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r é s u m é

Dans cet article on considère un problème de Neumann non linéaire décrit par 
l’opérateur p-Laplacien. Le terme de réaction admet les effets concurrents d’un terme 
singulier et d’un terme de convection. En utilisant une approche topologique basée 
sur le principe alternatif de Leray-Schauder ainsi que des techniques de troncature 
et de comparaison appropriées, nous montrons que le problème admet des solutions 
régulières positives.
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1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper, we study the following 
nonlinear Neumann problem with singular and convection terms

⎧⎨
⎩

−Δpu(z) + ξ(z)u(z)p−1 = u(z)−γ + f(z, u(z), Du(z)) in Ω,
∂u

∂n
= 0 on ∂Ω, u > 0, 1 < p < ∞, 0 < γ < 1.

⎫⎬
⎭ (1)

In this problem, Δp denotes the p-Laplacian differential operator defined by

Δpu = div (|Du|p−2Du) for all u ∈ W 1,p(Ω), 1 < p < ∞.

In the reaction (the right-hand side) of the problem, we have the competing effects of the singular term 
u−γ and the convection term f(z, x, y) (that is, the perturbation f depends also on the gradient Du). The 
function f(z, x, y) is Carathéodory (that is, for all (x, y) ∈ R ×RN the mapping z �→ f(z, x, y) is measurable, 
and for almost all z ∈ Ω the mapping (x, y) �→ f(z, x, y) is continuous).

An important feature of this paper is that we do not impose any global growth conditions on the function 
f(z, ·, y). Instead, we assume that f(z, ·, y) exhibits a kind of oscillatory behavior near zero. In this way we 
can employ truncation techniques and avoid any growth condition at +∞. In the boundary condition, ∂u∂n
denotes the normal derivative of u, with n(·) being the outward unit normal on ∂Ω.

The presence of the gradient Du in the perturbation f , excludes from consideration a variational approach 
to dealing with (1). Instead, our main tool is topological and is based on the fixed point theory, in particular, 
on the Leray-Schauder principle (see Section 2).

Equations with singular terms and equations with convection terms have been investigated separately, 
primarily in the context of Dirichlet problems. For singular problems, we mention the works of Giacomoni, 
Schindler & Takac [7], Hirano, Saccon & Shioji [1], Papageorgiou & Rădulescu [14], Papageorgiou, Rădulescu 
& Repovš [17,19], Papageorgiou & Smyrlis [20,21], Perera & Zhang [22], and Su, Wu & Long [25]. For prob-
lems with convection, we mention the works of de Figueiredo, Girardi & Matzeu [1], Gasinski & Papageorgiou 
[5], Girardi & Matzeu [8], Huy, Quan & Khanh [11], Papageorgiou, Rădulescu & Repovš [18], and Ruiz [24]. 
Of the aforementioned works, only Gasinski & Papageorgiou [5] and Papageorgiou, Rădulescu & Repovš [18]
go outside the Dirichlet framework and deal with Neumann problems. A treatment of semilinear parametric 
elliptic equations with both singular and convection terms and Dirichlet boundary condition can be found 
in Ghergu & Rădulescu [6, Chapter 9].

2. Mathematical background and hypotheses

As we have already mentioned, our method of proof is topological and is based on the fixed point theory, 
in particular, on the Leray-Schauder alternative principle.

Let V, Y be Banach spaces and g : V → Y a map. We say that g(·) is “compact” if g(·) is continuous 
and maps bounded sets of V into relatively compact subsets of Y .

We now recall the Leray-Schauder alternative principle (see, for example, Gasinski & Papageorgiou [2, 
p. 827] or Granas & Dugundji [9, p. 124]).

Theorem 1. If X is a Banach space and g : X → X is compact, then one of the following two statements is 
true:

(a) g(·) has a fixed point;
(b) the set K(g) = {u ∈ X : u = tg(u), 0 < t < 1} is unbounded.
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In what follows, we denote by 〈·, ·〉 the duality brackets for the pair (W 1,p(Ω)∗, W 1,p(Ω)) and by || · || the 
norm on W 1,p(Ω). Hence

||u|| =
(
||u||pp + ||Du||pp

)1/p for all u ∈ W 1,p(Ω).

In the analysis of problem (1), we will make use of the Banach space C1(Ω). This is an ordered Banach 
space with positive (order) cone

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior which is given by

D+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

In fact, D+ is also the interior of C+ when the latter is furnished with the relative C(Ω)-norm topology.
Let A : W 1,p(Ω) → W 1,p(Ω)∗ be the nonlinear operator defined by

〈A(u), h〉 =
∫
Ω

|Du|p−2(Du,Dh)RN dz for all u, h ∈ W 1,p(Ω).

The next proposition summarizes the main properties of this operator (see Motreanu, Motreanu & Pa-
pageorgiou [13, p. 40]).

Proposition 2. The operator A : W 1,p(Ω) → W 1,p(Ω)∗ is bounded (that is, A maps bounded sets to bounded 
sets), continuous, monotone (hence also maximal monotone) and of type (S)+, that is,

un
w→ u in W 1,p(Ω) and lim sup

n→∞
〈A(un), un − u〉 ≤ 0 ⇒ un → u in W 1,p(Ω).

For the potential function ξ(·), we assume the following:

H(ξ): ξ ∈ L∞(Ω), ξ(z) ≥ 0 for almost all z ∈ Ω, ξ �≡ 0.

The following lemma will be helpful in producing estimates in our proofs.

Lemma 3. If hypothesis H(ξ) holds, then there exists c1 > 0 such that

ϑ(u) = ||Du||pp +
∫
Ω

ξ(z)|u|pdz ≥ c1||u||p for all u ∈ W 1,p(Ω).

Proof. Evidently, ϑ ≥ 0. Suppose that the lemma is not true. Exploiting the p-homogeneity of ϑ(·) we can 
find {un}n≥1 ⊆ W 1,p(Ω) such that

||un|| = 1 and ϑ(un) ≤ 1
n

for all n ∈ N. (2)

We may assume that

un
w→ u in W 1,p(Ω) and un → u in Lp(Ω) as n → ∞. (3)
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Clearly, ϑ(·) is sequentially weakly lower semicontinuous. So, it follows from (2) and (3) that

ϑ(u) = 0, (4)

⇒ u ≡ η ∈ R.

If η = 0, then un → 0 in W 1,p(Ω), which contradicts (2). So η �= 0. Then

0 = |η|p
∫
Ω

ξ(z)dz > 0 (see (3) and hypothesis H(ξ)),

which is a contradiction. This proves the lemma. �
Let x ∈ R and x± = max{±x, 0}. Then for all u ∈ W 1,p(Ω), we set u±(·) = u(·)±. We have

u± ∈ W 1,p(Ω), u = u+ − u−, |u| = u+ + u−.

We denote by | · |N the Lebesgue measure on RN . Given u, v ∈ W 1,p(Ω) with u ≤ v, define

[u, v] = {y ∈ W 1,p(Ω) : u(z) ≤ y(z) ≤ v(z) for almost all z ∈ Ω}.

Also, we denote by intC1(Ω)[u, v] the interior of [u, v] ∩ C1(Ω) in the C1(Ω)-norm topology.
Finally, if 1 < p < ∞, we denote by p′ > 1 the conjugate exponent of p > 1, that is, 1

p + 1
p′ = 1.

Now we can introduce our hypotheses on f(z, x, y):

H(f): f : Ω ×R ×RN → R is a Carathéodory function such that f(z, 0, y) = 0 for almost all z ∈ Ω and 
all y ∈ RN , and the following properties hold:

(i) there exists a function w ∈ W 1,p(Ω) ∩ C(Ω) such that Δpw ∈ Lp′(Ω) and

0 < ĉ ≤ w(z) for all z ∈ Ω,−Δpw(z) + ξ(z)w(z)p−1 ≥ 0 for almost all z ∈ Ω,

w(z)−γ + f(z, w(z), y) ≤ −c∗ < 0 for almost all z ∈ Ω and all y ∈ RN ,

and if ρ = ||w||∞, there exists âρ ∈ L∞(Ω) such that

|f(z, x, y)| ≤ âρ(z)[1 + |y|p−1]

for almost all z ∈ Ω, all 0 ≤ x ≤ ρ, and all y ∈ RN ;
(ii) there exists δ0 > 0 such that f(z, x, y) ≥ c̃δ > 0 for almost all z ∈ Ω and all 0 < δ ≤ x ≤ δ0, y ∈ RN ;
(iii) there exists ξ̂ρ > 0 such that for almost all z ∈ Ω and all y ∈ RN the mapping

x �→ f(z, x, y) + ξ̂ρx
p−1

is nondecreasing on [0, ρ], and for almost all z ∈ Ω, all 0 ≤ x ≤ ρ, y ∈ RN , and t ∈ (0, 1), we have

f(z, 1
t
x, y) ≤ 1

tp−1 f(z, x, y). (5)

Remark 4. Our aim is to produce positive solutions and all the above hypotheses concern the positive 
semi-axis R+ = [0,+∞). So, for simplicity, we may assume that
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f(z, x, y) = 0 for almost all z ∈ Ω and all x ≤ 0, all y ∈ RN . (6)

Hypothesis H(f)(i) is satisfied if, for example, there exists η ∈ (0, +∞) such that η−γ + f(z, η, y) ≤
−c∗ < 0 for almost all z ∈ Ω and all y ∈ RN . Hypotheses H(f)(i), (ii) together determine the oscillatory 
behavior of f(z, ·, y) near 0+. Hypothesis H(f)(iii) is satisfied if we set f(z, x, y) = 0 for almost all z ∈ Ω
and all x ≥ w(z), y ∈ RN and require that the function x �→ f(z,x,y)

xp−1 is nonincreasing on (0, w(z)] for almost 
all z ∈ Ω and all y ∈ RN .

Example 5. The following function satisfies hypotheses H(f). For the sake of simplicity we drop the z-
dependence and require ξ(z) ≥ c∗0 > 0 for almost all z ∈ Ω:

f(z, y) = (zp−1 − czτ−1)(1 + |y|p−1)

for all 0 ≤ x ≤ 1, y ∈ RN , with 1 < p < τ < ∞, and c < 2
1

τ−1 .

Finally, we mention that 0 < γ < 1. When the differential operator is singular (that is, 1 < p < 2), we 
require that γ ≤ (p − 1)2, which is equivalent to saying that 1 + γ

p−1 ≤ p.

3. A singular problem

In this section we deal with the following purely singular Neumann problem:
⎧⎨
⎩

−Δpu(z) + ξ(z)u(z)p−1 = u(z)−γ in Ω,
∂u

∂n
= 0 on ∂Ω, u > 0.

⎫⎬
⎭ (7)

Recall that ϑ : W 1,p(Ω) → R is the C1-functional defined by

ϑ(u) = ||Du||pp +
∫
Ω

ξ(z)|u|pdz for all u ∈ W 1,p(Ω).

Proposition 6. If hypotheses H(ξ) hold, then problem (7) has a unique positive solution ū ∈ D+.

Proof. Let ε > 0 and consider the C1-functional ψε : W 1,p(Ω) → R defined by

ψε(u) = 1
p
ϑ(u) − 1

1 − γ

∫
Ω

[(u+)p + ε]
1−γ
p dz for all u ∈ W 1,p(Ω).

Using Lemma 3, we obtain

ψε(u) ≥ c1
p
||u||p − 1

1 − γ

∫
Ω

(u+)1−γdz − c2 for some c2 > 0

⇒ ψε(·) is coercive.

Using the Sobolev embedding theorem, we can easily see that the functional ψε(·) is sequentially weakly 
lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find uε ∈ W 1,p(Ω) such that

ψε(uε) = inf
{
ψε(u) : u ∈ W 1,p(Ω)

}
. (8)
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Let s ∈ (0, 1). Then

ψε(s) <
(
sp

p
||ξ||∞ − s1−γ

1 − γ

)
|Ω|N (see hypothesis H(ξ))

<

(
sp

p
||ξ||∞ + 1

1 − γ
(ε

1−γ
p − s1−γ)

)
|Ω|N . (9)

If s > 2ε1/p, then

sp

p
||ξ||∞ + 1

1 − γ
(ε

1−γ
p − s1−γ)

<
sp

p
||ξ||p −

s1−γ

1 − γ

(
1 − 1

21−γ

)
= τ(s). (10)

Recall that s ∈ (0, 1) and note that 0 < 1 − γ < 1 < p. So, we can find small enough ŝ ∈ (0, 1) such that

τ(ŝ) < 0. (11)

Then (9), (10), (11) imply that for small enough ε ∈
(
0,
(
ŝ
2
)p), we have

ψε(ŝ) < ψε(0) = − 1
1 − γ

ε
1−γ
p |Ω|N ,

⇒ ψε(uε) < ψε(0) (see (8)),

⇒ uε �= 0.

From (8) we have

ψ′
ε(uε) = 0,

⇒ 〈A(uε), h〉 +
∫
Ω

ξ(z)|uε|p−2uεhdz =
∫
Ω

(u+)p−1[(u+)p + ε]
1−(γ+p)

p hdz (12)

for all h ∈ W 1,p(Ω).
In (12) we choose h = −u−

ε ∈ W 1,p(Ω). We obtain

ϑ(u−
ε ) = 0,

⇒ c1||u−
ε ||p ≤ 0 (see Lemma 3),

⇒ uε ≥ 0, uε �= 0.

From (12), we have
⎧⎨
⎩

−Δpuε(z) + ξ(z)uε(z)p−1 = uε(z)p−1[uε(z)p + ε]
1−(γ+p)

p for almost all z ∈ Ω,
∂uε

∂n
= 0 on ∂Ω

⎫⎬
⎭ (13)

(see Papageorgiou & Rădulescu [15]).
By (13) and Proposition 7 of Papageorgiou & Rădulescu [16], we have

uε ∈ L∞(Ω).
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Then, invoking Theorem 2 of Lieberman [12], we obtain

uε ∈ C+\{0}.

From (13) and hypothesis H(ξ), we have

Δpuε(z) ≤ ||ξ||∞uε(z)p−1 for almost all z ∈ Ω,

⇒ uε ∈ D+ by the nonlinear maximum principle

(see Gasinski & Papageorgiou [2, p. 738] and Pucci & Serrin [23, p. 120]).
So, for small enough ε > 0, say ε ∈ (0, ε0), we obtain a solution uε ∈ D+ for problem (13).

Claim 7. {uε}ε∈(0,ε0) ⊆ W 1,p(Ω) is bounded.

We argue by contradiction. So, suppose that the claim is not true. Then we can find {εn}n≥1 ⊆ (0, ε0)
and corresponding solutions {un = uεn}n≥1 ⊆ D+ of (13) such that

||un|| → ∞ as n → ∞. (14)

Let yn = un

||un|| , n ∈ N. Then

||yn|| = 1 and yn ≥ 0 for all n ∈ N. (15)

From (12), we obtain

〈A(yn), h〉 +
∫
Ω

ξ(z)yp−1
n hdz =

∫
Ω

yp−1
n [up

n + εn]
1−(γ+p)

p hdz (16)

for all h ∈ W 1,p(Ω), n ∈ N.

In (16) we choose h = yn ∈ W 1,p(Ω). Then

ϑ(yn) =
∫
Ω

ypn

[up
n + εn]

p+γ−1
p

dz for all n ∈ N. (17)

From the first part of the proof, we know that these solutions un can be generated by applying the direct 
method of the calculus of variations to the functionals ψεn(·) and we get

ψεn(un) < 0 for all n ∈ N,

⇒ ϑ(un) − p

1 − γ

∫
Ω

[up
n + εn]

1−γ
p dz < 0 for all n ∈ N. (18)

It follows from (17) and (18) that

∫
Ω

ypn

[up
n + εn]

p+γ−1
p

dz <
p

1 − γ

∫
Ω

[up
n + εn]

1−γ
p

||un||p
dz

≤ p

1 − γ

∫
u1−γ
n + ε

1−γ
p

n

||un||p
dz → 0 as n → ∞ (see (14)). (19)
Ω
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Then by (17) and Lemma 3, we have

c1||yn||p ≤
∫
Ω

ypn

[up
n + εn]

p+γ−1
p

dz,

⇒ yn → 0 in W 1,p(Ω) as n → ∞ (see (19)),

which contradicts (15). This proves the claim.
Consider a sequence {εn}n≥1 ⊆ (0, ε0) such that εn → 0+. As before, let {un = uεn}n≥1 ⊆ D+ be the 

corresponding solutions. On account of the claim, we may assume that

un
w→ ū in W 1,p(Ω) and un → ū in Lp(Ω) as n → ∞, ū ≥ 0. (20)

We know that

〈A(un), h〉 +
∫
Ω

ξ(z)up−1
n hdz =

∫
Ω

up−1
n

[up
n + εn]

p+γ−1
p

hdz (21)

for all h ∈ W 1,p(Ω), n ∈ N.

Choosing h = un ∈ W 1,p(Ω) in (18), we obtain

−ϑ(un) +
∫
Ω

up
n

[up
n + εn]

p+γ−1
p

dz = 0 for all n ∈ N. (22)

Moreover, from the first part of the proof (see (11)), we have

ϑ(un) − p

1 − γ

∫
Ω

[up
n + εn]

1−γ
p dz ≤ −c2 < 0 for all n ∈ N. (23)

We add (22) and (23) and obtain

0 ≤
∫
Ω

up
n

[up
n + εn]

p+γ−1
p

dz ≤ −c2 + p

1 − γ

∫
Ω

[up
n + εn]

1−γ
p dz

≤ −c2 + p

1 − γ

∫
Ω

[u1−γ
n + ε

1−γ
n

n ]dz for all n ∈ N. (24)

If ū = 0 (see (20)), then
∫
Ω

[u1−γ
n + ε

1−γ
n

n ]dz → 0 as n → ∞.

This together with (24) leads to a contradiction. Therefore

ū �= 0.

On account of (20) and by passing to a further subsequence if necessary, we may assume that

un(z) → ū(z) for almost all z ∈ Ω as n → ∞,

0 ≤ un(z) ≤ k(z) for almost all z ∈ Ω and all n ∈ N, with k ∈ Lp(Ω).

}
(25)
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We can always assume that

max{1, ε0} ≤ k(z) for almost all z ∈ Ω. (26)

For every n ∈ N, we introduce the following measurable subsets of Ω

Ω1
n = {z ∈ Ω : (un − ū)(z) > 0} and Ω2

n = {z ∈ Ω : (un − ū)(z) < 0}, n ∈ N.

Then we have

∫
Ω

up−1
n

[up
n + εn]

p+γ−1
p

(un − ū)dz

=
∫
Ω1

n

up−1
n

[up
n + εn]

p+γ−1
p

(un − ū)dz +
∫
Ω2

n

up−1
n

[up
n + εn]

p+γ−1
p

(un − ū)dz

≤
∫
Ω1

n

un − ū

uγ
n

dz +
∫
Ω2

n

1
2kγ

(un

k

)p−1
(un − ū)dz for all n ∈ N (see (25), (26)). (27)

From (25) we know that

0 ≤ ū(z) ≤ k(z) for almost all z ∈ Ω, (28)

−un(z)−γ ≤ −k(z)−γ for almost all z ∈ Ω and all n ∈ N. (29)

It follows from (28), (29) that

−ū(z)un(z)−γ ≤ −k(z)1−γ for almost all z ∈ Ω and all n ∈ N. (30)

Then for all n ∈ N we have
∫
Ω1

n

un − ū

uγ
n

dz =
∫
Ω1

n

[u1−γ
n − ūu−γ

n ]dz

for all n ∈ N (see (25), (30)),

⇒ lim sup
n→∞

∫
Ω1

n

un − ū

uγ
n

dz ≤ 0. (31)

Also, from (25) and (20), we infer that

∫
Ω2

n

1
2kγ

(un

k

)p−1
(un − ū)dz → 0 as n → ∞. (32)

We return to (27), pass to the limit as n → ∞, and use (31) and (32). We obtain

lim sup
n→∞

∫
up−1
n

[up
n + εn]

p+γ−1
p

(un − ū)dz ≤ 0. (33)

Ω
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In (21) we choose h = un − ū ∈ W 1,p(Ω). Then

〈A(un), un − ū〉 +
∫
Ω

ξ(z)up−1
n (un − ū)dz =

∫
Ω

up−1
n

[up
n + εn]

p+γ−1
p

(un − ū)dz

for all n ∈ N,

⇒ lim sup
n→∞

〈A(un), un − ū〉 ≤ 0 (see (20), (33)),

⇒ un → ū in W 1,p(Ω) (see Proposition 2), ū ≥ 0, ū �= 0. (34)

Using in (12) as a test function

h = up−1
n

(up
n + εn)

p+γ−1
p

p′
p

∈ W 1,p(Ω)

(recall that un ∈ D+) and our hypothesis on γ, we can infer that
{

up−1
n

(up
n + εn)

p+γ−1
p

}
n≥1

⊆ Lp′
(Ω) is bounded.

Also, we have

up
n

(up−1
n + εn)

p+γ−1
p

→ ū−γ for almost all z ∈ Ω (see (25)).

Then Problem 1.19 in Gasinski & Papageorgiou [4, p. 38] implies that

up−1
n

(up
n + εn)

p+γ−1
p

w→ ū−γ in Lp′
(Ω),

⇒
∫
Ω

up−1
n

[up
n + εn]

p+γ−1
p

hdz →
∫
Ω

ū−γhdz for all h ∈ W 1,p(Ω). (35)

Passing to the limit as n → ∞ in (21) and using (34) and (35), we obtain

〈A(ū), h〉 +
∫
Ω

ξ(z)ūp−1hdz =
∫
Ω

ū−γhdz for all h ∈ W 1,p(Ω) (36)

In (36) we first choose h = 1

[ūp+δ]
p−1
p

∈ W 1,p(Ω), δ > 0. Then

∫
Ω

ξ(z) ūp−1

[ūp + δ]
p−1
p

dz ≥
∫
Ω

ū−γ

[ūp + δ]
p−1
p

dz,

∫
Ω

ū−γ

[ūp + δ]
p−1
p

dz ≤ ||ξ||∞|Ω|N (see hypothesis H(ξ)).

We let δ → 0+ and use Fatou’s lemma. Then∫ 1
ūp+γ−1 dz ≤ ||ξ||∞|Ω|N . (37)
Ω
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Next, we choose in (36) h = 1

[ūp+γ]
2(p−1)+γ

p

∈ W 1,p(Ω). Reasoning as above, via Fatou’s lemma as δ → 0+, 

we obtain
∫
Ω

ū−γ

ū2(p−1)+γ
dz =

∫
Ω

1
ū2(p+γ−1) dz ≤

∫
Ω

ξ(z) ūp−1

ū2(p−1)+γ
dz

=
∫
Ω

ξ(z) 1
ūp+γ−1 dz

≤ ||ξ||2∞|Ω|N (see (37)).

Continuing in this way, we obtain

∫
Ω

1
ūk(p+γ−1) dz ≤ ||ξ||k∞|Ω|N for all k ∈ N. (38)

Therefore we can infer that

ū−(p+γ−1) ∈ Lτ (Ω) for all τ ≥ 1,

lim sup
τ→+∞

||ū−(p+γ−1)||τ < +∞.

Then Problem 3.104 in Gasinski & Papageorgiou [3, p. 477] implies that

ū−(p+γ−1) ∈ L∞(Ω).

Note that

ū−γ = ū−(p+γ−1)ūp−1.

Therefore from (36) and Proposition 7 of Papageorgiou & Rădulescu [16], we have

ū ∈ L∞(Ω).

Invoking Theorem 2 of Lieberman [12], we have

ū ∈ C+\{0}.

It follows by (36) that

−Δpū(z) + ξ(z)ū(z)p−1 = ū(z)−γ for almost all z ∈ Ω,
∂ū

∂n
= 0 on ∂Ω (39)

(see Papageorgiou & Rădulescu [15]),

⇒ Δpū(z) ≤ ||ξ||∞ū(z)p−1 for almost all z ∈ Ω,

⇒ ū ∈ D+ (by the nonlinear maximum principle (see ([2, p. 738] and [23, p. 120]))).

Finally, we show that the positive solution is unique. Suppose that ū0 ∈ W 1,p(Ω) is another positive 
solution of (7). Again we have ū0 ∈ D+. Also



12 N.S. Papageorgiou et al. / J. Math. Pures Appl. 136 (2020) 1–21
0 ≤ 〈A(ū) −A(ū0), ū− u0〉 +
∫
Ω

ξ(z)(ūp−1 − ūp−1
0 )(ū− ū0)dz

=
∫
Ω

(ū−γ − ū−γ
0 )(ū− ū0)dz ≤ 0,

⇒ ū = ū0 (the function x �→ 1
xγ

is strictly decreasing on (0,+∞)).

This proves the uniqueness of the positive solution ū ∈ D+ of (7). �
4. Existence of positive solutions

Let ū ∈ D+ be the unique positive solution of (7) produced by Proposition 6. We choose t ∈ (0, 1) small 
enough such that

ũ = tū ≤ min{ĉ, δ0} on Ω (see hypotheses H(f)(i), (ii)). (40)

Then given ṽ ∈ W 1,p(Ω), we have

−Δpũ(z) + ξ(z)ũ(z)p−1 = tp−1[−Δpū(z) + ξ(z)ū(z)p−1]

= tp−1ū(z)−γ (see (39))

≤ ũ(z)−γ + f(z, ũ(z), Dv(z)) for almost all z ∈ Ω (41)

(see (40) and hypothesis H(f)(ii)).
Given v ∈ C1(Ω), we consider the following nonlinear auxiliary Neumann problem:

{
−Δpu(z) + ξ(z)u(z)p−1 = u(z)−γ + f(z, u(z), Dv(z)) in Ω,
∂u
∂n = 0 on ∂Ω, u > 0.

}
(42)

Proposition 8. If hypotheses H(ξ), H(f) hold, then for every v ∈ C1(Ω) problem (42) has a solution uv ∈
[ũ, w] ∩ C1(Ω), with w( · ) being the function from hypothesis H(f)(i).

Proof. We introduce the following truncation of the reaction in problem (1):

f̂v(z, x) =

⎧⎪⎨
⎪⎩

ũ(z)−γ + f(z, ũ(z), Dv(z)) if x < ũ(z)
x−γ + f(z, x,Dv(z)) if ũ(z) ≤ x ≤ w(z)
w(z)−γ + f(z, w(z), Dv(z)) if w(z) < x.

(43)

Evidently, f̂v(·, ·) is a Carathéodory function. We set F̂v(z, x) =
∫ x

0 f̂v(z, s)ds and consider the C1-
functional ϕ̂v : W 1,p(Ω) → R defined by

ϕ̂v(u) = 1
p
ϑ(u) −

∫
Ω

F̂v(z, u(z))dz for all u ∈ W 1,p(Ω).

It is clear from (43) that ϕ̂v(·) is coercive. Also, it is sequentially weakly lower semicontinuous. So, by 
the Weierstrass-Tonelli theorem, we can find uv ∈ W 1,p(Ω) such that
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ϕ̂v(uv) = inf{ϕ̂v(u) : u ∈ W 1,p(Ω)},
⇒ ϕ̂′

v(uv) = 0,

⇒ 〈A(uv), h〉 +
∫
Ω

ξ(z)|uv|p−2uvhdz =
∫
Ω

f̂v(z, uv)hdz for all h ∈ W 1,p(Ω). (44)

In (44) we first choose h = (ũ− uv)+ ∈ W 1,p(Ω). We have

〈
A(uv), (ũ− uv)+

〉
+
∫
Ω

ξ(z)|uv|p−2uv(ũ− uv)+dz

=
∫
Ω

[ũ−γ + f(z, ũ,Dv)](ũ− uv)+dz (see (43))

≥
〈
A(ũ), (ũ− uv)+

〉
+

∫
Ω

ξ(z)ũp−1(ũ− uv)+dz (see (41)),

⇒ 0 ≥
〈
A(ũ) −A(uv), (ũ− uv)+

〉
+

∫
Ω

ξ(z)(ũp−1 − |uv|p−2uv)(ũ− uv)+dz,

⇒ ũ ≤ uv. (45)

Next, we choose in (44) h = (uv − w)+ ∈ W 1,p(Ω). Then

〈
A(uv), (uv − w)+

〉
+
∫
Ω

ξ(z)up−1
v (uv − w)+dz (see (45))

=
∫
Ω

[w−γ + f(z, w,Dv)](uv − w)+dz (see (43))

≤
〈
A(w), (uv − w)+

〉
+
∫
Ω

ξ(z)wp−1(uv − w)+dz (see hypothesis H(f)(i)),

⇒
〈
A(uv) −A(w), (uv − w)+

〉
+

∫
Ω

ξ(z)(up−1
v − wp−1)(uv − w)+dz ≤ 0,

⇒ uv ≤ w. (46)

It follows from (45) and (46) that

uv ∈ [ũ, w]. (47)

On account of (47), (43) and (44), we have

−Δpuv(z) + ξ(z)uv(z)p−1 = uv(z)−γ + f(z, uv(z), Dv(z)) for almost all z ∈ Ω,

∂uv

∂n
= 0 on ∂Ω (48)

(see Papageorgiou & Rădulescu [15]).

From (48) and Papageorgiou & Rădulescu [16, Proposition 7], we have

uv ∈ L∞(Ω).
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Then Theorem 2 of Lieberman [12] implies that uv ∈ D+. Therefore

uv ∈ [ũ, w] ∩ C1(Ω).

The proof is now complete. �
We introduce the solution set

Sv = {u ∈ W 1,p(Ω) : u is a solution of (42), u ∈ [ũ, w]}.

By Proposition 8, we have

∅ �= Sv ⊆ [ũ, v] ∩ C1(Ω).

In fact, we have the following stronger result for the elements of Sv.

Proposition 9. If hypotheses H(ξ), H(f) hold and u ∈ Sv, then u ∈ intC1(Ω)[ũ, w].

Proof. Let ρ̃ = min
Ω

ũ > 0 (recall that ũ ∈ D+). So, we can increase ξ̂ρ > 0 postulated by hypothesis 

H(f)(iii) in order to guarantee that for almost all z ∈ Ω, the function

x �→ x−γ + f(z, x,Dv(z)) + ξ̂px
p−1

is nondecreasing on [ρ̃, ρ] ⊆ R+.
Let δ > 0 and set ũδ = ũ + δ ∈ D+. Then

−Δpũ
δ + (ξ(z) + ξ̂ρ)(ũδ)p−1

≤ −Δpũ + (ξ(z) + ξ̂ρ)ũp−1 + λ(δ) with λ(δ) → 0+ as δ → 0+

≤ ũ−γ + f(z, ũ,Dv) + ξ̂ρũ
p−1 for δ > 0 small enough

(since f(z, ũ,Dv) ≥ c̃ρ̃ > 0 for almost all z ∈ Ω, see H(f)(i))

≤ u−γ + f(z, u,Dv) + ξ̂ρu
p−1 (since ũ ≤ u)

= −Δpu + (ξ(z) + ξ̂ρ)up−1 for almost all z ∈ Ω (since u ∈ Sv),

⇒ ũδ ≤ u for small enough δ > 0,

⇒ u− ũ ∈ D+.

Similarly, for δ > 0 let uδ = u + δ ∈ D+. Then

−Δpu
δ + (ξ(z) + ξ̂ρ)(uδ)p−1

≤ −Δpu + (ξ(z) + ξ̂ρ)up−1 + λ̃(λ) with λ̃(δ) → 0+ as δ → 0+

= u−γ + f(z, u,Dv) + ξ̂ρu
p−1 + λ̃(δ) (since u ∈ Sv)

≤ w−γ + f(z, w,Dv) + ξ̂ρu
p−1 + λ̃(δ) (since u ≤ w)

≤ −c∗ + λ̃(δ) + ξ̂ρu
p−1 (see hypothesis H(f)(i))

≤ −Δpw + (ξ(z) + ξ̂p)wp−1 for almost all z ∈ Ω and for small enough δ > 0

(since λ̃(δ) → 0+ as δ → 0+ and due to hypothesis H(f)(i)),
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⇒ uδ ≤ w for small enough δ > 0,

⇒ (w − u)(z) > 0 for all z ∈ Ω.

Therefore we conclude that

u ∈ intC1(Ω)[ũ, w].

This completes the proof. �
We can show that Sv admits a smallest element, that is, there exists ûv ∈ Sv such that ûv ≤ u for all 

u ∈ Sv.

Proposition 10. If hypotheses H(ξ), H(f) hold, then for every v ∈ C1(Ω), the solution set Sv admits a 
smallest element

ûv ∈ Sv.

Proof. Invoking Lemma 3.10 in Hu & Papageorgiou [10, p. 178], we can find a sequence
{un}n≥1 ⊆ Sv such that

essinf Sv = inf
n≥1

un.

For every n ∈ N, we have

〈A(un), h〉 +
∫
Ω

ξ(z)up−1
n hdz =

∫
Ω

[u−γ
n + f(z, un, Dv)]hdz (49)

for all h ∈ W 1,p(Ω), n ∈ N,

ũ ≤ un ≤ w for all n ∈ N. (50)

It follows from (49) and (50) that

{un}n≥1 ⊆ W 1,p(Ω) is bounded.

So, we may assume that

un
w→ ûv in W 1,p(Ω) and un → ûv in Lp(Ω) as n → ∞, ûv ∈ [ũ, w]. (51)

In (49) we choose h = un − ûv ∈ W 1,p(Ω), pass to the limit as n → ∞ and use (51). Then

lim
n→∞

〈A(un), un − ûv〉 = 0 see (50),

⇒ un → ûv in W 1,p(Ω) (see Proposition 2). (52)

Therefore, if in (49) we pass to the limit as n → ∞ and use (52), then

〈A(ûv), h〉 +
∫
Ω

ξ(z)ûp−1
v hdz =

∫
Ω

[û−γ
v + f(z, ûv, Dv)]hdz

for all h ∈ W 1,p(Ω),

⇒ ûv ∈ Sv ⊆ D+ and essinf Sv = ûv.
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The proof of Proposition 10 is now complete. �
We can define a map σ : C1(Ω) → C1(Ω) by

σ(v) = ûv.

This map is well-defined by Proposition 10 and any fixed point of σ(·) is a solution of problem (1). To 
generate a fixed point for σ(·), we will use Theorem 1 (the Leray-Schauder alternative principle). For this 
purpose, the next lemma will be useful.

Lemma 11. If hypotheses H(ξ), H(f) hold, {vn}n≥1 ⊆ C1(Ω), vn → v in C1(Ω), and u ∈ Sv, then for every 
n ∈ N there exists un ∈ Svn such that un → u in C1(Ω).

Proof. We consider the following nonlinear Neumann problem
⎧⎨
⎩

−Δpy(z) + ξ(z)|y(z)|p−2y(z) = u(z)−γ + f(z, u(z), Dvn(z)) in Ω,
∂y

∂n
= 0 on ∂Ω.

⎫⎬
⎭ (53)

Since u ∈ Sv ⊆ D+, we have
⎧⎪⎨
⎪⎩

kn(z) = u(z)−γ + f(z, u(z), Dvn(z)) ≥ 0 for almost all z ∈ Ω and all n ∈ N,

{kn}n≥1 ⊆ L∞(Ω) is bounded, kn �= 0 for all n ∈ N

(see hypotheses H(f)(i), (ii)).

⎫⎪⎬
⎪⎭ (54)

In problem (53), the left-hand side determines a maximal monotone coercive operator (see Lemma 3), 
which is strictly monotone. Therefore, on account of (54), problem (53) admits a unique solution y0

n ∈
W 1,p(Ω), y0

n �= 0. We have for all n ∈ N

〈
A(y0

n), h
〉

+
∫
Ω

ξ(z)|y0
n|p−2y0

nhdz =
∫
Ω

kn(z)hdz for all h ∈ W 1,p(Ω). (55)

In (55) we choose h = −(y0
n)− ∈ W 1,p(Ω). Then

ϑ((y0
n)−) ≤ 0 (see (54)),

⇒ c1||(y0
n)−||p ≤ 0 (see Lemma 3),

⇒ y0
n ≥ 0, y0

n �= 0 for all n ∈ N.

Also, it is clear from (54) and (55) that

{y0
n}n≥1 ⊆ W 1,p(Ω) is bounded.

Invoking Proposition 7 of Papageorgiou & Rădulescu [16], we have

y0
n ∈ L∞(Ω) and ||y0

n||∞ ≤ c5 for some c5 > 0 and all n ∈ N. (56)

Then (53) and Theorem 2 of Lieberman [12] imply that there exist α ∈ (0, 1) and c6 > 0 such that

y0
n ∈ C1,α(Ω) and ||y0

n||C1,α(Ω) ≤ c6 for all n ∈ N. (57)
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Recall that C1,α(Ω) is compactly embedded in C1(Ω). So, from (57) we see that we can find a subsequence 
{y0

nk
}k≥1 of {y0

n}n≥1 such that

y0
nk

→ y0 in C1(Ω) as k → ∞, y0 ≥ 0. (58)

Note that

kn → k in Lp′
(Ω) with k(z) = u(z)−γ + f(z, u(z), Dv(z)). (59)

Using (55) (for the y0
nk

’s) and (58), (59), we obtain

〈
A(y0), h

〉
+

∫
Ω

ξ(z)(y0)p−1hdz =
∫
Ω

k(z)hdz for all h ∈ W 1,p(Ω),

⇒ −Δpy
0(z) + ξ(z)y0(z)p−1 = u(z)−γ + f(z, u(z), Dv(z)) for almost all z ∈ Ω, (60)

∂y0

∂n
= 0 on ∂Ω.

Problem (60) admits a unique solution. Since u ∈ Sv, u solves (60) and so y0 = u. Therefore for the 
initial sequence we have

y0
n → u in C1(Ω) as n → ∞. (61)

Next, we consider the following nonlinear Neumann problem

⎧⎨
⎩

−Δpy(z) + ξ(z)|y(z)|p−2y(z) = y0
n(z)−γ + f(z, y0

n(z), Dvn(z)) in Ω,
∂y

∂n
= 0 on ∂Ω.

⎫⎬
⎭

Evidently, this problem has a unique solution y1
n ∈ D+ and

y1
n → u in C1(Ω) as n → ∞ (see (61)).

Continuing in this way, we produce a sequence {ykn}k,n∈N such that

⎧⎪⎪⎨
⎪⎪⎩

−Δpy
k
n(z) + ξ(z)ykn(z)p−1 = yk−1

n (z)−γ + f(z, yk−1
n (z), Dvn(z))

for almost all z ∈ Ω,

∂uk
n

∂n
= 0 on ∂Ω, k, n ∈ N

⎫⎪⎪⎬
⎪⎪⎭ (62)

and ykn → u in C1(Ω) as n → ∞ for all k ∈ N. (63)

From (59), (60) and Theorem 2 of Lieberman [12], we can deduce as before that

{ykn}k∈N ⊆ C1(Ω) is relatively compact.

So, we can find a subsequence {ykm
n }m∈N of {ykn}k∈N (n ∈ N is fixed) such that

ykm
n → ŷn in C1(Ω), n ∈ N.
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From (62) in the limit we obtain

⎧⎨
⎩

−Δpŷn(z) + ξ(z)ŷn(z)p−1 = ŷn(z)−γ + f(z, ŷn(z), Dvn(z)) for almost all z ∈ Ω,
∂ŷn
∂n

= 0 on ∂Ω.

⎫⎬
⎭ (64)

Then, using Theorem 2 of Lieberman [12] as before, (63) and the double limit lemma (see Gasinski & 
Papageorgiou [3, Problem 1.175, p. 61]) we obtain

ŷn → u in C1(Ω) as n → ∞,

and ŷn ∈ Svn for n ≥ n0 (see Proposition 9).

The proof is now complete. �
Using this lemma we can show that the minimal solution map σ(·) is compact.

Proposition 12. If hypotheses H(ξ), H(f) hold, then the minimal solution map σ : C1(Ω) → C1(Ω) defined 
by σ(v) = ûv is compact.

Proof. We first show that σ(·) is continuous. To this end, let vn → v in C1(Ω) and ûn = ûvn = σ(vn), 
n ∈ N. We have

〈A(ûn), h〉 +
∫
Ω

ξ(z)ûp−1
n hdz =

∫
Ω

[û−γ
n + f(z, ûn, Dvn)]hdz (65)

for all h ∈ W 1,p(Ω), n ∈ N.

Choosing h = ûn ∈ W 1,p(Ω), we obtain

||Dûn||pp +
∫
Ω

ξ(z)ûp
pdz ≤

∫
Ω

c7[ũ−γ + 1]dz for some c7 > 0 and all n ∈ N

(since ũ ≤ ûn ≤ w for all n ∈ N and due to hypothesis H(f)(ii)),

⇒ c1||ûn||p ≤ c8 for some c8 > 0 and all n ∈ N (see Lemma 3),

⇒ {ûn}n∈N ⊆ W 1,p(Ω) is bounded.

Invoking Proposition 7 of Papageorgiou & Rădulescu [16], we have

||ûn||∞ ≤ c9 for some c9 > 0 and all n ∈ N.

Then Theorem 2 of Lieberman [12] implies that we can find β ∈ (0, 1) and c10 > 0 such that

ûn ∈ C1,β(Ω) and ||ûn||C1,β(Ω) ≤ c10 for all n ∈ N. (66)

The compact embedding of C1,β(Ω) into C1(Ω) and (66) imply that at least for a subsequence, we have

ûn → û in C1(Ω) as n → ∞. (67)

Passing to the limit as n → ∞ in (65), we can infer that û ∈ Sv.
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We know that σ(v) ∈ Sv and so by Lemma 11, we can find un ∈ Svn (for all n ∈ N) such that

un → σ(v) in C1(Ω) as n → +∞. (68)

We have

ûn ≤ un for all n ∈ N,

⇒ û ≤ σ(v),

⇒ σ(v) = û (since û ∈ Sv).

So, for the original sequence {ûn = σ(vn)}n∈N ⊆ C1(Ω), we have

σ(vn) = ûn → û = σ(v) in C1(Ω),

⇒ σ(·) is continuous.

Next, let B ⊆ C1(Ω) be bounded. As before, we obtain

σ(B) ⊆ W 1,p(Ω) is bounded,

⇒ σ(B) ⊆ L∞(Ω) is bounded (see [16]).

Then by Lieberman [12] we conclude that

σ(B) ⊆ C1(Ω) is compact.

This proves that the minimal solution map σ(·) is compact. �
Now using Theorem 1 (the Leray-Schauder alternative principle), we will produce a positive smooth 

solution for problem (1).

Theorem 13. If hypotheses H(ξ), H(f) hold, then problem (1) admits a positive solution u∗ ∈ D+.

Proof. We consider the minimal solution map σ : C1(Ω) → C1(Ω). From Proposition 12 we know that σ(·)
is compact. Let

K = {u ∈ C1(Ω) : u = tσ(u), 0 < t < 1}.

We claim that K ⊆ C1(Ω) is bounded. So, let u ∈ K. We have

1
t
u = σ(u) with 0 < t < 1.

Then

〈A(u), h〉 +
∫
Ω

ξ(z)up−1hdz = tp−1
∫
Ω

[
tγ

uγ
+ f(z, 1

t
u,Du)

]
hdz (69)

for all h ∈ W 1,p(Ω).

From (15) (see hypothesis H(f)(iii)), we have

f(z, 1
u(z), Du(z)) ≤ 1

f(z, u(z), Du(z)) for almost all z ∈ Ω. (70)

t tp−1
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Using (70) in (69) and recalling that ũ ≤ u, 0 < t < 1, we obtain

〈A(u), h〉 +
∫
Ω

ξ(z)up−1hdz ≤
∫
Ω

[
1
ũγ

+ â0(z)
]
hdz (71)

for all h ∈ W 1,p(Ω) and some â0 ∈ L∞(Ω) (see hypothesis H(f)(i)).
In (71) we choose h = u ∈ W 1,p(Ω). Then

ϑ(u) ≤ c11 for some c11 > 0 (recall ũ ∈ D+),

c1||u||p ≤ c11 for all u ∈ K (see Lemma 3),

⇒ K ⊆ W 1,p(Ω) is bounded.

Next, as before, the nonlinear regularity theory implies that

K ⊆ C1(Ω) is bounded (in fact, relatively compact).

So, we can apply Theorem 1 (the Leray-Schauder principle) and produce u∗ ∈ C1(Ω) such that u∗ =
σ(u∗). Therefore u∗ ∈ D+ is a positive smooth solution of problem (1). �
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