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Abstract. We investigate the existence, asymptotic boundary behavior and
uniqueness of viscosity solutions u € c%Q) of equations Ma(D?u) = f(u) + h(x)
in Q C R” such that u(x) - oo as x — 9Q. Such solutions are referred to as
large or boundary blow-up solutions. Here, € is a smooth bounded domain, M,
is a weighted partial trace operator, f is a non-decreasing function that satisfies
the Keller—-Osserman condition, and % is a continuous function in Q. The main
difficulty in the investigation rests on the possibility that M, is very degenerate
elliptic, and /4 is unbounded as well as sign-changing in Q. To the best of our
knowledge, large solutions to equations involving partial trace operators have not
been investigated before.

1 Introduction

This paper is concerned with the infinite boundary-value problem

Hu=h(x) in Q,

Uu=00 on 0Q),

(Pr)

where € is a bounded open set, J{ is a second-order fully nonlinear (degenerate)
elliptic operator and 4 is a real-valued function defined in . Moreover, u = co
means that u(x) — 0o as x — 0€. Solutions of (Py) are referred to as large
solutions, or boundary blow-up solutions.

If u e C3(Q), let A;(D*u) < --- < A,(D?u) be the eigenvalues of the Hessian
matrix D?u in non-decreasing order. As in [29], we define the weighted partial
trace operator

(1.1) Mau = Mo(D?u) := Y a;A(D*u)

i=1
with a = (ay, ..., a,) € R". Itis a (degenerate) elliptic operator if a > 0, namely
a; > 0foralli=1,...,n, which is non-uniformly elliptic if a > 0 and a; = O for

somei=1,...,n, evenif g; > 0 for the remaining i’s. See [29].
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Ifa=1:=(,...,1), we obtain the more familiar Laplace operator My = A,
uniformly elliptic. Let instead a > 0 such that either a; =0 or ¢; = 1, buta # 0
and a % 1. Then M,u is a partial trace of the Hessian matrix D?u, that is to say
a partial sum of eigenvalues, and so M, is a degenerate, non-uniformly elliptic
operator. Taking a positive integer k < n, we obtain the sum of the smallest
or largest k eigenvalues of D?u, respectively Miu = (D*u) + -+ - + A(D*u)
and Mju = Jn—ke1(D*u) + - - - + 1,(D*u), considered by Caffarelli-Li—Nirenberg
[12] and Harvey—Lawson [38]. Such operators arise, for instance, in geometric
problems involving mean partial curvature, and in differential games as two-player
zero-sum games. For further properties and known results on partial trace operators
we refer to [29, 45, 70, 71].

We are interested in the case Hu := Muu — f(u), where f is a real-valued
function defined in R, namely in the problem:

Mau =f(u) + h(x) in Q,

u=00 on 0Q,

(Pa)

where f : R — R is continuous, € is a bounded open set in R", and
(f-1) f non-decreasing, f(0)=0, f(#)> Ofort> 0.

The study of large solutions of elliptic equations has a long history, but one
can safely state that a systematic and wide investigation of such solutions began
in 1957 with the independent works of J. B. Keller [44] and R. Osserman [62]. In
the papers [44, 62], it was shown that, for the equation Au = f(u) to admit a large
solution in Q, it is sufficient that

©dt
1 V@)

This, a nowadays classical condition, is known as the Keller—Osserman condition.

(f-2) < 00, Where F(t) = /tf(s) ds, ;t > 0.
0

We point out that large solutions to semilinear equations like Au = f(u) arise in
various problems of geometry, physics and other application areas. In fact, the
first existence result for problem (P,), relying on the Keller—Osserman condition,
concerns the Laplacian, namely Mau = Au. It is stated in Theorem III of [44]
in connection with a problem of electrohydrodynamics [43]: the equilibrium of
a charged gas in a perfectly conducting container. In that paper J. B. Keller
used the existence of large solutions to demonstrate that the density and pressure
cannot be made arbitrarily large in the interior region by putting more gas into the
container, and that most of the gas accumulates in a thin layer near the surface
of the container as the total mass increases. Large solutions have also found
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applications in geometry and mathematical physics. For instance, in [49], Loewner
and Nirenberg used large solutions to Au = cu™*»/"=2) for a positive constant ¢
in a given bounded smooth open set Q C R”, n > 3, to construct a complete
Riemannian metric on Q that is invariant under Mobius transformations.

Since the pioneering works of Keller [44] and Osserman [62], and due to their
wide applications the study of large solutions has attracted a lot of attention. An
exhaustive list of papers on large solutions is impossible. We only list some of the
papers we are largely familiar with: [1, 2, 5, 18, 19, 22, 23, 24, 33, 34, 35, 47,
48, 50, 51, 52, 55, 57, 58, 59, 64, 65, 67, 72, 75], and refer the interested reader
to the references therein. Among the aforementioned references, we detail some
works that are in line with the problem we wish to investigate. The existence and
uniqueness of large solutions to a uniformly elliptic equation

Tr(A(xX)D*u) = [ulP " 'u+ h(x) withp > 1

was investigated by L. Véron [67]. In the paper [22], G. Diaz and R. Letelier
studied large solutions of

div(|DulP~2Du) = f(u) + h(x), p > 1,

using on f a Keller—Osserman type condition adapted to the p-Laplace operator,
with a non-negative h € C(€2). S. Alarcon and A. Quaas studied in [2] the exis-
tence, asymptotic boundary behavior and uniqueness of solutions of Problem (Pg)
when Hu = H(D?u), with H uniformly elliptic, f satisfying the usual Keller—
Osserman condition and 4 € C(£2) non-positive. In a related work [72], one of the
authors, M. E. Amendola and G. Galise show that

Hu = £|ulP u+ |u|?" + hx),

where Hu = H(Du, D*u), with H uniformly elliptic and “homogeneous" of de-
gree k € [p,ql, 0 < p < g, has at most one positive large solution on a bounded
domain Q C R” with the “local graph property" introduced by M. Marcus and
L. Véron [50]. In all the aforementioned works one common feature is that the
function £ is restricted to have the same sign throughout Q.

To the best of our knowledge, the first investigation when # is sign-changing
has been carried out in a recent paper of J. Garcia-Melian [34] for the equation

Au = |ul’ " u+ h(x),

which was shown to possess a large solution also for unbounded 7 € C(Q),
while uniqueness holds when # is bounded from above in Q. These results
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have been extended by one of the authors and G. Porru [57] to Problem (Pg),
with Hu = Lu, a uniformly elliptic linear operator in non-divergence form with
lower-order terms, and f satisfying the Keller—Osserman condition, showing exis-
tence and also uniqueness for unbounded 2 € C(€2). This work has been further
extended by the authors of the present paper in [58] to the case where J{ is a fully
nonlinear uniformly elliptic operator, proving existence, asymptotic boundary be-
havior and uniqueness of large solutions.

It is worth recalling that Keller—-Osserman condition (f-2) and its variants
have been used in studying various qualitative properties of solutions to elliptic
equations. For instance, in the well known paper [66] by Vazquez, it was used to
obtain a strong maximum principle. We refer to the excellent monograph of Pucci
and Serrin [63] for further results and a comprehensive treatment. See also [26]
and [60] for more recent results. The Keller—Osserman condition also appears in
the investigation of Harnack inequality to non-negative solutions of equations of
the form Lu = f(u, Du). We refer to the papers [21, 42, 54, 56] and their references.

A related issue is the existence and non-existence of entire solutions, that is
solutions defined in the whole space R”. As also stated by Keller in [44, Theorem
II] and Osserman in [62, Theorem 1], the Keller—Osserman condition implies
the non-existence of entire subsolutions of the equation Au = f(u) when f > 0.
Conversely, the negation of the Keller—Osserman condition implies the existence
of entire subsolutions for the equation Hu = f(u), where JH is a fully nonlinear
uniformly elliptic operator. See for instance [27] and [15, 16, 17]. Particular
attention has been aroused by the case f(u) = |u|*~'u with s > 1, starting from a
well known paper of H. Brezis [10], where the existence of entire solutions of the
semilinear equation Au — |u|*~'u = h(x) is proved without growth condition on &
at infinity. A generalization of this result to the fully nonlinear uniformly elliptic
case can be found in [25, 31, 30]. We refer to [4, 14] for related results.

Our investigation needs to overcome several challenges. The standard method
used in the literature to establish existence of large solutions exploits some level of
regularity of solutions to suitable Dirichlet problems. Unfortunately for the prob-
lem (P,), due to the high degeneracy and non-uniform ellipticity of M, witha > 0,
as soon as one of the a; is zero, no meaningful regularity of solutions to Dirichlet
problems is known, in general (see Remark 4.5 in Section 4 below). The case a,, = 0
presents a special challenge that leads to some open problems that we will discuss
at the end of Section 3. Another obstacle comes from the presence of the possibly
sign-changing and unbounded term /. Allowing sign-changing and unbounded &
into Problem (P,) demands careful considerations.
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The paper is organized as follows. In Section 2 we collect the main assumptions
that are at the core of all the discussion in our paper. All the main results of the
paper will be presented in Section 3. In Section 4 we will recall some results from
the literature that will aid in our work. Section 5 will be devoted to the proof of
existence of viscosity solutions to Problem (P,). In Section 6, we will focus on the
asymptotic boundary behavior of solutions to (P,). The question of uniqueness of
viscosity solutions to (P,) will be dealt with in Section 7. We will conclude the
paper with an appendix where we prove a lemma used in Section 5, and subsequent
sections.

2 Basic assumptions

For ease of reference to the reader, in this section we will state all the basic
assumptions that will be used to state and prove the main results of our paper.

Assumptions on the open set Q: In this paper, Q will stand for an open
and bounded open subset of R”.

For our proof of existence of a solution to (P,) we will rely on a geometric
condition introduced by Blanc and Rossi in a recent paper [9]: whatever y € 6Q
we take,

G VVr>030>0:VxeBs(y)NQ and V€ € L, dze € :z € B,(y)NoQ,

where £, is the family of lines passing through the point x.

However, for investigating asymptotic boundary behavior and uniqueness we
will need better regularity.

Suppose that Q has a C?> boundary 6Q. With d(x) denoting the distance between
x € Q and the boundary 0€, it is well-known that there is a constant 4 > 0 such
that d € C*(Q,). Here Q, = {x € Q : d(x) < u}. Let k1(x), ..., ky,—1(x) be the
principal curvatures of 0Q at x € 6Q. We should recall, see [36], that x; < u~!
onoQ forallj=1,...,n—1. Given x € Q,, let y(x) be the unique point on 0Q
such that d(x) = |x — y(x)|. In terms of the principal coordinate system at y(x), we

note that the gradient of d is Dd(x) = (0, ..., 1) and its Hessian
—Kk1(y(x)) —Kn—1(y(x)) 0)
1 —d@r(y(x) " 7 1= dr,_1(y(x) "/

We refer to [36, Section 14.6] for details. We recall that a C?> bounded open set Q
is called uniformly convex if the principal curvatures of 6Q2 are all bounded away

Dd(x) = diag(

from zero. Thus, a C? open bounded set Q is uniformly convex if and only if there
is a constant v > O such thatx; > vondQforallj=1,...,n—1.
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Assumptions on the term f: The conditions (f-1) and (f-2) play an im-
portant role in establishing existence of solutions to Problem (P,). In order to
study asymptotic boundary behavior and uniqueness, we will need additional con-
ditions on f. But first we will need to point out some useful consequences of the
assumptions (f-1) and (f-2) on f € C°(R).

We begin with the following two limits:

. VF(@®) ) t
2.1 lim =0; 1 —=0.
2.1 e D) 0 £(7)

See [35, 37] for a proof.
Next, using the positivity of f in R, := (0, co) due to (f-1), and the Keller—
Osserman condition (f-2), we introduce the function ® : R, — R, defined by

*© ds
(22) [D(t) \/ﬁ =1, t> 0.

This is a non-increasing function such that
(2.3) 1ir(1)1 O(r) =00, @(t)=—\/2F(D(1), D"()=f(D®)).
t—0*

The following conditions on f will be used to show existence of a viscosity
solution to (P,) for an unbounded class of inhomogeneous terms & € C°(Q), in
the investigations of asymptotic boundary behavior, and uniqueness of solutions to
Problem (P,).

(Asy-1) There exists a constant A, > 0 such that

Afo M

(Asy-2) Assuming that a, > 0, there is a constant A_ > 0 such that

lim sup Q(A T (t; a,.

For the statement of our other conditions, given 6 > 1, let

ty = lltrg égf J;](cf?
Using the above notation, we consider the following condition:
(D-C) £y > 1 forsome 0 > 1,
This was first introduced by Dindos in the context of establishing Harnack inequal-
ity for non-negative solutions of Au = f(u), see [21]. We refer to (D-C) as Dindos’
condition.
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We will also find the need for using a strengthened form of Dindo$ condi-
tion (D-C) as follows:
(D-C) €y > 1foralld > 1.
Let us make a few remarks about the above two conditions; (D-C) and (D-C)'.
Remark 2.1.
(a) Iffis regularly varying with index p > 1 (the definition will be given below),
then f satisfies (D-C)'.
(b) If f satisfies (D-C), then we have

o't ; 07t _;
(2.4 ligégfg/(f(t; > ¢,, and limsupf( )<€0/ Vji=1,2,3,....

oo O7f() T
As aresult of (b) in Remark 2.1 above we observe that if £y > 1, then the limit

infimum in (2.4) can be made arbitrarily large, and the limit supremum in (2.4) can
be made as small as we wish by appropriately taking j large enough. In other words,
when f satisfies (D-C), then constants A, and A_ that satisfy conditions (Asy-1)
and (Asy-2) can be found.

Knowing the relative growth rate of any two solutions of Problem (P,) near
the boundary is precursor for the establishment of uniqueness. In this regard the
following additional conditions on f will be used:

F(@)

(f-3) {; :=liminf — > 0.
oo 1f(1)
For our uniqueness result, we will apply a stronger form of monotonicity of f:
(f-4) t— JL is non-decreasing on (0, co).

Condition (f-4) can be also viewed as a sort of weaker version of condi-
tion (D-C)’ at all finite points ¢ > 0, in the sense noted in the next remark.

Remark 2.2. Condition (f-4) is equivalent to assuming that 7;}‘?2 > 1 for

all >0 and all > 1. In fact, s > > 0 if and only if s=6¢ for some 6> 1 and so

f@ > 1] & @ > @
of(n) ~ s T
Finally we introduce a class of functions that have some of the aforementioned
properties on the function f.
A function f : [a, 00) = R, where a > 0, is said to be regularly varying of

index p € R if and only if

lim €0
=00 f(1)
The class of regularly varying functions of index p is denoted by RV,,.

If f € RV, is non-decreasing and of index p > 1, then f satisfies the Keller—
Osserman condition (f-2), see [5, pp. 13—14], or [53, Remark 2.1]

(2.5) =&, VE> 0.
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Assumptions on the term /#: Given a non-negative function 7 € C%(Q)
and a function g : R —» R, we set

) n(x)
® =1 _—
() = SuD @)

For the identity function g(7) = ¢, we will simply write ®(#) instead of ®,(#). Note
that, if # is bounded in Q, then ®(7) = 0.

Remark 2.3. We will assume in the sequel that ®(h~) < oo. In this case,
for f : R — R that satisfies (f-1) and (f-2) we note that ®,(h™) = 0.
This follows from the limits (2.1), (2.3), and the observation that

) ) @)
f@AX)  P@Ex) f(PAX)

Next we introduce a condition that will allow us to consider unbounded
he C%Q) in Problem (P,):
(D-h) The equation
/(D y) = —h

has a supersolution y € C?(Q) with y > 0in Q.
A remark is in order concerning condition (D-h).

Remark 2.4. Let Q be a bounded open set, and suppose sup, 2 < co. Then it
is easily seen that there is € C?(Q) such that (D-h) holds. In fact, leta := supg A,
and choose £ large enough such that y > 0 in Q, where

w(x) = — %mz.

Then 1,(D*y) = —a < —h in Q, and y € C*(Q).
Suppose further that € is uniformly convex. Then (D-h) can be shown to hold
for a large class of unbounded functions & € C°(Q2), namely

(2.6) h(x) < Cd(x)*~!, xeQ,

for constants 0 < @ < 1 and C > 0, as it is shown in the Appendix.

We specify that Q is called uniformly convex when it is of class C?, and the
principal curvatures of 0Q are bounded away from zero (see [36, page 283]), so
that there are constants ¢ > 0 and u > 0 such that 7 < x; < ,u_l on 0Q for all
j=1,...,n—1.
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3 Main results

Now we are ready to state our main results. Our first result deals with existence of
viscosity solutions to Problem (P,) .

Theorem 3.1. Let Q be a bounded domain of R" endowed with the geometric
property (G). Let a % 0 such that a > 0. Suppose that f € C*(R) satisfies the
assumptions (f-1), (f-2), and h € C°(Q). Then the boundary blow-up problem (Py)
has a viscosity solution.

The viscosity solution u obtained in Theorem 3.1 when 0 # a > 0 is in general
lower semicontinuous, by construction. See Remark 5.2 after the proof. It is
known that u is continuous in one of the following cases: a; > a + - -+ + a,,
a, > ay+---+a,—; and aja, > 0. However, we cannot say that u is continuous in
the general case 0 #a > 0.

For a possibly unbounded & € C%(Q) we also have:

Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied, but h € C°(Q).
Suppose that there exists a subsolution w € USC(Q) of the equation

Mau = f(u) + h(x)

in Q such that w = co on 0Q. Then the boundary blow-up problem (Py) has a
maximal viscosity solution.

As an application of Theorem 3.2 we state the following existence theorem for
unbounded /& € C°(Q2), by means of assumptions on a, f and 4 which provide the
existence of a subsolution as required in Theorem 3.2.

Theorem 3.3. Let the assumptions of Theorem 3.2 hold with a,, > 0, and
(1) condition (D-h) holds with v € C*(Q) N C*(Q), or
(2) f satisfies (Asy-2), lim;_, _o, f(t) = —00, and O(h) = 0.

Then Problem (P,) has a maximal viscosity solution.

Our next set of results deals with the asymptotic boundary behavior of viscosity
solutions as well as uniqueness of non-negative solutions to Problem (Pj,).

Here is now our first result on the asymptotic boundary behavior of subsolutions
and supersolutions of (Pj).
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Theorem 3.4. Leta > 0 such that a, > 0. Suppose f satisfies (f-1) and (f-2),
and Q C R" is a C* bounded open set.
(1) If h € CUQ) satisfies O(h™) < oo and there is a constant A, > 0 such that
(Asy-1) holds, then for any subsolution u of the equation Mau = f(u) + h we
have

. u*(x)
3.1 lim su <A,.
G-D AP D@y =
(2) Ifh € C%(Q) satisfies (D-h), and there is a constant A_ > 0 such that (Asy-2)

holds, then for any supersolution u of the equation Mau = f(u) + h such that
u = oo on 0L, we have

OW) | timinf ™

3.2 A_ < +limin ,
(3-2) — al dw—0 D(d(x))

where y is as given in (D-h).

For functions f in the class RV, with p > 1, we can find the following exact
boundary behavior of viscosity solutions to the boundary-value problem (P,).

Theorem 3.5. Let a > 0 such that a#0. Let f satisfy (f-1), and sup-
pose f € RV, for some p > 1. Then, ® is regularly varying at zero with expo-
nent —2/(p — 1), that is

1
D(r)= d)(l)r_r%l exp ( — / @ ds), r>0,
, S
with ¢ € CO(R") such that ¢(r) — 0 as r — 0*. Further, assume that h € C°(Q)

such that ®(h™) < oo and for which (D-h) holds. If ®(y) = 0, then for any
solution u of (Py) there holds

lim ux a”+'
d0—0 D(d(x))
and so
= _2 b oes)
u(x) ~ ap ©(1)d(x) T exp —/ —=ds as d(x) — 0.
dx) S

For a proof of the above representation of ®, we refer to the appendix, where
we also show a more explicit asymptotic behavior of ® for a class of functions f
in RV,,.
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Remark 3.6. We wish to emphasize here Theorem 3.5, and so Corollary 6.2
below, hold even when a,, = 0. In this case, any viscosity solution u of (P,) satisfies

u(x) = o(d(dx))) asdx) — 0.
This, for instance, is the case for the lower-partial sum operator
My (X)) =4LX)+- -+ LX)

with k < n.

Differently, Theorem 3.4, part (2), and so Corollary 6.1 below, require a,, > 0
for the respective conclusions to hold. This assumption is satisfied for the higher-
partial sum operator M; (X) := 4,_j+1(X) + - - - + 1,(X), but fails for the aforemen-
tioned lower-partial sum operator M, (X), with k < n.

Theorem 3.7. Let Q C R" be a C? bounded open set. Suppose that a, > 0,
and f satisfies (f-1), (£-2), (f-3) and (D-C)'. Also suppose that h € C°(Q) satisfies
®O(h™) < oo, and (D-h) with O(y) = 0. Let u and v be continuous viscosity
solutions of (Pa). Then

3.3 =
(3.3) d(xlgo v(x)

b

where d(x) = dist(x, 6Q).

Our last result states that Problem (P,) admits a unique non-negative viscosity
solution provided that a,, > 0. This brings us to our main result on uniqueness.

Theorem 3.8. Suppose that the assumptions of Theorem 3.7 on a, f and €
are satisfied and that (f-4) holds as well. Also suppose h € C°(Q) to be such that
O(h™) < oo and (D-h) holds with y € C*(Q) and O(y) = 0. Then Problem (P,)
admits at most one non-negative continuous viscosity solution.

Before we conclude this section, we would like to point out two problems we
were not able to settle and wish to propose as open problems.
(a) In the case when a, > 0 in the partial trace operator M,, Theorem 3.8
establishes uniqueness for non-negative viscosity solutions of Problem (P,).
The main difficulty to extend this to all viscosity solutions, regardless of
the sign, was the absence of a strong comparison theorem for partial trace
equations. We leave this issue as an open problem.

(b) Another natural question to raise, and which we are not able to address at
this time, is: does Theorem 3.8 remain true when a,, = 0?
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4 Notations and auxiliary results

Let Q C R” be an open set, and 8" be the set of n x n real symmetric matrices,
endowed with the following partial ordering: X < Y if and only if ¥ — X is positive
semidefinite. We say that H : Q x R x R" x 8" — R is (degenerate) elliptic if

@) X<Y=>Hxt5X)<HMXLEY) Vix, 1,8 e QxRxR", VX, Y e §".

Throughout this paper, H will be a continuous mapping. In the case that H
is independent of some variable, we simplify by omitting such a variable. For
instance, in the case of the trace operator Tr(X), we simply set H(X) = Tr(X).

If u e C*(Q), letting Du be the gradient and D?u the Hessian matrix of u, we write

(4.2) Hu := H(x, u, Du, D*u),

and we think of this operator as acting on C?(Q2) and refer to it as a fully nonlinear
(degenerate) elliptic operator. Similarly, given & € C°(Q), the equation

(4.3) Hu = h(x),

will be said (degenerate) elliptic.

We will also consider equations (4.3) when u is only continuous in €, passing
to a weak formulation in the viscosity sense. An upper semicontinuous function u
in Q, written u € USC(L2), is a viscosity subsolution of (4.3) if for all xy € Q and
¢ of class C? in a neighborhood of x, such that # — ¢ has a local maximum equal
to zero at xy, which we sometimes describe by saying that ¢ touches u at xy from
above, we have Hp(xg) > h(xg). Similarly, a lower semicontinuous function u
in Q, written u € LSC(L), is a viscosity supersolution if for all xo € Q and ¢ of
class C? in a neighborhood of x( such that u — ¢ has a local minimum equal to zero
at xg, or in other words, ¢ touches u at xy from below, we have Hep(xg) < h(xp).
We say u € C°(Q) is a viscosity solution of (4.3) if u is a viscosity subsolution and
a viscosity supersolution.

If a viscosity subsolution, resp. supersolution of Hu = h(x) belongs to C*(Q),
then Hu > h(x), resp. Hu < h(x),in Q. We will use the same notations for viscosity
subsolution, resp. supersolution, belonging only to USC(L), resp. LSC(L2), even
though in this case the above differential inequalities are not satisfied by u, at points
where it is not sufficiently regular, but by the test functions ¢, respectively.

Viscosity solutions can be defined also without requiring upper and lower
semicontinuity. Given a function u : Q — R, we denote by

4.4 u*(x):= lim supu, and u.(x):= lim inf u,
( ) ( ) o—0* Ba‘(g ( ) 0—0* Bs(x)

the upper and lower semicontinuous regularization (or envelopes) of u, respectively.
We remark that, in fact, u* € USC(Q) and u,, € LSC(Q).
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We say that u is a subsolution (resp. a supersolution) of Hu = h(x) in Q, writ-
ten Hu > h(x) (resp. Hu < h(x)), in the general viscosity sense if u* is a viscosity
subsolution (resp. u, is a viscosity supersolution), according to the preceding def-
inition. So in the general case u is a viscosity solution of the equation Hu = h(x)
if Hu* > h(x) and Hu, < h(x) in the viscosity sense.

We will use the following general existence result. See [46, Theorem 4.3].

Theorem 4.1. Let Q be an open set. Suppose that H is a degenerate elliptic
operator. Assume that there exist a viscosity subsolution U € USC(Q) and a vis-
cosity supersolution U € LSC(Q), both locally bounded, of the equation Hu = h(x)
in Q. Then

u = sup{u € USC(Q) : u subsolution, U < u < U},

4.5) - _
= inf{u € LSC(Q) : u supersolution, U < u < U}

N|

are viscosity solutions.

Note that (v)* € USC(Q) and (z). € LSC(L2), but they are not necessarily
continuous in Q.

Leta = (aj,...,a,) € R". We say thata > O (resp. a > 0) if g; > 0
(resp.a; > 0) foralli=1,...,n Let 4;(X) < --- < 1,(X) be the eigenvalues
of matrix X € 8". For a > 0, the operators M,u defined in (1.1) are degenerate
elliptic. Moreover, in the case a > 0, they are uniformly elliptic, but this is no
longer true as soon as one of the a; is zero. See [29]. However, except in the
trivial case a = 0, we will see below that when a > 0 these operators are more
than degenerate elliptic.

To be precise, let us say that H is non-totally degenerate elliptic, see [6], if

(4.6) Hx,t, & X+rl) > H(x, t, &, X)+ar V(x,t,&X)e QxRxR"x8" and Vr >0,

for some a > 0, where I is the n x n identity matrix.

Since 4;(X + rl) = A;(X) + r for all r € R, then for all a > 0 such that |a| > 0,
the weighted partial trace operators M,u, and hence also the operator M,u — f(u),
are non-totally degenerate elliptic.

For such operators, as a particular case of [6, Theorem 3.1], we have the
following comparison principle.

Theorem 4.2. Let Q be a bounded open set, Hu = Mau—f(u) with0 < a#0
andf € C°(R) non-decreasing, h € C°(Q). Let also u € USC(Q) and v € LSC(Q)
be such that Hu > h(x) and Ho < h(x) in Q in the viscosity sense. Then

sup(u — v) < sup(u — v).
Q oQ
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We recall the following existence result, Theorem 1 of [9].

Theorem 4.3. Let Q C R" be a bounded open set endowed with condition (9).
Then, for all g € C(0Q2), and all j =1, ..., n, the Dirichlet problem

2i(D*u) =0 inQ
(Po) !
u=g on 0Q)

has a viscosity solution u € C(Q).

We will use in the sequel the cases j = 1 and j = n. In these cases the solutions
of (Pp) are locally Lipschitz-continuous. See for instance [8] and [29]. The
following Lipschitz estimates are deduced from [29, Lemma 5.5] by rescaling.

Theorem 4.4. Let Q C R” be an open set, and h € C°(Q). Suppose that
u € USC(Q) (resp. u € LSC(Q)) is a locally bounded subsolution (resp. superso-
lution) of the equation 1,(D*u) = h(x) (resp. J,(D*u) = h(x)) in Q. Let xy € Q,
and 0 < r < dist(xg, 0Q). Let B, = {x € Q : |x — xo| < r}. Then there exists a
positive constant C, independent of u, such that

u oo
(4.7) sup fu() —u()l < C(MEED 4y )i =y

X,y€B; 2 r
We point out that, in fact, interior C'-* estimates have been proved in [61].

Remark 4.5. Let 0 # a > 0. Lemma 5.5 of [29] also provides Holder
estimates for locally bounded subsolutions, resp. supersolutions, of the equation
Mau = h(x)inthecase a; > ar+- - -+a, > 0,resp.inthecasea, > a; +-- - +a,—; > 0:

=y | 2 .
8 sup fu(x) —u()| < C(FE B+ Pl ) e =1

X,y€B; )2

with some a € (0, 1). Theorem 5.3 of [29] yields the same estimate for locally
bounded solutions of the equation M,u = h(x) in the case a;a, > 0. But, as far as
we know, there are no similar estimates for a general a > 0 such that a £ 0.

For more properties of partial trace operators, including maximum and compar-
ison principles, existence, uniqueness, regularity, removable singularities, entire
solutions, we also refer to [3, 7, 8,9, 12, 13, 28, 29, 31, 32, 38, 39, 40, 45, 68, 69,
70, 71].
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5 Existence results

We solve the boundary blow-up problem (P,) in a bounded open set by approx-
imation with bounded solutions satisfying continuous boundary conditions on 9€2.
In order to find the approximating functions the basic result is the following.

Theorem 5.1. Let0 #a > 0, f € C°(R) satisfying (f-1), and Q be a bounded
open set endowed with the geometric property (). Suppose h € C*(Q) is bounded
and ¢ € C°(6Q). Then the boundary value problem

o, {Mau = f) +h(x) inQ

u=4g¢ on 0
has a viscosity solution u € C%(Q).

Proof. The proof makes use of the existence result of Theorem 4.3 and the
comparison principle of Theorem 4.2.

Step 1. There exists a subsolution, continuous up to the boundary, of the
equation A;(D*u) = f(u) + h(x) in Q such that u = ¢ on Q.

To see this, let k := f(My) + M},, where

My = ||Plli~@a) and M) = ||hllL~q).
By Theorem 4.3 the problem
Ai(D*0) =0 in Q
v=¢— 1klx|* onoQ

has a solution v € C°(Q). Set U := v + %klxlz. Since by assumption f(¢) > 0
for ¢t > 0, then

M(D*U) = 21(D*v + kI)

(5.1) )
=L1(D*)+k=k>0 inQ,
and
1
(5.2) Q=v+§k|x|2=¢§M¢ on oQ.

By (5.1), (5.2) and the maximum principle, namely using the comparison principle
of Theorem 4.2 to compare U with the constant function My on Q, we have U < My
in Q. From this, since f is non-decreasing, we get f(My) > f(U) in Q.

We deduce from (5.1) that A;(D*U) > k > f(U) + h(x) in Q. The boundary
condition U = ¢ on € is provided by (5.2), and so we are done.
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Step 2. There exists a supersolution, continuous up to the boundary, of the
equation A,(D*u) = f(u) + h(x) in Q such that u = ¢ on Q.
We argue in a similar manner as in Step 1, but solving by Theorem 4.3 the
problem
An(D*v) =0 in Q,
v=¢+ %kl)cl2 on 0Q,
with k = —f(—=My)+ M. By (f-1) we note that f(¢) < 0 for ¢ < 0. Therefore k > 0.
We set U = v — 1 k|x|?, so that

(5.3) In(D*U)=—k <0 in Q,
and
(5.4) U=¢>—My onoQ,

where M, is defined as in Step 1. By (5.3), (5.4) and the maximum principle, we
have U > —My in Q. From this, since f is non-decreasing, we get f(—My) < f 0).

We deduce from (5.3) that 1,,(D*U) < —k < f(U) + h(x) in Q. The boundary
condition U = ¢ on éQ is provided by (5.4), and so we are done.

Step 3. Finally, we show that Problem (P,). has a unique viscosity solu-
tion u € CO(Q).

Let 0 # a > 0, and set |a]| = a; + --- + a,, so that |a|] > 0. The func-
tions f, = f/|a| and h, = h/|a| satisfy the assumption of this theorem required of f
and h, respectively. Therefore Steps 1 and 2 provide a subsolution U, € C%(Q)
of the equation |a|A;(D?*u) = f(u) + h(x) and a supersolution U, € C%(Q) of the
equation |a|4,(D?u) = f(u) + h(x) in Q, respectively, such that U, = U, = ¢ on 6Q.

Since

n
(55 1al21(0) < Ma(X) = >~ aii(X) < lal,(X),
i=1

then U, € C%(Q) and U, e C°(Q) are, respectively, a subsolution and a superso-
lution of the equation Muu = f(u) + h(x) in Q, and U, = U, = ¢ on Q.

From this, using Theorem 4.1, we deduce that the equation Muu = f(u) + h(x)
has a viscosity solution # in Q, and U, < u < U, in Q. Hence, by the continuity
of U, and U,, we get

(5.6) Upy<u.<u<u* <U, inQ.

We extend u,, u and u* to Q, setting u,(x) = u(x) = u*(x) = H(x) for x € 6Q.
Observing also that
Uy,=U,=¢ onoQ,
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then from (5.6) we obtain that u,, u and u* are continuous at the points of the
boundary. Hence u, € LSC(Q) and u* € USC(Q). Moreover, recalling that, by
the general definition of viscosity solutions,

(5.7) Mau, < flus) +h(x),  Mau® > f(u™) +h(x) in€Q,
we also have, by the comparison principle,
(5.8) u* <u, inQ.

Combining (5.8) with the reverse inequality u, < u* of general validity, already
used above in (5.6), we get u* = u, = u in Q, and so u € C°(Q). Since we
already know from the above that u is continuous at the points of 92, we conclude
that u € CO(Q).

Again by the comparison principle, the solution u is unique, and this finishes
the proof. (|

Now, with the aid of Theorem 5.1, we prove the existence of solutions to the
boundary blow-up problem (Py).

Proof of Theorem 3.1. Let us consider, by invoking Theorem 5.1, the
solutions u; € C°(Q), i € N, of the approximating problems

Mau =f(u) + h(x) in Q,

u=1 on 0Q2.

(Pa)i

By the comparison principle, Theorem 4.3, the sequence { i;};cn is non decreas-
ing, and we set

(5.9) u(x) := Al_i)m u;(x), xeQ.

Since for all i € N we have liminf,_, 5o u(x) > lim,_, 5o u;(x) = i, the function u
satisfies the boundary blow-up condition:

(5.10) lirpQ u(x) = oo.

X—0

Step 1. The function u(x) is locally bounded in .
In fact, supposing that 0 € Q, as we may up to translations, let

o(x) == D(R> — ) + C(R* — 1),

where r = |x|, for a ball By € Q centered at O of radius R to be chosen suitably
small, and C € R, to be chosen suitably large. Note that by (2.3)

(5.11) lim info = lim ®(R) = co.
R—0* Bg R—0*



18 AHMED MOHAMMED, VICENTIU D. RADULESCU AND ANTONIO VITOLO

By direct computation using (2.3), the eigenvalues of the Hessian matrix Do

are
(5.12) Ay =---=Au1 <24/2F()—2C; 1, < 4f(u)r2 +2+/2F(v) — 2C.
Therefore
la|1,(D*v(x)) < 4la|f(0(x))|x]* + 2|al\/2F(v(x)) — 2|a|C
(5.13) 2+/2F(v)

< |a|f(v){4R2 + } —2JalC,

f@)

where we can choose R > 0 small enough, by (2.1) and (5.11), such that

2+/2F

|2l|(4R2 + 7(0)) <1,
f)

and 2|a|C > — ming_ A, to obtain

(5.14) Ma(D?0) < |a|A,(D*) < f(v) + h(x).

That is to say v is a supersolution of the equation Myv = f(v) + A(x) in any
ball By € Q with sufficiently small radius R, and by (2.3)

(5.15) lim o(x) = oo,

xX— 0By

Comparing the approximating solutions u;, i € N, with v on Bg, we get u; < v
in Bg, and

(5.16) u(x) = Al_i)m u;(x) < o(x), x¢€ Bg.

Let then K be a compact subset of Q, and choose R eventually smaller in
order that R < dist(K, 0€2). Covering K with a finite number of balls Bg/,, with
center x; € K, we set vj(x) = v(x — x;). Reasoning as above in Bg, and taking into
account that @ is non-increasing, we have

3
u(x) < 0;(x) = O(R? — |x—x;| )+ C(R2— |x—x;?) < @(ZR2)+CR2, X € Brpa(xy),
so that

3 S
(5.17) u< CD(ZR ) +CR® inK.

Thus u is locally bounded above in Q. On the other hand u > u;. So u is
bounded below in Q, and the claim of Step 1 is proved.



BLOW-UP SOLUTIONS FOR PARTIAL LAPLACE EQUATIONS 19

Step 2. Proof of the theorem for Mau = 1, (D?u), thatisa=e; =(1,...,0).

We start as at beginning with the solutions u; solving (Pe,);. Let us call U(x),
in this case, the limit function u(x) in (5.9).

By Step 1, U(x) is locally bounded in Q. By the continuity of f and A, using the
local Lipschitz estimate of Theorem 4.4 with u;(x) instead of u, and f(u;(x)) + h(x)
instead of h(x), note that the u;’s are equi-bounded and equi-Lipschitz on each
compact subset of . Therefore, passing to the limit as i — oo, we also obtain
that U(x) is locally Lipschitz continuous. By Dini’s Theorem, since U(x) is the
limit of the non-decreasing sequence of continuous functions u;, then the u;’s are
locally uniformly convergent. By the stability results in the theory of viscosity
solutions, see for instance [20, Section 6], [11, Proposition 2.9], [46, Section 4.3],
then U(x) is a continuous viscosity solution of the equation 1(D?u) = f(u) + h(x)
in Q. Arguing as in the case of (5.10), U = oo on 092, and this finishes the proof.

Step 3. Proof of the theorem for Mau = A,(Du), thatisa=e, = (0, ..., 1).

Reasoning as in Step 2, let u; be the solutions of (Pe,);. Let us call V(x), in this
case, the limit function u(x) in (5.9). The remaining part of the proof is the same
as Step 2 with 4, and V(x) instead of 1; and U(x).

Step 4. Proof of the theorem in the general case 0 #a > 0.

As in the proof of Theorem 5.1, Step 3, we observe that for ¢ € R, the
functions f. = f/c and h, = h/c satisfy the same assumptions of f and /4. Therefore
Step 2 and Step 3 yield continuous viscosity solutions of the equations

cAi(D*u) =f(u) +h(x) and cA,(D*u) = f(u) + h(x) in Q,

respectively, that go to infinity as x — €.

This shows that the boundary blow-up problems (P, ) and (P.e,) have a con-
tinuous viscosity solution for all ¢ > 0.

From the hypothesis on a we deduce that |a] = a; +---+a, > 0. Then we
call U, and V, such solutions for ¢ = |a|, that is

5.18) |a|A(D*U,) = f(Uy) + h(x) in Q, U, = 00 on 8Q;
‘ |al2,(D*Va) = f(Va) + h(x) in Q, V, = 0o on 6Q.
By construction, U, = lim;_; » u;, where

(5.19) lal21(D*u;) = f(u;) + h(x)in Q, u; =i on Q.

Observing that, since 1; < 1,, the function u; is a viscosity subsolution of the
equation |a|l,(D*u) = f(u) + h(x) in Q, and Vj, is a viscosity solution of the same
equation in Q such that V, > u; on 6Q, by the comparison principle of Theorem 4.2
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we have u; < V, in Q. Hence, letting i — oo, we get
(5.20) Uy, < Va, 1nQ.

Moreover, by (5.5), U, € C%Q) and V, € C°Q) are a subsolution and a
supersolution, respectively, of the equation Myu = f(u) + h(x) such that U, < V,
in Q.

Hence by Theorem 4.1 there exists a viscosity solution u of the same equation
such that U, < u < V, in Q and so, by (5.18), u = co on 02, finishing the proof.[]

Remark 5.2. The viscosity solution u is the supremum of functions u; € C(£2),
and is in turn lower semicontinuous in Q. It is known that u« is continuous in one
of the following cases: a; > a, +---+ay, a, > a; +---+a,— and aja, > 0. See
the Lipschitz and the Holder estimates of Remark 4.5 of Section 3.

Theorem 3.1 will be used now to prove Theorem 3.2 in the case 1 € C*(Q).
The proof is specular to that one of Theorem 3.1.

Proof of Theorem 3.2. Firstly, we construct by homothety an increasing
sequence of open subsets €; satisfying condition (§) such that Q; € Q;,; € Q,
JjeN,and |J; € = Q.

So for all j € N Theorem 3.1 provides solutions u; of the approximating
problems

Mau = f(u) + h(x) in Q;,

(Pa)j
u=00 on 0€2;.

Let us fix j € N. We recall that u; € LSC(Q), see Remark 5.2. Letting
Hu = Mau—f(u), by the general definition of viscosity solutions, see Section 4, we
have H(u;). < hin €, as well as H(uj,)* > hin ;. Moreover (u;), = 0o on 0€2;,
while (uj,1)* € USC(£2;41) is bounded above on 0€;. Therefore by the comparison
principle, Theorem 4.3, we have (uj,1)* < (&), in €;, and hence uj,| < u;jin ;.

Let x be any point in Q. There is j, € N such that x € €, for all j > j,. By the
above, the sequence {u;(x)};>;, is non-increasing, and we set

(5.21) u(x) == lim u;(x).
Jj— oo

Comparing the subsolution w € USC(L) of (P,) in Q, that exists by assumption,
and u; in Q; for all j > j,, Theorem 4.2 yields u;(x) > w(x), and so, letting j — oo,

(5.22) u(x) > w(x) in Q.
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Therefore, since liminf,_, 50 u(x) > lim,_, 50 w(x) = oo, the function u satisfies
the boundary blow-up condition:

(5.23) lim u(x) = co.
xX—0Q

Step 1. The function u(x) is locally bounded in €.

To see this, we know that u(x) is locally bounded from below by (5.22). On the
other hand, let K be a compact subset of Q. By construction there is jx € N such
that K C Q; for all j > jk. Since uj(x) < u; (x) for all x € Q;,,
letting j — oo, we have u < u;, in K. Hence u(x) is locally bounded above, too,

and all j > jk, then,

and we are done.

Step 2. The theorem holds for Mau = A;(D?u), thatisa=e; =(1,...,0).

Let u; be the viscosity solution of the boundary blow-up problem (P, );, and let
us call U(x), in this case, the limit function u(x) in (5.21).

At this point, we can repeat verbatim the proof of Theorem 3.1, Step 2, refer-
ring to the non-increasing sequence u; instead of the non-decreasing sequence u;
addressed there, to show that U(x) is a continuous viscosity solution of the equa-
tion A;(D?u) = f(u) + h(x) in Q. Arguing as for the case leading to (5.23), we
get U = oo on 0Q2, and this finishes the proof.

Step 3. Proof of the theorem for Mau = A,(D%u), thatisa=e, = (0, ..., 1).

It is sufficient to repeat verbatim the proof of Theorem 3.1, Step 3, with (Pe,);
and (5.21) instead of (Pe,); and (5.9), respectively.

Step 4. Proof of the theorem in the general case 0 #a > 0.

Following the proofs of Theorem 5.1, Step 3, and of Theorem 3.1, Step 4, we
find a subsolution U, and a supersolution V, of the equation Myu = f(u) + h(x) by
solving the boundary blow-up problems for the equations |a|1;(u) = f(u) + h(x)
and |a|4,(u) = f(u) + h(x), respectively, as in the above Step 2 and Step 3.

By construction V, = lim;_, o, u;, where

(5.24) |a|/1n(D2uj) = f(uj) + h(x) in Q;, u; = 00 on 0Q2;.

Since A1 < 4,, the function u; is a viscosity supersolution of the equation
|a|A1(D%u) = f(u) + h(x) in Q;, while U, is a viscosity solution of this equation
in Q, and U, < u; = oo on 0€2;. Then, by the comparison principle of Theorem 4.2
we have U, < u; in Q;. Therefore, for any x € Q, we have Ua(x) < u;(x) for
all j > j,, where j, € Nis such that x € Q; . It follows that, letting i — oo,

(5.25) U.(x) < Va(x) forall x € Q.

We note by Theorem 4.1 that there exists a viscosity solution u of the equation
Mau = f(u) + h(x) in Q such that U, < u < V, in Q and so u = oo on 0Q,
since U, = 0o = V, on 0Q. This completes the proof. (|
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6 Asymptotic boundary behavior

First we begin by recalling the following eigenvalue inequalities for X € 8" (see,
for instance, [74, Theorem 7.10]).

(6.1) LX)+ 4(Y) < 4;(X+Y) < LX)+ 4,(), j=1,...,n

Consequently, for X, Z € §" we have

MaX+2) =) " aqi)i(X+2) <> ajl1(X) + 1,(2)]
=1 j=1

(6.2) =M,(X) + |a|1,(2).

Similarly,

MaX+2) =Y aqj)i(X+2Z) = Y ajl1i(X) + 11(2)]
j=1 J=1

= Ma(X) + |a|21(2).
Hence, we get the following inequalities, valid for all X, Y € §".
(6.3) lalZ1(Y = X) < Ma(Y) — Ma(X) < la|2,(Y — X).
Thus, if u, v € C(Q) with u — v € C*(Q), then we find that
64)  lal2i(D*(u = 0)) < Ma(D*u) = Ma(D*0) < |a|2,(D*(u — v)),

in the viscosity sense.

Proof of Theorem 3.4. We recall that f is assumed to satisfy (f-1) and (f-2).
Since Q is a C? bounded open set, we also recall that there is # > 0 such
that d € C*(Q,), and |Dd| = 1 in Q,,. Here,

Q, ={xeQ:dXx) < u}.
For any 0 < p < u we consider the following subsets of Q:
Q) ={xeQ:p<dx) <u}, Q:={xeQ:0<dx) <pu-—p}
With the function @ defined in (2.2), we introduce
w_(x) :=A,Pd(x)—p) forxe Q) and w.(x):= A_D(d(x)+p) forxeQ?,

where A, and A_ are the positive constants given in the hypotheses of the theorem.
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Note that

D*w_ = A, ®"(d(x) — p)Dd ® Dd + A, ®'(d(x) — p)D°d, x€Q,

and
D*w, =A_®"(d(x)+ p)Dd @ Dd + A_D'(d(x) + p)D*d, x € Q.
Given x € Q,,, there is a unique y(x) € 0Q such that |x — y(x)| = d(x).
Let d+(x) := d(x) & p. The eigenvalues of D*w_ are

AL (d-(0))r(y(x)
1 —ki(y(0))d(x)

Similarly, the eigenvalues of D*w, are

A () (y(x)) i1
1 —x(y(x)d(x) ’ T
Herex; < --- < k,— are the principal curvatures of 0Q. See [36, Section 14.6].

On recalling the limit in (2.1), we choose u sufficiently small that, for
allj=1,...,n—1,

d:(x)  KOGX)  V2ZF(PdL(x)  K(y(x))

A, D" (d_(x)), and

A_®"(di(x)), and

6.5) — = <1 (xeQ
©2) O"(d(x) 1 —rj(y(x))d(x)  f(P(dr(x))) 1—r;(y(x)d(x) (xefx).
Thus,

(6.6) _ DGO gy oy, =1, =1 (e Q).

1 — i (y(x)d(x) —

On recalling assumption (Asy-1), we fix ¢ > 0 such that

6.7) ay < ay(1+¢) < hmclgf{; (+f+(g

Then, by (2.3) we find the following for x € €

Maw_+h™=Af(D(d-(x)))

2F(D(d_(x))) Z ajii(y(x)) N h™(x)
S(P(d-(x))) 1 — ki (y())d(x)  Ayf(D(d-(x)]

X |a, +

Using (2.1) and Remark 2.3, we see that the limit supremum, as d_(x) — 0, of
the expression in the bracket is a,. Consequently, with ¢ taken as small as needed,
we have

Maw— +h~ < Af(O(d_(x))an(l + &)
< f(A@d-(x) =f(w-), Dby (6.7).
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Therefore we deduce that

(6.8) Maw- < f(w-) —h™ < f(w-)+h, xe€Q,.
Recall that by assumption

(6.9) Mau > f(u)+h, xe€Q,

in the general viscosity sense, and set 6, := max{u*(x) : d(x) > u}.
Then from (6.8) we find that
Ma(w- +16,]) = Maw-—

(6.10)
<f(w_+160:)+h, xc€ Q).

We also observe, by construction, that u* < w_ + |6, | on the boundary of Q;.
Then, by (6.9) and (6.10), using the comparison principle, Theorem 4.2, we find
that u* < w_ +10,| in . That is

u*(x) |9+| )
D) —p) D@ —p) = TED

Letting p — 0" we find that

w0 16
D)~ Dy =M TS

Then we let d(x) — O to conclude the assertion in (1) of the theorem.
Next, we proceed to establish (2). This time we use assumption (Asy-2) to
fix & > 0 such that

6.11) Jim sup L 2=2)

t—oo0 A_f(D)

Then, for sufficiently small p > 0, we have the following for x € QF:

< —=2e&a, < a,.

VZF@d ) & Z ()
@) = 1= x(00))dw

> A_f(Q(d+ ()1 = &)ay
> f(wy), by (6.11).

Maw, =A_f(D(d(x))) |a, +

Setting 6_ := A_®(u), then we have
(6.12) Ma(wy —60-) > f(wy, —0-) in Q).

On the other hand, we use condition (D-h) to take a non-negative y € C*(Q)
such that 1,(D*y) < —h in Q.
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Therefore, since Mau < f(u)+hin the general viscosity sense, we have, by (6.2),
the following in the viscosity sense:
Ma(us + lal ™" y) < Mau, + 1,(D*y)
< Mgt — h, by (D-h)
< flu.)
< flu. +lal ™" y).

(6.13)

Note that, by construction, since u = co on 0Q, then w, — 60— < u, + |a|_11//
on 0Q. By (6.12 and (6.13), again using the comparison principle, Theorem 4.2,
we conclude that w, —6_ < u, + |a|™! v in Q;. Therefore, we have

I/l*(X) 0_ |a|_1l//(x) .
- < DO(d(x) + p) * Dd(x) + p) + D) + ) x e Q).

We let p — 0 to conclude that

U, (x) N o_ +|a|_1t//(x)
T T 0dx)  ddE) X))’

xe€Q,.

We assume that @(y) < oo, for otherwise the inequality (3.2) holds trivially.
We now take the limit infimum as d(x) — O to get the conclusion in (2) of the
theorem. u

Corollary 6.1. Let a > 0 such that a, > 0, and suppose h € C°(Q) such
that either supoh < oo or Q is uniformly convex and h satisfies (2.6). Also
suppose O(h™) < oo. Assume that conditions (f-1) and (f-2) hold and there are
positive constants A_ and A, such that (Asy-1) and (Asy-2) hold. Then, for any
viscosity solution u of Problem (P,), we have

o Uk(X) ) u*(x)
A_ < liminf < lim su < A,.
A0S0 D) ~ dmss DAY~

Proof. Since supyh < oo, or Q is uniformly convex and # satisfies (2.6),
we recall from Remark 2.4 that condition (D-h) is satisfied with a non-negative
function y € C?*(Q), so that O(y) = 0 in Q. Since O(h~) < oo, the desired
conclusion follows from Theorem 3.4. [

Proof of Theorem 3.5. Note that, since f € RV, for p > 1, the function f
satisfies (f-2). First let us suppose that a, > 0, and let us take any 0 < ¢ < a,,.
1
Since f € RV, we see that (2.5) holds with = (a, & €)' so that

i L@ £ &)771D)

Jim 0 =(a, £ &)r .
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. L .
As a consequence, setting Ay := (a, £ ¢)r-1, we can write

lim L A=D
o ALf (1)

Therefore, we see that both conditions (Asy-1) and (Asy-2) hold with

=a, *e.

Ay = (a, + e)r’%l and A_ = (a, — 8)P+1,

respectively. We point out that (Asy-1) still holds with A, = 71 when a, =0. By
invoking Theorem 3.4, and using the assumption that ®@(y) = 0, we obtain

*

Uy (X 1
(@, — &)77 < liminf < limsu < (a,+&)r.
d050 D) ~ a0 D)

Letting ¢ — 0, we get the desired limit when a, > 0. If, on the other hand,
a, = 0, then we see that

U, (x) . u*(x)
0 < liminf < limsu 581’1 Ve > 0.
a0 D) ~ g D))

Again taking the limit as ¢ — 0 leads to the desired result. d

A simple consequence of Theorem 3.5 is the following.

Corollary 6.2. Let 0 #a > 0. Let h € C%(Q) such that either supg h < 00
or Q is uniformly convex and h satisfies (2.6). Also suppose ®(h™) < co. Assume

condition (f-1) and f € RV, for some p > 1. Then for any viscosity solution u
of (P,) we have

. u(x) 1/(p—
1 — o/=1D
dH50 D)

Proof. We recall from Remark 2.4 that (D-h) holds, and that v € C*(Q).

Thus ®(y) = 0. Therefore, by Theorem 3.5 we conclude that the above limit
holds. -

We conclude this section with

Proof of Theorem 3.3. Let us begin with the assumption (1). Set
A= @, and A :=|al,
n

and fix v € C(Q), a large viscosity solution to

P,A(D*0) =f(v) inQ.
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See [59, Theorem 3.4] for the existence of such a solution. By assumption (D-h),
there exists a non-negative function y € C*(Q) N C°(Q) such that A,(D*y) = —h
in Q. We now see that w := v — y/|a| satisfies

- _v

Maw = M, (v |a|)

> Mav + 21(D*(— )

= Mav — 2,(D*(y))

> P A(D?0) + 1, by [29, (3.6)]

=f(v)+h

> f(w) + h.

Here, ‘PZ A 1s the Pucci minimal operator with positive real numbers 4 and A > 1
(ellipticity constants) defined as

n n
_ _ + — o
PraX) =2 le AT — A zlj A0 =, igf Tr(AX),
where 8% , is the set of n x n real symmetric matrices with eigenvalues between 4
and A. Thus w is a subsolution of the equation M,(u) = f(«) + h such that w = co
on 0Q. According to Theorem 3.2, Problem (P,) admits a maximal viscosity
solution.

Now, we turn to the assumption (2). First, we recall thatd € Cz(ﬁﬂ) foru >0
small enough. Let 0 < ¢ < p < u. We extend d as a C? function to the entire
domain Q by setting

(6.14) o= —p)d+o,
where ¢ € C5°(Q) such that 0 < ¢ < 1 on Q and
p=1onQ ' ={xeQ:dx)>p}, 9=0o0nQ,={xeQ:dx) < o}

By using assumption (Asy-2) we fix ¢ > 0 such that
JA_D(d(x)))

T I

so that, taking a sufficiently small o, we have

(6.15) an(1 = A_f(P(d(x))) = f(A-D(d(x))), x € L.

Now let v(x) := A_D(d(x)) for x € Q. Since 0 = d in €, proceeding as in the
proof of Theorem 3.4 we find there

VZF@E®) o a(5(x)) h(x)

Ma —h=A_Ff(DO(d n B ’
v f(D(d(x))) |a,+ F(@dX))) 5 1—xi(y(x)d(x) A_f(P(d(x)))
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and, by assumption @y(h) = 0, the limit infimum of the expression in the bracket
above is a, > 0. Therefore, eventually taking a smaller ¢ > 0, we find in Q,

Mav — h = A_f(@DEEN)(1 = )a, > f), by (6.15),
that is
(6.16) Mav > f(0)+h in Q,.
On the other hand, noting that v € Cz(ﬁa) and h € Co(ﬁﬂ), we set
M,=maxv ; mp:= min Mao ;5 M), := max h.
Q Q Q

By the assumption that f(r) — —oo as t — —oo, we find #; € R such that
f() <mp — M,, fort < t;. Therefore, picking 6 € R such that M, — 0 < 1y, we get
in Q’

Ma(v —0) > mp =mp — M, + M),

6.17) >f()+h
>fM,—0)+h
> f(o —0) +h.

Then w := v—0@is a subsolution of the equation Myu > f(u)+hin Q. In addition,
w = 0o on 0€2. Therefore, by Theorem 3.2, we conclude that Problem (P,) admits
a solution. [

7 Uniqueness

In this section, we study uniqueness of non-negative solutions to Problem (Pj).
We remark that if we assume (f-1) and (f-2), then 0 < ¢; < % See [59,
Remark 2.10].
Conditions (f-1), (f-2) and (f-3) yield the following inequalities: for any p > 1
there is a positive constant cg = cg(p) such that

(7.1) D(pt) = co (1)

for sufficiently large ¢ (see [59, Lemma 2.15]); for any « > O there is a positive
constant ¢y = c¢y(x) such that

(7.2) ft) = ¢ f(0)
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for sufficiently large ¢ (see [59, Lemma 2.12]);

(7.3) ¢r :=1limsu ! <§(l—f')2
‘ PR Fo ([ ds/ Py T 2 \2 T )
where £, :=limsu @ >0
HRL7 )

(see [59, Lemma 2.11]).
We recall, see [59, Remark 2.7], that if (D-C)’ holds, then £y is a non-decreasing
function of 6, and, for any given fand 7€ (1, 7) there exists 7 such that

(7.4) £ > 0f(f) VYO>~HandVt> 7.

Proof of Theorem 3.7. Since f satisfies condition (D-C)’, we recall that
there are constants 0 < A_ < 1 < A, < oo such that f satisfies conditions (Asy-1)
and (Asy-2), see Remark 2.1. Therefore we note that Theorem 3.4 applies. So
let u,v € C(Q) be two solutions of (P,). It is sufficient to show, following the
proof of [59, Theorem 4.4] and [58, Theorem 6.2], that

(7.5) 0 = limsup @ < 1.
dx)—0 V(X)
For this purpose, let us assume by contradiction that 8 > 1.
By definition, for all &€ > O there exists d > 0 such that

@ <O+¢ ifdix) <o;
v(x)
u(xp)

v(xp)

(7.6)

2
> 0 —¢ forsomexy e Q:dxy) < 55.

Here, we will consider ¢ small enough, 0 < ¢ < gy, where § — gy > 1, so
thatd — e > 1.
Then we set

1
Og.r =0, NB(x9), where O, ={xeQ|ulx)> (@—¢epx)}andr= > d(xp),
so that in particular
Opr CBr(xp) €Qs={xeQ:dx) <6} and r <d(x)<3rforxe B, (xp).

Eventually taking a smaller J in order to have ¢ = v(x) sufficiently large, we can

apply (7.4) with @ =6 — gg and 7 = {)‘7—;1 to get

(1.7) J((O —e)p) = (0 — &)f (0) + cof () In Q5

with a positive constant cy.
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Then we compare u and v, = (@ — ¢)v in O, ,. Let us first observe that the
following hold:

(7.8) Mav, = (0 — &)f (0) + (0 — &)h(x), in Q,
and
(7.9) Mau = f(u) + h(x)

> f((0 — &)v) + h(x)
> (0 —e)f(v) +cof(0) +h(x) in O, [by (7.7)].

Letting 0 > 0 be small as needed, from Theorem 3.4 we deduce that

(7.10) %A—Cb(d(X)) <o) < 2A4,0(d(x), x€ O,

and so, using the properties of f and @, we find the lower bound:

flox)) > f(% A_(I)(d(x))) [by (7.10), f non-decreasing]

1
> f(5 A_CI)(Sr)) [by d(x) < 3r, ® non-increasing]

(7.11) 1
zf(EA_cqp ®()  [by (7.1)]

> cr f(D(r) [by (7.2)]
> cr f(P(d(x))) [by d(x) = r].

It follows that, for x € Qg with a sufficiently small 6 > 0,

(7.12) caf (0 (%)) = ccr f(P(d(x))) = cf(P(A(x))).

Moreover, choosing ¢ > 0 small as needed, for y € B,(xp) we have

@ © ds \?
ey =L rir»( / ° ) [by (2.2)]

o) VF(s)
2 e [by (7.3)]
(7.13) ) "1 owoy o
S yd@y) =]
S LS [by (7.10)].

2A,(Lr+1) 12

We now see that (7.12), together with (7.13), yields

(7.14) e ) = 2%
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with some C > 0, depending on £y and A, only. The inequality (7.14), combined
with (7.9), leads to the inequality

(7.15) Mau > (0 — &)f (v(x)) + h(x) + C ﬂ

forallx € O, , and y € B.(xo).
Next, let us consider for all y € B,(x() the polynomial

lx — xol°
P =ov(1 - =)
with a constant ¢ > 0 to be suitably chosen in the sequel.
Since p € C*(R") and D*p = —@ I, we use (6.4) to find that

Ma(u+ p) = Ma(D*u+ D*p)
> Ma(D*u) + |a| 11 (D*p)

(7.16) 2002()’) la|
r

=Mau —

> (60— 8)f(1))+h(x)+C— —

v(y) 2002(y) jal.
r

On choosing o = | j and using (7.15), we obtain

2lal

Mau+p) > (0 — &) (0()) + h(x) + C 22 ”(y ) 20:2@) la

=@ —e)f(v)+ (0 — e)h(x).

(7.17)

Let v, = a_ltil_l

Ma(e + @) < Mav, + (0 — & — 1) A,(D*y)
(7.18) <@—-efw)+@l—eh—@—¢e—1)h, by(D-h)
=@ —¢e)f(v)+h.

Comparing (7.17) and (7.18) we see that u + p and v, — y,. are a subsolution
and a supersolution of the same equation, and we estimate the difference on O .
By the comparison principle such difference has a maximum on the boundary,

aoe,r = (Br(XO) N aos) U (OS N aBr(XO))
={x:|lx—xo| <r,ux)=0@ — X))} U{x:|x — xo| =r, u(x)> (@ — &)o(x)},

so that for some yy € 00, , we have

0—¢ec—1
u(xo) + p(xo)—(0 — &)v(xp) — ;—| w(xo)

< u(yo) +p(yo) — (0 — &)v(yo) — V/(J’O)

(7.19)
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We claim that yy € 0B,(xo). Indeed, let 79 = u(xp) — (6 —¢&)v(xp) > 0. Supposing
by contradiction that yy € B,(xg), then u(yg) = (8 — €)v(yp), and from (7.19) we
would get

—e—1 0—e—1
A = w(xo) < p(yo) — i w(¥o),
la| |a|

70 + p(x0) < u(xo) + p(xp) —

from which we get
0—e—1
70 + p(x0) — p(yo) < T(W(Xo) — w(yo)).

But then, for sufficiently small » > 0, we get a contradiction since yo — xp, by
continuity, p(xo) — p(yo) — 0 and w(x9) — w(y9) = Oasr — 0.
Turning to (7.19) with yy € dB,(xp), we have p(yp) = 0, and since

u(xp) — (0 — e)v(xp) > 0

we get

O—c—1
(7200 ov(y) = p(xo) < ulyo) — (6 — £)v(yo) + ;—I(w(xw — yO0)
and so, using (7.6) and (7.20), we obtain

0—¢ec—1
ov(y) < (0+ e)v(yo) — (0 — £)o(yo) + ;—l(w(m — y(0)

0—c—1
= 2en(yo) + ﬁ(w@m) — y(o)).

Letting » — 0, we have yp — X, and therefore by continuity we have
ov(xp) < 2ev(xgp).

Since ¢ > 0 can be chosen arbitrarily small, and v(xp) > 0, the above inequality
with y = yg and ¢ < ¢/2 yields a contradiction, which proves (7.5), and we are
done. (|

The following lemma can be obtained as an immediate consequence of Theo-
rem 4.2. Since this form of Theorem 4.2 will be used in the uniqueness proof, we
isolate it for convenience.

Lemma 7.1. Suppose Mau > f(u) + h in Q and Mav < f(v) + h in Q for
some u,v € C(Q). If

. ou(x)

>

then u < v in Q.
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Proof. Assume the contrary so that # > v at some point in 2. We consider
the non-empty open set

0 :={xe Q:ukx) > o))}
In view of (7.21) we see that O cC Q. Since u = v on 00, we invoke Theorem 4.2
to conclude that # < v in O, which is an obvious contradiction. O

We now use Theorem 3.7 to prove the following result on uniqueness.

Proof of Theorem 3.8. Let u,v € C(Q) be two non-negative solutions
of (P,). Itis enough to show that u < v in Q. Let w, := (1 +¢&)v + I;_I w fore > 0.
Then, as a consequence of (3.3) and the assumption that ®(y) = 0, we find that
u(x) 1
im =
dx)—0 we(x) 1+e¢

Moreover, from (6.3) we see that, since y € C*(Q),
(7.22) Maw, < Ma((1 +)0) + e (D*y).
Therefore, by (7.22) the following holds in €Q:

Maw, < (1+&)Mav + ed,(D*y)
<(+e)f(w)y+(1+e)h—eh by (D-h)
<f((Q+ew)+h
< f(w;) + h.

By Lemma 7.1, we find that u < w, in Q. Letting ¢ — 0 we conclude that u < v
in Q. OJ

8 Appendix

In this appendix, we provide a proof of the assertion made in Remark 2.4, showing
that the condition (D-h) can be obtained with & € C°(Q) unbounded above, pro-
vided that € is a bounded, uniformly convex open set. In other words, we prove
the following.

Lemma 8.1. Let Q C R” be a bounded and uniformly convex open subset
with C? boundary and suppose that h : Q — R such that

(8.1) h(x) < Cdx)"™' (xe Q),
for some 0 < a < 1. Then there is a non-negative y € C*(Q) such that

In(D*w) < —h in Q.
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Proof. Since Q is a C? bounded open set, we recall that the distance function
d belongs to Cz(ﬁﬂ)) for some p > 0, where

Q,={xeQ:dkx) < u}

(see [36, Lemma 14.16]). Consequently the function d* also belongs to Cz(ﬁﬂ).
Fix 0 < p < u and consider the closed set K := {x € Q : d(x) < p}.

By the Whitney extension theorem [73], see also Hestenes [41], we can extend
the function d* on K to a C? function J, in R”.

We observe that in Q N {d(x) > p} the Hessian matrix D?J,(x) is bounded,
therefore, 1,(D?5,) is bounded on Q N {d(x) > p} as well.

Suppose, as we may up to a translation, that O € €, and let By be a ball centered
at 0 of radius R > 0 such that Q € Bi. Then we set

2
(8.2) 5,(x) = 5a(x)+cR<1 - '%'2)

where cg > 0 is chosen sufficiently large to have d, > 0 in Q and

(8.3) In(D*5,) < —cy in QN {d(x) > p} for some constant ¢; > 0.
Hence
(8.4) In(D?6,) < —c1p”7'd*™" in QN {dx) = p}.

In QN {dx) < p} C Q,, the Hessian matrix of D?6,(x) = D*d*(x) is
D¢ = ¢ (d(x)) Dd @ Dd + ¢ (d(x)) D*d,

where ¢(r) = r*, so that ¢/ (r) = ar*~! > 0 and ¢"(r) = a(a — 1)r*~2 < O for r > 0.
Consequently the eigenvalues of D?J, in Q N {d(x) < p} are

ki(y(x))

ala —1)d"*(x) <0, —ad"”'(x) 1= kO)d()
J

0, j=1,....,n—1,

where y(x) is the unique point of 6Q such that |[x —y(x)| = d(x). See (4.7) with p =0
and the subsequent lines. Exploiting the uniform convexity of Q we can find a
constant ¢, > 0 such that

(8.5) In(D*6,(x)) < —c2d*"'(x) in QN {dx) < p},
and a fortiori

(8.6) In(D*6,(xX)) < —c2d® N (%) in QN {dx) < p).
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From (8.4) and (8.6) it follows that there exists a constant ¢ > 0 such that

(8.7) In(D?9,(x)) < —cd* '(x) forallx € Q.

From this, taking v = %5(1, where C is the constant in (8.1), finally we get

(8.8) In(D?y) = AH(ED%) <—Cd“'<—h inQ,
C

and so condition (D-h) is satisfied.

35
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We also give a proof of the representation formula of ® stated in Theorem 3.5.

Lemma 8.2. Let f satisfy (f-1), and suppose f € RV, for some p > 1. Then

1
D(r) = d)(l)r_ﬂ%' exp ( — / ? ds), r>0,

with ¢ € CO(R*) such that ¢(r) — 0 as r — 0.

Proof. Since f € RV), for some p > 1, we have

. F@ M f(s) o]
2 A% 7o /0 A% ¢ _/0 =T
Therefore, we have
D(r) . O(NQRF(D(r)~1?
S0 () o r by (23)
—-1/2
GOy
(8.10) t \2F(s)
= 1im (1 - 2’7;52)) by (2.1) and L' Hépital rule
_1-p
=5 from (8.9).
We now write
8.11) 2((:)) 1 ip = C(rr) r>0,
where
_ro'm 2 c(r) _ V2F@[1)
(8.12) c(r) = 0 T or = o0

By the limit in (8.10) we see that c¢(r) — 0 as r — 0.
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Integrating (8.11) from¢=1to t=r > 0, we find that

log ©(r) =

1_plogr+10gCI)(1)+/1 @ds.

In other words, we have

O(r) = O(1)rT7 - exp (/ @ds>
1

N

. 1
=O(1)r 71 -exp ( —/ ? ds)

as was to be shown. O

Finally, let us consider the following function.

?(log?t+k)* ifr>0

0= ifr <0

with p > 1 and a € R, where k = k(p, @) is a positive number large enough to
have f non-decreasing. Then f € RV, and a straightforward calculation shows
that

DO(r) ~ cpr_r)%lllog PITPT asr— 0,

where ¢, is a positive constant depending on p.
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