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Abstract

We establish several existence and nonexistence results for the boundary value problem
—Au + K(x)g(u) = Af (x,u) + ph(x) in Q, u = 0 on 0Q, where Q is a smooth bounded domain
in RV, /. and p are positive parameters, / is a positive function, while / has a sublinear growth.
The main feature of this paper is that the nonlinearity g is assumed to be unbounded around
the origin. Our analysis shows the importance of the role played by the decay rate of ¢
combined with the signs of the extremal values of the potential K(x) on Q. The proofs are
based on various techniques related to the maximum principle for elliptic equations.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction and the main results

Let Q be a smooth bounded domain in RY (N>2). In this paper, we study the
existence or the nonexistence of solutions to the following boundary value problem:

—Au+ K(x)g(u) = Af (x,u) + ph(x) in Q,
u>0 in Q? (P/qv»ll)
u=20 on 0Q.
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Here K, he C%(Q), with h>0 on Q and 1, u are positive real numbers. We suppose
that f: Q x [0, 00)—[0, 00) is a Holder continuous function which is positive on
Q x (0, 0). We also assume that f is nondecreasing with respect to the second
variable and is sublinear, that is,

S(x5)

N

(2) limslo@ = 400 and limS_,wf(’?s) = 0, uniformly for xeQ.

is nonincreasing for all xeQ;

(f1) the mapping (0, 0 )35+

We assume that ge C%7(0, c0) is a nonnegative and nonincreasing function
satisfying

(g1) limy o g(s) = +00;

(g2) there exists C,0>0 and e (0, 1) such that g(s) <Cs* for all s€ (0, dy).

Obviously, hypothesis (g2) implies the following Keller—Osserman-type condition
around the origin

(€3) fo(fi g(s)ds)™ " di< oo,

As proved by Bénilan et al. [2], condition (g3) is equivalent to the property of
compact support, that is, for every he L'(R") with compact support, there exists a
unique ue WH!(RY) with compact support such that Aue L'(R") and

~Au+g(u)=h ae. in RY.

Example. The function f(s)=s"(0<a<]1) fulfills (f1)-(f2), while g(s)=
(s* + %) (0<a<1, p>0) satisfies the assumptions (g1)—(g2).

Our framework includes the Emden—Fowler equation that corresponds to g(s) =
s, p>0 (see [19]).

A major factor that makes (P; ) difficult to treat is the lack of the usual maximal
principle between super- and subsolutions, due to the singular character of the
equation.

Denote & = {ue C*(Q)nC(Q);g(u) e L' (Q)}.

We show in this paper that (P; ) has at least one solution in & for 4, u belonging
to a certain range. We also prove that in some cases, (P,,) has no solutions in &,
provided that A and u are sufficiently small.

Remark 1.1. (i) If ueé&, ve C*(Q)nC(Q) and O<u<v in Q, then veé.
(i) Let ueC*(Q)nC(Q) be a solution of (P;,). Then ueé if and only if
AueL'(Q).

Singular semilinear elliptic equations have been intensively studied in the last
decades. Such problems arise in the study of non-Newtonian fluids, boundary layer
phenomena for viscous fluids, chemical heterogenous catalysts, in the theory of heat
conduction in electrically conducting materials. For instance, problems of this type
characterize some reaction—diffusion processes where >0 is viewed as the density of
a reactant and the region where u = 0 is called the dead core, where no reaction takes
place (see [1] for the study of a single, irreversible steady-state reaction). Nonlinear
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singular elliptic equations are also encountered in glacial advance, in transport of
coal slurries down conveyor belts and in several other geophysical and industrial
contents (see [4] for the case of the incompressible flow of a uniform stream past a
semi-infinite flat plate at zero incidence). For more details, we also refer to [3,8,14,16]
and the references therein.

Many authors considered the problem

—Au+ K(x)u* = in Q,
u>0 in Q, (1)
u=20 on 0Q,

for A>0 and o,pe(0,1). When K<0 and 1 =0, problem (1) was studied in
[6,9,11,13,17]. For K = —1, it was proved in [7] that (1) has at least one solution for
all =0 and 0<p<1. Moreover, if p>1, there exists / such that (1) has a solution for
4€[0,2) and no solution for > /.

If K = 1, it was established in [20] that there exists 2> 0 such that (1) has at least
one solution in & provided that 4>/ and no solution exists if 1< /.

In [18], it is shown that for A sufficiently large, problem (1) has at least one solution
u e CH7(Q) and

¢ dist(x, 0Q) <u; (x) < ¢p dist(x, 0Q)

for any xeQ and for some constants ¢;, ¢, >0 independent of x.
A fundamental role will be played in our analysis by the numbers

K* =max K(x), K,=min K(x).
xeQ xeQ

Our main results are the following.

Theorem 1.1. Assume that K, >0 and f satisfies (f1)—(f2). Iffo1 g(s)ds = +o0, then
(P;.u) has no solution in & for any A, u>0.

Theorem 1.2. Assume that K, >0, f satisfies (f1)—(2) and g satisfies (g1)—(g2). Then
there exists A, u, >0 such that

(P;.) has at least one solution in & if 2> A, or u>p,.

(P;.) has no solution in & if <A, and p<p,.

Moreover, if 2> A, or u>u,, then (P,,) has a maximal solution in & which is
increasing with respect to A and p (Fig. 1).

Theorem 1.3. Assume that K* <0, f satisfies (f1)—(£2) and g satisfies (g1)—(g2). Then
(P;.) has a unique solution u, €& for any A, u>0. Moreover, u,, is increasing with
respect to A and p.
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Fig. 1. The dependence on 4 and p in Theorem 1.2.

Theorems 1.2 and 1.3 also show the role played by the sublinear term f and the
sign of K(x). Indeed, if f* becomes linear then the situation changes radically. First,
by the results in [9], the problem

—Au—u"=—-u in Q,
u>0 in Q,
u=20 on 0Q

has a solution, for any «>0. Next, as shown in [5], the problem

—Au+u=u in Q,
u>0 in Q,
u=>0 on 0Q

has no solution, provided 0<a<1 and A;>1 (that is, if Q is “small’’), where 4;
denotes the first eigenvalue of (—4) in H}(<Q).

Theorem 1.4. Assume that K* >0> K, f satisfies (f1)—(f2) and g verifies (gl)—(g2).
Then there exists ., i, >0 such that (P; ) has at least one solution u; , € & if 2> A or
u> . Moreover, for A> 2, or u>u,, u,, is increasing with respect to A and p.

As it was pointed out in [6], problems related to multiplicity or to uniqueness
become difficult even in simple cases. In this sense we also refer to [15], where the
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existence of radial symmetric solutions of the problem

Au+ (¥ —u*)=0 in By,
u>0 in By, (2)
u=20 on 0By,

is studied, where 0<«, p<1, A>0and B is the unit ball in R". Using a bifurcation
theorem of Crandall and Rabinowitz, it has been shown in [15] that there exists
A1> o> 0 such that (2) has no solutions for A< 4y, one solution for A = Jy or A> 4y,
two solutions for 41 =A> 4.

2. Auxiliary results

Let ¢, be the normalized positive eigenfunction corresponding to the first
eigenvalue A; of the problem

(3)

—Au=/Ju in Q,
u=20 on 0Q.

Lemma 2.1 (see Lazer and McKenna [13]). [, ¢7°dx< + oo if and only if s<1.
Lemma 2.2 (see Shi and Yao [18]). Let F: Q x (0, 00) =R be a Holder continuous
function with exponent ye (0, 1) on each compact subset of Q x (0, 0c0) which satisfies

(F]) lim SUPs- 4+ o0 (S_] max,.g F(x7 S)) <;Ll;
(F2) for each t>0, there exists a constant D(t)>0 such that

F(x,r) — F(x,s)= — D(¢)(r — s), for xeQ and r=>s>t;

(F3) there exists ny>0 and an open subset Qy<Q such that

HllI_l F(X,S)>O fO}" XG(O;Wo)a

xXeQ

and

lim £(%:9)
510 N

=400 uniformly for xe€.

Then for any nonnegative function ¢,e C*?(0Q), the problem

—Au = F(x,u) in Q,
u>0 in Q, (4)
U= Q@ on 09Q,
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has at least one positive solution ueC*'(G)nC(Q), for any compact set
G=Qu{xedQ; p,(x)>0}.

Lemma 2.3 (see Shi and Yao [18]). Let F : Q x (0, c0)— R be a continuous function

such that the mapping (0, oo)as»—»@ is strictly decreasing at each xe€Q. Assume

that there exists v, we C*(Q) N C(Q) such that

(@) Aw+ F(x,w)<0<Av+ F(x,v) in Q;
() v,w>0in Q and v<w on 08
(©) AveL'(Q).

Then v<w in Q.

We observe that the hypotheses of Lemmas 2.2 and 2.3 are fulfilled for

(pi,;l(xv S) = ;“f(xa S) + :uh(x)v (5)

Vu(x,8) = Af(x,5) — K(x)g(s) + ph(x), provided K*<0. (6)

Lemma 2.4. Let f satisfying (f1)—(£2) and g satisfying (gl)—~(g2). Then there exists
J.>0 such that the problem

—Av+ g(v) = Af (x,v) + ph(x) in Q,
v>0 in Q, (7)
v=0 on 0

has at least one solution v; €& for all .> . and for any >0.

Proof. Let A, u>0. According to Lemmas 2.2 and 2.3, the boundary value problem

—AU = 2f(x,U) + uh(x) in Q,
U>0 in Q, (8)
U=0 on 0Q

has a unique solution U, ,e C*>?(Q)n C(Q). Then v,, = U, is a supersolution of
(7). The main point is to find a subsolution of (7). For this purpose, let H :
[0, 00)— 0, o0 ) be such that

H'(0) = H(0) = 0. ®)

{H”(l) =yg(H(t)), for all t>0,
Obviously, He C*(0, 00)nC'[0, o) exists by our assumption (g2). From (9), it
follows that H” is nonincreasing, while H and H’ are nondecreasing on (0, 00).
Using this fact and applying the mean value theorem, we deduce that for all £>0
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there exists &,, & € (0, 7) such that

The above inequalities imply

H(t)<tH'(1)<2H(t), for all >0.

Hence,
!
1<’I[j<(t;)<z, for all 7> 0. (10)
On the other hand, by (g2) and (9), there exists #>0 such that
H (1) <0y, for all 1e(0,n), (an
H"(t)<CH *“(¢t), for all te(0,7),

which yields

H(t)<cr?UD | for all 1e(0,7), (12)

where ¢>0 is a constant.
Now we look for a subsolution of the form v,, = MH(¢,), for some constant
M >0. We have

—Av; 4+ g(v,) = WMH () e, + g(MH (@) — Mg(H(9)))|Ve,|* in Q. (13)
Take M >1. The monotonicity of g leads to
g(MH(¢,))<g(H(p,)) in Q,

and, by (13),

—Avi, + g(01,) SUMH (0))0) + g(H(9))(1 = M[Vo[*) in Q. (14)
We claim that

—Av; 4+ 9(v,) SLLLMH (¢)g;  in Q. (15)

Indeed, by Hopf’s maximum principle, there exists 6 >0 and w € Q such that

|V(P1|>5 in Q\O),

Q=0 in .
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On Q\w, we choose M > M; = max{1,5 }. Then, by (14) we obtain
—Av,, +9(v) SMMH (@), in Q. (16)
Fix M >max{M,, &7} Then
g(H (1)) <g(H(9)) S AMH'(0)0< 2 MH' ()¢ in o.
From (14) we deduce
—Avy 0+ 9(0,) SZUMH (@) in o (17)

Hence our claim (15) follows from (16) and (17).
Since ¢, >0 in Q, from (10) we have

/
1<e)en 5 iha (18)
H(op,)
Thus, (15) and (18) yield
—Avy 4+ g(v,) <4 MH (@) =410, in Q. (19)

Take 4 =441c v, , where ¢ =inf 5 f(x,|v;,],,)>0. If 1>, the assumption

(f1) produces
/lf(x7 y}.,;t) >/~:f(x7 |l_)i,u| yo)

=

l_]/l,ﬂ |1_])“u‘ o0
This combined with (19) gives

—Av;, + 90 ) <Af(x,0;,) in Q.

>4/, for all xeQ.

Hence, v; ,, is a subsolution of (7), for all >/ and u>0.
We now prove that v; ,€ &, that is g(v;,) € L' (). Denote Qy = {xeQ; ¢, (x)<n}.
By (11) and (12) it follows that

9(Wn) = g(MH (¢,))<g(H(9,))<CH *(¢)< Co @fza/(lﬂ) in Qo,

g(v,,)<g(MH(n)) in Q\Q.

These estimates combined with Lemma 2.1 yield g(v; ,) € L' (@) and so Ap; ,€ L'(Q).
Hence,

Aﬁ/l.,,u + qj/l.,,u(xv Ei,,u) <O<AQA,/¢ + ¢A,,u(xv l_)i,,u) in 'Qv
Qi,,ual_]i,,u>0 in Q,
Uiy =Ty oON 0Q,

Ay, e L'(Q).
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By Lemma 2.3, it follows that y; ,<7;, on Q. Now, standard elliptic arguments
guarantee the existence of a solution v;,eC*(Q)nC(Q) for (7) such that
Uy SV STy I Q. Since v, €&, by Remark 1.1 we deduce that v, ,€&. Hence,
for all 2>/ and u>0, problem (7) has at least a solution in &. The proof of Lemma
2.4 is now complete. [

We shall often refer in what follows to the following approaching problem of
(Prp):

—Au+ K(x)g(u) = 2f (x,u) + ph(x) in Q,
u>0 in Q Ve
’ (PZ,M)

u:% on 0Q,

where & is a positive integer. We observe that any solution of (P, ) is a subsolution
of (P§,).

3. Proof of Theorem 1.1

Suppose to the contrary that there exists 2 and p such that (P, ,) has a solution
u; €& and let U, , be the solution of (8). Since

AU+ @y p(x, Uy ) SO Auty yy + @ (X, u5,)  In Q,

by Lemma 2.3 we get u; , < U, , in Q.
Consider the perturbed problem

—Au+ K.g(u+¢) = if (x,u) + ph(x) in Q,
u>0 in Q, (20)
u=20 on 0Q.

Since K. >0, it follows that u,, and U, , are sub- and supersolution for (20),
respectively. So, by elliptic regularity, there exists u,e C>’(Q) a solution of (20)
such that

Uy SUs < Ui-,ll in Q. (21)

Integrating in (20) we deduce

—/QAude—i—K*/Qg(uE—i—s) dx:/g [Af (x, uz) 4+ ph(x)] dx.
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Hence,

—/ %ds—&—K*/g(ug—i—s)dxéM, (22)
o0 On Q

where M >0 is a constant. Since %go on 0Q, relation (22) yields K, fg g(u, +

e
£)dx<M, and so K, [, g(U,, +¢) dx<M. Thus, for any compact subset w € Q
we have

K. / g(Upu+e)dx<M.
Letting ¢— 0, the above relation leads to K. [ ¢(U;,) dx<M. Therefore,
K*/ g(Us ) dx< M. (23)
Q

Choose 0> 0 sufficiently small and define Qs = {xeQ; dist(x,0Q)<J}. Taking
into account the regularity of domain, there exists k>0 such that

U, <kdist(x,0Q) for all xeQ;.

Then

/g(Uw)dx>/ g(UW)dx>/ g(k dist(x,0Q)) dx = + o0,
Q ) Qo‘

5

which contradicts (23). It follows that the problem (P,,) has no solutions in & and
the proof of Theorem 1.1 is now complete.

Remark 3.1. Using the same method as in [20, Theorem 2], we can prove that (P; )
has no solution in C?(Q)n C'(Q) as it was pointed out in [6, Remark 2].

4. Proof of Theorem 1.2

We split the proof into several steps.
Step 1. Existence of the solutions of (P; ) for 4 large: By Lemma 2.4, there exists )
such that for all A> 1 and u>0 the problem

—Av+ K*g(v) = Af (x,v) + ph(x) in Q,
v>0 in Q,
v=20 on 0Q,

has at least one solution v,, €&. Then v = v, + 1 is a subsolution of (P’)f‘#) for all
positive integers k> 1.
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From Lemma 2.2, let we C?>7(Q) be the solution of
—Aw = Af (x,w) + ph(x) in Q,

w>0 in Q,
w=1 on 0Q.

It follows that w is a supersolution of (Péiﬂ) for all k=1 and

Aw+ @, ,(x,w)<O0<Av; + D, 4(x,v1) in Q,
w,01>0 in Q,
w=uv; on 0Q,
Av e L'(Q).

Therefore, by Lemma 2.3, 1<v; <w in Q. Standard elliptic arguments imply that
there exists a solution u} , € C*7(Q) of (P} ,) such that v <uj , <w in Q. Now, taking
i_ﬁ and v, as a pair of super- and subsolutions for (Pﬁ,u)’ we obtain a solution
u; € C*(Q) of (P} ) such that vy<uj,<uj, in Q. In this manner, we find a

sequence {u} ,} such that

u

IIESTS uﬁ;l <w in Q. (24)
Define u;,,(x) = lim, -  u} ,(x) for all xeQ. Standard bootstrap arguments imply
that u, , is a solution of (P, ). From (24), we have v, , <u; ,<w in Q. Since v uEE,
by Remark 1.1 it follows that u; ,€&. Consequently, problem (P, ,) has at least a

solution in & for all 2>/ and u>0.

Step 1I. Existence of the solutions of (P;,) for u large: Let us first notice
that g verifies the hypotheses of Theorem 2 in [10]. We also remark that the
assumption (g2) and Lemma 2.1 are essential to find a subsolution in the proof of
Theorem 2 in [10].

According to this result, there exists >0 such that the problem

—Av+ K*g(v) = uh(x) in Q,
v>0 in Q,
v=20 on 0Q,

has at least a solution v,eé provided that u>g. Fix A>0 and denote v =
vu + 4, k=1. Hence, vy is a subsolution of (Pf,u)’ for all k>1. Similarly to the
previous step we obtain a solution u, , €& for all 2>0 and pu>f.

Step III. Nonexistence for 4, u small: Let A, u>0. Since K, >0, the assumption
(gl) implies limyjg ¥, ,(x,s) = —oo, uniformly for xeQ. So, there exists ¢>0
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such that
¥, u(x,5)<0 for all (x,s)eQ x (0,¢). (25)
Let s=c¢. From (f1) we deduce

'Pi,,u(xa S)S)vf(X7 S) ]’l(X) f(x7 C) I |h|oc
N S N C N

flxe)

for all xe Q. Fix u<5%-and let M = sup__g- >0. From the above inequality we

20| c
have
w< /IMJr%, for all (x,s)eQ x [¢, +0). (26)
Thus, (25) and (26) yield
Vu(x,s)<a(A)s+ %& for all (x,s)eQ x (0,+00). (27)

Moreover, a(1)—0 as A—0. If (P, ,) has a solution u;, ,, then
A / uiu(x) dx < / \Vu;“,ﬂ\z dx = —/ 1 (X)Auy(x) dx
Q Q Q
< / ;1 (X) P (x,u; (X)) dx.
Q

Using (27), we get

ya /Q 05, (x) dx<{a(2)+}ﬂ /Q u; ,(x) dx.

Since a(1)—0 as A—0, the above relation leads to a contradiction for A, u>0
sufficiently small.

Step IV. Existence of a maximal solution of (P, ,): We show that if (P;,) has a
solution u, ,€¢&, then it has a maximal solution. Let A, 4>0 be such that (P ,)
has a solution u; ,€&. If U, , is the solution of (8), by Lemma 2.3 we have u; , < U, ,
in Q. For any j>1, denote

1
Q= {er; dist(x, 0Q) >]—}

Set Uy = U, and, for any j>1, let U; be the solution of

7AC + K(x)g((]jfl) = )"f(xa l]jfl) + ,uh(x) in Qja
C: Ujj—] in Q\Q,
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Using the fact that ¥, , is nondecreasing with respect to the second variable, we get

wu<Ui<Up1<Up in Q.

If @1;,,(x) = lim;_, o, U;(x) for all xeQ, by standard elliptic arguments (see [12]) it
follows that i1, ,, is a solution of (P, ). Since u, , <, , in Q, by Remark 1.1 we have
ii; ,€&. Moreover, i, , is a maximal solution of (P; ).

Step V. Dependence on A and u: We first show the dependence on 4 of the maximal
solution &, , €& of (P;,). For this purpose, fix >0 and define

A = {2>0;(P,,) has at least a solution u; , €&}

Let J, = inf 4. From the previous steps, we have A#0 and 4,>0. Let 4;€4 and
it;, , be the maximal solution of (P;, ,). We prove that (4;,4+00)cA4. If 1,> 2, then
ii;, u is a subsolution of (P, ,). On the other hand,

AU;Lz,H + (D)Qq/l(x’ Uiz,ﬂ) SOSAalI-H —+ (P;LZ’H()Q aﬂ],/t) in Q7
Uiz,ya a/ll,y>0 in Q,
U)»z,,lt)a)q“u on 89,

Ay, ye L'(Q).

By Lemma 2.3, i1;, , < U,, , in Q. In the same way as in Step IV we find a solution
u;, €6 of (Py,,) such that

7/_[7-1‘/1 Suizs/l < Uizyﬂ in Q.

Hence, /€4 and so (4,400 )c A. If @1, ,€ & is the maximal solution of (P, ), the
above relation implies #;, ,<il;, , in Q. By the maximum principle, it follows that
ity, n<ilj,, in Q. So, i, is increasing with respect to 4.

To prove the dependence on u, we fix 2>0 and define

B = {u>0;(P;,) has at least one solution u;,€&}.

Let u, = inf B. The conclusion follows in the same manner as above.
The proof of Theorem 1.2 is now complete. [
5. Proof of Theorem 1.3

Let A, p>0. We recall that the function ¥, , defined in (6) verifies the hypotheses
of Lemma 2.2, since K* <0. So, there exists u; , € C*7(2) n C(Q) a solution of (P;,,).
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If U, is the solution of (8), then

Aty + ®; (X, 1) SOSAU y + D 4(x, Uy ) i Q,
Uy Upy>0 in ©,

U =U,, =0 on 0Q.

Since AUMGL1 (Q), by Lemma 2.3 we get u, ,> U, , in Q.
We claim that there exists ¢>0 such that

Uyy=cep, in Q. (28)
Indeed, if not, there exists {x,} =Q and ¢, -0 such that
(Usy — enpy) (xn) <0. (29)
Moreover, we can choose the sequence {x,} with the additional property
V(Usu = enpy)(xn) = 0. (30)

Passing eventually at a subsequence, we can assume that x, - xoe Q. From (29), it
follows that U; ,(xo) <0 which implies U, ,(x) = 0, that is xoe€0Q. Furthermore,
from (30) we have VU, ,(xo) = 0. This is a contradiction since 8{[)];1'"‘ (x0) <0, by
Hopf’s strong maximum principle. Our claim follows and so

ul,y> U)L,y>CQDl in Q. (31)

Then, g(u;,) <g(U,,) <g(ce,) in Q. From assumption (g2) and Lemma 2.1 (using
the same method as in the proof of Lemma 2.4) it follows that g(c¢,) e L'(). Hence,
Uju€ &.

Let us now assume that ul 0 ufﬂ €4 are two solutions of (P; ). In order to prove
the uniqueness, it is enough to show that u} ,>u; , in Q. This follows by Lemma 2.3.

Let us show now the dependence on A of the solution of (P, ). For this purpose,
let 0<Ai <Ay and uy,,, u;, be the unique solutions of (P; ,) and (P, ,),
respectively, with u>0 fixed. Since u;, ,, u;, , €6 and

Auizﬁﬂ + ¢)~2,M(x7 “iz,ll) <OgAull,ll + djiz,#(x’ u/llﬁll) in Qa

in virtue of Lemma 2.3 we find u;, ,<u,,, in Q. So, by the maximum principle,
Upy o <Ujy in Q.

The dependence on u follows similarly.

The proof of Theorem 1.3 is now complete. [J
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6. Proof of Theorem 1.4

Step 1. Existence: Using the fact that K*>0, from Theorem 1.2 it follows that
there exists 4, i, >0 such that the problem
—Av+ K*g(v) = f (x,v) + ph(x) in Q,
v>0 in Q,
v=20 on 0Q

has a maximal solution v, , € &, provided A> A, or u> u,. Moreover, v, , is increasing
with respect to 4 and . Then vy = vy, + # is a subsolution of (P ), for all k>1. On
the other hand, by Lemma 2.2, the boundary value problem

—Aw + K.g(w) = Af (x,w) + uh(x) in Q,
w>0 in Q,
W=t on 9Q

has a solution wy € C*7(Q). Obviously, w is a supersolution of (P} ).
Since K*>0> K,, we have

Awg + @ (x, wi) SO<Avg + @ (X, 0r)  in Q,
and

Wi, vz >0 in Q,
Wi = v on 0Q,

AU/CGLI(.Q).

From Lemma 2.3 it follows that vy <wg in Q. By standard super- and subsolution

argument, there exists a minimal solution u}_MeC2’V(Q) of (P} ) such that
1

ol
for (P; ), we deduce that there exists a minimal solution u; , € C*7(Q) of (P; ) such

vlgui’u<w1 in Q. Now, taking u! and v, as a pair of super- and subsolutions

2 1 . = . . . ]C
that vy <uj , <u; , in Q. Arguing in the same manner, we obtain a sequence {u; }
such that

vkéulj’uguﬁ] <w; in Q. (32)

Define u; ,(x) = limg, o u’: . (x) for all xe Q. With a similar argument to that used in
the proof of Theorem 1.2, we find that u; , € & is a solution of (P, ,). Hence, problem
(P;,.) has at least a solution in &, provided that 2>/, or u>pu,.
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Step 11. Dependence on A and p: As above, it is enough to justify only the
dependence on A. Fix A, <A</, p>0 and let u,, ,, uy, €& be the solutions of

(P;, ) and (P, ), respectively, that we have obtained in Step I. It follows that u’jL i

éfl ). So, Lemma 2.3 combined with the fact that v, is

increasing with respect to 4> A, yield

is a supersolution of (P

1 1 . -
u’i‘z"ﬂ)%,ﬂ +% =05 . +E n Q.

Thus, u} ,>uf , in Q since «f  is the minimal solution of (P} ,) which satisfies

ant
u’jh# >v;, .+ 1/k in Q. It follows that u,, , >u,, , in Q. By the maximum principle we

deduce that u;, , >u,, , in Q.
This concludes the proof. [
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