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Abstract

In this paper, we focus on the existence and multiplicity of solutions for the p-Laplacian Schrodinger-
Poisson system

—Apu+yo P 2w =1 ulP2u + plul92u + Iulp*_zu, in R3,
—A¢ = ul?, in R3,

with a prescribed mass given by

/|u|pdx=ap,

R3
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establish the existence of multiple normalized solutions using the truncation technique, concentration-

compactness principle, and genus theory. In the L?-supercritical regime: g € (p + %2, p*), we prove two
existence results for normalized solutions under different assumptions for the parameters y, u, by employ-
ing the Pohozaev manifold analysis, concentration-compactness principle and mountain pass theorem. This
study presents new contributions regarding the existence and multiplicity of normalized solutions of the
p-Laplacian critical Schrodinger-Poisson problem, perturbed with a subcritical term in the whole space R3,
for the first time.

© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

MSC: primary 35J62; secondary 35B65, 35J50

Keywords: p-Laplacian Schrodinger-Poisson system; Normalized solutions; Sobolev critical exponent;
Concentration-compactness principle; Genus theory

1. Introduction and main results

In this paper we investigate the following p-Laplacian Schrodinger-Poisson system

—Apu—l—y(blulp’zu=A|u|p*2u+ulu|q_2u+Iulp**zu, in R3, (1)
—A¢ = ul?, in R3, '

subject to the prescribed L”-norm condition:

/|u|”dx=ap, (1.2)

R3

where . € R is an undetermined parameter, | < p < 3,a > 0 and w,y > 0 are parame-
ters. The term s |u|92u is a subcritical perturbation, where p < ¢ < p* = 33_—Pp, and Apu =

div(|Vu|P~2Vu) denotes the p-Laplacian operator.

The p-Laplacian operator plays a significant role in nonlinear fluid dynamics, where the value
of p is related to the flow speed and the materials involved. The system (1.1) consists of a quasi-
linear Schrodinger equation coupled with a Poisson equation. The Schrodinger-Poisson system
originates from quantum mechanics and semiconductor theory, describing the interaction be-
tween a charged particle and an electromagnetic field, we refer to [9,24-26,42,40] for more
applied background of the Schrodinger-Poisson systems, and p-Laplacian equations.

When p = 2, the system (1.1) reduces to the classical Schrodinger-Poisson system, which
has been extensively studied in recent decades, following the pioneering work of Benci and
Fortunato in [13], we refer to [2,4,5,21,22,15,29,30] for the system with a subcritical term; and
to [5,22,31,46,63] for the system with a critical term. Note that, in [44], Ruiz studied the impact
of the nonlinear local term on the existence of nontrivial solutions for the subcritical system:

—Au+u+rpu=ultu, xeR3,

1.3
—A¢p =u?, x eR3, (13

-
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In [5], Azzollini and Pomponio established the existence of ground state solutions for the critical
system:

—Au~+u+rpu = ul92u+ jul*u, xeR3, (1.4)
—Ap =u?, x eR3, '
with 4 < g < 6. In a more recent study [24], the authors investigated the subcritical quasilinear
system:

—Apu+ ulP2u 4+ rplul?2u = ul9"%u, xeR3, (L5)

—A¢p =ul?, x € R3, '
using variational methods and derived existence results for 1 < p <3 and p < ¢ < p*. For
further research on p-Laplacian Schrodinger-Poisson systems, we refer to [25,26,39] and the
references therein.

As mentioned earlier, there has been increasing attention in recent years on nonlinear p-
Laplacian Schrodinger-Poisson systems (1.1), or (1.3)-(1.5), particularly with regard to the
existence and multiplicity of ground state solutions, bound state solutions, and sign-changing
solutions, without prescribed mass. However, from a physical perspective, it is particularly inter-
esting to study solutions to these problems with prescribed L?-norms. Solutions of this type are
commonly referred to as normalized solutions.

Let us consider the classical Schrédinger equation

—Au+ru= f(u), xeR3, (1.6)

there are many researchers have investigated the existence and multiplicity of normalized solu-
tions, following the pioneering work of Jeanjean [32], by using the minimization methods and
constrained mountain pass arguments. For more recent developments on this topic, we refer the
interested readers to [6,7,12,36,35,47,48,57], among others.

We observe that there are only a few papers addressing the normalized solution of the p-
Laplacian Schrédinger equation. Wang et al. [56] considered the following system:

—Apu+ |u|P~2u = pu + [ul*2u inRVN,
S u2dx = p,

where l < p<N,ueR,ands € (% p, p*). They considered the L2 _constraint, and by using

the Gagliardo-Nirenberg inequality, the L?-critical exponent is given by NTJFZ p. Moreover, it is
known that LZ(R"N) ¢ WLP(RN), so the working space is wLP@RN)y N L2RY), which is a
Hilbert space and plays a crucial role in [55,56].

The first paper to study the p-Laplacian equation with an L?-constraint is [62], where the

system is given by:

—Apu= MulP~2u + plul?>u + gu) inRY,

1.7
S ul? dx = a?, 47
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2
where g € C(R, R) and there exist constants « and 8 such that p + % <a < B < p*, with the
condition that for all ¢ € R, there is

t

0<aG()t <gt)t <BG(1), G(t):/g(r)dr.
0

2
A simple example is g(r) = |¢|"~%¢ with p + % < r < p*. Additionally, Wang and Sun [53]
considered both the L2-constraint and the L”-constraint for the following problem:

—Apu+ V) |ulP2u=Aul"2u+ [ul??u  inRV,
f]RN lul"dx =c,

where l < p<N,AeR,r=por2, p<gq < p* and V(x) is a trapping potential satisfying

Vix)e CRY), lim V@x)=+o00 and inf V(x)=0.
|x|—>+o0 xeR¥N

When the nonlinearity g exhibits critical growth, i.e., g(u) = |u|1’*_2u, Deng and Wang [23],
as well as Feng and Li [27], recently studied the normalized solutions to (1.7), using the
concentration-compactness lemma, Schwarz rearrangement, Ekeland’s variational principle, and
mini-max theorems.

Inspired by the aforementioned works, and recognizing that the L”-norm is a conserved quan-
tity in the evolution, this paper focuses on searching for solutions to (1.1) with a prescribed
L?-norm, as given in (1.2). To achieve this, we apply the reduction argument introduced in [44],
which transforms system (1.1) into the following single equation:

—Apu 4 ydululP 2w = AP 2u A+ ) 2u ) ", x € R, (1.8)

where

= L [
7w J |x—yl

R3
Next, we aim to find solutions to (1.1)-(1.2) as critical points of the action functional:
1 (u) = lIIVLtllﬁ + L/dmlul”dx - EIIMIIZ - Lllullp:,
p 2pR3 q p* 7

under the L?-norm constrained manifold:

S(a) := ueE:/|u|P:ap
R3

4
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It is straightforward to verify that I, is a well-defined and C !_functional on S(a). This ap-
proach is relevant from a physical perspective, particularly because the L”-norm is a conserved
quantity in the evolution, and the variational characterization of such solutions is often instru-
mental in analyzing their orbital stability. For more details, see, for example, [19,37,45] and the
references therein.

We note that there are few papers in the literature addressing the existence of normalized
solutions for classical Schrodinger-Poisson systems. Recently, Wang and Qian [54] studied the
existence of normalized ground states and infinitely many radial solutions for the following sys-
tem:

—Au+riu+you=afu), x e R3,
—A¢p =u?, x eR3, (1.9)

where f is a Sobolev subcritical term. They constructed a specific bounded Palais-Smale se-
quence when y < 0 and a@ > 0. Meanwhile, they obtained a nonexistence result in the case y <0
and a < 0, and an existence result when y > 0 and a < 0, using variational methods.

In [34], Jeanjean and Trung Le specialized in the existence of normalized solutions for the
problem (1.9) with f (u) = |u|”~2u, which exhibits L2-supercritical growth:

-1 2y, — -2 3

—Au4y(x|7" *|ul?)u=ru~+alul’"“u, inR>, (1.10)

Jrw lul?dx = 2.

The authors showed that problem (1.10) admits two solutions in the case (i): y > 0,a > 0, and

pE (%0, 6]; one solution which is a global minimizer in the case (ii): y > 0,a < 0, and p €
({70, 6]; and no positive solution of (1.10) in the case (iii): y < 0,a > 0, and p = 6.

When y =1, p € (?, 6), Bellazzini, Jeanjean, and Luo [11] investigated the existence of
normalized solutions for (1.10) using a mountain-pass argument when ¢ > 0 is sufficiently small,
and they proved nonexistence when ¢ > 0 is not small. In [33], Jeanjean and Luo considered
the existence of minimizers with L2-norm for (1.10) when p € [3, %], and they obtained a
threshold value of ¢ > 0 separating existence and nonexistence of minimizers. We point out
that Chen and Tang [16] developed an original method for the analysis of normalized solutions
to Schrodinger equations with reaction fulfilling L?-subcritical, L>-critical, or L?-supercritical
growth. For further results on normalized solutions of Schrodinger-Poisson systems, we refer
to [1,20,18,33,34,43,38,60,61,59] and the references therein. For the nonlocal case, we refer to
Chen and Tang [17] who established a multiplicity property of solutions with prescribed mass
and a nonexistence result in the framework of Kirchhoff equations with Sobolev critical exponent
and mixed nonlinearities.

Returning to the problem (1.1)-(1.2), we shall look for normalized solutions using the
truncation technique, concentration-compactness principle, and genus theory under the LP?-

subcritical perturbation, i.e., ¢ € (p, p + %). While in the L”-supercritical perturbation case:

qge(p+ %2, p*), we prove two existence results for normalized solutions under different as-
sumptions for the parameters y and u, employing the Pohozaev manifold analysis, the moun-
tain pass theorem and the concentration-compactness principle. To the best of our knowledge,
no progress has been made regarding the study of normalized solutions for the p-Laplacian
Schrodinger-Poisson equations with Sobolev critical exponents in the literature.
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Before presenting the existence result, we recall the definition of ground states. If & is a
solution to (1.1)-(1.2) that has minimal energy among all solutions in S(a), i.e.,

(Iuls@)' @ =0 and [, (@) = inf{(Iuls@) (@) =0, ueS@),

we say that i is a ground state of (1.1)-(1.2).
First, we address the existence of multiple normalized ground state solutions in the L”-

2
subcritical case, where g € (p, p), and p = p + £-, which can be stated as follows:

Theorem 1.1. Let , A, a >0, and q € (p, p+ %2> Then, for a given k € N, there exists f >0

independent of k and ;. > 0 large, such that problem (1.1)-(1.2) possesses at least k couples
(uj,a;) € E x R of weak solutions for u > uj; and

ac (o, <é>"(”")> 1.11)
n

with
lu;lh=a”, rj<O0foral j=1,... k.

The second result of this paper addresses the existence and asymptotic behavior of normalized
solutions for the L”-supercritical perturbation when the parameters A, i > 0 are appropriately
small.

2
Theorem 1.2. Let 1+4_\/H <p< J9, p+ % <q < p*, u>0,and assume that 0 < a < a, where

i
2p—1

where K, is defined in (4.3), constants Cand C (% p) are from (2.9), (2.10), respectively. Then

there exist IT'* > 0 such that 0 < y < I'*, problem (1.1)-(1.2) has a positive normalized ground
state solution u)_ € E for some A < 0.

Finally, we present an existence result for normalized solutions under the L?”-supercritical
perturbation, when the parameter p > 0 is large.

Theorem 1.3. If g € (p, p*), there exists u* = w*(a) > 0 large, such that as u > *, problem
(1.1)-(1.2) possesses a couple (uy, )) € E x R of weak solutions with ||uu||ﬁ =aPl, A <0.

Remark 1.4. (i) We note that, in [24-26] and [56], the authors studied the existence of positive
solutions to the quasilinear Schrddinger-Poisson systems (1.4) and (1.5) without the prescribed

6
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mass. In this paper, to the best of our knowledge, we present new contributions regarding the ex-
istence and multiplicity of normalized solutions of the p-Laplacian critical Schrodinger-Poisson
problem, perturbed with a subcritical term in the whole space R3.

(i) We extend and improve the results concerning normalized solutions of the classical
Schrddinger-Poisson systems from the references [11,18,33,34,43,54,59-61] to the p-Laplacian
cases with the Sobolev critical nonlinearities.

Finally, let us outline the ideas and methods used in this paper to obtain our main results.

For the L?-subcritical perturbation, where g € (p, p + %2), it is challenging to establish the
boundedness of the (PS) sequence using the approach from [32]. To overcome this issue, we
apply the truncation technique to restore the loss of compactness in the (PS) sequence caused by
critical growth. To apply the concentration-compactness principle and obtain the multiplicity of
normalized solutions for (1.1)-(1.2), we utilize genus theory. For the L?-supercritical perturba-

2
tion, where g € ( p+ % p*) , we employ the Pohozaev manifold and mountain pass theorem to

prove the existence of positive ground state solutions for (1.1)-(1.2) when p > 0 is small. When
w > 0 is large, we use a fiber map and the concentration-compactness principle to show that the
(PS) sequence is strongly convergent, thereby obtaining a normalized solution to (1.1)-(1.2).

Structure of the paper, and notation. This paper is organized as follows. In Section 2 we
provide some preliminary results that will be frequently referenced in the sequel. Section 3 is
concerned with the multiplicity of normalized ground state solutions for system (1.1)-(1.2) when

qge(p,p+ %2), and the proof of Theorem 1.1 is completed. Section 4 is dedicated to prove the
existence of normalized positive ground state solutions for problem (1.1)-(1.2) when g € (p +

2
%, p*), and Theorem 1.2 is established if u, y > 0 are suitably small. In Section 5, we provide

another existence result for problem (1.1)-(1.2) withg € (p+ %2, p*), when the parameter u > 0
is large, and complete the proof of Theorem 1.3.

Throughout this paper, we denote B, (z) the open ball of radius r with center at z in R, and
llu]| » is the usual norm of the space LP(R3) for p > 1. Moreover, we denote by C, C; > 0,i =
1,2, .-, different positive constants whose values may vary from line to line and are not essential
to the problem.

2. Preliminary stuff

In this section, we first give the functional space setting and introduce some notations and
useful preliminary results, which are important to prove the main results. Let E :== W1? (R3) be

the completion of C° (R3) with respect to the norm

<=

lulle = /IVu|p+lulpdx
3

And the homogeneous Sobolev space D7 (R3) is defined by
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D'"PR)Y={ueL? R3: / |VulPdx < +oo § ,
R3

endowed with the norm

all? := a1 sy = 1Vl = f |Vuldx.

RS

The work space E, := er,p (]R3) is defined by
E, = er,p <R3> = {u ewlr <R3> : u is radially symmetric and decreasing} .

The standard norm in L”(£2) is denoted by || - ||y, and by || - || , if 2= R3.
Let us now comment on the critical problem in the whole space, namely

—Apu=ul”"2u inR® ueD'PR?. (2.1)
We know that all the regular radial solutions to (2.1) are given by the following expression:

3-p

CN PE p(p=T)

Ue(x) = 2.2)

3-p

P P 0
(sl’Tl + lem) !

with & > 0, and Cy_ , a normalized constant. Note that, by [52], it follows that the family of
functions given above are minimizers to

p
IVullp

S= .
ue PRI} [lu]l

(2.3)

Let us set

ug(x) =Y (x)Ue (x),

where ¢ € C8°(IR3) satisfies

1, for |x| <R,
Y(x)={0<y(x)<1, forR <|x|<2R,
0, for |x| > 2R,

with R > 0. By the direct calculations as in [14,53], we can obtain the following important
estimates:

3 3—
/|wg|l’dx=55+0(sv_—'f>, 2.4)
R3

8
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" 3 3
1 /|Ms|p dx=S/§+0(sﬁ), (2.5)
2
3 R
4 3=p
5 0<81’1), V3<p<3,
6
. /|u£|de= O (¢P)+ KeP|Ing|, p=+/3, (2.6)
8 R3 3-p
9 0<sf’—1>+K28”, 1<p<\/§,
10
11 4B3=p) 3(p—1)
p(p—1)
12 0 <8 ) ’ 4 <35>
. “dx = ’ gl = 3p=D 27
14 lugldx = 0<8P)+K38P| nel, q9==5=" 2.7)
15 R3 q3-p) q3=p)
16 o (8””) + Ky, g> 3(3%:1)’
17
'®  where & > 0 is small and K i (i =1,2,3,4) denote positive constants independent of ¢. For
19
2 1<p<3,if %” < 3(3%_;), then HT‘/H < p < 3. Combining this with (2.7), we deduce that
21
22 w-n 3-86-p 3 1441
O\e5v™D |+ Kye "5, 5<p<——,

23
24 2 3 3 1+41
o g p| 3 dx = 0(8P>+K381’|1n8|, p=1nfAl 2.8)
2 R3 .
27 0 (85Epp1;) , 1+z/ﬂ <p<3.
28
29 In the following, we recall some useful inequalities, which play an important part in the proof
% of our main results.
31
z Proposition 2.1. (Hardy-Littlewood-Sobolev inequality [41]) Let I,r > 1 and 0 < u < N

be such that 1 + % + % =2,f e L"RY) and h € L'(RY). Then there exists a constant
34 r
o C(N, u,r,l) >0 such that
36
37
38 / / fORM)x =y dxdy| < C(N, w, r, DI f - R ]l;
39 N RN
40
41 From Proposition 2.1, with [ =r = g p, we have that:
42
43 .,
a4 /¢u|u|”dxscnu||g” (2.9)
45 R3 5P
46
47 Next, we introduce the following Gagliardo-Nirenberg-Sobolev inequality.

© O N o g » O N =



© 0O N O g~ 0N =

A OB A B A B B A B W W W W WNNNDNDNRNDNRNDNDRN 2 o 4o s a2 o
N OO O A W N 4 O O 0N OO O BB W0ON 42 O O 0 N o 0o P W0 NhN 4 0O 0 0o N o o P~ w NN = o

JID:YJDEQ AID:113570 /FLA [m1+; v1.377] P10 (1-51)
K. Liu, X. He and V.D. Radulescu Journal of Differential Equations eee (eeee) eeeeee

Lemma 2.2. ([62]). Let g € (p, p*). Then there exists a constant C(q) > 0 such that

Il < C@) IVl D u)?' ™, vuek, (2.10)

3a=p).

where 8, =
4 rq

Lemma 2.3. (Sobolev inequality [23]). Let 1 < p < 3. Then there exists an optimal constant
S > 0 such that

Slully. < [ Vulp, Yue D" ®). 2.11)

Lemma 2.4. ([24]). If u;, — u in E,, then

/q)un lun|? dx — /¢u lu|P dx, (2.12)
R3 R3
and
/% lun|P 2 uppdx — /(/;u lulP~2updx, Vo € E,. (2.13)
R3 R3

In the sequel, we define a useful fiber map (e.g. [62]) preserving the L”-norm

(t*u)(x)::e%u(elx), xeR? teR. (2.14)

By simple calculation, we can infer that

I *w) b= llull}, (2.15)
It %)) = e u)d, (2.16)

and
IV (& *u) (X)) = e [ Vu(x)]|h. (2.17)

Next, we introduce an auxiliary functional W () := I u (t xu) by

T(u,t):=1,(t*u)
1 y w L * (2.18)
=—WWVMV+——J/¢hWWx——ﬂ%WMq——%pWNﬂ- '
p P 2p ! q 7 p 4
R3
Besides, we have the fact that
<p, as p<q<p;

9843 =p, as q=p;
>p, as qg<gq<p*

10
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2
where p:=p + &, p*:= ;Tp.

p
The Pohozaev manifold plays an important role in the proof of our main results, which can be
derived form [62] and [63].

Proposition 2.5. Let u € E N L>®(R?) be a weak solution of (1.1), then u satisfies the equality

3

3—p Sy 3u 3—p
—IVullh + —/¢u lul? dx = =|lullh + —lulld +
p ZPR% P q

lull?.. (2.19)

Lemma 2.6. Let u € E be a weak solution of (1.1)-(1.2), then we can define the following Po-
hozaev manifold

P(a)={ucS@): P,(u) =0},

where

)/ *
Py (u) = || Vullp + 5/% |ulP dx — pudq llullg — ull?.. (2.20)
R3

Proof. Since u is the weak solution of (1.1)-(1.2), by (2.19), we have that

3—p S5y 3 3u 3—p *
—\Vullh + == /qbu [ul? dx = = |lull, + = |lulld + —Ilull’;*.
p ZPRz p q p

Moreover, since u is the weak solution of system (1.1)-(1.2), we have

IIVMII§+V/¢u ul? dx = allullpy + pllulg + lull..
R3

Combining with (2.20) and the above equality, we obtain that
J/ *
IVully + %/qbu ulP dx = pdg ullg + llullh..
R3

The proof is completed. O

We consider, for any u € S(a) and ¢ € R, the fiber W introduced in (2.18), and note that
Y * *
(W) (0) = e | Vully + Eet/‘b“ | dix — 8 e®" Ju[§ — e fu .
R3

14 * 2.21
— IV *w)h + Z/"’““ txul? dx — psgllexulld — e sug?s 2D

RB’
= P, (t %u).

11
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Moreover, by direct calculation, we have

4 * *
(Wt)" (1) = pe” [ Vull} + ¢ / i lul? dx — pgdze® ul|§ — p e’ ull)..  (2.22)
R?

Therefore, we have the following lemma:

Lemma 2.7. For any u € S(a), t € R is a critical point of WY (t) if and only if (t x u) € P(a).
Particularly, u € P(a) if and only if O is a critical point for W, (t).

Now, we recall the following known results.

Lemma 2.8. ([49]). Let N > 2. The embedding W,"" (R?) < L9 (R?) is compact for any p <
q<p*

Lemma 2.9. ([27]). (i) The map (u,t) € E x R — (t xu) € E is continuous.
(ii) For u € S(a) and t € R, the map ¢ +— t x ¢ from T,S(a) to Ty, S(a) is a linear isomor-
phism with inverse W — (—t x ), where

T.S(a) =3¢ e Sa): / |u|”2up =0
R3
Finally, we need a version of linking theorem, see Section 5 in [28].

Definition 2.10. Let X be a topological space and B be a closed subset of X. We say that a
class F of compact of subsets of X is a homotopy-stable family with extended boundary B if for
any set A in F and any 1 € C([0, 1] x X; X) satisfying n(z, x) = x for all (¢,x) € ({0} x X) U
([0, 17 x B) we have that n({1} x A) € F.

Lemma 2.11. (/28]). Let ¢ be a C'-functional on a complete connected C'-Finsler manifold X
and consider a homotopy-stable family F with an extended closed boundary B. Set m = m(¢, F)
and let F be a closed subset of X satisfying

(1) (ANF)\ B#W forevery A e F;
(2) supp(B) <m <inf¢(F).

Then, for any sequence of sets (Ay)n in F such that 1im,_, o Sup A, 0 =m, there exists a
sequence (x,)n in X such that

lim ¢(x,) =m, lim ||dp(x,)]|=0, lim dist(x,, F)=0, lim dist(x,, A,)=0.
n—oo n—>oo n—>oo n—oo
3. Proof of Theorem 1.1

In this section, we aim to prove the multiplicity of normalized solutions to equations
(1.1)-(1.2). To start, we recall the definition of a genus. Let X be a Banach space, and let A

12
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be a subset of X. The set A is called symmetric if, for every u € A, it holds that —u € A. We
define the set

Y :={A C X\ {0}: Aisclosed and symmetric with respect to the origin}.

For each A € X, we define the genus G(A) as follows:

0, ifA=4,
G(A) = {inf{k e N:Janodd ¢ € C(A,R¥\ {O})},
400, if no such odd map exists.

Additionally, we denote X = {A € X : G(A) > k}.
To address the issue of compactness loss in the (PS) sequences, we need to make use of the
concentration-compactness principle.

Lemma 3.1. (/50], [51]) Let {u,} be a bounded sequence in DVP(R?) that converges weakly
and a.e. to some function u € DVP(R3). Then, the sequences |Vu,|P and |u,|? : converge in the
sense of measures, with |Vu,|P — w and |uy |P* — £. Moreover; there exists a countable set J, a
Samily of points {z}jes C R3, and families of positive numbers {¢j}jes and {w}} ey such that
the following relations hold:

o> |Vul? +) w;s:;, 3.1)
jeJ
¢=ul” +) ¢jb; (3.2)
jeJ
and
£
w; =8¢, (3.3)
where 8;; denotes the Dirac delta mass at the point z; € R3.
Lemma 3.2. (/50],/51]) Let {u,} C D“P(R?) be a sequence as in Lemma 3.1, and define the
quantities
Woo = lim limsup / |Vun|?dx, ¢oo:= lim limsup / lun|? dx.
R— n—o00 R—0o0 p—oo
|x|=R |x|>=R
Then, the following inequalities hold:
L
oo > 8¢ (3.4)
limsup/ |Vu,|Pdx =/da)+woo, (3.5)
n—od R} R3

13
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and

11msup/|un|p dx—/d§+é’oo

n—oo
R3

For u € S, (a), based on Lemma 2.2 and the Sobolev inequality, we have that

1 4 2 1 *
I, () = — | Vullh + Pdx — =|lullf — —ull?.
(1) pII u||p+2p[¢u |ul” dx qllullq P l[uell),

1 1 _» *
—||W||,,——C<q>aq(1 %) | Vul|4 — =577 |Vul?
p p*

=g (IIVullp)

where

1 1
g(r) = —r? — L (q)at =005 — — g5 pp",
Pq p

Recall that p < g < p, and we have g8, < p. There exists a constant 8 > 0, such that if

Journal of Differential Equations eee (eeee) eeeeee

(3.6)

(3.7)

na?1=%) < B, the function g attains its positive local maximum. More specifically, there ex-

ist two constants 0 < Ry < Ry < +00, such that
gr)>0, Vre(Ry,Ry); g(r)<0, Vre(0,Ry)U(Ry, +00).

Let T : Rt — [0, 1] be a nonincreasing, smooth function satisfying

, ifrel0, Ry],
T(r) = .
0, ifr e[Ry,400).

In the sequel, we consider the truncated functional

1 y I’ T (llullp) *
_ P p _ = q _ P p
Iy (u) = pIIVu||p+—2p [¢u |ul” dx p lluellg o Nzl

For u € S, (a), again using Lemma 2.2 and the Sobolev inequality, we observe that

T (IVullp) =

*

1 n _ F)
L) > —Vulh = =C(q)a?"' =% || Vu || —
)4 q
=2 (IIVull,)

where

w(r) _»*
QS prp*'

- 1
g =—r" = Eegrart=tos - 20
p q p

14
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I
By the definition of t(-), when a € (0, (g) 40-%) ), it follows that

g(r) <0, Vre(0,Ry); g(r)>0, Vre(Ry,+o0).

For the remainder of the discussion, we will always assume that

ae (0, (é) q(laq)) )
m

Without loss of generality, we assume the following conditions hold:
“Tr >0, Vrelo, Rl (3.8)

and
3
Ry <S». (3.9)
Lemma 3.3. The functional 1, . possesses the following properties:

(i) I,.€CYE,R);
(ii) 1,,¢ is coercive and bounded from below on S,(a). Furthermore, if I, ;(u) <0, then
”V””p <Ry and I/j,,t(u) = I,u(“);
(iii) The functional 1, ; restricted to S, (a) satisfies the (PS). condition for all c <0, provided
that p > i > 0 is sufficiently large.

Proof. The conclusions of items (i) and (ii) can be derived using standard arguments. To prove
item (iii), let {u,} be a (PS). sequence of I, ; restricted to S,(a) with ¢ < 0. From item (ii),
we know that || Vu, ||, < R for large n, implying that {u,} is a (PS). sequence of I, with
¢ < 0. This gives us the following:

|Sr (a)

I, (uy) = c<0 and ||1;L|S(a)(un)||—>0 as n — 00.

Thus, the sequence {u,} is bounded in E. Therefore, up to a subsequence, there exists a function
u € E such that

u, —~u in E,
up —u in LIR3), Vqe(p, p*),

u, > u ae.in R3.

From the facts p < g < p < p* and using Lemma 2.4, we obtain the following limits:
lim flu, |1 = [lull, lim /%n lun|? dx =/¢>u |ul? dx.
n—oQ n—oo
R3 R3

15
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Moreover, we claim that u =% 0. To show this, assume by contradiction that ¥ = 0. In this
case, we would have lim,,_, oo ||up, ||Z = 0. From (3.8) and the definition of I, ;, we deduce the
following:

0>c= lim I, ¢(u,)= lim I, (u,)
n—>oo n—>oo

1 Y 2 1 *
= _ P 7 P _= q p
= lim pIIVunIIerzp/% lun|” dx q”un”q p*llunll,,*
R3

1 7 1 __» *
> 1 2 p_ K q_ p
_nh_fgo[pllvltnllp q ”Mn”q p*S 4 ”Vun”p :|
> 2 gim Jlug 1§ =0,
q n—0oo

which leads to a contradiction. Therefore, u = 0.
Additionally, applying the Lagrange multiplier rule, there exists a sequence {)\,} C R such
that

||I/;(u,,) — 2@ (up)| — 0, asn— oo.

Hence, we have that

) ) ) ) S
—Apuy + Y Qu, [un P~ up — plugl'™"up = lun|? ~“up = Ay lun|P~ " uy + 0, (1) in E. ",

3.10)

where Er_l is the dual space of E,. Thus, we have for ¢ € E,, that

[ 19l ods vy [ ol unpdy — [ ol g dx

R3 R3 R3

(3.11)
B / |un|p*_2 Uppdx = Ay / |un|p*_2 up@dx + o0, (1)
R3 R3
and if we choose ¢ = u,, we get

IVunllp + V/¢u,, lun|? dx — pllunllg — llen |l = Anllen |l 4 0n (1) (3.12)

R3
From (3.12) and the boundedness of {u,} in DLP(R3), we can infer that the sequence {A,}
is bounded in R. Therefore, we can assume, without loss of generality, that A, — A for some

X € R, up to a subsequence. Consequently, using (3.11), we deduce that u satisfies the following
equation:

—Apu 4 ydulul? 2w — 920 — )P = Au )P (3.13)

16
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/|Vun|p_2Vu,,V<pdx—>/|Vu|p_2VuV<pdx;

]RS

and

An/Iunl”_zuntpdx—>A/|u|”_2u¢dx,

R3

R3

R3

*

* P
as n — oo. Since {|uy|? "2u,} is bounded in L71(R3), and {|u,|? 2u,} is bounded in

- . .
LT (R3), and u, — u a.e. in R? we obtain that

e _r
lun?" " 2uy — |ul? 2w in L7 1 (R3), and |un|? 2u, — |u|? 2w in L7+ (R),

and so,

/|un|p*_2untpdx—>/|u|p*_2u<pdx and /|u,,|q_2un<pdx—>/|u|q_2u<pdx,

R3 R3

as n — 00. Recall from Lemma 2.4 that

R3

R3

/%mm%wwﬁ/%wﬂww,Wen

R3

Thus, we have

R3

/|Vu|p_2VuV<pdx+y/¢u|u|p_2u¢dx—uf|u|q_2u¢dx

R3 R3

R3

—/|u|p*_2u(pdx=)»/|u|p*_2u(pdx

R3 R3

Therefore, u solves equation (3.13).

(3.14)

In the sequel, by the concentration-compactness principle, we can prove that

/|un|p*dx—>/|u|p*dx.
R3 R3

In fact, since [|Vu,||, < Ry for sufficiently large n, by Lemma 3.1, there exist two positive

measures, { and @ in M(R?), such that

VP — o,

lup|?" = ¢ in M(RY)

17
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. . p* 3 .
as n — oo. Then, by Lemma 3.1, either u,, — u in L, .(R~), or there exists a (at most countable)
set of distinct points {x;};je; C R3 and positive numbers {¢ i} jes such that

¢=lul” + ) b,

jeJ

Moreover, there exists a (at most countable) set J C N, a corresponding set of distinct points
{xj}jes C R3, and two sets of positive numbers {¢j}jes and {w;}jes such that items (3.1)-(3.3)
hold. Now, assume that J # (). We divide the proof into three steps.
Step 1. We now prove that w; = ¢;, where w; and ¢; are the measures from Lemma 3.1.
Letp € Cgo (R3) be a cut-off function with ¢ €[0, 1], such that p = 1 in B;/2(0), and ¢ =0
in R3\ B;(0). For any p > 0, define

x—xj)_ 1, ifjx — x| < 3o,
o, iflx —x; > p.

Yp(x) =9 <

By the boundedness of {u,} in E,, we know that {u,¢,} is also bounded in E,. Hence, it follows
that

on(1) = (1}, (un) , ung)

Z/|V“n|p_zvunv(un‘/’p)dx+Vf¢un |”n|p¢pdx
R3 R3 3.17)

—u/mnmdx—/w"’“gopdx.
R3 R3

It is easy to check that

f Viun|”2 Vity V (ungpp)dx = / Vi |” ppdx + / ttn |Vitn|P 72 Vi, Vep,dx
e e R (3.18)

=T +T1

where

T :/qun|p @pdx, Tzzfun|wn|f’—2vunwpdx.
R3 R3

For T1, by (3.16), we obtain

o I » L _ wo
/}E)r%)nll)rr;oTl —}ILI})"&‘EO/WMM (ppdx_gl_%/gopdw—w({x]})—w]. (3.19)
R3 R3

Using the Holder inequality, we obtain the following expression:

18
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lim lim 7> = lim hm Uy |V, |P~2 Vu,Vpdx
p—>0n—o00 p—>0n—
R3
p—1
P

=

p_>0n~>oo

< lim lim /|unV<pp|pdx /IVunlpdx
3

P

<Clim lim lunl? |V, |"dx
p—)()n—)OO
\R>

L
<C lim lim |t P /\w
p—>0n—00 \R
3

So we have

lim lim /|Vun|p_2VunV(un(pp)dx:w({xj})zwj.

,0—>O n—o00

R3

Again by (3.16), we have

lim lim /IVunlp @pdx = 11m/<ppd§ {({xj}) gj

p—>0n—00

By the definition of ¢,, and the absolute continuity of the Lebesgue integral, one has that

lim lim /|un| Ypdx = hm[|u|q¢p x = hm / [u|? p,dx =0

p—>0n—00

|x —xjl=p

Thus, by Proposition 2.1 and Lemma 2.8, we have

=[]
=\

) o b6
du, 17 Wpdx <C lun|™> dx |ty §0p|5§0dx
3

3 3

6p 6
< Cllunll¥ f|un|s lop|® dx
3P
3

ol

6p
<C lunl™> @pdx

3

19
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Therefore,

6
lim lim /(bun [un|? pdx < lim lim Cy flun|Tp @pdx
p—>0n—00
3

p—>0n—00
R3
5
6
. 6p
= lim C; / lu| > @pdx (3.23)
p—0
&
5
6
. 6p
= lim C; / [u]> @pdx | =0.
p—0

e

In summary, by combining (3.17)-(3.19) and (3.21), taking the limit as p — 00, and subsequently
taking the limit as n — oo, we conclude that

wj={j.
Step 2. We now prove that wx = {x0, Where weo and { are defined in Lemma 3.2. Let

v e C(‘)’O(]R{3) be a cut-off function with v € [0, 1], ¥ =0 in By,2(0), and ¥y =1 in R3 \ B1(0).
For any R > 0, define

_rxy o ifx| < IR,
wR(x)‘_w(E)_{l, if x| > R.

Using the boundedness of {u,} and {u#,¥r} in E,, we have

on (1) = (I//,, (un), urﬂpR)

= / |Vun|p_2 Vu,V (u,yr)dx + V/¢u,, |1y |P Yrdx
R3 R3 (3.24)

—u/|un|‘wadx—/|un|P”‘wRdx.
R3 R3

It is easy to derive that

/ Vitn| P2 Vitn V (tnrp)dx = / Vin|? yrdx + / i [Vitn| P2 Vit Vi el
R3 R3 R3 )
=T+Ty

where

20
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Ty— / \Vitn|? Yrrdx, To = f i Vit [P~ Vit Vi pelx.
R3 R3

For T3, by (3.16) and Lemma 3.2, we infer to

lim lim 73 = lim lim [ |Vu,|? Yrdx = 0.
R—oon—o0 R—oon—00

R3

By virtue of Holder’s inequality, we get

lim lim Ty = lim lim [ u, |Vl Vu,Viyrdx
R—oon—00 R— 00 n—00
]RS
p=l
p

<=

< lim lim /|unva|”dx /qunlpdx
o0

R—oon—

<C lim lim /|un|p|V1/fR|pdx

R—o0on—00

1 P*=p
p*

* i
<C lim lim /|u,,|1’ /|V¢R|n*—p —0.

R—>00n—>00
3 3

Hence,

lim lim | |Vup? "2 Vi,V ung)dx = 0.

R—o0on—00

R3

By Lemma 3.2, we have

lim lim [ |up]? Yrdx = loo.
R—oon—o0

R3

Analogous before, we infer that

lim _lim [ |us*Yrdx = lim /|u|q1//Rdx— lim / |unl? Yrrdx =0

R—oon—0o0
R3 |x|> R

Moreover, we can obtain

21
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N[

R—00n—>00 — 00 N—>00

lim lim /qﬁun junl? Yrdx < lim lim Cy f|un|%” Vrdx
3

R3
5
3
6p
= lim C /|u|?’1/fRdx (3.27)
R—o0
i
5
6
. 6p
= lim C; / lu|5yrdx | =0
R—o0

R
[x|=5

Summing up, from (3.24)-(3.27), taking the limit as n — oo, and then the limit as R — oo, we
have

Woo = oo-
Step 3. We claim that {; =0 for all j € J and {so =0.

Assume, by contradiction, that there exists jo € J such that ¢, > 0 or {s > 0. From Step 1,
Step 2, and Lemmas 3.1 and 3.2, it follows that

&
o < (S wj) T = (ST 7, (3.28)

and

r*

Loo < (S‘lwoo)% - (S‘lgoo)7 , (3.29)

Consequently, we get ¢, > S3/P or £so = S3/PIf the former case occurs, we have

RY > lim ||Vu,|h > S lim /|un|1’*dx
n—oo n—oo

(3.30)

n—oo

> S lim /|un|1’*<ppdx =S /q)pd;

which contradicts (3.9). If the last case happens, we have
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P
3

P

RY > 1im | Vu,|lh > S lim /|u,,|1’*dx
n—>oo n—oo \R
3

Sh

n—oo

> S lim /|u,,|P*1dex (3.31)
-

> S lim / lun|?" dx

n—oo

Taking the limits n — oo and R — oo in (3.31), we infer that

L2
%

RY = S(oo) 7™ = S(S¥/P) 7™ = S¥/7.

This leads to a contradiction with (3.9). Therefore, we conclude that ¢; =0 for all j € J and
loo = 0. As aresult, by Lemma 3.1, we obtain that u,, — u in Lﬁ:c (R3); and by Lemma 3.2, we
know that u, — u in L?" (R3).

Next, we prove that there exists a constant yff > 0, independent of n € N, such that if © > ,u’l‘,
the Lagrange multiplier A < 0 in (3.13). Indeed, observe that {u,} C S,(a) and ||Vu, ||, < Ry, as
shown in the previous part of this proof, along with (2.9)-(2.10), which imply that there exists a
constant Q1 > 0, independent of n, such that

1) 1-46, S, _
01 < llualld < C(q) ||Vun||i€"||un||2( ) <C(q) R a?(1-), (3.32)

and

= 2
[ bl dx < iy
5
R3

5
~ 6p 3 2p—1
<C [C <?>} Vil pllunlly (3.33)

where Q> = Q»2(Ry, a) > 0. We define the constant

«_vQ2p—1)0>

_rr-De 334
M= oapi=s,] 0 (3.34)

By (3.32)-(3.34), we have
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y 2p— 1)fR3 Bu,, lun|? dx Y (2p - l)fR3 Gu lul? dx

« .
ui > lim = > 0. (3.35)
Fonsoe 2p (1—8,) lluallf 2p (1—84) llulld
Recall by (3.13) and its Pohozaev identity P, (1) = 0, we infer that
2p—1
Mu = y [ Gutu? dx-+ (s, ~ 1) (3.36)

R3

Now, if u > Wf, we conclude from (3.35), that

y(2p— l)fR3 Su lul? dx
2p (1 —84) llullg

Thus, from (3.36), we infer to lim,_, - A, = A < 0. Hence, taking into account (3.12), we derive

lim IIVunII§+)//¢u,, lun|P dx — Allun I
n—oo

R3
. * 3.37
= tim_ [l I+ a5 + 0 (1) ] 437
n—oo
= pllullg + lullhe = IVull}y + V/¢u lu|Pdx — Allull}.
R3
Since A < 0 for 4 > ] large, we obtain by Fatou’s Lemma,
im [V | +y / Buy 1P dx — Mlun |}
R3
(3.38)
= 1Vl +y [ @ulul?dx + limint (~21n ).
n— oo
R3
and from (3.37)-(3.38), one has
=l = liminf(—Aflun ||5). (3.39)
n—oo
But by Fatou’s Lemma, we see that
liminf(—Allu, [15) > —Allull}. (3.40)
n—oo

Combining (3.39) with (3.40) we get
Jim (=2 flun ) = —Allul;
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that is,
p-
Thus, by (3.37) we have
: p p

Tim | Va5 = | Vull§.

Therefore, u, — u in E; and ||u||, = a. The proof is complete. O
For ¢ > 0, we define the set
Il:i ={ueE NS@):1,(u)<—¢}CE,.

Since 1, ; (u) is continuous and even on E,, it follows that the set / " ¢ is both closed and sym-

,T
metric.

Lemma 3.4. For any fixed k € N, there exist constants ¢ := e(k) > 0 and uy := u(k) > 0 such
that, for 0 < ¢ < g and u > g, the following inequality holds:

G5) = k.

The proof of Lemma 3.4 is similar to that of Lemma 3.2 in [3], so we omit it here. In the
following, we define the set

Y :={Q C E, N S(a): Qis closed and symmetric, G(2) > k},
and, by Lemma 3.3-(ii), we know that

¢k := inf sup [, ;(u) > —0o0
QETL e

for all k € N. To prove Theorem 1.1, we introduce the critical value and define
Ke:={ueE,NS@): 1, (u)=0,1I,.(u)=c}
From this, we can derive the following conclusion:

Lemma 3.5. If c = ¢ = ck41 =+ - - = Ck4¢, then we have G(K.) > £ + 1. In particular, I, (1)
admits at least £ + 1 nontrivial critical points.

T
Lemma 3.4, there exist constants & := (k) > 0 and puy := (k) > 0 such that, if 0 < & < g;

and u > g, we obtain

Proof. For ¢ > 0, it is straightforward to verify that I, % € X. For any fixed k € N, by

G, %) > k.
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Thus, 1,7 € %k, and furthermore,

¢k < sup I, .(u)=—er <0.
uel,;ik
Assume that 0 > ¢ = ¢y = cx41 = - - = cx4¢. Then, by Lemma 3.3-(iii), 1, . (1) satisfies the
(P S).-condition at the level ¢ < 0. Consequently, K. is a compact set. By Theorem 2.1 in [3],

or Theorem 2.1 in [35], we know that the restricted functional I, ;|s() possesses at least £ + 1
nontrivial critical points. O

Proof of Theorem 1.1. Let u > u* = max{uj, ur}. From Lemma 3.3-(ii), we observe that the
critical points of I, ; (1) found in Lemma 3.5 are the critical points of /,,, which completes the
proof. O

4. Proof of Theorem 1.2

In this section, we focus on the L?-supercritical regime: p < ¢ < p*, and complete the proof
of Theorem 1.2. To proceed with our arguments, we first present some useful lemmas and define
a function I : E, — R by I'(u,t) := I,(t * u). From Lemma 2.6, we observe that any critical
point of 1,|s() belongs to P(a). Consequently, the properties of the manifold P(a) are closely
related to the mini-max structure of 1, |s()-

Lemma4.1. Let p < q < p*, u,y > 0and u € S(a), then

(i) IV@*u)ll, = 0" and 1,,(t xu) — 0T if t > —o0;
(ii) IVE*u)|lp — 400 and I,,(t xu) — —00 if t — +o0.

Proof. Using (2.17), we have
IVt )| =e” | Vullp.
It follows that
IV *xu)l,— 0" as t— —oo,
and
IV(t*u)||, > +o0 as t— +oo.

Next, we note that

1 % T 1 =« *
I(u,t)=1 (t*u)=—6p’||VM||p+_e[/¢ |l P dx — =T [Jullf — — e lull}..
Iz p 14 2p J u q q p* 14

Moreover, since
qg84>p if p<gq<p®,
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we can infer that

L,(t*u)— 0" as t— —oo,
and

I,(t*u)— —00 as t— +oo.

This completes the proof. O

Lemma 4.2. Let p < g < p*, i,y > 0. There exist K = K, > 0 and a > 0, where

=}
| &'y
= - 5 ,
wele(sr)]
such that for all 0 < a < a,
Py(u)>0,1,(u)>0 forall ue A, and 0 < sup I, (u) < inf I, (u), 4.1
ueA, ueb,

where

A :={u €Sy (@): |Vully < Ky} and By :={u € S;(a):||Vul, = pKa).

Proof. Suppose u,v € Sy(a) such that |Vu|h < K,||Vv|h, = pK,. By Proposition 2.1,

Lemma 2.2, and Lemma 2.3, we conclude that for u € S, (a), the following holds:
J/ *
Pu(u)=Vullh + Z/qbu u|? dx — pudgllullg — IIMII£*
R%

_ B _r *
> (|Vul|h — C (q) udya? =3 | Vu | — S™ 7 | Vulh

and
I (u) = lIIVullﬁ + L f¢u |u|? dx — EIIMIIZ ~ L (]
p 2PR3 q p*F

" _ s 1 _» *
> ||W||§—C<q>5af’<1 Bq)nwn?,"—ﬁs 7 IVulb

S |-

Moreover, we have
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1 1 y o 1 *

L) — I, () >—|Vv||5 — —|V ”——/ Pdx — =|vlld — —v|?.

(V) ﬂ(u)_pll vllp pll ullp 2pzdmlul x qllvllq p*llvllp
R

5

1 1 Y o= 6 3 1

>—|Vullh — —|IVu|lh — Z=C|C|( = =K,

_pll vlp pll ullp » [ (517)} a”’™" (Ka)
p*

m - o 1 _p »
—f(q)a‘f“ %) (pKy) 7 — ST (K

3 -1
1 ~ 3 K
=Ky~ Ky — 2-C [C (gp)] SCOURA N
p p ~ 3
el ()]
1(1-5) (4.2)
CCln|  (K)'TP

45q I rr
(pKa) 7 ——S 7 (pKa) »
p

Wl

" \efe(en)

g8,
:8"_91(“_ p7C@u e
8p - 5 q(Z]p_—E?)
a(wrefe(sr)])
s (k)T | Ka = 2k, >0,
p p

for 0 < a < a, and we denote by

pQ2p—1)
a(1-8¢) \ a(+2)—2p(pFD)

~ 6 % 2p—1 P
q (4yC [C (§p)] > * S\
p+qdq ) Pip S P . (43)
8p 7 pnC(q) 8p »

K, :=min

Then we deduce by (4.2) that (4.1) holds. O

Next, we examine the characterizations of the mountain pass levels for I (u,?) and I, (u).
Denote the closed set I[f ={ueS(a):1,(u) <d}.

Proposition 4.3. Assume that p < g < p*, i, y > 0. Define
5.(a) :=_inf max I(E()),
gel, 1€(0,1]
where
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Ty ={E € C([0.1], Sy (a) x R) :£(0) € (A, 0), E(1) € (1], 0)},

and
ou(a) = Sienrfa max 1, (&),
where
[y ={§ €C(0,1], (@) : £0) € Ay, E(1) € 12}.
Then we get

oula) =0y,(a) > 0.

Proof. Since I'y x {0} C Fa:vit is easy to know that 6, (a) <o, (a). Then we only need to verify
ou(a) > oy(a). For &(1) = (£1(1), §2(1)) € Ty, one has,

£(0) = (£1(0), £2(0)) € (Ag,, 0) and (1) = (§1(1), &2(1)) € (12, 0).

So, set £(t) = (gz(t) *'51 (t)), we have &£(¢) € 'y, and so,
1E@) = L&) * & (1) = 1 (E(t
max (@) max, u(E2(t) x§1(2)) max, u(§()),
which implies that 5, (a) > o, (@) > 0, and the proof is completed. O

Next, we will show the existence of the (P S)z, (4) sequence for I (u, 1) on S, (a) x R, which is
demonstrated by a standard argument by using Ekeland’s variational principle and constructing
pseudo-gradient flow (Proposition 2.2 [32]).

Proposition 4.4. Let p < g < p*, u, y > 0. There exists a Palais-Smale sequence {w,} C Sy(a)
for I,|s(a) at level oy, (a) and Py, (w,) — 0 as n — oo.

Proof. Let

X=S8@ xR, F={(0,1):E€el,}, B:=(A,0UU,0),
F:={(u,t)eS@) xR|I(u,t)>0,(a)}, A=E(0,1]), A,=E,([0,1]) =£,([0, 1]) x {0}.

We need to verify that F is a homotopy stable family of compact subsets of X with extended
closed boundaries B and F, satisfying the assumptions (1) and (2) in Lemma 2.11. Specifically,
for each & € Ty, since £(0) € (A, 0) and é(l) € (12, 0), we have &(0), é(l) € B. For any set
A e Fandanyn e C([0, 1] x X; X) such that n(¢, x) = x for all (¢, x) € ({0} x X)U ([0, 1] x B),
it follows that n(1, £(0)) = £(0) and n(1,£(1)) = £(1). Therefore, we obtain ({1} x A) € F.
Combining (A N F) \ B # @, we conclude that the assumptions (1) and (2) in Lemma 2.11 are
satisfied.
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Thus, there exists a sequence {(u,,t,)} C S(a) x R such that as n — +o0, ...,

(|tn| + dist(uy, &, ([0, 1])) — 0, 4.4
I(up, t,) — ou (a), 4.5)
(Il s(@yxR) (tn, tn) = 0. (4.6)

Moreover, we can obtain that I (u,,t,) =1 (t, x u,,0) and
(N5t@xR) Gans 1) (9, 9)) = ((H1500xR) ta %100,0), ta % 0,9)). )

for (¢, s) € E x R with ng vpe = 0. Recording that w, = ¢, xu, € S (a), we know from (4.5)
that

I, (wp) =1ty xu,,0) =1 (wy, t,) - o, (a), asn— oo.
Taking (0, 1) as a test function in (4.7), we deduce from (4.6) that
P (wy) = (Iuls@) (wa) = 0, asn—oc0. O

Remark 4.5. From Proposition 4.4, we can say that there exist a sequence {u,}, whichis a (PS)
sequence for 7, with the level o, (a), that is

I, (up) > oy(a) as n— 400, 4.8)
and
(14|87 (@)) (up) > 0 as n— o0. (4.9)

Lemma 4.6. The (PS) sequence {uy,} discussed in Remark 4.5 is bounded in E,. Furthermore,

assume that o, (a) < %S ? and y <y for some y|" > 0. Then, we have

lim A, =A <0.

n—oo

Proof. From Remark 4.5, we see that I, (u,,) is bounded. In fact, by P, (u,) — 0 asn — oo, we
have

|21u(un) + Pu(un)| <C,

which implies that,

n(p+4qy) p+p
*

2||Vun||p+—y / G, un? dx — lullg — Il = ~C. (410

In view of (4.10) and I, (u,) < C, we have
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p+1 wlp+qs p+p* *
—y/¢u,1|un|"dx+M||un||Z+ luall?: < @p+1)C,

2p 4, q p*

which implies that

*
f¢un |un|pdx, ”un”Zv ”uﬂ”Z*v VHGN,
R3

are all bounded. Thus, [|Vu,|, < R for some R; > 0, independent of n € N. Since {u,} C
Sy (a), we conclude that {u,} is bounded in E,. Therefore, by passing to a subsequence, we may
assume that u,, — u for some u € E,, and consequently, u, — u in L9 (R3) for all q € (p, p%).
As a result, it follows from Proposition 5.12 [58] that there exists a sequence {},} C R such that

I, (un) = n®'(ty) — 0in E;" as n — oo,
That is, we have
= Apttn + Y b Van| P e = 77w P77 = e NP w0 (1) i E;
4.11)
Similar to the proof of Lemma 3.3, we know that u solves the equation
—Apu+yo, ulP 2w — 2w+ |ul? 72w = u|P (4.12)

Moreover, u = 0. In fact, argue by contradiction that u = 0. Then u, — 0 in LY(R?), Vg €
(p, p*), and by P, (u,) =0,(1), (2.9) we have

J/ *
on (1) = | Vunllp + 7 /¢un | |? dx — g llunllg — llunll?-
P]R3
= Vunlp = lunllb +o0n (1).

«
We may assume that lim,,_, || Vit,, ||§ =lim,_ oo llttn ||§*dx =1 > 0. Thus, we have

oy (@) +on (1) =1, (un)

1 Y W 1 *
_ p i p _~ q9__ p
= p ”Vun”p + 2PR/; Ou,, lun|? dx g ”un”q o ”un”p*

O (4.13)
L Litem

p p

1
= gl +o, (1)

P
On the other hand, by the Sobolev inequality (2.11), we have [ > SI»*. This gives rise to two

3
possible cases: (i) [ =0; (i) [ > S7.
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If I =0, then by (4.13), we obtain 1, (u,) — 0, which contradicts I, (u,) — o, (a) > 0. Now,
3 3
if the second case, [ > S7, holds, then by (4.17), we get I, (u,) — %l > %S? , which contradicts

3
I, (up) — oula) < %SF. Thus, u # 0. Moreover, from (4.11) and P, (u,) = 0,(1), we obtain

2p—1
2p

Al 1y = V/¢un unl? dx — 1 (84 = 1) lunllg +on (1) (4.14)
R3

Since {u,} C S,(a) is bounded in E,, by Lemma 2.8 and (4.14), we conclude that the sequence
{A,} is bounded and that lim,_, -, A, = » € R. Using an argument similar to that in (3.32) and
(3.33), for all n € N, we have

8 1-46 $, _
Wi < lunll? < C (@) Vet |2 1207 < € (q) REP a101-80), .15)
and

S
~ ~ 6 3
/% junl? dx < Cllunll? < C [C (gp)} Roa®™! =W, (4.16)
R3

where W1 > 0, Wo = W2 (R», a) > 0. We define the positive constant

«._ 2pp(l =385 W

y[ = 4.17)
LT ep W
Therefore, if y < yl*, we get
yQ2p—DWa <2pu(l —55)Wi.
Hence, by (4.15), (4.16), we see that
2p—1
) V/¢Lt,, lun|? dx < (1 _5q)l/«||”n||z- (4.18)
P
Taking the limit in (4.17) as n — o0, and applying Lemmas 2.4, 2.8, we obtain
2p—1
T y/qbu JulP dx < (1= 84) el (4.19)
R3
Consequently, passing the limit in (4.14) as n — o0, and using (4.19), we deduce that
2p—1
ral = "2 y/¢u ul? dx — 1 (85 — 1) [lul)§ <. (4.20)
p
R3

Thus, we have that A <0, if y <y issmall. O
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Lemma 4.7. Let % <p<A, 313 <q < p*, u>0, and suppose that 0 < a < a. Then there
exists yy > 0 such that o, (a) < %SF fory € (0, yy) small enough.

Proof. Let us define the function

Ug

lluell p

Ve =a eSNE,,

and introduce the function

1
W (1) =1, (1 ve) = —e’”||Vv8||§ + Le’/¢vs|v8|pdx
‘ p 2p 2

4.21)

K gs,t q Loy p*
= e e = e el

It is easy to see that W, (t) — 0" as t — —o0, and Wi (t) — —o00 as t — +o0. Therefore, we
conclude that Wi, attains its global positive maximum at some #; > 0, and the critical point 7, is
unique. By the condition (\fog)’(tg) = P, (t; ¥ ve) =0, we have

* * ) )/ S
el e lugl|h, = e’ || Vvell, + Eete /fﬁvg |vel? dx — 118,e9%" ||ve 1§
R3

<P Vo D+ Lot / bu. |v:]7 dx
2p
R3

4.22)
14 —p)t.
— Pl ||VU£||£+56(1 P)lg/¢v£|vs|1’dx
R3

<20 max { | Vel Lol / Bu, |ve|P dx
P e

Now, we distinguish the following possible cases.
Case 1. | Vv, ||} > %e(l_p)’s [r3 v, lve|? dx. In this case, we have

1, * t
el SHUEHZ* <2eP" || Vv |1h,
that is,

Vel
2I| ellp

(P =p)te < .y
[lve ||,€*

4.23)

By (W1.)'(t;) = 0, we obtain that
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(P =Pt
IVoelly |y e 7% Jps ¢y, [vel” dx (a8g—p)re Vel
= T, > — 1éqe P
lvell» =P llve Il l[ve Il
q8q—p
p P = q
IVl o (20Vellp ) 7T dvellg
ol 7],* - q 7]7* p*
llve Il llve Il 5+ l[ve Il
98q—p
p*=p p p*=p p\ P*- p*—
luellp “IVuelp uelly P NVuelp \ 7" lluelly 7 luellg
= . p* _MSq . p* . p*
al” =P flugl al” =P flugl a4 lugl|
- 48q—p q8q—p
_ ey 7" (el p) T e g2 v a7
— *_ p* (” M&”p) - qéq—p
al” =P flugl =

q(1-4 * *_
e ") () 77

p*—p p\ D=2
_ luellp (IVuellp) 7*=r

T
ar*=r 175 ”ﬁ*

q
[mv%mwﬁp—

4% -p q(1-8,)
(Iluellii)”*”’ luellp

q3q—p
reag s, 200 qd(-%) a1 }

Journal of Differential Equations eee (eeee) eeeeee

(4.24)

Recall some important estimates in (2.4)-(2.8), and from 1+j‘/‘ﬁ < p < /9, we have that there

exist positive constants C1, Cy and C3 depending on s and ¢, such that

C1 < |IVuellp < :
1= ==
ellp C

C, < P !
2= ||Ms||p* = C_2

and

luellg . 3-t=be=p

q-p
luellp

By virtue of (4.24)-(4.27), we get

(P*fp)t£> — q(lfaq) q** -1
e >C e Ci — uéya 2p ng P

Case 2.

va||£ < %e(l_l’m Jr3 v, [ve|? dx. In this case, we get

*
el <20 L0 [ g, e .
2p
R3

that is

34
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(4.26)

(4.27)
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ol =D Y v Jr3 Pu |”s| dx (4.29)
p ||vs||
Again using (Wl ) (1) =0, (4.29), (2.9) and Holder inequality, we derive as
e(!’*_P)ts
_IVuelp v o Jre Gu lvel"dx o asi—phe Ve llg
- p* - p*
l[ve [l 2p ||Us|| Vel
q3qg—p
= q
- ||Vvs||p s 14 fR% Go. [0e|Pdx \ 77 lvellg
i P* q [7 p*
l[ve [l llve [l l[ve [l
qdq—p
C v, G q
Iveey (v el lvelg
- P* q P P*
l[ve Il ||Ue|| llve Il )«
q3q—p
T q
o WVeellp IVvellh N 4 ||Us|| ||Ue||p r lvellg
TP VAT lvellZ:
&€ p* &€ p* & p*
— q8q—p
~ ¥ 1
o IVellp IVvellh s (Y€ ”" ‘2”;))*(7‘”]"”) 1 B A
=z D lvellh. ! lvell? (4.30)
I3 p* & p* & [7* .
* 6 -
— —p+qds—q
- luelly ~PIVugllh 5 (VC> e ”uan”us”p !
= — * - q +qgé,
ar” =rug|. P e 5.4
P — ( )415 q—P
luelly Vel “"3
= G (IVuellh )
aP =P ug| P
_57’_P 8. —
48—
— s, ]/C 40D ||Me||q||u8” !
a p 48q—p =
lluell (IVugllp) 7*=r
P*—p Y = *
fluell Vuellp) 7*=» P —a%q
=P *( - p’i) (IVuellyp) 7=
a? =P ue|l -
~_ 9q-p N P
i _
— b yCey\ a*~rr llue llg
“\p a3~ T Nuel§
el (IIVue|lp) 7 = litte

where o = W +q — g8, + p — p*. By (2.4)-(2.5), we conclude that there exists

constant C4 > 0 such that
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Ca = (IVuellf) 7 uel 07 < 2 431)
u 7 lu —. .
4 & & = C4
So, by (4.25)-(4.27) and (4.31), we have
N T (p-39)
N *—1 (3—p)(p—3
(P =p)e > M Cy — ué, YO\ meprap 3 3-1p )
ab*—r P C4
4.32)
€ IIMallp 7
ap*—pr

In what follows we focus on an upper estimate for W, (¢). We split the argument into two
steps.
Step 1. We estimate \IJ . (t¢) as follows:

N 1 1 * *
Wy () = ;e”'IIVvellﬁ - Fé’” el

By direct calculation, we deduce that the function Wl . (t¢) has a unique critical point 7., which is
a strict maximum point and is given by

1

. Vo lI2\ P
ol — (” ”Eﬂf) . (4.33)
vl

3

6P ep*b 1{ a\’

sup | —a — == ,
620 \ P p* 3\ pw

for any fixed a, b > 0. We can deduce by (2.4), (2.5), that

Applying the fact

= w

1 IV ve Il 1 CIVaelly

DN
IS

(4.34)

W =

b+ 0( ”f)
S% + 0 <8?’Tp>
3 3 3 .
(o)

Wi=5| ——I%
Step 2. we next estimate for lllffs (#). By (2.9), (4.22)and Holder inequality, we can deduce

(enz)™ ) 2\ ()
%
:
that
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(p*—p)t ”Vve”p L1-Pt fR% bu, |Us|pdx ||U£||Z
e P —p)le — Pt _ 8(] >
llvell 7. 2P vell? llvell 7
1 Y -
= [Ivuf+ et [ o turras
”Ua”p* p
1 -
<— (nwgni = zle“—">’80||vg||§”> 39
llvell 7 P 5P
1 Y a- 2p—1
<—s (nwgnﬁ 5 e TP Cllelly vl
”Ue”p* p
1 < Y a = *—1
= (Ve 1577 + e P Cal fue |5 e e ) -
ar | 2p

In view of (2.4), (2.5), (2.7) and (4.35), we know £, can not go to 400, namely, there exists some
t* € R such that

t. <t*, forall ¢ >0.
Hence, by (2.6)-(2.7), (2.9)-(2.10), (4.27), (4.31)-(4.33), and above inequality, we get

sup Wy, (1) = Wy (t)
reR

14 M
£+ e /«ms L

R3
1 3 3=p
=387+0 (N') +Cylvelly” - ﬁt?"‘s"’*;”llv.»:llz
3 4 g
& 3 a2p q(1-8¢) 4
5ls%+0<arf’i>+c 2 6“ _ Cpa?l™ ||us|1|q(S
3 e 17 T e
luele” g (430
13 3p o luee 1
SgS" + Cier=t + Coy o - C3 (1=3,)
lueell el
23-p)
1 3 3-p g 1 3_23=p)(p=3q)
=387 +Cier T + Coy —5—; — C3¢ plp=D
3 e ot
1 3 3=p 3_46=n)(p—3q)
:§Sp + Cier1 +C2y—C3g p(p—D
1 3
<=Sr,
3
if we take y = &” for some constant o > ;— and using the fact 0 < 3 — % < ;_T’l’.
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Since v, € S, (a), from Lemma 4.2 we may take ¢; < 0 and #; > 0 such that ¢; x v, € A, and
1,,(t x vg) < 0, respectively. We construct a path as:

77:5 :me[0,1]1— ((1 —m)t; +mty) *xve €y

Thereby, there exists some y;* > 0, such that

1 3
ou(a) < max I,(n; (1)) <supWi (t) < =Sv,
re[0,1] ‘ (R 3

for y € (0, y;) small enough, which completes the proof. O

3
Lemma 4.8. Let {u,,} be the (PS) sequence in S,(a) at level ,(a), with o, (a) < %SF. Assume
that u, — u. Then u # 0.

Proof. To argue by contradiction, suppose that u = 0. Since {u,} is bounded in E,, by passing
to a subsequence, we may assume that ||Vu, ||§ — £ > 0. By Lemma 2.8, we know that u, — 0
in L9(R3) for all q € (p, p*). From Proposition 4.4 and Lemmas 2.4 and 2.8, it follows that
Py (uy) — 0, such that,

* )4
”un”Z* = ||Vun||§ + 5/@4,1 lun|? dx — qu”un”Z
R3
= IVunllp +on (1)
={+o0,(1)

iy 3
as n — oo. Then, using Sobolev inequality, one has £ > S¢»*, and so, either £ > S» or £ =0. In

3
the case £ > S7, from I, (u,) — o, (a) and P, (u,) — 0, we obtain:

1
U,u(a) +o0,(1) = Iu.(un) = Iu(“n) - EP,U,(Mn)
1

p*—q8
y/¢u,,|un|f’dx— unnunnz
R3

*

Pt —
2pp*

1
=§||Vun||5+

1
= 56 +0n(1)a

3 3
which implies o, (a) = 1¢, and thus oula) > %S 7, contradicting the assumption o, (a) < %S v,
In the case £ =0, we have

X
[ Vunlly — 0, Huﬂﬂ*—>a
and, combined with
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/¢un|”n|pdx =0, uald — 0,
R3
we obtain I, (u,) — 0, which contradicts o, (a) > 0. Therefore, u 0. O
3
Lemma 4.9. Let {u,} be the (PS) sequence in S, (a) at level o, (a), with o, (a) < %SF. Assume
that Py(u,) — 0 as n — oo, and that y < y{" is sufficiently small. Then, one of the following
alternatives must hold:

(i) There exists a subsequence such that u, — u weakly in E,, but not strongly, where u % 0
is a solution to

—Apu+ydulul”u=Aul”u+ plul? P+ ul” u, in R,

where A, — A <0, and
1 3
I,(u) <oula) — §SP.

(ii) Alternatively, passing to a subsequence, u, — u strongly in E,, I,,(u) = o, (a), and u is
a solution to (1.1)-(1.2) for some A < Q.

Proof. By Lemma 4.6, the sequence {u,} C S, (a) is abounded (P S) sequence for /,, in E,, and
therefore, u,, — u in E, for some u. By the Lagrange multiplier principle, there exists a sequence
{’,} C R satisfying

/ Vit P 2Vin Vpdx — A / P2 ungpdx + / S, 1tn]7 Unpdx
R3 R3 R3

—M/ a9 pdx — f lunl?” 2 ungpdx = 0, (1) |,
R? R?

4.37)

for any ¢ € E,. Moreover, one has lim;,_, o A, = A < 0. Letting n — oo in (4.37), we have
/ [VulP2VuVedx +y / bu lu|P "2 updx
R3 R3

—,u,/|u|q_2u<pdx—/Iulp*_zu(pdx—A/Iul”_zmpdx=0,
R3 R3 R3

which implies that u solves the equation
—Apu 4y |ulP " u = A ulP " u A w7 w4 ul” 2, in R, (4.38)
and we have the Pohozaev identity P, (u) =0.
Let v, =u, — u, then v, — 0 in E,. According to Brezis-Lieb lemma [58] and Lemma 2.3,

one has
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IVunllp = 1Vully + 1Voallp +o0n (1),

e (4.39)
laall 2% = Nl 4 o2 + 00 (1)
and
/%n lun|? dx =/¢>u ul? dx + op (1), lunll§ = llullf + Ivall§ +0n (1), (4.40)
R3 R3
Then, from Py (u,) > 0, u, — u in L?(R?), one can derive that
y * *
IVully + [ Vually + o / bu lul? dx = udgllullg + Nullh. + llvall b + op (1)
PR2
By P, (u) =0, we have
IV o1 = llvnllh + 0n (1) (4.41)
Passing to a subsequence, we may assume that
lim [V, [} = lim [ju,[|}. = €2 0. (4.42)
n—oo n—0oo

i 3
It follows from the Sobolev inequality that ¢ > S¢r*, and thus, either £ > S» or £ = 0. In the

3
case £ > S, since 1, (u,) = oy (a) and Py, (u,) — 0, we deduce that

oy (a)y= lim I, (u,)
n— o0

*

1 1
— 1i p p
= Jim 1 @)+ 1Vull} = ol +on (1 (4.43)
1 1 3
=Ly )+ 302 1 () + 357

which means that item (i) holds.

If £ =0, then |u, — u|| = ||v,|| > 0, and we have u, — u in DLP(R3), which implies that
U, — u in Ly (]R3). To prove that u#,, — u in E,, it remains to show that u;,, — u in L”(]R3).
Fix ¢ = u,, — u as a test function in (4.37), and use u,, — u as a test function in (4.38). We then
deduce that

f (|vu,,|l’—2 Vi, — |Vu|P2 Vu) YV (uy, — u)dx

R3
- f (An lun|? "2 uy — 2 u|P~2 u) (un —u)dx
R3
+y / (172100 = i 1720 ) = wydx (4.44)
R3
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= 0 [ (b0 = 20t~ wd

]R3

[ (bl = "2 ) s = 0, 1)

R3
Passing the limit in (4.44) as n — oo, we have
0= lim / (A,, ln P2 1y — A |u|P~2 u) (y — w)dx = lim A/ lup — ulP dx,
n—oo n—>oo
R3 R3
and then u,, — u in L?(R3). Therefore, item (ii) holds. O

Now, with the help of the above preparation, we are ready to accomplish the proof of Theo-
rem 1.2.

Proof of Theorem 1.2. Let y < I'* :=min{y,", y;'}. By Lemmas 4.1-4.2, 4.6-4.7, and Proposi-

tions 4.3-4.4, there exists a bounded (P S)q,, (4)-sequence {u,} C Sy (a) with oy, (a) < %S%, and
u € E, such that one of the alternatives in Lemma 4.9 must hold. We now claim that case (i) in
Lemma 4.9 is not possible. To argue by contradiction, assume that case (i) holds. Then u would
be a nontrivial solution to (4.37), and applying Lemmas 4.9 and 4.7, we conclude that

1 3
I,(u) <oula)— §S1’ <0.
On the other hand, we have

1
By () =1y, (u) — —Pu (u)

/¢>ululde+ v PP ullg + Ilullﬁ* >0

which leads to a contradiction. Thus, u,, — u strongly in E, with I,(u) =0, (a), and u is a so-
lution to (1.1)~(1.2) for some A < 0. Moreover, we have u(x) > 0 in R3. In fact, all the preceding
calculations can be repeated verbatim, simply replacing /,, with the functional

1 «
Iy ()= ;IIVullﬁ /¢u lul? dx — |Iu+||q IIM I (4.45)

Then u is the critical point of 1 ;j restricted on the set S, (a), it solves the equation

—Apu 4y lul? 2w =2 ulP 2w+ p [t u o [ut ] L inR3, (4.46)

Using u~ = min{u, 0} as a test function in (4.46), and recalling that (@ — b) (a* — b*) > |a™ — b*|
for all a, b € R, we conclude that
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IVu=llp < IVu™ I} + Vf(ﬁulu_lpdx — Mu~lI; =0.
R3

Thus, u~ =0, and consequently, « > 0 for all x € R3. This implies that u is a solution to (4.46).
By the strong maximum principle, we conclude that u(x) > 0 forall x e R®. O

5. Proof of Theorem 1.3

In this section, we consider the L”-supercritical case p < g < p*, where the parameter p > 0
is large. Due to the fact that g8, > p, the truncated functional /,, ; defined in Section 4 remains
unbounded from below on S, (a), and therefore, the truncation technique is not applicable for

analyzing the problem in (1.1)-(1.2).
From Lemmas 4.1, 4.2 we have the mountain pass level value o, (a) by

oyu(a) = gienrfa IIGIE(E){)i] 1, (@) >0,
where
[y ={6€C(0,1],5(a) : £(0) € A4, E(1) € 13}-

In the following, we define g(r) = u|t|? %t + lu|?*~2u and G (1) = %|t|‘1 + LjulP", for any t €
R. From Proposition 4.4, we know that there exists a (P S )gu (a)-S€Equence {unfc S, (a) satisfying

Ly(un) = op(@), ) Is,@ @)l =0,  Pu(up) =0, as n— oo,

where

3
Py () = | Vitn || + Zl / uy ltn|? dx +3 / G (up)dx — —/g () tndx.
PR3 R3 p]R3

Moreover, by Proposition 5.12 in [58], there exists A, € R such that
||I;/4(“n) — @ (un)|| — 0, as n— oo.
That is, we have
—Aptty + Y Pu, g P72y — g n) =g lun|P Zup + 0, (1) in E7'. (5.0
Therefore, for any ¢ € E,, one has
f [Vun| P2 Vu, Vo dx +y f b, l1nl? " unpdx — / g (un) pdx
R3 R3 R3

= f P2 tpp dx + 0 (1).
R3

(5.2)
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In the following, we analyze the asymptotic behavior of the mountain pass level o, (a) as
u — +00, and investigate the properties of the (P S), (4)-sequence {u,} C S, (a) as n — +o0.

Lemma 5.1. The limit lim,,_, { oo 0, (a) = 0 holds.
Proof. Recalling Lemmas 4.1 and 4.2, we observe that for a fixed ug € S,(a), there exist two
constants #; and t, satisfying #; < 0 < 1, such that u; :=#; x ug € A, and uy := t * ug with
1,,(uz) < 0. We can then define a path

no:mel0,11— (1 —m)t; + mtr) xug € I'y.

Thus, we have

< max [/ t
oy (a) _te[(ﬁ] w (o (1))

s

r? Y Hogs
<max { —||Vu p—i——r/ uol? dx — =r9%||ug||2
=150 » || 0”[7 217 ¢uo| 0| q ” 0||q

R3
:=maxh (r).
r>0
Since g8, > p, we know that
lim A(r)=0" and lim h(r) = —o0.
r—+00 r—+o00

Therefore, there exists a unique point 7o > 0 such that
max h(r) = h(rg) > 0.
r>0

Thus, we distinguish between two cases: rp > 1 and 0 <rg < 1.
If o > 1, we have that

/4 P
d d K g8,
max [ 1)) <h(rg) < 2| Vuollh + 2 / uol? dx — P28y, na
max, (Mo (1)) < h(ro) < » Vuollp 2p” Buq luol Pl lluollg

R3

1 14 7
<max { 2r” max { — || Vuoll}, =— wol? dx § — Zr8ayq2
= max pll ollp 2p/¢u0| ol p lluollg
R3
ub
=2a (rmax)p_7(rmax)q6q

< 2ap) [ 2ap ]fﬁqpp
=(2a — — .
qdy ubd,
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1

2ap | 4¥q—r 1 y f

Fmax = ,a=max { —|Vuol|’, =— upl? dx ¥, b= |lug|.

max |:H«b5q] p” 0||p 2p : ¢uo| ol Il 0||q
R

Therefore, for p < g < p*, we have a positive constant C| independent of p such that

__r_
ou(a) <Cip %7 -0, as pu— +oo.

If 0 <rg < 1, we infer that

P
" o M g8,
max [ ) < L Vullf + 2 / uol? dx — By 2%y, nd
max, w(@o () < » IVuollp 2p)/ Duy 1ol g0 lluollg
R3

r>0

1
< max { 2r max _||V”0||Z7L'/¢uo|”0|p dx § — Epad lluolld
p 2PR3 q

~ 1
=2armax — 7 (rmax)qaq

2]
qdy ) [ ubdy

where

. 2a 45; -1
max = .
ubd,

Then there exists a positive constant C» independent of y such that

JR
oula) <Cou 7' -0, as p— +oo.
This completes the proof. O

Lemma 5.2. There exists a constant C = C(q) > 0 such that

limsup/ G(up)dx < Coyla), limsup/g(un)undx <Coyla).

n—o00 n—o0

R3 R3

and

limsup/qbun lu, | dx < Coy(a) , limsup||Vu,,||£ <Coy(a).
n—o00 n—oo

]R3
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Proof. Since I, (u,) — oy,(a) and Py, (u,) — 0 as n — 0o, we have

3oy (@) + o, (1) =31, (uy) + Py (uy)

+3 2 3
=2 u, 1+ —V/qsun lun|P dx — —/g(un)undx
p P p
R3 ]R3
+3
= p— Pou (a) — %/qbun |un|pdx +P/G(Mn)dx + o0, (1)
P R3 R3
3
¢un |’4n| dx — — g (un) updx (5.3)
PR3

=(p+3) Uu(a)+/G(uzz)dx+011 (D
R3

3
- —V/¢ltn lun|? dx — ;fg(un)undx

R3
Hence,
p—1 » 3
poyu (a)+o,(1)= Z—V ¢u,, lup|Pdx +— | g wp)updx —(p+3) | Gu,)dx
p R3 p]R3 R3

23—qu<un>dx—<p+3)fG(un>dx

p 3 3

Zw/wm
p

which implies that

2

. p
limsu /Gu dx<————0,(a)<Coy(a). 5.4
n_)oop (n) 33— p(p+3) w (@) w (@) (5.4)
R3
and then
limsup/g(u,,)undx <Coy(a). 5.5)
n—oo 3
R,

Then, from (5.3)-(5.5), we have
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n— o0

. p+3 2
lim sup _”V”n”g + _V/‘l"un un | dx
p p
R3
(5.6)

3
= limsup | 30, (a) + — / gun)updx +o0,(1) ¢ <Coy(a).
n—o00 P

R3
Consequently, the proof is completed. O
Lemma 5.3. There exists pu} := pj(a) > 0 such that u # 0 for all p > u7.

Proof. From Lemma 4.6, it follows that the sequence {u,} is bounded in E,. Moreover, by
Lemma 2.8, passing to a subsequence, there exists u € E, such that u, — u weakly in E,,
u, — u strongly in L4(R3) for g € (p, p*), and u, — u a.e. on R3. Given that p < ¢ < p*, and
applying Lemmas 2.4 and 2.8, we conclude that

lim JJu, |3 = flulld quu,, |un|? dx = f¢u ul? dx. (5.7)
n—oo
R3 R3

Suppose by contradiction that u = 0. Then, by the (5.7) and P, (u,) = 0,(1), we deduce as

'}/ * *
on (1) = | Vunlly + Z/qﬁun lu|? dx — g llunllg — Nunllhe = 1 Vitn | = llunllh +0n (1)
R3

Without loss of generality, we may assume that

.
IVunlly = €, lunllhe — £,

r 3
as n — oo. By Sobolev inequality we get £ > S€»*, and so, either £ > S» or £ =0.

3
If ¢ > S», then from I, (u,) = oy (a), Py(u,) — 0, we have

oy (@) +op (1) =1y (u,)

1
=1, (up) — FPM (ttn)

* *

pF—1 p*—qé
y/% |tn? dx — unnuuz + 0, (1)
R3

L Vi l? + 2=
= = u
3 nip 2pp*

1
=zt+on (D),

3
which implies that o, (a) = %6, and so, oy, (a) > %S 7, but this is impossible since by Lemma 5.1,

3
there exists some u} := uj(a) > 0 such that o, (a) < _%SP as (> .
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If £ =0, then we have ||Vun||ﬁ — 0, thus 1, (u,) — 0, which is absurd since o, (a) > 0.
Therefore, u 0. O

Lemma 5.4. The sequence {),} is bounded in R, and limsup,,_, . [Ap] < a%au (a) with the fol-
lowing estimate:

1 l2p—1
Ay = P

= | 2 V/¢un|un|‘"dx+(8q — Dplluglld | + 0n (D).
R3

Moreover, there exists a constant us = p3(a) > 0 such that
lim A, =2 <0 if p>u;large.
n— o0

Proof. From (5.1) and the fact that u,, € S, (a), we obtain

”V”nng + V/¢u,, lun|? dx _/g(un)”ndx :)‘n”unng + o, (1)
R3 R3
= Anal 40, (1),

which indicates that

1
A= —

ar ||VMn||§+V/¢u,, |un|pdx_/g(un)undx +o,(1).

R3 R3

By Lemma 4.6, we know that {u,} is bounded in E;, and thus {),} is also bounded in R. From
Lemma 5.2, we obtain that limsup,,_, ., |A,| < a%(’u (a). Furthermore, along with P, (u,) — 0
as n — 00, we conclude that

1
Ap = a_P ||Vun||5+yf¢un |"tn|pd)C _fg(un)undx - P;L (un) | +0, (1)
i R3 R3
1| 2p—1
ik y/mn n? dix + (85 — 1) pllun 2 | + 00 (1)

By (5.7) and similar arguments to that of (3.32)-(3.35), we see that there exists u3 := u3(a) > 0,
such that
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A= lim A,

n—oo

. 1 [2p—1
= lim — b V/‘pun lun|? dx + (8q - 1)//L||”n||g + 0, (D)
n—oo gP 21)
A (5.8)

1 |2p—1

T ab 2p

Vf¢u|u|pdx+(84 — 1) ululg | <0,
R3

for > pj large. O

Subsequently, by applying the concentration-compactness principle, we obtain the following
lemma, the proof of which follows similarly to that of Lemma 3.3 in Section 4, and we omit the
details here.

Lemma 5.5. For p > p* := max{uy, u3}, it holds that ||uy ||Zi — ||u||§:.

With the aid of the above technical lemmas, we can now proceed to prove Theorem 1.3 as
follows.

Proof of Theorem 1.3. Let 1 > u* :=max{u}, u3}. From Lemmas 4.1 and 4.2, we know that
the functional I, satisfies the mountain pass geometry. According to Proposition 4.4, there exists
a (PS)s, (a)-sequence {u,} C S;(a) that satisfies (5.1) and (5.2), and this sequence is bounded
in E,. Furthermore, there exists a function u € E, such that u, — u weakly in E,, and u, — u
strongly in Lq(R3) for g € (p, p*). In addition, by Lemmas 5.1-5.4, we deduce that A, — X <0
as n — +oo. From the weak convergence u, — u in E, and the equations (5.1) and (5.2), we
conclude that u satisfies the equation

—Apu 4y lulP 7w — |l — Jul? 2w = ul P (5.9)

Therefore, from (5.7) - (5.9) and Lemma 5.5, it follows that

p p q Pt _ g q p”
IVl + [ bl” dx = Al = b+ 4o = fim [slon U+ a1

R3
= li Vil |un|? dx — 2 b
= lim | [[Vuullp +y | Gu, lun X nllunllp
n—oo
R3

=nlij;o[||vun||£—)»n||14n||£]+)//¢u|M|pdx~
R3

Since A < 0, following the reasoning in the proof of Lemma 3.3, we can conclude that
lim [|[Vu, |5 =|IVully, and  lim |u,|5 = [lullb.
Tim_ (| Vay [l = [Vl Tim_ [l |15 = llull}
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Thus, u, — u in E, and ||u||, = a. This completes the proof. O
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