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Abstract

We establish several existence and nonexistence results for the boundary value problem

�Du þ KðxÞgðuÞ ¼ lf ðx; uÞ þ mhðxÞ in O; u ¼ 0 on @O; where O is a smooth bounded domain
in RN ; l and m are positive parameters, h is a positive function, while f has a sublinear growth.

The main feature of this paper is that the nonlinearity g is assumed to be unbounded around

the origin. Our analysis shows the importance of the role played by the decay rate of g

combined with the signs of the extremal values of the potential KðxÞ on %O: The proofs are
based on various techniques related to the maximum principle for elliptic equations.
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1. Introduction and the main results

Let O be a smooth bounded domain in RN ðNX2Þ: In this paper, we study the
existence or the nonexistence of solutions to the following boundary value problem:

�Du þ KðxÞgðuÞ ¼ lf ðx; uÞ þ mhðxÞ in O;

u40 in O;

u ¼ 0 on @O:

8><
>: ðPl;mÞ
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Here K ; hAC0;gð %OÞ; with h40 on O and l; m are positive real numbers. We suppose
that f : %O� ½0;NÞ-½0;NÞ is a Hölder continuous function which is positive on
%O� ð0;NÞ: We also assume that f is nondecreasing with respect to the second
variable and is sublinear, that is,

( f1) the mapping ð0;NÞ{s/f ðx;sÞ
s
is nonincreasing for all xA %O;

( f2) limsk0
f ðx;sÞ

s
¼ þN and lims-N

f ðx;sÞ
s

¼ 0; uniformly for xA %O:
We assume that gAC0;gð0;NÞ is a nonnegative and nonincreasing function

satisfying
(g1) limsk0 gðsÞ ¼ þN;
(g2) there exists C; d040 and aAð0; 1Þ such that gðsÞpCs�a for all sAð0; d0Þ:
Obviously, hypothesis (g2) implies the following Keller–Osserman-type condition

around the origin

(g3)
R 1
0 ð
R t

0 gðsÞ dsÞ�1=2 dtoN:

As proved by Bénilan et al. [2], condition (g3) is equivalent to the property of

compact support, that is, for every hAL1ðRNÞ with compact support, there exists a
unique uAW 1;1ðRNÞ with compact support such that DuAL1ðRNÞ and

�Du þ gðuÞ ¼ h a:e: in RN :

Example. The function f ðsÞ ¼ sað0oao1Þ fulfills ( f1)–( f2), while gðsÞ ¼
ðsa þ sbÞ�1ð0oao1; b40Þ satisfies the assumptions (g1)–(g2).

Our framework includes the Emden–Fowler equation that corresponds to gðsÞ ¼
s�g; g40 (see [19]).
A major factor that makes ðPl;mÞ difficult to treat is the lack of the usual maximal

principle between super- and subsolutions, due to the singular character of the
equation.

Denote E ¼ fuAC2ðOÞ-Cð %OÞ; gðuÞAL1ðOÞg:
We show in this paper that ðPl;mÞ has at least one solution in E for l; m belonging

to a certain range. We also prove that in some cases, ðPl;mÞ has no solutions in E;
provided that l and m are sufficiently small.

Remark 1.1. (i) If uAE; vAC2ðOÞ-Cð %OÞ and 0ouov in O; then vAE:

(ii) Let uAC2ðOÞ-Cð %OÞ be a solution of ðPl;mÞ: Then uAE if and only if

DuAL1ðOÞ:

Singular semilinear elliptic equations have been intensively studied in the last
decades. Such problems arise in the study of non-Newtonian fluids, boundary layer
phenomena for viscous fluids, chemical heterogenous catalysts, in the theory of heat
conduction in electrically conducting materials. For instance, problems of this type
characterize some reaction–diffusion processes where uX0 is viewed as the density of
a reactant and the region where u ¼ 0 is called the dead core, where no reaction takes
place (see [1] for the study of a single, irreversible steady-state reaction). Nonlinear
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singular elliptic equations are also encountered in glacial advance, in transport of
coal slurries down conveyor belts and in several other geophysical and industrial
contents (see [4] for the case of the incompressible flow of a uniform stream past a
semi-infinite flat plate at zero incidence). For more details, we also refer to [3,8,14,16]
and the references therein.
Many authors considered the problem

�Du þ KðxÞu�a ¼ lup in O;

u40 in O;

u ¼ 0 on @O;

8><
>: ð1Þ

for lX0 and a; pAð0; 1Þ: When Ko0 and l ¼ 0; problem (1) was studied in
[6,9,11,13,17]. For K � �1; it was proved in [7] that (1) has at least one solution for
all lX0 and 0opo1:Moreover, if pX1; there exists *l such that (1) has a solution for
lA½0; *lÞ and no solution for l4*l:
If K � 1; it was established in [20] that there exists %l40 such that (1) has at least

one solution in E provided that l4%l and no solution exists if lo%l:
In [18], it is shown that for l sufficiently large, problem (1) has at least one solution

ulAE-C1;1�gð %OÞ and

c1 distðx; @OÞpulðxÞpc2 distðx; @OÞ

for any xAO and for some constants c1; c240 independent of x:
A fundamental role will be played in our analysis by the numbers

K� ¼ max
xA %O

KðxÞ; K� ¼ min
xA %O

KðxÞ:

Our main results are the following.

Theorem 1.1. Assume that K�40 and f satisfies ( f1)–( f2). If
R 1
0 gðsÞ ds ¼ þN; then

ðPl;mÞ has no solution in E for any l; m40:

Theorem 1.2. Assume that K�40; f satisfies ( f1)–( f2) and g satisfies (g1)–(g2). Then

there exists l�; m�40 such that

ðPl;mÞ has at least one solution in E if l4l� or m4m�:
ðPl;mÞ has no solution in E if lol� and mom�:
Moreover, if l4l� or m4m�; then ðPl;mÞ has a maximal solution in E which is

increasing with respect to l and m (Fig. 1).

Theorem 1.3. Assume that K�p0; f satisfies ( f1)–( f2) and g satisfies (g1)–(g2). Then

ðPl;mÞ has a unique solution ul;mAE for any l; m40: Moreover, ul;m is increasing with

respect to l and m:
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Theorems 1.2 and 1.3 also show the role played by the sublinear term f and the
sign of KðxÞ: Indeed, if f becomes linear then the situation changes radically. First,
by the results in [9], the problem

�Du � u�a ¼ �u in O;

u40 in O;

u ¼ 0 on @O

8><
>:

has a solution, for any a40: Next, as shown in [5], the problem

�Du þ u�a ¼ u in O;

u40 in O;

u ¼ 0 on @O

8><
>:

has no solution, provided 0oao1 and l1X1 (that is, if O is ‘‘small’’), where l1
denotes the first eigenvalue of ð�DÞ in H1

0 ðOÞ:

Theorem 1.4. Assume that K�404K�; f satisfies ( f1)–( f2) and g verifies (g1)–(g2).
Then there exists l�; m�40 such that ðPl;mÞ has at least one solution ul;mAE if l4l� or

m4m�: Moreover, for l4l� or m4m�; ul;m is increasing with respect to l and m:

As it was pointed out in [6], problems related to multiplicity or to uniqueness
become difficult even in simple cases. In this sense we also refer to [15], where the
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Fig. 1. The dependence on l and m in Theorem 1.2.
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existence of radial symmetric solutions of the problem

Du þ lðup � u�aÞ ¼ 0 in B1;

u40 in B1;

u ¼ 0 on @B1;

8><
>: ð2Þ

is studied, where 0oa; po1; l40 and B1 is the unit ball in RN : Using a bifurcation
theorem of Crandall and Rabinowitz, it has been shown in [15] that there exists
l14l040 such that (2) has no solutions for lol0; one solution for l ¼ l0 or l4l1;
two solutions for l1Xl4l0:

2. Auxiliary results

Let j1 be the normalized positive eigenfunction corresponding to the first
eigenvalue l1 of the problem

�Du ¼ lu in O;

u ¼ 0 on @O:

(
ð3Þ

Lemma 2.1 (see Lazer and McKenna [13]).
R
O j�s

1 dxoþN if and only if so1:

Lemma 2.2 (see Shi and Yao [18]). Let F : %O� ð0;NÞ-R be a Hölder continuous

function with exponent gAð0; 1Þ on each compact subset of %O� ð0;NÞ which satisfies

(F1) lim sups-þN
ðs�1 maxxA %O Fðx; sÞÞol1;

(F2) for each t40; there exists a constant DðtÞ40 such that

Fðx; rÞ � Fðx; sÞX� DðtÞðr � sÞ; for xA %O and rXsXt;

(F3) there exists Z040 and an open subset O0CO such that

min
xA %O

Fðx; sÞX0 for xAð0; Z0Þ;

and

lim
sk0

Fðx; sÞ
s

¼ þN uniformly for xAO0:

Then for any nonnegative function j0AC2;gð@OÞ; the problem

�Du ¼ Fðx; uÞ in O;

u40 in O;

u ¼ j0 on @O;

8><
>: ð4Þ
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has at least one positive solution uAC2;gðGÞ-Cð %OÞ; for any compact set

GCO,fxA@O; j0ðxÞ40g:

Lemma 2.3 (see Shi and Yao [18]). Let F : %O� ð0;NÞ-R be a continuous function

such that the mapping ð0;NÞ{s/Fðx;sÞ
s

is strictly decreasing at each xAO: Assume

that there exists v, wAC2ðOÞ-Cð %OÞ such that

(a) Dw þ Fðx;wÞp0pDv þ Fðx; vÞ in O;
(b) v;w40 in O and vpw on @O;
(c) DvAL1ðOÞ:

Then vpw in O:

We observe that the hypotheses of Lemmas 2.2 and 2.3 are fulfilled for

Fl;mðx; sÞ ¼ lf ðx; sÞ þ mhðxÞ; ð5Þ

Cl;mðx; sÞ ¼ lf ðx; sÞ � KðxÞgðsÞ þ mhðxÞ; provided K�p0: ð6Þ

Lemma 2.4. Let f satisfying ( f1)–( f2) and g satisfying (g1)–(g2). Then there exists
%l40 such that the problem

�Dv þ gðvÞ ¼ lf ðx; vÞ þ mhðxÞ in O;

v40 in O;

v ¼ 0 on @O

8><
>: ð7Þ

has at least one solution vl;mAE for all l4%l and for any m40:

Proof. Let l; m40: According to Lemmas 2.2 and 2.3, the boundary value problem

�DU ¼ lf ðx;UÞ þ mhðxÞ in O;

U40 in O;

U ¼ 0 on @O

8><
>: ð8Þ

has a unique solution Ul;mAC2;gðOÞ-Cð %OÞ: Then vl;m ¼ Ul;m is a supersolution of

(7). The main point is to find a subsolution of (7). For this purpose, let H :
½0;NÞ-½0;NÞ be such that

H 00ðtÞ ¼ gðHðtÞÞ; for all t40;

H 0ð0Þ ¼ Hð0Þ ¼ 0:

(
ð9Þ

Obviously, HAC2ð0;NÞ-C1½0;NÞ exists by our assumption (g2). From (9), it
follows that H 00 is nonincreasing, while H and H 0 are nondecreasing on ð0;NÞ:
Using this fact and applying the mean value theorem, we deduce that for all t40
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there exists x1t ; x
2
tAð0; tÞ such that

HðtÞ
t

¼ HðtÞ � Hð0Þ
t � 0 ¼ H 0ðx1t ÞpH 0ðtÞ;

H 0ðtÞ
t

¼ H 0ðtÞ � H 0ð0Þ
t � 0 ¼ H 00ðx2t ÞXH 00ðtÞ:

The above inequalities imply

HðtÞptH 0ðtÞp2HðtÞ; for all t40:

Hence,

1p
tH 0ðtÞ
HðtÞ p2; for all t40: ð10Þ

On the other hand, by (g2) and (9), there exists Z40 such that

HðtÞpd0; for all tAð0; ZÞ;
H 00ðtÞpCH�aðtÞ; for all tAð0; ZÞ;

(
ð11Þ

which yields

HðtÞpct2=ðaþ1Þ; for all tAð0; ZÞ; ð12Þ

where c40 is a constant.
Now we look for a subsolution of the form

%
vl;m ¼ MHðj1Þ; for some constant

M40: We have

�D
%
vl;m þ gð

%
vl;mÞ ¼ l1MH 0ðj1Þj1 þ gðMHðj1ÞÞ � MgðHðj1ÞÞjrj1j

2 in O: ð13Þ

Take MX1: The monotonicity of g leads to

gðMHðj1ÞÞpgðHðj1ÞÞ in O;

and, by (13),

�D
%
vl;m þ gð

%
vl;mÞpl1MH 0ðj1Þj1 þ gðHðj1ÞÞð1� Mjrj1j

2Þ in O: ð14Þ

We claim that

�D
%
vl;m þ gð

%
vl;mÞp2l1MH 0ðj1Þj1 in O: ð15Þ

Indeed, by Hopf’s maximum principle, there exists d40 and o!O such that

jrj1jXd in O\o;

j1Xd in o:
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On O\o; we choose MXM1 ¼ maxf1; d�2g: Then, by (14) we obtain

�D
%
vl;m þ gð

%
vl;mÞpl1MH 0ðj1Þj1 in O\o: ð16Þ

Fix MXmaxfM1;
gðHðdÞÞ
l1H 0ðdÞdg: Then

gðHðj1ÞÞpgðHðdÞÞpl1MH 0ðdÞdpl1MH 0ðj1Þj1 in o:

From (14) we deduce

�D
%
vl;m þ gð

%
vl;mÞp2l1MH 0ðj1Þj1 in o: ð17Þ

Hence our claim (15) follows from (16) and (17).
Since j140 in O; from (10) we have

1p
H 0ðj1Þj1

Hðj1Þ
p2 in O: ð18Þ

Thus, (15) and (18) yield

�D
%
vl;m þ gð

%
vl;mÞp4l1MHðj1Þ ¼ 4l1

%
vl;m in O: ð19Þ

Take %l ¼ 4l1c�1j
%
vl;mjN; where c ¼ infxA %O f ðx; j

%
vl;mjNÞ40: If l4%l; the assumption

( f1) produces

l
f ðx;

%
vl;mÞ

%
vl;m

X%l
f ðx; j

%
vl;mjNÞ

j
%
vl;mjN

X4l1; for all xAO:

This combined with (19) gives

�D
%
vl;m þ gð

%
vl;mÞpl f ðx;

%
vl;mÞ in O:

Hence,
%
vl;m is a subsolution of (7), for all l4%l and m40:

We now prove that
%
vl;mAE; that is gð

%
vl;mÞAL1ðOÞ: Denote O0 ¼ fxAO;j1ðxÞoZg:

By (11) and (12) it follows that

gð
%
vl;mÞ ¼ gðMHðj1ÞÞpgðHðj1ÞÞpCH�aðj1ÞpC0 j

�2a=ð1þaÞ
1 in O0;

gð
%
vl;mÞpgðMHðZÞÞ in O\O0:

These estimates combined with Lemma 2.1 yield gð
%
vl;mÞAL1ðOÞ and so D

%
vl;mAL1ðOÞ:

Hence,

D%vl;m þ Fl;mðx; %vl;mÞp0pD
%
vl;m þ Fl;mðx;

%
vl;mÞ in O;

%
vl;m; %vl;m40 in O;

%
vl;m ¼ %vl;m on @O;

D
%
vl;mAL1ðOÞ:
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By Lemma 2.3, it follows that
%
vl;mp%vl;m on %O: Now, standard elliptic arguments

guarantee the existence of a solution vl;mAC2ðOÞ-Cð %OÞ for (7) such that

%
vl;mpvl;mp%vl;m in %O: Since

%
vl;mAE; by Remark 1.1 we deduce that vl;mAE: Hence,

for all l4%l and m40; problem (7) has at least a solution in E: The proof of Lemma
2.4 is now complete. &

We shall often refer in what follows to the following approaching problem of
ðPl;mÞ:

�Du þ KðxÞgðuÞ ¼ lf ðx; uÞ þ mhðxÞ in O;

u40 in O;

u ¼ 1
k

on @O;

8>><
>>: ðPk

l;mÞ

where k is a positive integer. We observe that any solution of ðPl;mÞ is a subsolution
of ðPk

l;mÞ:

3. Proof of Theorem 1.1

Suppose to the contrary that there exists l and m such that ðPl;mÞ has a solution
ul;mAE and let Ul;m be the solution of (8). Since

DUl;m þ Fl;mðx;Ul;mÞp0pDul;m þ Fl;mðx; ul;mÞ in O;

by Lemma 2.3 we get ul;mpUl;m in %O:
Consider the perturbed problem

�Du þ K�gðu þ eÞ ¼ lf ðx; uÞ þ mhðxÞ in O;

u40 in O;

u ¼ 0 on @O:

8><
>: ð20Þ

Since K�40; it follows that ul;m and Ul;m are sub- and supersolution for (20),

respectively. So, by elliptic regularity, there exists ueAC2;gð %OÞ a solution of (20)
such that

ul;mpuepUl;m in O: ð21Þ

Integrating in (20) we deduce

�
Z
O
Due dx þ K�

Z
O

gðue þ eÞ dx ¼
Z
O
½lf ðx; ueÞ þ mhðxÞ� dx:
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M. Ghergu, V. Rădulescu / J. Differential Equations 195 (2003) 520–536528



Hence,

�
Z
@O

@ue

@n
ds þ K�

Z
O

gðue þ eÞ dxpM; ð22Þ

where M40 is a constant. Since @ue
@n
p0 on @O; relation (22) yields K�

R
O gðue þ

eÞ dxpM; and so K�
R
O gðUl;m þ eÞ dxpM: Thus, for any compact subset o!O

we have

K�

Z
o

gðUl;m þ eÞ dxpM:

Letting e-0; the above relation leads to K�
R
o gðUl;mÞ dxpM: Therefore,

K�

Z
O

gðUl;mÞ dxpM: ð23Þ

Choose d40 sufficiently small and define Od :¼ fxAO; distðx; @OÞpdg: Taking
into account the regularity of domain, there exists k40 such that

Ul;mpk distðx; @OÞ for all xAOd:

Then Z
O

gðUl;mÞ dxX

Z
Od

gðUl;mÞ dxX

Z
Od

gðk distðx; @OÞÞ dx ¼ þN;

which contradicts (23). It follows that the problem ðPl;mÞ has no solutions in E and

the proof of Theorem 1.1 is now complete.

Remark 3.1. Using the same method as in [20, Theorem 2], we can prove that ðPl;mÞ
has no solution in C2ðOÞ-C1ð %OÞ as it was pointed out in [6, Remark 2].

4. Proof of Theorem 1.2

We split the proof into several steps.

Step I. Existence of the solutions of ðPl;mÞ for l large: By Lemma 2.4, there exists %l
such that for all l4%l and m40 the problem

�Dv þ K�gðvÞ ¼ lf ðx; vÞ þ mhðxÞ in O;

v40 in O;

v ¼ 0 on @O;

8><
>:

has at least one solution vl;mAE: Then vk ¼ vl;m þ 1
k
is a subsolution of ðPk

l;mÞ for all
positive integers kX1:
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From Lemma 2.2, let wAC2;gð %OÞ be the solution of

�Dw ¼ lf ðx;wÞ þ mhðxÞ in O;

w40 in O;

w ¼ 1 on @O:

8><
>:

It follows that w is a supersolution of ðPk
l;mÞ for all kX1 and

Dw þ Fl;mðx;wÞp0pDv1 þ Fl;mðx; v1Þ in O;

w; v140 in O;

w ¼ v1 on @O;

Dv1AL1ðOÞ:

Therefore, by Lemma 2.3, 1pv1pw in %O: Standard elliptic arguments imply that
there exists a solution u1l;mAC2;gð %OÞ of ðP1l;mÞ such that v1pu1l;mpw in %O: Now, taking

u1l;m and v2 as a pair of super- and subsolutions for ðP2l;mÞ; we obtain a solution
u2l;mAC2;gð %OÞ of ðP2l;mÞ such that v2pu2l;mpu1l;m in %O: In this manner, we find a
sequence fun

l;mg such that

vnpun
l;mpun�1

l;m pw in %O: ð24Þ

Define ul;mðxÞ ¼ limn-N un
l;mðxÞ for all xA %O: Standard bootstrap arguments imply

that ul;m is a solution of ðPl;mÞ: From (24), we have vl;mpul;mpw in %O: Since vl;mAE;

by Remark 1.1 it follows that ul;mAE: Consequently, problem ðPl;mÞ has at least a
solution in E for all l4%l and m40:

Step II. Existence of the solutions of ðPl;mÞ for m large: Let us first notice
that g verifies the hypotheses of Theorem 2 in [10]. We also remark that the
assumption (g2) and Lemma 2.1 are essential to find a subsolution in the proof of
Theorem 2 in [10].
According to this result, there exists %m40 such that the problem

�Dv þ K�gðvÞ ¼ mhðxÞ in O;

v40 in O;

v ¼ 0 on @O;

8><
>:

has at least a solution vmAE provided that m4 %m: Fix l40 and denote vk ¼
vm þ 1

k
; kX1: Hence, vk is a subsolution of ðPk

l;mÞ; for all kX1: Similarly to the

previous step we obtain a solution ul;mAE for all l40 and m4 %m:
Step III. Nonexistence for l; m small: Let l; m40: Since K�40; the assumption

(g1) implies limsk0 Cl;mðx; sÞ ¼ �N; uniformly for xA %O: So, there exists c40
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such that

Cl;mðx; sÞo0 for all ðx; sÞA %O� ð0; cÞ: ð25Þ

Let sXc: From ( f1) we deduce

Cl;mðx; sÞ
s

pl
f ðx; sÞ

s
þ m

hðxÞ
s

pl
f ðx; cÞ

c
þ m

jhj
N

s

for all xA %O: Fix mo cl1
2jhj

N

and let M ¼ supxA %O
f ðx;cÞ

c
40: From the above inequality we

have

Cl;mðx; sÞ
s

p lM þ l1
2
; for all ðx; sÞA %O� ½c;þNÞ: ð26Þ

Thus, (25) and (26) yield

Cl;mðx; sÞpaðlÞs þ l1
2

s; for all ðx; sÞA %O� ð0;þNÞ: ð27Þ

Moreover, aðlÞ-0 as l-0: If ðPl;mÞ has a solution ul;m; then

l1

Z
O

u2l;mðxÞ dxp
Z
O
jrul;mj2 dx ¼ �

Z
O

ul;mðxÞDul;mðxÞ dx

p
Z
O

ul;mðxÞCðx; ul;mðxÞÞ dx:

Using (27), we get

l1

Z
O

u2l;mðxÞ dxp aðlÞ þ l1
2

� 	 Z
O

u2l;mðxÞ dx:

Since aðlÞ-0 as l-0; the above relation leads to a contradiction for l; m40
sufficiently small.

Step IV. Existence of a maximal solution of ðPl;mÞ: We show that if ðPl;mÞ has a
solution ul;mAE; then it has a maximal solution. Let l; m40 be such that ðPl;mÞ
has a solution ul;mAE: If Ul;m is the solution of (8), by Lemma 2.3 we have ul;mpUl;m

in %O: For any jX1; denote

Oj ¼ xAO; distðx; @OÞ41
j


 �
:

Set U0 ¼ Ul;m and, for any jX1; let Uj be the solution of

�Dzþ KðxÞgðUj�1Þ ¼ lf ðx;Uj�1Þ þ mhðxÞ in Oj;

z ¼ Uj�1 in O\Oj :

(
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Using the fact that Cl;m is nondecreasing with respect to the second variable, we get

ul;mpUjpUj�1pU0 in %O:

If %ul;mðxÞ ¼ limj-N UjðxÞ for all xA %O; by standard elliptic arguments (see [12]) it
follows that %ul;m is a solution of ðPl;mÞ: Since ul;mp %ul;m in %O; by Remark 1.1 we have
%ul;mAE: Moreover, %ul;m is a maximal solution of ðPl;mÞ:

Step V. Dependence on l and m: We first show the dependence on l of the maximal
solution %ul;mAE of ðPl;mÞ: For this purpose, fix m40 and define

A :¼ fl40; ðPl;mÞ has at least a solution ul;mAEg:

Let l� ¼ inf A: From the previous steps, we have Aa| and l�40: Let l1AA and

%ul1;m be the maximal solution of ðPl1;mÞ: We prove that ðl1;þNÞCA: If l24l1 then
%ul1;m is a subsolution of ðPl2;mÞ: On the other hand,

DUl2;m þ Fl2;mðx;Ul2;mÞp0pD %ul1;m þ Fl2;mðx; %ul1;mÞ in O;

Ul2;m; %ul1;m40 in O;

Ul2;mX %ul1;m on @O;

D %ul1;mAL1ðOÞ:

By Lemma 2.3, %ul1;mpUl2;m in %O: In the same way as in Step IV we find a solution
ul2;mAE of ðPl2;mÞ such that

%ul1;mpul2;mpUl2;m in %O:

Hence, l2AA and so ðl�;þNÞCA: If %ul2;mAE is the maximal solution of ðPl2;mÞ; the
above relation implies %ul1;mp %ul2;m in %O: By the maximum principle, it follows that
%ul1;mo %ul2;m in O: So, %ul;m is increasing with respect to l:
To prove the dependence on m; we fix l40 and define

B :¼ fm40; ðPl;mÞ has at least one solution ul;mAEg:

Let m� ¼ inf B: The conclusion follows in the same manner as above.
The proof of Theorem 1.2 is now complete. &

5. Proof of Theorem 1.3

Let l; m40: We recall that the function Cl;m defined in (6) verifies the hypotheses

of Lemma 2.2, since K�p0: So, there exists ul;mAC2;gðOÞ-Cð %OÞ a solution of ðPl;mÞ:
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If Ul;m is the solution of (8), then

Dul;m þ Fl;mðx; ul;mÞp0pDUl;m þ Fl;mðx;Ul;mÞ in O;

ul;m; Ul;m40 in O;

ul;m ¼ Ul;m ¼ 0 on @O:

Since DUl;mAL1ðOÞ; by Lemma 2.3 we get ul;mXUl;m in %O:
We claim that there exists c40 such that

Ul;mXcj1 in O: ð28Þ

Indeed, if not, there exists fxngCO and en-0 such that

ðUl;m � enj1ÞðxnÞo0: ð29Þ

Moreover, we can choose the sequence fxng with the additional property

rðUl;m � enj1ÞðxnÞ ¼ 0: ð30Þ

Passing eventually at a subsequence, we can assume that xn-x0A %O: From (29), it
follows that Ul;mðx0Þp0 which implies Ul;mðx0Þ ¼ 0; that is x0A@O: Furthermore,

from (30) we have rUl;mðx0Þ ¼ 0: This is a contradiction since @Ul;m

@n
ðx0Þo0; by

Hopf’s strong maximum principle. Our claim follows and so

ul;mXUl;mXcj1 in O: ð31Þ

Then, gðul;mÞpgðUl;mÞpgðcj1Þ in O: From assumption (g2) and Lemma 2.1 (using
the same method as in the proof of Lemma 2.4) it follows that gðcj1ÞAL1ðOÞ:Hence,
ul;mAE:

Let us now assume that u1l;m; u2l;mAE are two solutions of ðPl;mÞ: In order to prove
the uniqueness, it is enough to show that u1l;mXu2l;m in %O: This follows by Lemma 2.3.
Let us show now the dependence on l of the solution of ðPl;mÞ: For this purpose,

let 0ol1ol2 and ul1;m; ul2;m be the unique solutions of ðPl1;mÞ and ðPl2;mÞ;
respectively, with m40 fixed. Since ul1;m; ul2;mAE and

Dul2;m þ Fl2;mðx; ul2;mÞp0pDul1;m þ Fl2;mðx; ul1;mÞ in O;

in virtue of Lemma 2.3 we find ul1;mpul2;m in %O: So, by the maximum principle,

ul1;moul2;m in O:
The dependence on m follows similarly.
The proof of Theorem 1.3 is now complete. &
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6. Proof of Theorem 1.4

Step I. Existence: Using the fact that K�40; from Theorem 1.2 it follows that
there exists l�; m�40 such that the problem

�Dv þ K�gðvÞ ¼ lf ðx; vÞ þ mhðxÞ in O;

v40 in O;

v ¼ 0 on @O

8><
>:

has a maximal solution vl;mAE; provided l4l� or m4m�:Moreover, vl;m is increasing

with respect to l and m: Then vk ¼ vl;m þ 1
k
is a subsolution of ðPk

l;mÞ; for all kX1: On

the other hand, by Lemma 2.2, the boundary value problem

�Dw þ K�gðwÞ ¼ lf ðx;wÞ þ mhðxÞ in O;

w40 in O;

w ¼ 1
k

on @O

8><
>:

has a solution wkAC2;gð %OÞ: Obviously, wk is a supersolution of ðPk
l;mÞ:

Since K�404K�; we have

Dwk þ Fl;mðx;wkÞp0pDvk þ Fl;mðx; vkÞ in O;

and

wk; vk40 in O;

wk ¼ vk on @O;

DvkAL1ðOÞ:

From Lemma 2.3 it follows that vkpwk in %O: By standard super- and subsolution
argument, there exists a minimal solution u1l;mAC2;gð %OÞ of ðP1l;mÞ such that

v1pu1l;mpw1 in %O: Now, taking u1l;m and v2 as a pair of super- and subsolutions

for ðP2l;mÞ; we deduce that there exists a minimal solution u2l;mAC2;gð %OÞ of ðP2l;mÞ such
that v2pu2l;mpu1l;m in %O: Arguing in the same manner, we obtain a sequence fuk

l;mg
such that

vkpuk
l;mpuk�1

l;m pw1 in %O: ð32Þ

Define ul;mðxÞ ¼ limk-N uk
l;mðxÞ for all xA %O:With a similar argument to that used in

the proof of Theorem 1.2, we find that ul;mAE is a solution of ðPl;mÞ: Hence, problem
ðPl;mÞ has at least a solution in E; provided that l4l� or m4m�:
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Step II. Dependence on l and m: As above, it is enough to justify only the
dependence on l: Fix l�ol1ol2; m40 and let ul1;m; ul2;mAE be the solutions of

ðPl1;mÞ and ðPl2;mÞ; respectively, that we have obtained in Step I. It follows that uk
l2;m

is a supersolution of ðPk
l1;mÞ: So, Lemma 2.3 combined with the fact that vl;m is

increasing with respect to l4l� yield

uk
l2;mXvl2;m þ

1

k
Xvl1;m þ

1

k
in %O:

Thus, uk
l2;m

Xuk
l1;m

in %O since uk
l1;m

is the minimal solution of ðPk
l1;m

Þ which satisfies
uk
l1;m

Xvl1;m þ 1=k in %O: It follows that ul2;mXul1;m in %O: By the maximum principle we
deduce that ul2;m4ul1;m in O:
This concludes the proof. &

Acknowledgments

This work has been completed while V. Rădulescu was visiting the Université de
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M. Ghergu, V. Rădulescu / J. Differential Equations 195 (2003) 520–536536


	Sublinear singular elliptic problems with two parametersThis paper is dedicated with esteem to Professor Philippe G. Ciarlet on
	Introduction and the main results
	Auxiliary results
	see Lazer and McKenna [13]
	see Shi and Yao [18]
	see Shi and Yao [18]
	Proof of Theorem 1.1
	Proof of Theorem 1.2
	Proof of Theorem 1.3
	Proof of Theorem 1.4
	Acknowledgements
	References


