
Journal of Global Optimization15: 41–54, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.

41

Existence Theorems of Hartman–Stampacchia Type
for Hemivariational Inequalities and Applications

PANAGIOTIS D. PANAGIOTOPOULOS1, MICHEL FUNDO2 and VICENŢIU
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1. Introduction and the main results

The well-known theorem of Hartman-Stampacchia (see [3], Lemma 3.1, or [5],
Theorem I.3.1) asserts that ifV is a finite dimensional Banach space,K ⊂ V is
compact and convex,A : K → V ? is continuous, then there existsu ∈ K such
that, for everyv ∈ K,

〈Au, v − u〉 ≥ 0 . (1)

If we weaken the hypotheses and consider the case whereK is a closed and convex
subset of the finite dimensional spaceV , Hartman and Stampacchia proved (see
[5], Theorem I.4.2) that a necessary and sufficient condition which ensures the
existence of a solution to Problem (1) is that there is someR > 0 such that a
solutionu of (1) with ‖u‖ ≤ R satisfies‖u‖ < R.

The purpose of this paper is to extend these classical results in the framework of
hemivariational inequalities. These inequalities appear as a generalization of vari-
ational inequalities, but they are much more general than these ones, in the sense
that they are not equivalent to minimum problems but give rise to substationarity
problems. The mathematical theory of hemivariational inequalities, as well as their
applications in Mechanics, Engineering or Economics, has been developed by P.D.
Panagiotopoulos (see monographs [6, 8, 9] and the references cited therein for a
treatment of this theory and further comments).
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Let V be a real Banach space and letT : V → Lp(�,Rk) be a linear and
continuous operator, where 1≤ p < ∞, k ≥ 1, and� is a bounded open set
in RN . Throughout this paper,K is a subset ofV, A : K→V ∗ an operator and
j = j (x, y) : � × Rk→R is a Carathéodory function which is locally Lipschitz
with respect to the second variabley ∈ Rk and satisfies the following assumption

(j) there existh1 ∈ L
p
p−1 (�,R) andh2 ∈ L∞(�,R) such that

|z| ≤ h1(x)+ h2(x)|y|p−1 ,

for a.e.x ∈ �, everyy ∈ Rk andz ∈ ∂ j (x, y). Denoting byT u = û, u ∈ V , our
aim is to study the problem

(P) Findu ∈ K such that, for everyv ∈ K,

〈Au, v − u〉 +
∫
�

j0(x, û(x); v̂(x)− û(x)) dx ≥ 0.

We have denoted byj0(x, y;h) the (partial) Clarke derivative of the locally
Lipschitz mappingj (x, ·) at the pointy ∈ Rk with respect to the directionh ∈ Rk,
wherex ∈ �, and by∂ j (x, y) the Clarke generalized gradient of this mapping at
y ∈ Rk, that is

j0(x, y;h) = lim sup
y ′→y
t↓0

j (x, y′ + th)− j (x, y′)
t

;

∂ j (x, y) = {z ∈ Rk : 〈z, h〉 ≤ j0(x, y;h), for all h ∈ Rk}
The euclidean norm inRk, k ≥ 1, and the duality pairing between a Banach space
and its dual will be denoted by| · |, resp.〈 · , · 〉. We also denote by‖ · ‖p the norm
in the spaceLp(�,Rk) defined by

‖û‖p =
(∫

�

| û(x) |p dx

) 1
p

, 1≤ p <∞ .

In order to state our existence results for the problem (P), we need the following
definitions.

DEFINITION 1. The operatorA : K→V ∗ is w∗-demicontinuous if for any se-
quence{un} ⊂ K converging tou, the sequence{Aun} converges toAu for the
w∗-topology inV ∗.

DEFINITION 2. The operatorA : K→V ∗ is continuous on finite dimensional
subspaces ofK if for any finite dimensional spaceF ⊂ V , which intersectsK, the
operatorA|K∩F is demicontinuous, that is{Aun} converges weakly toAu in V ∗ for
each sequence{un} ⊂ K ∩ F which converges? to u.
? By ‘converges’ we always mean ‘strongly (or norm) converges’.
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REMARK 1. In reflexive Banach spaces the following hold: (a) thew∗-demi-
continuity and demicontinuity are the same; (b) a demicontinuous operator
A : K→V ∗ is continuous on finite dimensional subspaces ofK.

The following result is a generalized form of the Hartman–Stampacchia theo-
rem for the case of hemivariational inequalities in infinite dimensional real Banach
spaces; namely it generalizes Theorem 6 in [13] and Theorem 2.1 in [14] for the
framework of such inequalities.

THEOREM 1. LetK be a compact and convex subset of the infinite dimensional
Banach spaceV and letj satisfy the condition (j). If the operatorA : K→V ∗ is
w∗-demicontinuous, then the problem (P) admits a solution.

In finite dimensional Banach spaces the above theorem has the following equiv-
alent form.

COROLLARY 1. Let V be a finite dimensional Banach space and letK be a
compact and convex subset ofV . If the assumption (j) is fulfilled and ifA : K→V ∗
is a continuous operator, then the problem (P) has at least a solution.

In Section 2 the proof of Theorem 1 will be based on Corollary 1; for this reason
Corollary 1 will be proved before this theorem.

REMARK 2. The condition ofw∗-demicontinuity on the operatorA : K→V ∗ in
Theorem 1 may be replaced equivalently by the assumption:

(A1) the mappingK 3 u→〈Au, v〉 is weakly upper semi-continuous, for each
v ∈ V.
REMARK 3. If A isw∗-demicontinuous,{un} ⊂ K andun→ u, then

lim
n→∞〈Aun, un〉 = 〈Au, u〉.

Weaking more the hypotheses onK by assuming thatK is a closed, bounded and
convex subset of the Banach spaceV , we need some more about the operatorsA

andT (see Theorem 2). We first recall that an operatorA : K→V ∗ is said to be
monotone if, for everyu, v ∈ K,

〈Au− Av, u− v〉 ≥ 0.

Thus we can formulate the following result, which is the corresponding variant for
hemivariational inequalities of Theorem 1.1 in [3].

THEOREM 2. Let V be a reflexive infinite dimensional Banach space and let
T : V → Lp(�,Rk) be a linear and compact operator. AssumeK is a closed,
bounded and convex subset ofV andA : K→V ∗ is monotone and continuous on
finite dimensional subspaces ofK. If j satisfies the condition(j) then the problem
(P) has at least one solution.
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We also give a generalization of Theorem III.1.7. in [5] by

THEOREM 3. Assume that the same hypotheses as in Theorem 2 hold without the
assumption of boundedness ofK. Then a necessary and sufficient condition for the
hemivariational inequality (P) to have a solution is that there existsR > 0 with
the property that at least one solution of the problem

uR ∈ K ∩ {u ∈ V ; ‖u‖ ≤ R};
〈AuR, v − uR〉 +

∫
�

j0(x, ûR(x); v̂(x)− ûR(x)) dx ≥ 0,

for everyv ∈ K with ‖v‖ ≤ R,
(2)

satisfies the inequality‖uR‖ < R.

A basic tool in our proofs will be the following auxiliary result.

LEMMA 1. (a) If it is satisfied the assumption (j) andV1, V2 are nonempty subsets
of V , then the mappingV1× V2→R defined by:

(u, v)→
∫
�

j0(x, û(x), v̂(x)) dx (3)

is upper semi-continuous.
(b) Moreover, ifT : V → Lp(�,Rk) is a linear compact operator, then the

above mapping is weakly upper semi-continuous.
Proof. (a) Let {(um, vm)}m∈IN ⊂ V1 × V2 be a sequence converging to(u, v) ∈

V1× V2, asm→∞. SinceT : V → Lp(�,Rk) is continuous, it follows that

ûm→ û, v̂m→ v̂ in Lp(�,Rk), as m→∞
There exists a subsequence{(ûn, v̂n)} of the sequence{(ûm, v̂m)} such that

lim sup
m→∞

∫
�

j0(x, ûm(x); v̂m(x)) dx = lim
n→∞

∫
�

j0(x, ûn(x); v̂n(x)) dx.

By Proposition 4.11 in [4], one may suppose the existence of two functionsû0, v̂0 ∈
Lp(�,R+), and of two subsequences of{ûn} and{v̂n} denoted again by the same
symbols and such that:

|ûn(x)| ≤ û0(x), |v̂n(x)| ≤ v̂0(x),

ûn(x)→ û(x), v̂n(x)→ v̂(x), as n→∞
for a.e.x ∈ �. On the other hand, for eachx where holds true the condition (j) and
for eachy, h ∈ Rk, there existsz ∈ ∂ j (x, y) such that

j0(x, y;h) = 〈z, h〉 = max{〈w, h〉 : w ∈ ∂ j (x, y)},

515.tex; 15/07/1999; 12:19; p.4



EXISTENCE THEOREMS OF HARTMAN–STAMPACCHIA TYPE 45

(see [1], Prop 2.1.2). Now, by (j),

|j0(x, y;h)| ≤ |z| |h| ≤ (h1(x)+ h2(x)|y|p−1) · |h| .
Consequently, denotingF(x) = (h1(x)+ h2(x)|û0(x)|p−1)|v̂0(x)|, we find that

|j0(x, ûn(x); v̂n(x))| ≤ F(x),
for all n ∈ IN and for a.e.x ∈ �.

From Holder’s Inequality and from the condition (j) for the functionsh1 andh2

it follows thatF ∈ L1(�,R). Fatou’s Lemma yields

lim
n→∞

∫
�

j0(x, ûn(x); v̂n(x)) dx ≤
∫
�

lim sup
n→∞

j0(x, ûn(x); v̂n(x)) dx.

Next, by the upper-semicontinuity of the mappingj0(x, .; .) (see [1], Prop. 2.1.1)
we get that

lim sup
n→∞

j0(x, ûn(x); v̂n(x)) ≤ j0(x, û(x); v̂(x)) ,

for a.e.x ∈ �, because

ûn(x)→ û(x) and v̂n(x)→ v̂(x), asn→∞
for a.e.x ∈ �. Hence

lim sup
m→∞

∫
�

j0(x, ûm(x); v̂m(x)) dx ≤
∫
�

j0(x, û(x); v̂(x)) dx,

which proves the upper-semicontinuity of the mapping defined by (3).
(b) Let {(um, vm)}m∈IN ⊂ V1 × V2 be now a sequence weakly-converging to

{u, v} ∈ V1 × V2, asm→∞. Thusum ⇀ u, vm ⇀ v weakly asm→∞. Since
T : V → Lp(�,Rk) is a linear compact operator, it follows that

ûm→ û, v̂m→ v̂ in Lp(�,Rk).

From now on the proof follows the same proof as in the case (a). 2

2. Proof of the theorems

2.1. PROOF OF COROLLARY1

Arguing by contradiction, for everyu ∈ K, there is somev = vu ∈ K such that

〈Au, v − u〉 +
∫
�

j0(x, û(x); v̂(x)− û(x)) dx < 0.
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For everyv ∈ K, set

N(v) = {u ∈ K; 〈Au, v − u〉 +
∫
�

j0(x, û(x); v̂(x)− û(x)) dx < 0}.

For any fixedv ∈ K the mappingK → R defined by

u 7−→ 〈Au, v − u〉 +
∫
�

j0(x, û(x); v̂(x)− û(x)) dx

is upper semi-continuous, by Lemma 1 and the continuity ofA. Thus, by the de-
finition of the upper semi-continuity,N(v) is an open set. Our initial assumption
implies that{N(v); v ∈ K} is a covering ofK. Hence, by the compactness ofK,
there existv1, . . . , vn ∈ K such that

K ⊂
n⋃
j=1

N(vj ).

Let ρj (u) be the distance fromu toK \ N(vj ). Thenρj is a Lipschitz map which
vanishes outsideN(vj ) and the functionals

ψj(u) = ρj (u)∑n
i=1 ρi(u)

define a partition of the unity subordinated to the covering{ρ1, · · · , ρn}. Moreover,
the mapping

p(u) =
n∑
j=1

ψj(u)vj

is continuous and mapsK into itself, because of the convexity ofK. Thus, by
Brouwer’s fixed point Theorem, there existsu0 in the convex closed hull of
{v1, . . . , vn} such thatp(u0) = u0. Define

q(u) = 〈Au,p(u)− u〉 +
∫
�

j0(x, û(x);p(û)(x)− û(x)) dx.

The convexity of the mapj0(û; ·) (see [1], Lemma 1) and the fact that
∑n

j=1ψj(u) =
1 imply

q(u) ≤
n∑
j=1

ψj(u) 〈Au, vj − u〉 +
n∑
j=1

ψj(u)

∫
�

j0(x, û(x); v̂j (x)− û(x)) dx.

For arbitraryu ∈ K, there are only two possibilities: ifu 6∈ N(vi), thenψi(u) = 0.
On the other hand, for all 1≤ j ≤ n (there exists at least such an indice) such that
u ∈ N(vj ), we haveψj(u) > 0. Thus, by the definition ofN(vj ),

q(u) < 0, for everyu ∈ K.
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But q(u0) = 0, which gives a contradiction. 2
2.2. PROOF OF THEOREM1

For this proof we need Lemma 2 below. LetF be an arbitrary finite dimensional
subspace ofV which intersectsK. Let iK∩F be the canonical injection ofK ∩ F
intoK andi∗F be the adjoint of the canonical injectioniF of F into V . Then:

LEMMA 2. The operator

B : K ∩ F→F ∗, B = i∗FAiK∩F
is continuous.

REMARK 4. The above lemma also holds true if the operatorA is continuous on
finite dimensional subspaces ofK.

Proof.For anyv ∈ K, set

S(v) =
{
u ∈ K; 〈Au, v − u〉 +

∫
�

j0(x, û(x); v̂(x)− û(x)) dx ≥ 0

}
.

Step 1.S(v) is a closed set.
We first observe thatS(v) 6= ∅, sincev ∈ S(v). Let {un} ⊂ S(v) be an arbitrary

sequence which converges tou asn→∞. We have to prove thatu ∈ S(v). By the
part (a) of Lemma 1 we have

0≤ lim sup
n→∞

[〈Aun, v − un〉 +
∫
�

j0(x, ûn(x); v̂(x)− ûn(x))] dx

= lim
n→∞〈Aun, v − un〉 + lim sup

n→∞

∫
�

j0(x, ûn(x); v̂(x)− ûn(x)) dx

≤ 〈Au, v − u〉 +
∫
�

j0(x, û(x); v̂(x)− û(x)) dx.

This is equivalent tou ∈ S(v).
Step 2. The family{S(v); v ∈ K} has the finite intersection property.
Let {v1, . . . , vn} be an arbitrary finite subset ofK and letF be the linear space

spanned by this family. Applying Corollary 1 to the operatorB defined in Lemma
2, we findu ∈ K ∩ F such thatu ∈ ∩nj=1S(vj ), which means that the family
of closed sets{S(v); v ∈ K} has the finite intersection property. But the setK is
compact. Hence⋂

v∈K
S(v) 6= ∅,

which means that the problem (P) has at least one solution. 2
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2.3. PROOF OF THEOREM2

Let F be an arbitrary finite dimensional subspace ofV , which intersectsK. Con-
sider the canonical injectionsiK∩F : K ∩ F→K and iF : F→V and leti∗F :
V ∗→F ∗ be the adjoint ofiF . Applying Corollary 1 to the continuous operator
B = i?FAiK∩F (see Remark 4) we find someuF in the compact setK ∩ F such
that, for everyv ∈ K ∩ F ,

〈i?FAiK∩FuF , v − uF 〉 +
∫
�

j0(x, ûF (x); v̂(x)− ûF (x)) dx ≥ 0. (4)

But

0≤ 〈Av − AuF , v − uF 〉 = 〈Av, v − uF 〉 − 〈AuF , v − uF 〉. (5)

Hence, by (4), (5) and the observation that〈i?FAiK∩FuF , v − uF 〉 =〈AuF , v − uF 〉, we have

〈Av, v − uF 〉 +
∫
�

j0(x, ûF (x); v̂(x)− ûF (x)) dx ≥ 0, (6)

for anyv ∈ K ∩ F . The setK is weakly closed as a closed convex set; thus it is
weakly compact because it is bounded andV is a reflexive Banach-space.

Now, for everyv ∈ K define

M(v) =
{
u ∈ K; 〈Av, v − u〉 +

∫
�

j0(x, û(x); v̂(x)− û(x)) dx ≥ 0

}
.

The setM(v) is weakly closed by the part (b) of Lemma 1 and by the fact that this
set is weakly sequentially dense (see, e.g., [2], pp. 145-149 or [10], p. 3). We now
show that the setM = ∩v∈K M(v) ⊂ K is non-empty. To prove this, it suffices to
prove that

n⋂
j=1

M(vj) 6= ∅, (7)

for anyv1, . . . , vn ∈ K. Let F be the finite dimensional linear space spanned by
{v1, . . . , vn}. Hence, by (6), there existsuF ∈ F such that, for everyv ∈ K ∩ F ,

〈Av, v − uF 〉 +
∫
�

j0(x, ûF (x); v̂(x)− ûF (x)) dx ≥ 0.

This means thatuF ∈ M(vj ), for every 1≤ j ≤ n, which implies (7). Conse-
quently, it follows thatM 6= ∅. Therefore there is someu ∈ K such that, for every
v ∈ K,

〈Av, v − u〉 +
∫
�

j0(x, û(x); v̂(x)− û(x)) dx ≥ 0. (8)
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We shall prove that from (8) we can conclude thatu is a solution of Problem (P).
Fix w ∈ K andλ ∈ (0,1). Puttingv = (1− λ)u+ λw ∈ K in (8) we find

〈A((1− λ)u+ λw), λ(w − u)〉 +
∫
�

j0(x, û(x);λ(ŵ − û)(x)) dx ≥ 0. (9)

But j0(x, û;λv̂) = λ j0(x, û; v̂), for anyλ > 0. Therefore (9) may be written,
equivalently,

〈A((1− λ)u+ λw),w − u〉 +
∫
�

j0(x, û(x); (ŵ − û)(x)) dx ≥ 0. (10)

Let F be the vector space spanned byu andw. Taking into account the demi-
continuity of the operatorA|K∩F and passing to the limit in (10) asλ−→ 0, we
obtain thatu is a solution of Problem (P). 2
REMARK 5. As the setK ∩ {u ∈ V ; ‖u‖ ≤ R} is a closed bounded and convex
set inV , it follows from Theorem 2 that the problem (2) in the formulation of our
Theorem 3 has at least one solution for any fixedR > 0.

2.4. PROOF OF THEOREM3

The necessity is evident.
Let us now suppose that there exists a solutionuR of (2) with ‖uR‖ < R. We

prove thatuR is solution of (P). For any fixedv ∈ K, we chooseε > 0 small
enough so thatw = uR + ε(v − uR) satisfies‖w‖ < R. Hence, by (2),

〈AuR, ε(v − uR)〉 +
∫
�

j0(x, ûR(x); ε(v̂ − ûR)(x)) dx ≥ 0

and, using again the positive homogeneity of the mapv 7−→ j0(u; v), the conclu-
sion follows. 2
3. Applications

3.1. NONCOERCIVE HEMIVARIATIONAL INEQUALITIES

We consider noncoercive forms of the coercive and semicoercive hemivariational
problems treated in [6] (pp. 65-77). The results are more general from the point
of view of the absence of the coercivity or the semicoercivity assumption, but less
general from the point of view of the boundedness of the setK. For this purpose,
let us assume thatV is a real Hilbert space and that the continuous injections

V ⊂ [L2(�,Rk)]N ⊂ V ?

hold, whereV ? denotes the dual space ofV . Moreover letT : V → L2(�,Rk),
T (u) = û, û(x) ∈ Rk be a linear and continuous mapping. Consider the operator
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A appearing in our abstract framework asAu = A1u + f , wheref ∈ V ? is a
prescribed element, whileA1 satisfies, respectively, the assumptions of Theorems
1, 2 or 3. Then the theorem 1 holds for the problem

(P1) Findu ∈ K such that, for everyv ∈ K,

〈Au, v − u〉 +
∫
�

j0(x, û(x); v̂(x)− û(x)) dx ≥ 0.

Moreover, ifT is a linear compact operator, then Theorems 2 and 3 also hold for
the above problem.

Suppose further that0 is the Lipschitz boundary of� and that the linear map-
pingT : V → L2(0,Rk) is continuous. Then the theorem 1 holds for the problem

(P2) Findu ∈ K such that, for everyv ∈ K,

〈Au, v − u〉 +
∫
0

j0(x, û(x); v̂(x)− û(x)) dx ≥ 0.

Furthermore, ifT is compact, then Theorems 2 and 3 remain valid for (P2).

3.2. NONMONOTONE LAWS IN NETWORKS WITH CONVEX CONSTRAINTS

We shall give now an application in Economics concerning a network flow prob-
lem. We follow the basic ideas of Prager [7, 11], and for the consideration of the
nonlinearities we combine them with the notion of nonconvex superpotential. We
refer to [6] (p. 191) for the derivation of the formulas.

The generally non-monotone nonlinearity is caused by the law relating the two
branch variables of the network, the ‘flow intensity’ and the ‘price differential’
which here can also be vectors. The problem is formulated as a hemivariational in-
equality and the existence of its solution is discussed further. We consider networks
with directed branches. The nodes are denoted by Latin letters and the branches by
Greek letters. We suppose that we havem nodes andν branches. We take as branch
variables the ‘flow intensity’sγ and the ‘price differential’eγ . As node variables the
‘amount of flow’pk and the ‘shadow price’uk are considered. The terminology has
been taken from [11]. Moreover each branch may have an ‘initial price differential’
vectore0

γ . The above given quantities are assembled in vectorse, e0, u, s, p. The
node-branch incidence matrixG is denoted byG, where the lines ofG are linearly
independent. Upper indexT denotes the transpose of a matrix or a vector. The
network law is a relation between the ‘flow intensity’sγ and the ‘price differential’
eγ . We accept thatsγ is a nonmonotone function of theeγ expressed by the relation

eγ − e0
γ ∈ ∂jγ (sγ )+

1

2
∂sTγ Cγ sγ , (11)

wherekγ is a positive definite symmetric matrix and∂ is the generalized gradient.
The graph of thesγ − eγ law is calledγ -characteristic.

515.tex; 15/07/1999; 12:19; p.10



EXISTENCE THEOREMS OF HARTMAN–STAMPACCHIA TYPE 51

The problem to be solved consists in the determination for the whole network
of the vectorss, e, u, for given vectorsp ande0.

Further letC = diag[C1, . . . , Cγ , · · · ] and let the summation
∑

γ be extended
over all branches. Now we consider the graph which corresponds to the network
and a corresponding tree. The tree results from the initial graph by cuting all the
branches creating the closed loops. Let us denote bysT (resp.sM ) the part of the
vectors corresponding to the tree branches (resp. to the cut branches giving rise to
closed loops). Then we may write instead ofGs = p the relation

GT sT +GMsM = p .
HereGT is nonsingular and thus we may write that

s =
[
sT
sM

]
=
[
G−1
T

0

]
p +

[ −G−1
T GM

I

]
sM = s0+ BsM , (12)

whereI denotes the unit matrix. Using (11) and (12) we obtain (cf. [6]) a hemi-
variational inequality with respect tosM which reads: findsM ∈ Rn1 (n1 is the
dimension ofsM) such that∑

γ

j0
γ ((s0 + BsM)γ , (Bs?M − BsM)γ )+ sTMBT CB(s?M − sM)

+ sT0 CB(s?M − sM)+ e0T B(s?M − sM) ≥ 0 ∀s?M ∈ Rn1 . (13)

Let us now assume that the flow intensitiessM are constrained to belong to a
bounded and closed convex subsetK ⊂ Rn1 (box constraints are very common).
Thus the problem takes the form: findsM ∈ K which satisfies (13), for every
s?M ∈ K.

Since the rank ofB is equal to the number of its columns andC is symmetric
and positive definite the same happens forBTCB. In the finite dimensional case
treated here, one can easily verify that Corollary 1 holds, ifjγ (·, ·) satisfies the
condition (j). Thus (13) has at least one solution.

3.3. ON THE NONCONVEX SEMIPERMEABILITY PROBLEM

Let us put ourselves within the framework of [6] (p. 185), where we have studied
nonconvex semipermeability problems. We consider an open, bounded, connected
subset� of R3 referred to a fixed Cartesian coordinate system 0x1x2x3 and we
formulate the equation

−1u = f in � (14)

for stationary problems.
Here u represents the temperature in the case of heat conduction problems,

whereas in problems of hydraulics and electrostatics the pressure and the electric

515.tex; 15/07/1999; 12:19; p.11



52 P.D. PANAGIOTOPOULOS, M. FUNDO AND V. R̆ADULESCU

potential are represented, respectively. We denote further by0 the boundary of
� and we assume that0 is sufficiently smooth (C1,1-boundary is sufficient). If
n = {ni} denotes the outward unit normal to0 then∂u/∂n is the flux of heat, fluid
or electricity through0 for the aforementioned classes of problems.

We may consider the interior and the boundary semipermeability problems.
In the first class of problems the classical boundary conditions

u = 0 on 0 (15)

are assumed to hold, whereas in the second class the boundary conditions are de-
fined as a relation between∂u/∂n andu. In the first class the semipermeability

conditions are obtained by assuming thatf = f̄ + ¯̄f where ¯̄f is given andf̄ is a
known function ofu. Here, we consider (15) for the sake of simplicity. All these
problems may be put in the following general framework. For the first class we
seek a functionu such as to satisfy (14), (15) with

f = f̄ + ¯̄f , −f̄ ∈ ∂j1(x, u) in � . (16)

For the second class we seek a functionu such that (14) is satisfied together with
the boundary condition

−∂u
∂n
∈ ∂j2(x, u) on 01 ⊂ 0 and u = 0 on0 \ 01 . (17)

Both j1(x, ·) andj2(x, ·) are locally Lipschitz functions and∂ denotes the gener-
alized gradient. Note, that ifq = {qi} denotes the heat flux vector andk > 0 is the
coefficient of thermal conductivity of the material we may write by Fourier’s law
thatqini = −k∂u/∂n.

Let us introduce the notations

a(u, v) =
∫
�

∇u · ∇v dx

and

(f, u) =
∫
�

f u dx .

We may ask in addition thatu is constrained to belong to a convex bounded closed
setK ⊂ V due to some technical reasons, e.g., constraints for the temperature or
the pressure of the fluid, etc.

The hemivariational inequalities correspond to the two classes of problems. Let

for the first classV = H 1
0 (�) and ¯̄f ∈ L2(�); for the second classV = {v :

v ∈ H 1(�), v = 0 on 0 \ 01} andf ∈ L2(�). Then from the Green–Gauss
theorem applied to (14), with the definition of (16) and (17) we are led to the
following two hemivariational inequalities for the first and for the second class of
semipermeability problems respectively
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(i) Find u ∈ K such that

a(u, v − u)+
∫
�

j0
1(x, u(x); v(x) − u(x)) dx ≥ ( ¯̄f , v − u) ∀v ∈ K .

(18)

(ii) Find u ∈ K such that

a(u, v − u)+
∫
01

j0
2 (x, u(x); v(x) − u(x)) d0 ≥ (f, v − u) ∀v ∈ K .

(19)

Sincea(·, ·) is (strongly) monotone onV both in (i) and (ii) and the embeddings
V ⊂ L2(�) andV ⊂ L2(01) are compact we can prove the existence of solutions
of (i) and of (ii) by applying Theorem 2 ifj1 andj2 satisfy the condition (j).

3.4. ADHESIVELY SUPPORTED ELASTIC PLATE BETWEEN TWO RIGID

SUPPORTS

Let us consider a Kirchoff plate. The elastic plate is referred to a right-handed
orthogonal Cartesian coordinate systemOx1x2x3. The plate has constant thickness
h1, and the middle surface of the plate coincides with theOx1x2-plane. Let�
be an open, bounded and connected subset ofR2 and suppose that the boundary
0 is Lipschitzian (C0,1-boundary). The domain� is occupied by the plate in its
undeformed state. On�′ ⊂ � (�′ is such that�

′ ∩ 0 = ∅) the plate is bonded
to a support through an adhesive material. We denote byζ(x) the deflection of
the pointx = (x1, x2, x3) and byf = (0,0, f3), f3 = f3(x) (hereafter called
f for simplicity) the distributed load of the considered plate per unit area of the
middle surface. Concerning the laws for adhesive forces and the formulation of
the problems we refer to [9]. Here we make the additional assumption that the
displacements of the plate are prevented by some rigid supports. Thus we may put
as an additional assumption the following one:

z ∈ K, (20)

whereK is a convex closed bounded subset of the displacement space. One could
have, e.g., thata0 ≤ z ≤ b0 etc.

We assume that any type of boundary conditions may hold on0. Here we
assume that the plate boundary is free. Indeed there is no need to guarantee that
the strain energy of the plate is coercive. Thus the whole spaceH 2(�) is the
kinematically admissible set of the plate. If one takes now into account the relation
(20), thenz ∈ K ⊂ H 2(�), whereK is a closed convex bounded subset ofH 2(�)

and the problem has the following form:
Find ζ ∈ K such as to satisfy

a(ζ, z − ζ )+
∫
�′
j0(ζ, z− ζ ) d� ≥ (f, z − ζ ) ∀z ∈ K. (21)
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Herea(·, ·) is the elastic energy of the Kirchoff plate, i.e.

a(ζ, z) = k
∫
�

[(1− ν) ζ,αβ z,αβ + ν 1ζ 1z] d� α, β = 1,2, (22)

wherek = Eh3/12(1 − ν2) is the bending rigidity of the plate withE and ν
the modulus of elasticity and the Poisson ratio respectively, andh is its thickness.
Moreoverj is the binding energy of the adhesive which is a locally Lipschitz func-
tion onH 2(�) andf ∈ L2(�) denotes the external forces. Furthermore, ifj fulfills
the growth condition (j) then, taking into consideration thata(·, ·) appearing in (22)
is continuous monotone, we can deduce, by applying Theorem 2, the existence of
a solution of the problem (21).
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