and, for any given θ and τ ∈ (1, ℓθ) there exists t such that

(7.4) f (θt) ≥ τθf (t) ∀ θ > θ and ∀ t > t.

Proof of Theorem 3.7. Since f satisfies condition (D-C)′, we recall that

there are constants 0 < A− ≤ 1 ≤ A+ <∞ such that f satisfies conditions (Asy-1)

and (Asy-2), see Remark 2.1. Therefore we note that Theorem 3.4 applies. So

let u, v ∈ C(�) be two solutions of (Pa). It is sufficient to show, following the

proof of [59, Theorem 4.4] and [58, Theorem 6.2], that

(7.5) θ := lim sup
d(x)→0

u(x)

v(x)
≤ 1.

For this purpose, let us assume by contradiction that θ > 1.

By definition, for all ε > 0 there exists δ > 0 such that

(7.6)

u(x)

v(x)
≤ θ + ε if d(x) ≤ δ;

u(x0)

v(x0)
> θ − ε for some x0 ∈ � : d(x0) <

2

3
δ.

Here, we will consider ε small enough, 0 < ε < ε0, where θ − ε0 > 1, so

that θ − ε > 1.

Then we set

Oε,r := Oε ∩ Br(x0), where Oε = {x ∈ � | u(x) > (θ − ε)v(x)} and r =
1

2
d(x0),

so that in particular

Oε,r ⊂ Br(x0) ⋐ �δ = {x ∈ � : d(x) < δ} and r ≤ d(x) ≤ 3r for x ∈ Br(x0).

Eventually taking a smaller δ in order to have t = v(x) sufficiently large, we can

apply (7.4) with θ = θ − ε0 and τ =
ℓ
θ
+1

2
to get

(7.7) f ((θ − ε)v) ≥ (θ − ε)f (v) + cθf (v) in �δ

with a positive constant cθ.
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Then we compare u and vε = (θ − ε)v in Oε,r. Let us first observe that the

following hold:

Mavε = (θ − ε)f (v) + (θ − ε)h(x), in �,(7.8)

and

Mau = f (u) + h(x)

≥ f ((θ − ε)v) + h(x)

≥ (θ − ε)f (v) + cθf (v) + h(x) in Oε,r [by (7.7)].

(7.9)

Letting δ > 0 be small as needed, from Theorem 3.4 we deduce that

(7.10)
1

2
A−8(d(x)) ≤ v(x) ≤ 2A+8(d(x)), x ∈ Oε,r,

and so, using the properties of f and 8, we find the lower bound:

(7.11)

f (v(x)) ≥ f
(1

2
A−8(d(x))

)

[by (7.10), f non-decreasing]

≥ f
(1

2
A−8(3r)

)

[by d(x) ≤ 3r, 8 non-increasing]

≥ f
(1

2
A−c88(r)

)

[by (7.1)]

≥ cf f (8(r)) [by (7.2)]

≥ cf f (8(d(x))) [by d(x) ≥ r].

It follows that, for x ∈ �δ with a sufficiently small δ > 0,

(7.12) cθf (v(x)) ≥ cθ cf f (8(d(x))) = c′f (8(d(x))).

Moreover, choosing δ > 0 small as needed, for y ∈ Br(x0) we have

f (8(r)) =
f (8(r))

r2

(
∫ ∞

8(r)

ds
√

F(s)

)2

[by (2.2)]

≥
1

ℓf + 1

8(r)

r2
[by (7.3)]

≥
1

ℓf + 1

8(d(y))

r2
[by d(y) ≥ r]

≥
1

2A+(ℓf + 1)

v(y)

r2
[by (7.10)].

(7.13)

We now see that (7.12), together with (7.13), yields

(7.14) cθf (v(x)) ≥ C
v(y)

r2
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with some C > 0, depending on ℓf and A+ only. The inequality (7.14), combined

with (7.9), leads to the inequality

(7.15) Mau ≥ (θ − ε)f (v(x)) + h(x) + C
v(y)

r2

for all x ∈ Oε,r and y ∈ Br(x0).

Next, let us consider for all y ∈ Br(x0) the polynomial

p(x) = σv(y)
(

1 −
|x − x0|

2

r2

)

with a constant σ > 0 to be suitably chosen in the sequel.

Since p ∈ C2(Rn) and D2p = −2σv(y)

r2 I, we use (6.4) to find that

Ma(u + p) = Ma(D2u + D2p)

≥ Ma(D2u) + |a|λ1(D2p)

= Mau −
2σv(y)

r2
|a|

≥ (θ − ε)f (v) + h(x) + C
v(y)

r2
−

2σv(y)

r2
|a|.

(7.16)

On choosing σ = C
2|a|

and using (7.15), we obtain

Ma(u + p) ≥ (θ − ε)f (v(x)) + h(x) + C
v(y)

r2
−

2σv(y)

r2
|a|

= (θ − ε)f (v) + (θ − ε)h(x).

(7.17)

Let ψε := θ−ε−1
|a|

ψ. Using (6.4) and (7.8) we see that the following holds in �:

Ma(vε + ψε) ≤ Mavε + (θ − ε− 1)λn(D2ψ)

≤ (θ − ε)f (v) + (θ − ε)h − (θ − ε− 1)h, by (D-h)

= (θ − ε)f (v) + h.

(7.18)

Comparing (7.17) and (7.18) we see that u + p and vε − ψε are a subsolution

and a supersolution of the same equation, and we estimate the difference on Oε,r.

By the comparison principle such difference has a maximum on the boundary,

∂Oε,r = (Br(x0) ∩ ∂Oε) ∪ (Oε ∩ ∂Br(x0))

= {x : |x − x0|<r, u(x) = (θ − ε)v(x)} ∪ {x : |x − x0| = r, u(x)> (θ− ε)v(x)},

so that for some y0 ∈ ∂Oε,r we have

u(x0) + p(x0)−(θ − ε)v(x0) −
θ − ε− 1

|a|
ψ(x0)

≤ u(y0) + p(y0) − (θ − ε)v(y0) −
θ − ε− 1

|a|
ψ(y0).

(7.19)
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We claim that y0 ∈ ∂Br(x0). Indeed, let τ0 = u(x0)−(θ−ε)v(x0) > 0. Supposing

by contradiction that y0 ∈ Br(x0), then u(y0) = (θ − ε)v(y0), and from (7.19) we

would get

τ0 + p(x0) < u(x0) + p(x0) −
θ − ε− 1

|a|
ψ(x0) < p(y0) −

θ − ε− 1

|a|
ψ(y0),

from which we get

τ0 + p(x0) − p(y0) ≤
θ − ε− 1

|a|
(ψ(x0) −ψ(y0)).

But then, for sufficiently small r > 0, we get a contradiction since y0 → x0, by

continuity, p(x0) − p(y0) → 0 and ψ(x0) − ψ(y0) → 0 as r → 0.

Turning to (7.19) with y0 ∈ ∂Br(x0), we have p(y0) = 0, and since

u(x0) − (θ − ε)v(x0) ≥ 0

we get

(7.20) σv(y) = p(x0) ≤ u(y0) − (θ − ε)v(y0) +
θ − ε− 1

|a|
(ψ(x0) − ψ(y0))

and so, using (7.6) and (7.20), we obtain

σv(y) ≤ (θ + ε)v(y0) − (θ − ε)v(y0) +
θ − ε− 1

|a|
(ψ(x0) − ψ(y0))

= 2εv(y0) +
θ − ε− 1

|a|
(ψ(x0) − ψ(y0)).

Letting r → 0, we have y0 → x0, and therefore by continuity we have

σv(x0) ≤ 2εv(x0).

Since ε > 0 can be chosen arbitrarily small, and v(x0) > 0, the above inequality

with y = y0 and ε < σ/2 yields a contradiction, which proves (7.5), and we are

done. �

The following lemma can be obtained as an immediate consequence of Theo-

rem 4.2. Since this form of Theorem 4.2 will be used in the uniqueness proof, we

isolate it for convenience.

Lemma 7.1. Suppose Mau ≥ f (u) + h in � and Mav ≤ f (v) + h in � for

some u, v ∈ C(�). If

(7.21) lim
d(x)→0

u(x)

v(x)
< 1,

then u ≤ v in �.
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Proof. Assume the contrary so that u > v at some point in �. We consider

the non-empty open set

O := {x ∈ � : u(x) > v(x)}.

In view of (7.21) we see that O ⊂⊂ �. Since u = v on ∂O, we invoke Theorem 4.2

to conclude that u ≤ v in O, which is an obvious contradiction. �

We now use Theorem 3.7 to prove the following result on uniqueness.

Proof of Theorem 3.8. Let u, v ∈ C(�) be two non-negative solutions

of (Pa). It is enough to show that u ≤ v in �. Let wε := (1 + ε)v + ε
|a|
ψ for ε > 0.

Then, as a consequence of (3.3) and the assumption that 2(ψ) = 0, we find that

lim
d(x)→0

u(x)

wε(x)
=

1

1 + ε
< 1.

Moreover, from (6.3) we see that, since ψ ∈ C2(�),

(7.22) Mawε ≤ Ma((1 + ε)v) + ελn(D2ψ).

Therefore, by (7.22) the following holds in �:

Mawε ≤ (1 + ε)Mav + ελn(D2ψ)

≤ (1 + ε)f (v) + (1 + ε)h − εh by (D-h)

≤ f ((1 + ε)v) + h

≤ f (wε) + h.

By Lemma 7.1, we find that u ≤ wε in �. Letting ε → 0 we conclude that u ≤ v

in �. �

8 Appendix

In this appendix, we provide a proof of the assertion made in Remark 2.4, showing

that the condition (D-h) can be obtained with h ∈ C0(�) unbounded above, pro-

vided that � is a bounded, uniformly convex open set. In other words, we prove

the following.

Lemma 8.1. Let � ⊆ R
n be a bounded and uniformly convex open subset

with C2 boundary and suppose that h : � → R such that

(8.1) h(x) ≤ Cd(x)α−1 (x ∈ �),

for some 0 < α ≤ 1. Then there is a non-negative ψ ∈ C2(�) such that

λn(D2ψ) ≤ −h in �.
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Proof. Since� is a C2 bounded open set, we recall that the distance function

d belongs to C2(�µ)) for some µ > 0, where

�µ = {x ∈ � : d(x) < µ}

(see [36, Lemma 14.16]). Consequently the function dα also belongs to C2(�µ).

Fix 0 < ρ < µ and consider the closed set K := {x ∈ � : d(x) ≤ ρ}.

By the Whitney extension theorem [73], see also Hestenes [41], we can extend

the function dα on K to a C2 function δα in R
n.

We observe that in � ∩ {d(x) ≥ ρ} the Hessian matrix D2δα(x) is bounded,

therefore, λn(D2δα) is bounded on � ∩ {d(x) ≥ ρ} as well.

Suppose, as we may up to a translation, that 0 ∈ �, and let BR be a ball centered

at 0 of radius R > 0 such that � ⋐ BR. Then we set

(8.2) δα(x) = δα(x) + cR

(

1 −
|x|2

R2

)

where cR > 0 is chosen sufficiently large to have δα ≥ 0 in � and

(8.3) λn(D2δα) ≤ −c1 in � ∩ {d(x) ≥ ρ} for some constant c1 > 0.

Hence

(8.4) λn(D2δα) ≤ −c1ρ
α−1dα−1 in � ∩ {d(x) ≥ ρ}.

In � ∩ {d(x) < ρ} ⊂ �µ, the Hessian matrix of D2δα(x) = D2dα(x) is

D2φ = φ′′(d(x)) Dd ⊗ Dd + φ′(d(x)) D2d,

where φ(r) = rα, so that φ′(r) = αrα−1 > 0 and φ′′(r) = α(α−1)rα−2 < 0 for r > 0.

Consequently the eigenvalues of D2δα in � ∩ {d(x) ≤ ρ} are

α(α− 1)dα−2(x) < 0, −αdα−1(x)
kj(y(x))

1 − kj(y(x))d(x)
< 0, j = 1, . . . , n − 1,

where y(x) is the unique point of ∂� such that |x−y(x)| = d(x). See (4.7) with ρ = 0

and the subsequent lines. Exploiting the uniform convexity of � we can find a

constant c2 > 0 such that

λn(D2δα(x)) ≤ −c2 dα−1(x) in � ∩ {d(x) < ρ},(8.5)

and a fortiori

λn(D2δα(x)) ≤ −c2 dα−1(x) in � ∩ {d(x) < ρ}.(8.6)
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From (8.4) and (8.6) it follows that there exists a constant c > 0 such that

(8.7) λn(D2δα(x)) ≤ −c dα−1(x) for all x ∈ �.

From this, taking ψ = C
c
δα, where C is the constant in (8.1), finally we get

(8.8) λn(D2ψ) = λn(
C

c
D2δα) ≤ −C dα−1 ≤ −h in �,

and so condition (D-h) is satisfied. �

We also give a proof of the representation formula of8 stated in Theorem 3.5.

Lemma 8.2. Let f satisfy (f-1), and suppose f ∈ RVp for some p > 1. Then

8(r) = 8(1)r
− 2

p−1 exp

(

−

∫ 1

r

c(s)

s
ds

)

, r > 0,

with c ∈ C0(R+) such that c(r) → 0 as r → 0+.

Proof. Since f ∈ RVp for some p > 1, we have

(8.9) lim
t→∞

F(t)

tf (t)
=

∫ 1

0

lim
t→∞

f (st)

f (t)
ds =

∫ 1

0

sp ds =
1

p + 1
.

Therefore, we have

lim
r→0+

8(r)

r8′(r)
= − lim

r→0+

8(r)(2F(8(r)))−1/2

r
by (2.3)

= − lim
t→∞

t(2F(t))−1/2

∫ ∞

t
ds√

2F(s)

by (2.2)

= lim
t→∞

(

1 −
tf (t)

2F(t)

)

by (2.1) and L’Hôpital rule

=
1 − p

2
, from (8.9).

(8.10)

We now write

(8.11)
8′(r)

8(r)
=

2

1 − p

1

r
+

c(r)

r
, r > 0,

where

(8.12) c(r) :=
r8′(r)

8(r)
−

2

1 − p
, or

c(r)

r
= −

√
2F(8(r))

8(r)
+

2

p − 1

1

r
.

By the limit in (8.10) we see that c(r) → 0 as r → 0+.
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Integrating (8.11) from t = 1 to t = r > 0, we find that

log8(r) =
2

1 − p
log r + log8(1) +

∫ r

1

c(s)

s
ds.

In other words, we have

8(r) = 8(1)r
2

1−p · exp

(
∫ r

1

c(s)

s
ds

)

= 8(1)r− 2
p−1 · exp

(

−

∫ 1

r

c(s)

s
ds

)

as was to be shown. �

Finally, let us consider the following function.

f (t) =







tp(log2 t + k)α if t > 0

0 if t ≤ 0

with p > 1 and α ∈ R, where k = k(p, α) is a positive number large enough to

have f non-decreasing. Then f ∈ RVp, and a straightforward calculation shows

that

8(r) ∼ cpr− 2
p−1 | log r|−

2α
p−1 as r → 0+,

where cp is a positive constant depending on p.
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[70] A. Vitolo, Singular elliptic equations with directional diffusion, Math. Eng. 3 (2021), Articl

no. 027.

[71] A. Vitolo, Lipschitz estimates for partial trace operators with extremal Hessian eigenvalues, Adv.

Nonlinear Anal. 11 (2022), 1182–1200.

[72] A. Vitolo, M. E. Amendola and G. Galise, On the uniqueness of blow-up solutions of fully

nonlinear elliptic equations, AIMS Conference Publications 2013 (2013), 771–780

[73] H. Whitney, Analytic extension of differentiable functions defined in closed sets, Trans. Amer.

Math. Soc. 36 (1934), 63–89.

[74] F. Zhang, Matrix Theory, Springer, 1999.

[75] Z. Zhang, A boundary blow-up elliptic problem with an inhomogeneous term, Nonlinear Anal.

68 (2008), 3428–3438.

Ahmed Mohammed

DEPARTMENT OF MATHEMATICAL SCIENCES

BALL STATE UNIVERSITY

MUNCIE, IN 47306, USA

email: amohammed@bsu.edu
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