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1. Introduction

The well-known Hardy-Sobolev inequality states that for any domain � ⊂ RN , N ≥ 3, we 
have

(
N − 2

2 

)2 ˆ

� 

φ2

|x|2 dx ≤
ˆ

� 

|∇φ|2 dx

for every φ ∈ C∞
c (�). Several versions of the Hardy inequality with applications in partial 

differential equations can be found, for example, in [5,6,12,14,16,21,22,25,26,35]. This paper 
discusses the following generalized Hardy inequality.

Theorem 1.1. Let f : (0,∞) → R\ {0} be a C1 function with f ′(t) > 0 for every t ∈ (0,∞) and 
let � be a domain in RN . Then for any positive function u ∈ C2(�) we have

ˆ −�u

f (u) 
φ2 dx ≤

ˆ

� 

|∇φ|2
f ′(u) 

dx (1.1)

for every φ ∈ C∞
c (�). In addition, if f (t) > 0 for every t ∈ (0,∞), then for any integer m ≥ 2

and any positive polysuperharmonic function u ∈ C2m(�), that is, (−�)iu ≥ 0 in � for every 
i = 1, . . . ,m − 1, we have

(ˆ

� 

(
(−�)mu

f (u) 

) 1 
m

φ2 dx

)m

≤
(ˆ

� 

|∇φ|2 dx

)m−1 ˆ

� 

|∇φ|2
f ′(u) 

dx, (1.2)

for every φ ∈ C∞
c (�). In particular, we have

ˆ

� 

(
(−�)mu

u 

) 1 
m

φ2 dx ≤
ˆ

� 

|∇φ|2 dx,

for every φ ∈ C∞
c (�).

We apply the Hardy inequality above to study the existence and behaviour of positive solutions 
of higher order elliptic problems involving the polyharmonic operator in exterior domains � of 
RN , N ≥ 3. More precisely, we consider the problems

{
(−�)mu ≥ |x|ag(u) in �,

(−�)iu > 0, i = 1, . . . ,m − 1, in �,
(1.3)

and {
(−�)mu + (−�)ku ≥ |x|ag(u) in �,

(−�)iu > 0, i = 1, . . . ,max{m,k}, in �,
(1.4)
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where m,k ≥ 1 are integers and � is an exterior domain in RN , N > 2 max{m,k}. We also 
consider the higher-order Hardy-Hénon elliptic system

{
(−�)mu ≥ |x|avR in �,

(−�)kv ≥ |x|buQ in �,
(1.5)

where u,v are positive polysuperharmonic functions, that is,

{
(−�)iu ≥ 0, i = 1, . . . ,m − 1, in �,

(−�)jv ≥ 0, j = 1, . . . , k − 1, in �,
(1.6)

and a, b,Q,R ∈ R, with Q,R > 0 and � is an exterior domain in RN . More generally, we can 
cover multipower systems of the form

{
(−�)mu ≥ |x|auSvR in �,

(−�)kv ≥ |x|buQvT in �,
(1.7)

where a, b,S,R,Q,T ∈R and (u, v) is a positive solution of (1.6).

Remark 1.2. The Hardy inequalities in Theorem 1.1 allow us to consider more general forms of 
the aforementioned problems. For instance, we may consider the problem

P(u) ≥ |x|ug(u) in �,

where P = ∑m
i=1 ai(−�)i , ai ≥ 0 and m ≥ 1 is an integer. We may also consider a more general 

problem

P(u) ≥ |x|ug(u)f ((−�)ku) in �,

where P is as above, k is an integer so that 0 ≤ k < min{i : ai > 0} and f,g are positive functions 
satisfying suitable conditions. We may also consider nonautonomous systems

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q1(u1) ≥ |x|a1u
s11
1 u

s12
2 ...u

s1n
n in �,

Q2(u2) ≥ |x|a2u
s21
1 u

s22
2 ...u

s2n
n in �,

...

Qn(un) ≥ |x|anu
sn1
1 u

sn2
2 ...u

snn
n in �,

where Qi = ∑m
j=1 bij (−�)j , bij ≥ 0, m ≥ 1 is an integer and i = 1, . . . , n.

There has been a lot of interest in the nonexistence problem, also known as the Liouville 
problem, for

(−�)mu ≥ g(u) in �, (1.8)
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where � = RN or an exterior domain in RN . A relevant special case of (1.8) is g(u) = up

with p > 0. It is well-known that, if 1 < p < N
N−2m

, then (−�)mu ≥ up does not admit any 
nonnegative polysuperharmonic solution in the whole space, for example, see Corollary 3.6 in 
[13], where the authors prove Liouville theorems for supersolutions of the polyharmonic Hénon-
Lane-Emden system and study its connection with the Hardy-Littlewood-Sobolev systems. For 
more results on positive solutions to some related problems, we refer to [1,2,11,15,17–19,34] 
and the references therein. To the best of our knowledge, this paper is the first attempt to treat 
the general equation (1.4). We do not only discuss nonexistence results, but also obtain integral 
estimates for solutions in the event of existence, see Proposition 2.1 below.

For the Hardy-Hénon system (1.5) in the case when m = k = 1, we refer to [7–10,20,28–32, 
37,38]. There exists an extensive literature on the Lane-Emden system, see for example [3,4,13, 
27,33,39], less is known about the higher order Hardy-Hénon system (1.5). The local or global 
behaviour of the solutions of elliptic quasilinear problems has been studied in [9], see also [7]. 
Among many other results, they proved that the system

{
−�u ≥ |x|auSvR in �,

−�v ≥ |x|buQvT in �,
(1.9)

where a, b ∈R,Q,R > 0 with QR > (1 − S)(1 −T ), 0 ≤ S,T < 1, does not admit nonnegative 
solutions in exterior domains in RN , N ≥ 2, provided

max{γ − (N − 2), ξ − (N − 2)} ≥ 0,

where

γ = (a + 2)(1 − T ) + (b + 2)R

QR − (1 − S)(1 − T ) 
and ξ = (a + 2)Q + (b + 2)(1 − S)

QR − (1 − S)(1 − T ) 
.

Notice that if QR �= (1 − S)(1 − T ) then (1.9) admits a particular solution (u∗, v∗), given by

u∗(x) = A|x|−γ and v∗(x) = B∗|x|−ξ ,

for some constants A∗,B∗ depending on N,p,m,a, b, whenever 0 < γ < N − 2 and 0 < ξ <

N − 2. For more details see Theorem 5.1 and Theorem 5.3 in [9]. Proposition 2.2 below extends 
a result of [9] to the multipower system (1.7). Our proof is based on a Hardy-type inequality.

2. Liouville-type results

For an R > 0 we let BR denote the ball of radius R centred at the origin in RN . For any 
function f ∈ L1(�) we denote

−
ˆ

� 

f dx = 1 
|�|

ˆ

� 

f dx,

where |�| denotes the Lebesgue measure of a measurable set � with finite and positive measure.
We begin with a result on the behaviour of solutions of the problem (1.4).
186 
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Proposition 2.1. Let g : R+ → R+ be a continuous function, h(s) = g(s)
s

is nondecreasing for 
s > 0, m ≥ k ≥ 1 are integers and � is an exterior domain in RN , N > 2m.

(i) (Integral estimate) If u ∈ C2m(�) is a positive solution of (1.4) then for large enough R > 0, 
we have

−
ˆ

BR\B R
2 

h(u)
1 
m dx ≤ CR− a+2k

m , (2.1)

where C is a constant independent of R,u and g.
(ii) (Nonexistence) Let σa = N−2(m−k)+a

N−2m , a > −2k. There does not exist positive solutions u ∈
C2m(�) to (1.4), if

lim sup
r→0 

g(r)

rσa
= ∞.

On the other hand, if there exists σ > σa such that

lim sup
r→0 

g(r)

rσ
< ∞, (2.2)

then (1.4) admits a particular positive solution

u∗(x) = A|x| −(a+2k)
σ−1 ,

for a suitable constant A > 0 in any exterior domain RN \ BR0 for R0 large enough. In 
particular, if g(u) = up , p ≥ 1, then for any a > −2k, there are no positive solutions to (1.4)
provided 1 ≤ p <

N+a−2(m−k)
N−2m , if m > k and 1 ≤ p ≤ N+a

N−2m
, if m = k.

Then we state a result for the multipower system (1.7).

Proposition 2.2. Assume that (u, v) is a positive solution of the system (1.7) satisfying (1.6) in 
an exterior domain � of RN , N > max{2m,2k}, m,k ≥ 1. Let a, b ∈ R, Q,R > 0, 0 ≤ S,T < 1
with QR > (1 − S)(1 − T ).

(i) (Integral estimates) For large enough R > 0, we have

−
ˆ

BR\B R
2 

u
QR−(1−T )(1−S)

m(1−T )+kR dx ≤ CR
− (a+2m)(1−T )+(b+2k)R

m(1−T )+kR (2.3)

and

−
ˆ

BR\B R

v
QR−(1−T )(1−S)

mQ+k(1−S) dx ≤ CR
− (a+2m)Q+(b+2k)(1−S)

mQ+k(1−S) . (2.4)
2 

187 



A. Aghajani, J. Kinnunen and V.D. Rădulescu Journal of Differential Equations 424 (2025) 183–207 
Moreover, we have

−
ˆ

B2R\BR

dx

vθ
≤ CRη and −

ˆ

B2R\BR

dx

uζ
≤ CRκ, (2.5)

where

θ = R(QR − (1 − S)(1 − T )
)

(1 − S)
(
m(1 − T ) + kR) 

,

η = −2 + (QR − (1 − S)(1 − T ))
(
N − 2m + R(N−2k)

1−S

) − (a(1 − T ) + bR)

m(1 − T ) + kR
,

and

ζ = Q(QR − (1 − S)(1 − T ))

(1 − T )(mQ + k(1 − S)) 
,

κ = −2 + (QR − (1 − S)(1 − T ))
(

Q(N−2m)
1−T

+ N − 2k
) − (aQ + b(1 − S))

mQ + k(1 − S) 
.

(ii) (Nonexistence) The system (1.7) has no positive solutions u ∈ C2 max{m,k}(�) satisfying 
(1.6), if

max{γm,k − (N − 2m), ξm,k − (N − 2k)} ≥ 0. (2.6)

It admits a positive solution satisfying (1.6), if

max{γm,k − (N − 2m), ξm,k − (N − 2k)} < 0

and γm,k, ξm,k > 0. Here

γm,k = (a + 2m)(1 − T ) + (b + 2k)R

QR − (1 − T )(1 − S) 

and

ξm,k = (a + 2m)Q + (b + 2k)(1 − S)

QR − (1 − T )(1 − S) 
.

The following Liouville-type theorem is a consequence of the above result to the higher-order 
Hardy-Hénon elliptic system (1.5), which extends the result of Mitidieri-Pohozaev [31] for the 
case m = k to the case m ≥ k ≥ 1.

Corollary 2.3. Consider the system (1.5) in an exterior domain � of RN , N > max{2m,2k}, 
m,k ≥ 1. Let a, b ∈ R, Q,R > 0 with QR > 1. The system (1.5) does not admit any positive 
solution satisfying (1.6), if
188 
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max

{
a + 2m + (b + 2k)R

QR − 1 
− (N − 2m), 

(a + 2m)Q + b + 2k

QR − 1 
− (N − 2k)

}
≥ 0. (2.7)

In particular, when m = k the claim holds, if

max

{
2m(R + 1) + a + bR

QR − 1 
, 

2m(Q + 1) + b + aQ

QR − 1 

}
≥ N − 2m. (2.8)

Example 2.4. Consider positive poly-superharmonic solutions of the weighted higher-order el-
liptic problem

−�
(|x|a(−�)mu

) = |x|buQ in �, (2.9)

where � is an exterior domain in RN , N > 2m, Q > 1, m ≥ 1 is an integer and a, b ∈ R satisfy 
2(m + 1) − N < a < 2(m + 1) + b.

Equation (2.9) with m = 1, � = RN , N > 4 and 4−N < a < min{N,b+4}, has been consid-
ered by Guo et al. [23] where they obtained Liouville type results for nonnegative radial solutions 
provided 1 < p < ps = N+4+2b−a

N−4+a
. Huang and Wang in [24] obtained partial classifications of 

positive radial solutions of the same equation for some special cases, see also [18] for more 
results. This equation is closely related to Caffarelli-Kohn-Nirenberg-type inequalities (CKN)

ˆ

RN

|x|a|�u|2 dx ≥ C
( ˆ

RN

|x|buQ dx
) 2 

Q

for every u ∈ C∞
c (RN), see [10]. Equation (2.9) is related to the Hénon-Lane-Emden system

{
(−�)mu = |x|−av in �,

−�v = |x|buQ in �.
(2.10)

The above system is a special case of the multipower system (1.7) with k = 1, R = 1 and S =
T = 0. By Proposition 2.2, there does not exist any positive polysuperharmonic solution for (2.9)
in an exterior domain RN , N > 2m, if

max

{−a + 2m + b + 2

Q − 1 
− (N − 2m),

(−a + 2m)Q + b + 2

Q − 1 
− (N − 2)

}
≥ 0, (2.11)

or equivalently, using the assumption 2(m + 1) − N < a < 2(m + 1) + b,

1 < Q ≤ max

{
N + 2 + b − a

N − 2m 
,

N + b

N − 2(m + 1) + a

}

=
{

N+b
N−2(m+1)+a

, a ≤ 2,
N+2+b−a , a ≥ 2.
N−2m 

189 
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3. Hardy-type inequalities

The proof of Theorem 1.1 is based on the following lemma.

Lemma 3.1. Let � be a domain in RN , F ∈ C2(�) and A be a locally bounded function on �
with A(x) > 0 for every x ∈ �. Then

ˆ

� 

( − �F − A(x)|∇F |2)φ2 dx ≤
ˆ

� 

|∇φ|2
A(x) 

dx, (3.1)

for every φ ∈ C∞
c (�).

Proof. Let φ ∈ C∞
c (�) and φε = √|φ|2 + ε2 − ε, ε > 0. Then φε ∈ C∞

0 (�) and, by the diver-
gence theorem, we have

ˆ

� 

(−�F)φ2
ε dx = 2

ˆ

� 

∇Fφε · ∇φε dx ≤ 2
ˆ

� 

|∇F |φε|∇φε| dx. (3.2)

Since 0 ≤ φε ≤ |φ|, we have

∇φε = |φ|∇(|φ|) √|φ|2 + ε2
.

By the fact that |∇(|φ|)| ≤ |∇φ| almost everywhere in �, we have

φε|∇φε| ≤ |φ||∇(|φ|)| ≤ |φ||∇φ|.

Young’s inequality implies that

|∇F |φε|∇φε| ≤ |∇F ||φ||∇φ| = (
A(x)

1
2 |∇F ||φ|) |∇φ| 

A(x)
1
2

≤ A(x)

2 
|∇F |2φ2 + |∇φ|2

2A(x)

and by (3.2) we obtain

ˆ

� 

−�Fφ2 dx ≤
ˆ

� 

A(x)|∇F |2φ2 dx +
ˆ

� 

|∇φ|2
A(x) 

dx.

This proves (3.1). �
Proof of Theorem 1.1. First we prove (1.1). Let u > 0 be a C2 function on � and let F(x) =´ u(x) dt . Then
f (t)

190 



A. Aghajani, J. Kinnunen and V.D. Rădulescu Journal of Differential Equations 424 (2025) 183–207 
�F(u) = F ′′(u)|∇u|2 + F ′(u)�u = �u 
f (u)

− f ′(u)
|∇u|2
f (u)2

and by (3.1) we get

ˆ

� 

(−�u

f (u) 
−

(
f ′(u) − A(x)

) |∇u|2
f (u)2

)
φ2 dx ≤

ˆ

� 

|∇φ|2
A(x) 

dx, (3.3)

for every φ ∈ C∞
0 (�). By setting A(x) = f ′(u(x)) in (3.3) we obtain

ˆ −�u

f (u) 
φ2 dx ≤

ˆ

� 

|∇φ|2
f ′(u) 

dx.

This proves (1.1).
Let m ≥ 2 be an integer and assume that u is a C2m positive function with (−�)iu ≥ 0 in �

for i = 1, . . . ,m − 1. Applying (1.1) for (−�)i−1u, i = 2, . . . ,m, gives

ˆ

� 

(−�)iu 
(−�)i−1u

φ2 dx ≤
ˆ

� 

|∇φ|2 dx, (3.4)

for every φ ∈ C∞
c (�). We note that

(
(−�)mu

f (u) 

) 1 
m

φ2 =
m ∏

i=2 

(
(−�)iu 

(−�)i−1u
φ2

) 1 
m
(−�u

f (u) 
φ2

) 1 
m

and by Holder’s inequality and (3.4) we obtain

ˆ

� 

(
(−�)mu

f (u) 

) 1 
m

φ2 dx ≤
m ∏

i=2 

(ˆ

� 

(−�)iu 
(−�)i−1u

|φ|2 dx

) 1 
m
(ˆ

� 

−�u

f (u) 
φ2 dx

) 1 
m

≤
(ˆ

� 

|∇φ|2 dx

)m−1
m (ˆ

� 

−�u

f (u) 
φ2 dx

) 1 
m

≤
(ˆ

� 

|∇φ|2 dx

)m−1
m (ˆ

� 

|∇φ|2
f ′(u) 

dx

) 1 
m

.

This proves (1.2). �
As an immediate application of (1.1) we have the following generalization of the Hardy in-

equality.
191 



A. Aghajani, J. Kinnunen and V.D. Rădulescu Journal of Differential Equations 424 (2025) 183–207 
Corollary 3.2. Let � be a domain in RN and a ∈ R. If 0 ∈ � we assume a > 2 − N . Then

(
N − 2 + a

2 

)2 ˆ

� 

|x|a−2φ2 dx ≤
ˆ

� 

|x|a|∇φ|2 dx, (3.5)

for every φ ∈ C∞
c (�).

Proof. First we apply (1.1) with f (u) = ut

t
, t �= 0, to obtain

t

ˆ −�u

ut
φ2 dx ≤

ˆ

� 

|∇φ|2
ut−1 dx,

for every φ ∈ C∞
c (�). Note also that in the case N − 2 + a = 0, (3.5) is obvious. Now assume 

that a �= N − 2 and 0 �∈ �. We apply the estimate above with

u(x) = |x| −(N−2−a)
2 and t = N − 2 + a

N − 2 − a
.

Noting that

−�u(x) = (N − 2 − a)(N − 2 + a)

4 
|x| −N−2+a

2 ,

we find that

t
−�u

ut
=

(N − 2 + a

2 

)2|x|a−2 and ut−1 = |x|−a.

This proves (3.5). If a > 2 − N and 0 ∈ �, we may apply a similar argument with

u(x) = (|x|2 + ε)−
N−2−a

4 , ε > 0,

and then pass to the limit as ε → 0 using the fact that |x|a−2 ∈ L1
loc(�). When a = N − 2 we 

may apply (3.5) with a �= N − 2 and the result follows by letting a → N − 2. �
4. Proofs of Liouville-type results

We start with recalling the following result, see Proposition 2.7 and Theorem 3.1 in [8].

Lemma 4.1. Let N ≥ 2. Assume that u is a nonnegative solution of

−�u ≥ C|x|λ in RN \ B1

for some λ ∈ R and C > 0 with u �= 0. Then λ + 2 < 0 and there exists a constant C > 0 such 
that
192 
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{
u(x) ≥ C|x|λ+2, λ �= −N,

u(x) ≥ C|x|2−N ln |x|, λ = −N

for |x| > 2. Assume that u is a nonnegative solution of

−�u ≥ |x|σ uQ in RN \ B1,

where Q < 1, σ ∈R. Then there exists a constant C > 0 such that

u(x) ≥ C|x| 2+σ
1−Q in RN \ B1.

In the following we extend the above results for the higher order case with a different proof 
based on the maximum principle.

Proposition 4.2. Let N > 2m. Assume that u ∈ C2m(RN \ B1) is a positive polysuperharmonic 
function.

(i) If

(−�)mu ≥ C|x|a in RN \ B1, (4.1)

for some C > 0 and a < 0, then a + 2m < 0 and

u(x) ≥ C(a)|x|a+2m in RN \ B1. (4.2)

Moreover, if a + N > 0, we may choose C(a) = min{C, l}P(a), where

l = min 
1≤i≤m−1

li , li = min |x|=1
(−�)iu(x)

P (a) = min

{
1,

1 
max1≤i≤m Pi(a)

}
,

Pi(a) =
m ∏

j=i

|(a + 2j)(N + a + 2j − 2)|.

(ii) If

(−�)mu ≥ C|x|−N in RN \ B1, (4.3)

then

u(x) ≥ C|x|2m−N ln |x| in RN \ B2. (4.4)
193 
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(iii) Assume that u is a positive solution of

(−�)mu ≥ |x|auQ in RN \ B1, (4.5)

where a ∈R and Q > 0. Then Q > a+2m 
N−2m

. Moreover, if a + 2m < 0 and Q < Qa = a+N
N−2m

, 
then

u(x) ≥ C|x| 2m+a
1−Q in RN \ B1. (4.6)

Proof. (i) Let u be a positive solution of (4.1). Then we have −�w ≥ C|x|a , where w =
(−�u)m−1 ≥ 0. Lemma 4.1 implies that a + 2 < 0 and thus

(−�u)m−1 ≥ C|x|2+a.

We apply this recursively m times to conclude that a + 2m < 0 and to obtain (4.2). However, in 
order to prove (4.6) in (iii) we need more information on the constant C above and thus we give 
a different proof for (4.2) including a lower bound for C. First assume that −N < a < −2 and 
−�u ≥ C|x|a in RN \ B1. Let l0 = min|x|=1 u(x) and

C1 = min

{
l0,

C

−(a + 2)(N + a)

}
≥ min{l0,C}min

{
1,− 1 

(a + 2)(N + a)

}
.

We show that

u(x) ≥ C1|x|2+a in RN \ B1. (4.7)

Note that u(x) ≥ C1|x|a+2 on |x| = 1. For every ε > 0 there exists Rε > 1 such that

u(x) + ε ≥ ε ≥ C1|x|a+2, x ∈ RN \ BRε .

We have

−�(u + ε) = −�u ≥ C|x|a ≥ −C1(a + 2)(N + a)|x|a = −�(C1|x|a+2)

and, by the maximum principle on BR \ B1, R > Rε , we conclude that

u(x) + ε ≥ C1|x|2+a in RN \ B1.

By letting ε → 0 we arrive at (4.7).
Then assume that u is a solution of (4.1) with m = 2 and −N < a < −4. We have −�w ≥

C|x|a , where w = −�u ≥ 0. As above, we obtain

−�u ≥ C′|x|2+a in RN \ B1, (4.8)

where
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C′ = min

{
l1,

C

−(a + 2)(N + a)

}
, l1 = min |x|=1

−�u(x).

Again from (4.8) and (i) (note that −N < a + 2 < −2) we obtain

u(x) ≥ C2|x|4+a in RN \ B1,

where

C2 = min

{
l0,

C′

−(a + 4)(N + a + 2)

}

= min

{
l0,

l1

−(a + 4)(N + a + 2)
,

C

(a + 2)(a + 4)(N + a)(N + a + 2)

}

≥ min{l0, l1,C}min

{
1,

1 
−(a + 4)(N + a + 2)

,
1 

(a + 2)(a + 4)(N + a)(N + a + 2)

}
.

We apply this recursively to obtain (4.2).
(ii) Assume that u satisfies (4.3). Then −�w ≥ C|x|−N in RN \ B1, where w = (−�)m−1u. 

By Lemma 4.1 we have

(−�)m−1u ≥ C|x|2−N ln |x| in RN \ B2.

Note that |x|2−N ln |x| ≥ −�(CN |x|4−N ln |x|) when |x| > 2, for a positive constant CN . Indeed, 
for |x| > 2 we have

−�(|x|4−N ln |x|) = 2(N − 4)|x|2−N ln |x| + (N − 6)|x|2−N

≤ C|x|2−N ln |x| for C >
N − 6

ln 2 
+ 2(N − 4).

Hence, (−�)m−1u ≥ −�(C|x|4−N ln |x|) in RN \ B2 and applying the maximum principle 
again, as the proof of (i), we get

(−�)m−2u ≥ C|x|4−N ln |x| in RN \ B2.

By applying the argument recursively m times we arrive at (4.4).
(iii) Assume that u > 0 is a positive polysuperharmonic solution of (4.5). Then w =

(−�)m−1u > 0 and −�w > 0. It is well-known that

w(x) = (−�)m−1u(x) ≥ c|x|2−N,

for |x| ≥ 1 (for example, see Lemma 2.1 in [36]). Since −N < 2 − N < −2(m − 1), from (i) we 
get u(x) ≥ C0|x|2m−N . Applying this estimate in (4.5) gives

(−�)mu ≥ |x|auQ ≥ C
Q|x|a0 in RN \ B1,
0
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where a0 = a + Q(2m − N). First note that by (i) we have a0 + 2m < 0 or Q > a+2m 
N−2m

. Let 
a + 2m < 0 or equivalently Qa < 1, then we have −N < a0 < −2m, which is equivalent to 
Q < Qa < 1. Hence we may apply (i) to obtain

u(x) ≥ C(a0)|x|a0+2m, C(a0) = min{CQ
0 , l}P(a0). (4.9)

By (4.9) in (4.5) we have

(−�)mu ≥ C(a0)
Q|x|a1 in RN \ B1,

where a1 = a + Q(a0 + 2m). Again we have −N < a1 < −2m thus we can apply (i) to the 
estimate above and obtain

u(x) ≥ C(a1)|x|a1+2m, C(a1) = min{C(a0)
Q, l}P(a1).

Recursively, for every integer j ≥ 2, we obtain

u(x) ≥ C(aj )|x|aj +2m in RN \ B1, (4.10)

where

aj = a + Q(aj−1 + 2m), C(aj ) = min{C(aj−1)
Q, l}P(aj ).

Since Q > 0 it is easy to see that (aj ) is a monotone nondecreasing sequence and

aj → 2mQ + a

1 − Q 
as j → ∞.

Then P(aj ) → P(
2mQ+a

1−Q ) as j → ∞, which implies that C(aj ) ≥ C > 0 for every j ≥ 1. We 
obtain the desired result by letting j → ∞ in (4.10). �
Proof of Proposition 2.1. For simplicity let � = RN \BR0 , for some R0 > 0. Let u be a smooth 
positive solution. Then dividing (1.4) by u and raising to the power 1 

m
we get

(
(−�)mu

u 
+ (−�)ku

u 

) 1 
m ≥ |x| a

m h(u)
1 
m in �.

By the elementary inequality (x +y)
1 
m ≤ x

1 
m +y

1 
m for positive numbers x, y and m ≥ 1 we infer 

that

(
(−�)mu

u 

) 1 
m +

(
(−�)ku

u 

) 1 
m ≥ |x| a

m h(u)
1 
m in �.

By multiplying the inequality above by φ2 and integrating over � we obtain
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ˆ

� 

(
(−�)mu

u 

) 1 
m

φ2 dx +
ˆ

� 

(
(−�)ku

u 

) 1 
m

φ2 dx ≥
ˆ

� 

|x| a
m h(u)

1 
m φ2 dx, (4.11)

for every φ ∈ C∞
c (�). From Theorem 1.1 we have

ˆ

� 

(
(−�)mu

u 

) 1 
m

φ2 dx ≤
ˆ

� 

|∇φ|2 dx.

Assume that m > k. By Hölder’s inequality and Theorem 1.1, we have

ˆ

� 

(
(−�)ku

u 

) 1 
m

φ2 dx =
ˆ

� 

(
(−�)ku

u 
φ2

) 1 
m

φ2− 2 
m dx

≤
(ˆ

� 

(
(−�)ku

u 

) 1 
k

φ2 dx

) k
m
(ˆ

� 

φ
2(m−1)
m−k dx

)m−k
m 

≤
(ˆ

� 

|∇φ|2 dx

) k
m
(ˆ

� 

φ
2(m−1)
m−k dx

)m−k
m 

.

By using the estimate above in (4.11) we arrive at

ˆ

� 

|x| a
m h(u)

1 
m φ2 dx ≤

ˆ

� 

|∇φ|2 dx +
(ˆ

� 

|∇φ|2 dx

) k
m
(ˆ

φ
2(m−1)
m−k dx

)m−k
m 

, (4.12)

for every φ ∈ C∞
c (�).

Let R > 4R0 and let φR be a smooth function in � such that 0 ≤ φR ≤ 1, x ∈ �, φR = 0 when 
R0 < |x| < R

4 and |x| > 2R, φR = 1 in R2 < |x| < R and |∇φR| ≤ c
R

in �. We apply (4.12) with 
the test function φR and obtain

CR
a
m

ˆ

BR\B R
2 

h(u)
1 
m dx ≤

ˆ

BR\B R
2 

|x| a
m h(u)

1 
m φ2

R dx

≤ C
(
RN−2 + R

k
m

(N−2)+ m−k
m N

)
,

for R > 4R0. This implies that

ˆ

BR\B R
2 

h(u)
1 
m dx ≤ CRN− 2k+a

m ,

for every R > 4R0, where C is a constant independent of u,g and R. This proves (i).
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A. Aghajani, J. Kinnunen and V.D. Rădulescu Journal of Differential Equations 424 (2025) 183–207 
To prove (ii) we use the fact that since u is polysuperharmonic we have u(x) ≥ c|x|2m−N for 
|x| > R0 (see for example [13]) and the assumption that h is a nondecreasing function to get

ˆ

BR\B R
2 

h(c|x|2m−N)
1 
m dx ≤ CRN− 2k+a

m ,

and

RNh(cR2m−N)
1 
m ≤ CRN− 2k+a

m ,

for any large R. Taking cR2m−N = r implies that

g(r) 

r
N−2(m−k)+a

N−2m 
≤ C,

for any small r > 0. Thus there does not exist a solution if

lim sup
r→0 

g(r) 

r
N−2(m−k)+a

N−2m 
= ∞.

If g(u) = up , p ≥ 1, then we have

lim sup
r→0 

rp− N−2(m−k)+a
N−2m = ∞,

which is the case if

1 ≤ p <
N + a − 2(m − k)

N − 2m 
.

When m = k we can easily show that the nonexistence result holds also for the case p = N+a
N−2m

. 
Indeed in this case from the equation of u and that we have u(x) ≥ c|x|2m−N we obtain

−(�)mu ≥ C|x|au N+a
N−2m ≥ C|x|−N,

then by Proposition 4.2

u(x) ≥ C|x|2m−N ln |x|.

Also from (4.16) (here we have h(u) = up−1)

ˆ

BR\B R
2 

u
p−1
m dx ≤ CRN− 2m+a

m ,

implies that for large R
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(
R2m−N lnR

) p−1
m RN ≤ CRN− 2m+a

m ,

or equivalently lnR ≤ C for large R. This is a contradiction.
Then we assume (2.2) holds. This implies that

g(r) ≤ Crσ , r < r0 (4.13)

for some constants C, r0 > 0. We show that for a suitable A > 0 the function

u(x) = A|x|−t , t = 2k + a

σ − 1 
> 0

solves (1.4) in RN \ BR0 for R0 large. We notice that

(−�)iu(x) = ACi |x|−2i−t , i = 1, ...,m,

where

Ci =
i∏

j=1

(t + 2(j − 1))(N − 2j − t)

and note that by the assumption σ > σa = N−2(m−k)+a
N−2m we have t < N −2j for every j = 1, ...,m

thus Ci > 0, means that (−�)iu(x) > 0, i = 1, ...,m. Substituting u(x) = A|x|−t in (1.4) we see 
that we need

ACm|x|−2m−t + ACk|x|−2k−t ≥ |x|ag(A|x|−t ), |x| > R0, (4.14)

which holds if

ACk ≥ |x|a+2k+t g(A|x|−t ), |x| > R0.

Note that by (4.13) we have

g(A|x|−t ) ≤ C(A|x|−t )σ , A|x|−t < r0.

So it suffices to have

A1−σ CK ≥ C|x|a+2k−t (σ−1) = C, |x| >
(A 

r0

) 1
t = R0.

Thus for suitable A > 0 we see that u(x) = A|x|−t solves (1.4) for |x| > R0. �
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A. Aghajani, J. Kinnunen and V.D. Rădulescu Journal of Differential Equations 424 (2025) 183–207 
Proof of Proposition 2.2. Let (u, v) be a solution of system (1.7) satisfying (1.6). Then

⎧⎪⎨
⎪⎩

(
(−�)mu

u 

) 1 
m ≥ |x| a

m u
S−1
m v

R
m in �,(

(−�)kv
v

) 1 
k ≥ |x| b

k u
Q
k v

T −1
k in �.

(4.15)

Adding the above inequalities and using Young’s inequality, for any 0 < λ < 1, we have

(
(−�)mu

u 

) 1 
m +

(
(−�)kv

v

) 1 
k ≥ |x| a

m u
S−1
m v

R
m + |x| b

k u
Q
k v

T −1
k

≥ Cλ

(|x| a
m u

S−1
m v

R
m
)λ(|x| b

k u
Q
k v

T −1
k

)1−λ

= Cλ|x|λ( a
m

− b
k
)+ b

k u
Q
k

−λ(
Q
k

+ 1−S
m )vλ( 1−T

k
+ R

m
)− 1−T

k

in �. By letting

λ =
Q
k

Q
k

− S−1
m 

= mQ 
mQ + k(1 − S)

we arrive at

(
(−�)mu

u 

) 1 
m +

(
(−�)ku

v

) 1 
k ≥ C|x| aQ+b(1−S) 

mQ+k(1−S) v
QR−(1−T )(1−S)

mQ+k(1−S) in �.

Multiply the inequality by φ2, φ ∈ C∞
c (�), integrate over � and apply the Hardy-type inequality 

in Theorem 1.1 to obtain

C

ˆ

� 

|x| aQ+b(1−S) 
mQ+k(1−S) v

QR−(1−T )(1−S)
mQ+k(1−S) φ2 dx ≤

ˆ

� 

(
(−�)mu

u 

) 1 
m

φ2 dx +
ˆ

� 

(
(−�)ku

v

) 1 
k

φ2 dx

≤ 2
ˆ

� 

|∇φ|2 dx.

We apply the same test function φR as in the proof of Proposition 2.1 to get

CR
aQ+b(1−S) 
mQ+k(1−S)

ˆ

BR\B R
2 

v
QR−(1−T )(1−S)

mQ+k(1−S) dx ≤ RN−2,

or equivalently

ˆ

BR\B R

v
QR−(1−T )(1−S)

mQ+k(1−S) dx ≤ CR
N−2− aQ+b(1−S) 

mQ+k(1−S) . (4.16)
2 

200 
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By letting

λ =
T −1

k
T −1

k
− R

m

= m(1 − T ) 
m(1 − T ) + kR

we arrive at

(
(−�)mu

u 

) 1 
m +

(
(−�)ku

v

) 1 
k ≥ C|x| a(1−T )+bR

m(1−T )+kR u
QR−(1−T )(1−S)

m(1−T )+kR in �.

We multiply the inequality above by the test function φR, integrate over � and as above we 
obtain

R
a(1−T )+bR
m(1−T )+kR

ˆ

BR\B R
2 

u
QR−(1−T )(1−S)

m(1−T )+kR dx ≤ RN−2,

or equivalently

ˆ

BR\B R
2 

u
QR−(1−T )(1−S)

m(1−T )+kR dx ≤ CR
N−2− a(1−T )+bR

m(1−T )+kR . (4.17)

Hence, we see that (4.16) and (4.17) prove (i).
In order to get an integral estimate for the negative power of u,v, let

α = QR

1 − T
+ S and β = QR

1 − S
+ T

and note that we have α,β > 1 by the assumption QR > (1 − S)(1 − T ). Then we divide in-
equalities in (1.7) by uα and vβ and raising to the power λ 

m
and 1−λ

k
, 0 < λ < 1, respectively. We 

arrive at

(
(−�)mu

uα

) λ 
m
(

(−�)kv

vβ

) 1−λ
k ≥ |x|λ( a

m
− b

k
)+ b

k u
Q
k

−λ(
Q
k

+ α−S
m ) vλ(

β−T
k

+ R
m

)− β−T
k in �. (4.18)

We first choose λ so that Q
k

− λ
(

Q
k

+ α−S
m 

) = 0, that is,

λ = mQ 
mQ + k(α − S)

= m(1 − T ) 
m(1 − T ) + kR

,

to get

(
(−�)mu

uα

) λ 
m
(

(−�)kv

vβ

) 1−λ
k ≥ |x| aQ+b(α−S) 

mQ+k(α−S)

vθ
,

where
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θ = R(QR − (1 − S)(1 − T ))

(1 − S)(m(1 − T ) + kR) 
.

We multiply the inequality above by φ2
R and integrate over � to get

ˆ

� 

(
(−�)mu

uα

) λ 
m
(

(−�)kv

vβ

) 1−λ
k

φ2
R dx ≥

ˆ

� 

|x| aQ+b(α−S) 
mQ+k(α−S)

vθ
φ2

R dx. (4.19)

Hölder’s inequality implies that

ˆ

� 

(
(−�)mu

uα

) λ 
m
(

(−�)kv

vβ

) 1−λ
k

φ2
R dx

=
ˆ

� 

(
(−�)mu

uα

) λ 
m

φ2λ
R

(
(−�)kv

vβ

) 1−λ
k

φ
2(1−λ)
R dx

≤
(ˆ

� 

(
(−�)mu

uα

) 1 
m

φ2
R dx

)λ(ˆ (
(−�)kv

vβ

) 1 
k

φ2
R dx

)1−λ

.

From our Hardy-type inequality in Theorem 1.1, with f (u) = uα , we obtain

ˆ

� 

(
(−�)mu

uα

) 1 
m

φ2
R dx ≤ α

−1
m 

(ˆ

� 

|∇φR|2 dx

)m−1
m (ˆ

� 

|∇φR|2
uα−1 dx

) 1 
m

≤ CR
(m−1)(N−2)

m R
N−2+(α−1)(N−2m)

m = CRN−2+ (α−1)(N−2m)
m .

Similarly we also obtain

ˆ

� 

(
(−�)kv

vβ

) 1 
k

φ2
R dx ≤ CRN−2+ (β−1)(N−2k)

k .

Therefore, we have

ˆ

� 

(
(−�)mu

uα

) λ 
m
(

(−�)kv

vβ

) 1−λ
k

φ2
R dx

≤ CRλ
(
N−2+ (α−1)(N−2m)

m 
)+(1−λ)

(
R

N−2+ (β−1)(N−2k)
k

)

= CR
N−2+ Q(α−1)(N−2m)+(α−S)(β−1)(N−2k)

mQ+k(α−S) 

= CR
N−2+(QR−(1−S)(1−T ))

( (N−2m)
Q 

1−T
mQ+k(α−S) +

(N−2k)
QR

(1−T )(1−S)
mQ+k(α−S) 

)

= CR
N−2+(QR−(1−S)(1−T ))

N−2m+ R(N−2k)
1−S

m(1−T )+kR .
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Using the above estimates in (4.19) we obtain

R
aQ+b(α−S) 
mQ+k(α−S)

ˆ

B2R\BR

dx

vθ
≤ CR

N−2+(QR−(1−S)(1−T ))
N−2m+ R(N−2k)

1−S
m(1−T )+kR ,

which implies

−
ˆ

B2R\BR

dx

vθ
≤ CRη,

with

η = −2 + (QR − (1 − S)(1 − T ))
(
N − 2m + R(N−2k)

1−S

) − (a(1 − T ) + bR)

m(1 − T ) + kR
.

We can also choose λ in (4.18) so that λ(
β−T

k
+ R

m
) − β−T

k
= 0 or equivalently

λ = m(β − T ) 
m(β − T ) + kR

= mQ 
mQ + k(1 − S)

.

Then

(
(−�)mu

uα

) λ 
m
(

(−�)kv

vβ

) 1−λ
k ≥ |x| a(β−T )+bR

m(β−T )+kR

uζ
,

where

ζ = Q(QR − (1 − S)(1 − T ))

(1 − T )(mQ + k(1 − S)) 
.

We may proceed as above to arrive at

−
ˆ

B2R\BR

dx

uζ
≤ CRκ,

where

κ = −2 + (QR − (1 − S)(1 − T ))
(

Q(N−2m)
1−T

+ N − 2k
) − (aQ + b(1 − S))

mQ + k(1 − S) 
.

Thus completes the proof of (i).
To prove (ii) we first use the fact that v(x) ≥ c|x|2k−N in (4.16) to get

R
N+ QR−(1−T )(1−S)

mQ+k(1−S) (2k−N) ≤ CR
N−2− aQ+b(1−S) 

mQ+k(1−S) ,
203 
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or equivalently, Rξm,k−(N−2k) ≤ C. This is impossible if

ξm,k > N − 2k. (4.20)

We next use the fact that u(x) ≥ c|x|2m−N in (4.17) to obtain

R
N+ QR−(1−T )(1−S)

m(1−T )+kR
(2m−N) ≤ CR

N−2− a(1−T )+bR
m(1−T )+kR ,

which implies that Rγm,k−(N−2m) ≤ C, which is impossible if

γm,k > N − 2m. (4.21)

Hence, there does not exist a positive solution in the case of (4.20) or (4.21). It remains to 
consider the case

max{ξm,k − (N − 2k), γm,k − (N − 2m)} = 0

We only discuss the case ξm,k = N − 2k and γm,k ≤ N − 2m, since the other case is similar. By 
applying the estimate v(x) ≥ C|x|2k−N we get

(−�)mu ≥ |x|auSvR ≥ C|x|a−Rξm,kuS. (4.22)

Note also from the definition of ξm,k, γm,k we have

{
Rξm,k − (1 − S)γm,k = a + 2m,

Qγm,k − (1 − T )ξm,k = b + 2k.
(4.23)

If S = 0 in (4.22), then by Proposition 4.2 (i) we have

u(x) ≥ C|x|a−Rξm,k+2m = C|x|−γm,k .

If S �= 0 then if γm,k < N − 2m, then

a − Rξm,k + N

N − 2m 
= N − 2m − (1 − S)γm,k

N − 2m 
>

N − 2m − (1 − S)(N − 2m)

N − 2m 
= S.

Hence we may apply part (iii) of Proposition 4.2 to (4.22) and get

u(x) ≥ C|x|
a−Rξm,k+2m

1−S = C|x|−γm,k .

Also, if S �= 0 and γm,k = N − 2m we have from (4.22)

(−�)mu ≥ |x|auSvR ≥ C|x|a−Rξm,k−Sγm,k = C|x|−2m−γm,k ,

and again by Proposition 4.2 (i)
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u(x) ≥ C|x|−γm,k .

Next we use the above estimate in the second inequality in (1.7) and obtain

(−�)kv ≥ |x|buQvT ≥ C|x|b−Qγm,k vT .

If T = 0 then from (4.23) b − Qγm,k = −N , hence from Proposition 4.2, part (ii),

v(x) ≥ C|x|2k−N ln |x| = C|x|−ξ ln |x|
and using this in (4.16) gives lnR ≤ C for any R large, a contradiction. If T �= 0 then from the 
second equality in (4.23) we get b − Qγm,k = −N + T ξm,k and then

(−�)kv ≥ C|x|b−Qγm,k vT ≥ C|x|−N

gives a contradiction as before.
To complete the proof of the proposition we show that if

γm,k, ξm,k > 0 with max{γm,k − (N − 2m), ξm,k − (N − 2k)} < 0, (4.24)

then there exists a positive polysuperharmonic solution (u, v) for (1.7). Let

u(x) = A|x|−γm,k and v(x) = B|x|−ξm,k ,

where A,B > 0. We have

(−�)iu(x) = ACi |x|−2i−γm,k , i = 1, ...,m,

and

(−�)iv(x) = BC′
i |x|−2i−ξm,k , i = 1, ..., k,

where

Ci =
i∏

j=1

(γm,k + 2(j − 1))(N − 2j − γm,k), i = 1, ...,m

and

C′
i =

i∏
j=1

(ξm,k + 2(j − 1))(N − 2j − ξm,k), i = 1, ..., k.

By (4.24) we have 0 < γm,k < N − 2m ≤ N − 2j for every j = 1, ...,m, thus Ci > 0, means 
that (−�)iu(x) > 0, i = 1, ...,m. Similarly by 0 < ξm,k < N − 2k we have C′

j > 0 for every 

j = 1, ..., k, hence (−�)iv(x) > 0, i = 1, ..., k. Substituting the above (u, v) in (1.7) we see that 
it will be a solution if
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ACm|x|−2m−γm,k ≥ ASBR|x|a−Sγm,k−Rξm,k ,

BC′
k|x|−2k−ξm,k ≥ AQBT |x|b−Qγm,k−T ξm,k ,

or equivalently, using (4.23), ACm ≥ AQBT and BC′
k ≥ AQBT , which hold for any A,B > 0

such that AQ−1BT ≤ Cm and AQBT1 ≤ C′
k . �
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[34] P. Pucci, V.D. Rădulescu, Remarks on a polyharmonic eigenvalue problem, C. R. Math. Acad. Sci. Paris 348 (2010) 

161–164.
[35] M. Ruzhansky, D. Suragan, Hardy Inequalities on Homogeneous Groups, Progr. Math., vol. 327, 

Birkhäuser/Springer, 2019.
[36] J. Serrin, H. Zou, Non-existence of positive solutions of Lane-Emden systems, Differ. Integral Equ. 9 (1996) 

635–653.
[37] P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math. 221 (2009) 1409–1427.
[38] J. Vétois, Decay estimates and symmetry of finite energy solutions to elliptic systems in RN , Indiana Univ. Math. 

J. 68 (2019) 663–696.
[39] J. Wei, X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann. 313 (1999) 

207–228.
207 

http://refhub.elsevier.com/S0022-0396(24)00871-4/bib496A0CFF4C6B4C4B7A7DC80B63953918s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib496A0CFF4C6B4C4B7A7DC80B63953918s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bibB9937C4FD18A62349A72FEC46AFD7585s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib2E79157EB3B90CF296BF0D659BDB67EFs1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib2E79157EB3B90CF296BF0D659BDB67EFs1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bibFC48315EEB86BD0D6FBCFB1740D5F4B6s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bibFC48315EEB86BD0D6FBCFB1740D5F4B6s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib64F3BD1741AB8D6BA545A1AE09BB8728s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib64F3BD1741AB8D6BA545A1AE09BB8728s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bibF214A7D42E0DE5875D55189E01E2E187s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bibF214A7D42E0DE5875D55189E01E2E187s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bibAFDAAD028F3B7AD542BA5ED3D4D92FC5s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bibAFDAAD028F3B7AD542BA5ED3D4D92FC5s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib4BD2241A3A809D3CC2BB28E951CC183As1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib4BD2241A3A809D3CC2BB28E951CC183As1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib0517F563F5086AB7345B3CBF30DF7DE9s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib0517F563F5086AB7345B3CBF30DF7DE9s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib36B73508D151B2FC641E0C0265D3D360s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib36B73508D151B2FC641E0C0265D3D360s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib0B0F4C526B12F81586C34A8CB763A4F1s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib0B0F4C526B12F81586C34A8CB763A4F1s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib6605B6F8D848554F7810D06641D5769Ds1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib91CACBEA9FDF25FAE2FC20D53C3FA6C7s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib91CACBEA9FDF25FAE2FC20D53C3FA6C7s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib3FE3857FE1848A54281DF9B41CD3C74Bs1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib3FE3857FE1848A54281DF9B41CD3C74Bs1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bibC90A918B859BD1E56CF99AF6246B128Es1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bibC90A918B859BD1E56CF99AF6246B128Es1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bibB2594232A2215692D6F7B312F7DC0F2Bs1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bibB2594232A2215692D6F7B312F7DC0F2Bs1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib44C29EDB103A2872F519AD0C9A0FDAAAs1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib44C29EDB103A2872F519AD0C9A0FDAAAs1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib93A8188593413369D1C2060A42D70A17s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib93A8188593413369D1C2060A42D70A17s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib8CEE5050EEB7C783E8BFAA73003CED3As1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib8CEE5050EEB7C783E8BFAA73003CED3As1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib0CE94028E03ED4607A056DD3F9FA6A50s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib0CE94028E03ED4607A056DD3F9FA6A50s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bibF03B419A0315F167ED523E2F60CE44EAs1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib5206560A306A2E085A437FD258EB57CEs1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bib5206560A306A2E085A437FD258EB57CEs1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bibD244953CCA638489363CF2E17669FAF0s1
http://refhub.elsevier.com/S0022-0396(24)00871-4/bibD244953CCA638489363CF2E17669FAF0s1

	Nonexistence results and integral estimates for some higher order nonlinear elliptic problems
	1 Introduction
	2 Liouville-type results
	3 Hardy-type inequalities
	4 Proofs of Liouville-type results
	Acknowledgments
	Data availability
	References


