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Abstract This paper deals with quasi-equilibrium problems in the setting of real
Banach spaces. By a fixed point theory approach, we obtain existence results under
mild conditions of continuity, improving some previous results in this area. By a
selection theory approach, we make use of theMichael selection theorem to overcome
the separability of the Banach spaces and generalize some results obtained recently in
the literature. Finally, we deal with the existence of approximate solutions for quasi-
equilibrium problems, and by arguments combining selection theory and fixed point
theory, we obtain some qualitative results for quasi-equilibrium problems involving
sub-lower semicontinuous set-valued mappings.
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1 Introduction

The so-called equilibrium problem in the sense of Blum, Muu and Oettli or inequality
of Ky Fan-type, as known today, has been considered in [1,2] as an important and
general framework for describing, in a common formulation, various problems arising
in different areas of mathematics, including optimization problems, mathematical
economic problems and Nash equilibrium problems. Historically, this formulation
has been first used as a pure mathematical object in the work by Fan [3] on minimax
inequality problems, which has been followed for a long time by several studies on
equilibrium problems considered under different headings, for instance, in [4,5]. It is
worth mentioning that one of the interests of this common formulation, called simply
the equilibrium problem, is that many techniques developed for a particular case may
be extended, with suitable adaptations, to the equilibrium problem, and then they can
be applied to other particular cases.

Although the equilibrium problem subsumes several kinds of problems, there are
many models described by variational inequalities involving constraints that depend
on the solution itself. In this direction, there are the quasi-variational inequalities con-
sidered early in the literature in connection with stochastic impulse control problems,
where the constraint set is subject to modifications, see, for instance, [4,6] and the
references therein. For more recent existence results for quasi-variational inequalities
with applications to Nash equilibria of generalized games, we also refer, for instance,
to [7,8].

In the spirit to describe in amore again general frameworkmost of problems arising
in nonlinear analysis, it has been considered and adopted recently in the literature the
notion of quasi-equilibrium problem, which appears as an equilibrium problem in
which the constraint set is subject to modifications. The quasi-equilibrium problem
is a unified formulation which encompasses many relevant problems such as quasi-
variational inequalities, mixed quasi-variational like inequalities and all the special
cases of the equilibrium problem, see [9,10]. See also the seminal paper [4], where
this formulation has been first used as a pure mathematical object. The first existence
results have been established and applied to different optimization problems including
Nash equilibrium problems under constraints and quasi-variational inequalities for
monotone operators.

We would like to precise here that many problems related to the term equilibrium
and arising from different areas of sciences can be mathematically modeled as special
cases of the unified formulation called the equilibrium problem. Also, the equilibrium
problem subsumes many mathematical special cases which are in relation to the term
equilibrium such as Nash equilibrium problems and economic equilibrium problems.
Then, one can naturally guess that this is the reason for which the term equilibrium
problem has been chosen to name this unified formulation. It is now well known that
the last decades have witnessed an exceptional growth in theoretical advances on the
equilibrium problem and its applications in concrete cases. Maybe, the simplicity of
this formulation is the principal reason which has allowed all these advancements.
We point out that the equilibrium problem has never been introduced in order to deal
directly with other problems which are not described by the old existing concepts.
As we will see later, the equilibrium problem is an inequality involving a bifunction,
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which is not necessarily a variational inequality, see, for example, [11] to find various
bifunctions defined for some important models of real-life problems. Also, if we
assume that a problem is directly modeled as an equilibrium problem by using an
inequality involving a bifunction, then nothing can impose that this inequality is a
variational inequality. Unfortunately, this is not the task for which the concept of the
equilibrium problem has been introduced, but to describe various existing concepts in
a common way in order to deeply study them altogether.

Let us point out again that there are some other unified mathematical formulations
encompassing different special cases of the equilibrium problemwhich have been also
considered in the literature. We especially think about the general conditions consid-
ered in [12] as a structure giving rise to what is called there “equilibrium problems of a
certain type.” These general conditions express what is called “the common laws,” and
it is shown that many equilibrium problems arising from different areas of sciences
fulfill the common laws. Similar to the equilibrium problem considered in this paper,
the equilibrium problems of this above type subsumes many problems of nonlinear
analysis as particular cases. This is an important different point of view, which has
also allowed to obtain different results on concrete cases, and especially on the traffic
equilibrium problem.

In this paper, we deal with existence of solutions and approximate solutions of the
quasi-equilibrium problem. After presenting the necessary background, we follow in
Sect. 3 an approach based on fixed point theory to solve the quasi-equilibrium prob-
lem under mild conditions of semicontinuity and hemicontinuity introduced and used
recently in [13–17]. In this approach, we are interested in solving the equilibrium prob-
lemdefined on the images of a given set-valuedmapping. Then,we seek a fixed point to
a related set-valued mapping defined in the sequel and called “the selection set-valued
mapping.” An example of a bifunction and an application to variational inequalities
have been also given in order to highlight our techniques developed in this section. In
Sect. 4, we follow a selection theory approach and make use of the Michael selection
theorem for paracompact Hausdorff topological spaces. We obtain existence results
in the settings of real Banach spaces instead of separable real Banach spaces consid-
ered recently in the literature with the Michael selection theorem version for perfectly
normal spaces, which is more restrictive in our purpose. Section 5 is devoted to the
existence of approximate solutions of the quasi-equilibrium problem. In this section,
we impose connection between the involved set-valued mapping and the bifunction
and make use of the notion of sub-lower semicontinuous set-valued mappings, intro-
duced in relationship with the notion of approximate continuous selection, to carry out
existence of approximate solutions of the quasi-equilibrium problem. This approach
combines arguments and techniques from fixed point theory and selection theory and
has been already considered for lower semicontinuous set-valued mappings, see, for
instance, [7,8,10].

2 Notations and Preliminaries

We first recall the notion of the equilibrium problem we are going to consider in
this paper. Let C be a nonempty subset of a Hausdorff topological space E , and
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Φ : C ×C −→ R be a bifunction, called equilibrium bifunction iff Φ (x, x) = 0, for
every x ∈ C . The equilibrium problem is a problem of the form

find x∗ ∈ C such that Φ
(
x∗, y

) ≥ 0 ∀y ∈ C, (EP)

where the set C is called the constraint set.
Although we will give later an example of a bifunction and an application of our

techniques to the special case of a variational inequality, we recall here the special case
of Nash equilibrium problems. A noncooperative game is described through a number
N of players, and each player i has a strategy set Ki ⊂ R

n , also called the feasible set
of player i , and aims at minimizing a loss function fi : K → R with K = ∏N

i=1 Ki .
For x = (x1, . . . , xn) ∈ K and yi ∈ Ki , let x (yi ) = (x1, . . . , xi−1, yi , xi+1, . . . , xn)
denote the vector obtained from x by replacing xi by yi . A Nash equilibrium is any
x∗ ∈ K such that

fi
(
x∗) ≤ fi

(
x∗ (yi )

) ∀yi ∈ Ki , ∀i = 1, . . . , N .

Literally speaking, at a Nash equilibrium point x∗, no player can reduce its loss by
unilaterally changing its strategy. The problem of finding a Nash equilibrium amounts
to solving the equilibrium problem (EP) corresponding to the so-called Nikaido–Isoda
bifunction Φ defined on K × K by

Φ (x, y) =
N∑

i=1

( fi (x (yi )) − fi (x)) .

Now,we turn to the quasi-equilibrium problem,whichwill be especially considered
and studied here in the paper. A quasi-equilibrium problem is a problem of the form:

find x∗ ∈ A
(
x∗) such that Φ

(
x∗, y

) ≥ 0 ∀y ∈ A
(
x∗) , (QEP)

where A : C ⇒ C is a set-valued mapping on C . In order words, a quasi-equilibrium
problem is an equilibrium problem in which the constraint set is subject to modifica-
tions depending on the considered point.

Before going further on existence of solutions and approximate solutions of the
quasi-equilibrium problem, we give the necessary background on continuity and con-
vexity and develop some preliminary results we need in the sequel.

Let X be a Hausdorff topological space, x ∈ X and f : X −→ R be a function.
Recall that f is said to be lower semicontinuous at x iff for every ε > 0, there exists
an open neighborhood U of x such that

f (y) ≥ f (x) − ε ∀y ∈ U.

The function f is said to be upper semicontinuous at x iff (− f ) is lower semicon-
tinuous at x . If X is a metric space, then f is lower (resp. upper) semicontinuous at
x ∈ X if and only if for every sequence (xn)n in X converging to x , we have
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f (x) ≤ lim inf
n→+∞ f (xn) (resp. f (x) ≥ lim sup

n→+∞
f (xn)),

where lim inf
n→+∞ f (xn) = sup

n
inf
k≥n

f (xk) and lim sup
n→+∞

f (xn) = inf
n
sup
k≥n

f (xk).

Following [14–17], f is said to be lower (resp. upper) semicontinuous on a subset
S of X iff it is lower (resp. upper) semicontinuous at every point of S. Note that for
f : X → R, the property for f of being lower (resp. upper) semicontinuous on a
subset S of X is stronger than the lower (resp. upper) semicontinuity of the restriction
f|S : S → R of f on S.
If X is a real topological Hausdorff vector space, then there is the notion of hemi-

continuity for real-valued functions defined on X , which is, in turn, the semicontinuity
on line segments. A function f : X −→ R is said to be lower hemicontinuous at x iff
for every ε > 0 and every z ∈ X , there exists tz ∈ [0, 1] such that

f (t z + (1 − t) x) ≥ f (x) − ε ∀t ∈ [
0, tz

]
.

The function f is said to be upper hemicontinuous at x iff (− f ) is lower hemicontin-
uous at x . It is said to be hemicontinuous at x iff it is lower and upper hemicontinuous
at x . Following [13], f is said to be lower (resp. upper) hemicontinuous on a subset
S of X iff it is lower (resp. upper) hemicontinuous at every point of S. It is said to be
hemicontinuous on S iff it is lower and upper hemicontinuous on S.

In the sequel, we need the following notions of convexity of real-valued functions
defined on a real topological Hausdorff vector space X . A function f : X −→ R is
said to be

1. Quasi-convex on X iff, for every x1, x2 ∈ X ,

f (λx1 + (1 − λ) x2) ≤ max { f (x1) , f (x2)} ∀λ ∈ [0, 1] ;

2. Semistrictly quasi-convex on X iff, for every x1, x2 ∈ C such that f (x1) 
= f (x2),
we have

f (λx1 + (1 − λ) x2) < max { f (x1) , f (x2)} ∀λ ∈ ]0, 1[ ;

3. Explicitly quasi-convex on X iff it is quasi-convex and semistrictly quasi-convex.

Note that there is not any inclusion relationship between the class of semistrictly
quasi-convex functions and that of quasi-convex functions. However, if f is a lower
semicontinuous and semistrictly quasi-convex function, then f is explicitly quasi-
convex, see, for example, [18,19].

There are several notions related to monotonicity of bifunctions, which play an
important role in the results on existence of solutions of the equilibrium problem.
Recall that a bifunction Φ : X × X −→ R is said to be pseudo-monotone on X iff

Φ (x, y) ≥ 0 �⇒ Φ (y, x) ≤ 0, ∀x, y ∈ X.

Clearly, if Φ is pseudo-monotone on C , then for every x ∈ C , Φ (x, x) = 0 if and
only if Φ (x, x) ≥ 0.
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For two Hausdorff topological spaces X and Y , a set-valued mapping F from X to
Y will be denoted by F : X ⇒ Y . The graph of F is the set

grph (F) := {(x, y) ∈ X × Y : y ∈ F (x)} .

If X = Y , we denote by fix (F) the fixed points set of F . That is,

fix (F) := {x ∈ X : x ∈ F (x)} .

For a subset B of Y , we denote, respectively, by

F−1 (B) := {x ∈ X : F (x) ∩ B 
= ∅} and F+ (B) := {x ∈ X : F (x) ⊂ B} ,

the lower and upper inverse set of B by F . For y ∈ Y , we denote the fiber of F at y
by F−1 (y) instead of F−1 ({y}).

Recall that a set-valued mapping F : X ⇒ Y is said to be lower semicontinuous
at a point x0 ∈ X iff whenever V is an open subset of Y such that F (x0) ∩ V 
= ∅,
F−1 (V ) is a neighborhood of x0. It turns out that F is lower semicontinuous at x ∈ X
if and only if F is continuous at x ∈ X as a function from X to the set of subsets of Y
endowed with the lower Vietoris topology.

By analogy, a set-valued mapping F : X ⇒ Y is said to be upper semicontinuous
at a point x0 ∈ X iff it is continuous at x ∈ X as a function from X to the set of subsets
of Y endowed with the upper Vietoris topology. That is, F is upper semicontinuous at
x ∈ X iff whenever V is an open subset of Y such that F (x0) ⊂ V , the upper inverse
set of V by F is a neighborhood of x0.

The set-valued mapping F is said to be lower (resp. upper) semicontinuous on X
iff it is lower (resp. upper) semicontinuous at every point of X . Clearly, F is lower
(resp. upper) semicontinuous on X if and only if the lower (resp. upper) inverse set of
any open subset V of Y by F is open. Also, if F has open fibers at every point y of
a subset B of Y , then F−1 (B) is open. Thus, a set-valued mapping F : X ⇒ Y with
open fibers (at every point of Y ) is lower semicontinuous on X . The converse is not
true in general.

For a subset S of X , we denote by cl (S) the closure of S with respect to X , except
if it is explicitly specified. If (X, ‖.‖) is a Banach space, ε > 0 and x0 ∈ X , we denote
by B (x0, ε) = {x ∈ X : ‖x − x0‖ < ε} the open ball around x0 with radius ε. For a
subset S of X , we write

B (S, ε) :=
⋃

x∈S
B (x, ε) .

For a set-valued mapping F : X ⇒ Y and B ⊂ Y , the set-valued mapping F ∩ B
is defined by (F ∩ B) (x) = F (x) ∩ B, for every x ∈ X .

Recall that a single-valued mapping f : X → Y is said to be a selection of a
set-valued mapping F : X ⇒ Y iff f (x) ∈ F (x), for every x ∈ X .

In the sequel, we will also make use of the following notations. IfΦ : X×X −→ R

is a bifunction and K is a subset of X , then the restriction ofΦ on K×K will be denoted
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by Φ|K . Also, for a set-valued mapping F : X ⇒ Y , F|K denotes the restriction of F
on K .

3 Existence of Solutions of the Quasi-Equilibrium Problem: A Fixed
Point Theory Approach

In this section,we dealwith the existence of solutions of the quasi-equilibriumproblem
by following a fixed point theory approach. This approach has already been considered
in [4], and it seems to be the more natural technique to handle such a problem.

In [13–17], various results concerning existence of solutions of the equilibrium
problem have been carried out under weakened conditions of semicontinuity and
hemicontinuity. The following result is the real topological Hausdorff vector space
version of the generalizations of the Ky Fan minimax inequality theorem recently
obtained in [14,15,17]. It is based on some techniques such as those used in [17,
Proposition 2.2], which remain valid in the general setting of Hausdorff topological
spaces.

Theorem 3.1 Let C be a nonempty, closed and convex subset of a real topological
Hausdorff vector space E. Let Φ : C × C −→ R be a bifunction and suppose that
the following assumptions hold:

1. Φ (x, x) ≥ 0, for every x ∈ C;
2. Φ is quasi-convex in its second variable on C;
3. there exist a compact subset K of C and y0 ∈ K such that

Φ (x, y0) < 0 ∀x ∈ C \ K ;

4. Φ is upper semicontinuous in its first variable on K .

Then, the equilibrium problem (EP) has a solution.

In the presence of pseudomonotonocity and explicit quasi-convexity, the upper
semicontinuity of the bifunction Φ in its first variable can be weakened to upper
hemicontinuity.

Theorem 3.2 Let C be a nonempty, closed and convex subset of a real topological
Hausdorff vector space E. Let Φ : C × C −→ R be an equilibrium bifunction and
suppose that the following assumptions hold:

1. Φ is pseudo-monotone on C;
2. Φ is explicitly quasi-convex in its second variable on C;
3. there exists a compact subset K of C and y0 ∈ K such that

Φ (x, y0) < 0 ∀x ∈ C \ K ;

4. Φ is upper hemicontinuous in its first variable on K ;
5. Φ is lower semicontinuous in its second variable on K .

Then, the equilibrium problem (EP) has a solution.
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Although the fundamental role of the equilibrium problem is to unify different
abstract and practice problems in a common way in order to study them, we provide
here the following example of an equilibrium bifunction defined on a real Banach
space. This example is constructed to emphasize the importance of Theorem 3.1,
where the involved bifunction is not upper semicontinuous in its first variable on
the whole space. Note that the compact set K used here, and in Theorem 3.1 and
Theorem 3.2, is called in the literature the set of coerciveness.

Example 3.1 Let (E, ‖.‖) be a real Banach space and take K a compact subset of X
such that 0 ∈ K ⊂ B (0, 1). Define Φ : E × E ⇒ R by

Φ (x, y) =
⎧
⎨

⎩

‖y‖2 − ‖x‖2
2

, if ‖x‖ = 2,

‖y‖2 − ‖x‖2, otherwise.

Clearly, all the conditions of Theorem 3.1 are satisfied with y0 = 0. To show that Φ is
not upper semicontinuous in its first variable on the whole space E , let y ∈ E be such
that ‖y‖ > 2. Let (xn)n be a sequence in E converging to x ∈ E such that ‖x‖ = 2
and ‖xn‖ 
= 2, for every n. Clearly,

lim sup
n→+∞

Φ (xn, y) = ‖y‖2 − 4 >
‖y‖2 − 4

2
= Φ (2, y) .

Then, φ is not upper semicontinuous in its variable at any x ∈ E such that ‖x‖ = 2.

Now, we give an application of our techniques on the equilibrium problem devel-
oped above, and especially Theorem 3.2, to the special case of nonlinear variational
inequalities. In this example, the operator L is not necessarily hemicontinuous on the
whole space.

Consider the special case of a nonlinear variational inequality of the form

find x∗ ∈ C such that 〈Lx∗, y − x∗〉 ≥ 0 ∀y ∈ C, (VI)

where C is a nonempty convex subset of a real Banach space (E, ‖.‖), E∗ the dual of
E , L : C → E∗ is an operator and 〈, 〉 denotes the duality pairing between E∗ and E .

Clearly, x∗ ∈ C is a solution of the variational inequality (VI) if and only if x∗ is
a solution of the equilibrium problem (EP) with the bifunction ΦL : C × C → R

defined by

ΦL (x, y) = 〈Lx, y − x〉.

The bifunction ΦL is linear and continue in its second variable on C endowed with
the weak topology. However, the upper semicontinuity of ΦL in its first variable is
too strong in many applications since L can be chosen only hemicontinuous. Clearly,
ΦL is hemicontinuous in its first variable on a subset S contained in C whenever L is
hemicontinuous on S.
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Also, the operator L is said to be pseudo-monotone on C iff whenever x, y ∈ C ,
we have

〈Lx, y − x〉 ≥ 0 �⇒ 〈Ly, y − x〉 ≤ 0,

which is equivalent to the pseudo-monotonicity of the bifunction ΦL .
Finally, a notion of coerciveness for operators exists in the literature, which gener-

alizes that for bilinear forms on Hilbert spaces. The operator L is said to be coercive
on C iff there exists y0 ∈ C such that

lim‖x‖→+∞
x∈C

〈Lx, x − y0〉
‖x‖ = +∞.

It is not hard to see that if L is coercive on C , then there exists R > 0 such that
y0 ∈ B (0, R) and

〈Lx, y0 − x〉 < 0 ∀x ∈ C \ B (0, R) ,

where B (0, R) = {x ∈ E : ‖x‖ ≤ R} is the closed ball around 0 with radius R. We
put KR = B (0, R) and call (y0, KR) an adapted couple of coerciveness of L (which
may not be unique).

Proposition 3.1 Let E be a real reflexive Banach space, C be a nonempty, closed and
convex subset of E and L : C → E∗ be an operator. Assume that

1. L is pseudo-monotone on C;
2. L is coercive on C and let (y0, KR) be an adapted couple of coerciveness of L;
3. L is hemicontinuous on KR.

Then, the variational inequality (VI) has a solution.

Proof Consider the space E endowed with the weak topology and take ΦL the
bifunction defined above. Since KR is weakly compact, the result holds by apply-
ing Theorem 3.2. ��

Now, we continue developing our techniques on the equilibrium problem. We will
be interested in theMinty lemma for the equilibriumproblem,which deals in particular
with properties such as compactness and convexity of the sets of solutions.Wewill see
in particular that the set of solutions in Proposition 3.1 is nonempty, weakly compact
and convex, since KR is weakly compact and convex.

In the sequel, for y ∈ C , we define the following sets:

Φ+ (y) = {x ∈ C : Φ (x, y) ≥ 0} and Φ− (y) = {x ∈ C : Φ (y, x) ≤ 0} .

Clearly, x∗ ∈ C is a solution of the equilibrium problem (EP) if and only if x∗ ∈⋂
y∈C Φ+ (y).
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Under assumptions of Theorem 3.2, we obtain that the set of solutions Sol (Φ,C)

of the equilibrium problem (EP) is nonempty and

Sol (Φ,C) =
⋂

y∈C
Φ+ (y) ⊂

⋂

y∈C
cl

(
Φ+ (y)

) ⊂ K ,

and there exists equality under assumptions of Theorem 3.1. We remark that the set⋂
y∈C cl

(
Φ+ (y)

)
is compact. Also, by the pseudo-monotonicity of Φ on C , we have

Φ+ (y) ⊂ Φ− (y) ∀y ∈ C,

and by the explicit quasi-convexity of Φ in its second variable on C and the hemicon-
tinuity in the first variable on K , we prove that

⎛

⎝
⋂

y∈C
Φ− (y)

⎞

⎠ ∩ K ⊂
⋂

y∈C
Φ+ (y) .

The quasi-convexity of Φ in its second variable on C yields that the set Φ− (y) is
convex, for every y ∈ C .

Theorem 3.3 Assume that the hypotheses of Theorem 3.1 or Theorem 3.2 hold. Then,
the set of solutions Sol (Φ,C) of the equilibrium problem (EP) is a nonempty set. If in
addition,

1. K is convex;
2. Φ is pseudo-monotone on C;
3. Φ is semistrictly quasi-convex in its second variable on C,

then Sol (Φ,C) is nonempty, compact and convex.

Proof It results from the explanation above that

Sol (Φ,C) =
⎛

⎝
⋂

y∈C
Φ− (y)

⎞

⎠ ∩ K .

This completes the proof. ��
Now, we are in position to formulate our existence results for the quasi-equilibrium

problem. As mentioned above, we are following here the approach which has already
been considered and intensively investigated in [4].

Clearly, a point x∗ ∈ C is a solution of the quasi-equilibrium problem (QEP) if and
only if x∗ is a fixed point of the set-valued mapping S : C ⇒ C defined by

S (x) = {z ∈ A (x) : Φ (z, y) ≥ 0 ∀y ∈ A (z)} ,

and called in the literature, the selection set-valued mapping.
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Theorem 3.4 LetC be a nonempty subset of a real Banach space E and A : C ⇒ C be
a set-valued mapping with nonempty, closed and convex values. LetΦ : C×C −→ R

be a bifunction and suppose that for every x ∈ C, there exists a nonempty compact and
convex subset Kx of A (x) and yx ∈ Kx such that Φ|A(x) satisfies the hypotheses in
Theorem 3.3 with Kx the set of coerciveness. Then, the selection set-valued mapping
S has nonempty, compact and convex values.

Proof It suffices to apply Theorem 3.3 to Φ|A(x), for every x ∈ C . ��
Now, we formulate an existence result for the quasi-equilibrium problem by apply-

ing the Kakutani fixed point theorem.

Theorem 3.5 Under the assumptions of Theorem 3.4, we suppose further that there
exists a nonempty, closed and convex subset C0 of C such that

1. S (C0) is a relatively compact subset of C0;
2. grph

(
S|C0

)
is closed in C0 × C0.

Then, the quasi-equilibrium problem (QEP) has a solution.

Proof Put K = clconv (cl (S (C0))), the closed convex hull of S (C0). Clearly, K is
a nonempty, compact and convex subset of C0, S (K ) ⊂ K , grph

(
S|K

)
is closed in

K × K and S|K has nonempty, closed and convex values. Then, S|K is a Kakutani
mapping. That is, S|K is upper semicontinuous and has nonempty, compact and convex
values. Then, by applying the Kakutani fixed point theorem (see [20,21]), S|K has a
fixed point x∗ ∈ K , which is a solution of the quasi-equilibrium problem (QEP). ��

Wenote that the conditions in Theorem3.5 involve the selection set-valuedmapping
itself, which is not in the initial data of the quasi-equilibrium problem (QEP). Now,
we provide assumptions only on the involved data of the quasi-equilibrium problem
(QEP) such that the conditions in Theorem 3.5 will be satisfied.

Theorem 3.6 Under the hypotheses of Theorem 3.4, we assume further that for C0 :=
clconv

(⋃
x∈C Kx

)
, the following conditions hold:

1. C0 is a compact subset of C;
2. (A ∩ C0)|C0

is upper semicontinuous;
3. Φ|C0 is upper semicontinuous on C0 × C0;
4. for every converging sequence (xn)n in C0 to x and for every y ∈ A (x), there

exists a sequence (yn)n converging to y such that yn ∈ A (xn) ∩ C0, for every n.

Then, the equilibrium problem (QEP) has a solution.

Proof The set C0 is a nonempty compact and convex subset of C . Since for every
x ∈ C , S (x) ⊂ Kx , S (C0) is contained in C0. In order to apply Theorem 3.5, it
remains to prove that grph

(
S|C0

)
is closed in C0 × C0. To do this, take a sequence

(xn, zn)n in C0 ×C0 converging in C0 ×C0 to (x, z) such that zn ∈ S (xn), for every
n. We will prove that z ∈ S (x). We have zn ∈ A (xn) for every n, and

Φ (zn, y) ≥ 0 ∀y ∈ A (xn) .
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Since A has closed values, then by the upper semicontinuity of (A ∩ C0)|C0
, we have

z ∈ A (x). Now, let y ∈ A (x) and let (yn)n be a converging sequence in C0 to y such
that yn ∈ A (xn) ∩ C0, for every n. Then, by the upper semicontinuity of Φ|C0 , we
have

Φ (z, y) ≥ lim sup
n→+∞

Φ (zn, yn) ≥ 0.

Since y is arbitrary in A (x), we conclude that z ∈ S (x), which completes the proof.
��

Remark 3.1 If we take into account the recent advancement in the rich area of fixed
point theory, we point out that all our existence results for the quasi-equilibrium
problem, obtained above, remain true in the case of complete Hausdorff locally convex
vector topological spaces instead of real Banach spaces, see [20,21].

4 Existence of Solutions of the Quasi-Equilibrium Problem: A Selection
Theory Approach

In this section,we dealwith the existence of solutions of the quasi-equilibriumproblem
by following a selection theory approach. This direction has already been considered
in [7] in the setting of finite dimensional spaces and developed in [10] for separable
Banach spaces.

One of the most known and important results in the selection theory area is the
Michael selection theorem, which states that every lower semicontinuous set-valued
mapping from a paracompact Hausdorff topological space X with nonempty, closed
and convex values in a Banach space has a continuous selection. Motivated by the
problem of extending continuous functions defined on closed subsets, E. Michael
obtained in his paper [22] characterizations of various kinds of topological properties
such as paracompactness, normality, collectionwise normality and perfect normality
by means of existence of continuous selections of lower semicontinuous set-valued
mappings with values in Banach spaces. Every metric space is both paracompact
and perfectly normal, and both these two properties are stronger than collectionwise
normality.

In our study, the quasi-equilibrium problem (QEP) will be considered in a real
Banach space, and instead of the Michael selection theorem for perfectly normal
spaces considered in the above-mentioned papers, we use here the Michael selection
theorem for paracompact Hausdorff topological spaces, which is also themore suitable
theorem inmany analysis studies. Theperfectly normal version ismore restrictive since
it requires separable Banach spaces and imposes that the involved set-valued mapping
must have values in the family of convex subsets containing the inside points of their
closures, see [7,10,22] for more details.

Beside the existence of continuous selections of lower semicontinuous set-valued
mappings, there is the notion of selectionable set-valued mappings, which will be
important in our purpose. This notion will be also interesting since it will prevent us
to repeat the proofs of some known facts of the selection theory.
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Let X and Y be two Hausdorff topological spaces. Following [23], a set-valued
mapping F : X ⇒ Y is said to be locally selectionable at a point x0 ∈ X iff for every
y0 ∈ F (x0), there exist an open neighborhood Ux0 of x0 and a continuous function
fx0 : Ux0 → Y such that fx0 (x0) = y0 and

fx0 (x) ∈ F (x) ∀x ∈ Ux0 .

The set-valued mapping F is said to be locally selectionable on X iff it is locally
selectionable at every point of X .

We can consult [23] to see that every locally selectionable set-valued mapping on X
is lower semicontinuous on X . Also, every locally selectionable set-valued mapping
on a paracompact Hausdorff topological space with nonempty convex values in a topo-
logical Hausdorff vector space has a continuous selection; see [23, Proposition 10.2].

Now, we formulate the following result on the existence of solutions of the quasi-
equilibrium problem.

Theorem 4.1 LetC be a nonempty subset of a real Banach space E,Φ : C×C −→ R

be a bifunction and A : C ⇒ C be a set-valued mapping. Suppose further that there
exist a nonempty, closed and convex subset C0 of C and a compact subset K of C0
such that the following conditions hold:

1. A|C0 is lower semicontinuous on C0 and has nonempty, closed and convex values
in K ;

2. fix
(
A|C0

)
is nonempty closed subset, and Φ (x, x) = 0, for every x ∈ fix

(
A|C0

)
;

3. the restriction of Φ on fix
(
A|C0

) × C is quasi-convex in its second variable;
4. the restriction of Φ on fix

(
A|C0

) × C is upper semicontinuous.

Then, the equilibrium problem (QEP) has a solution.

Proof Define the set-valued mapping F : fix (
A|C0

)
⇒ C by

F (x) := {y ∈ C : Φ (x, y) < 0} .

Clearly, F has convex values, and by the upper semicontinuity of the restriction of Φ

on fix
(
A|C0

) × C , the graph of F is open in fix
(
A|C0

) × C .
Now, consider the set-valued mapping G = K ∩ F : fix (

A|C0

)
⇒ C defined by

G (x) := A (x) ∩ F (x) .

The restriction of A on fix
(
A|C0

)
being a lower semicontinuous set-valued mapping

from the paracompact Hausdorff topological space fix
(
A|C0

)
to the real Banach space

E with nonempty, closed and convex values, then by the Michael selection theorem,
for every x0 ∈ fix

(
A|C0

)
and for every y0 ∈ A (x0), there exists a continuous selection

fx0 of A|fix(A|C0
) such that fx0 (x0) = y0, see [23, Corollary 11.1]. That is, A|fix(A|C0

)

is locally selectionable set-valued mapping at every point of fix
(
A|C0

)
. Since F has an

open graph in fix
(
A|C0

)×C , it results by [23, Proposition 10.4] that if x0 ∈ fix
(
A|C0

)

such that G (x0) 
= ∅, then G is locally selectionable set-valued mapping at x0.
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We claim that there exists x0 ∈ fix
(
A|C0

)
such that G (x0) = ∅, which proves that

x0 is a solution of the quasi-equilibrium problem (QEP). Assume by contradiction that
G (x0) 
= ∅, for every x ∈ fix

(
A|C0

)
. It results thatG is locally selectionable set-valued

mapping with nonempty convex values from the paracompact Hausdorff topological
space fix

(
A|C0

)
to the real Banach space E . Then, by [23, Proposition 10.2], G has a

continuous selection g. Define the set-valued mapping H : C0 ⇒ E by

H (x) :=
{

{g (x)} , if x ∈ fix
(
A|C0

)
,

A (x) , if x /∈ fix
(
A|C0

)
.

The set-valued mapping H is lower semicontinuous on C0. Indeed, let x0 ∈ C0 and
V be an open subset of E such that H (x0) ∩ V 
= ∅. If x0 /∈ fix

(
A|C0

)
, by the lower

semicontinuity of A, let U be an open neighborhood of x0 such that

U ∩ fix
(
A|C0

) = ∅ and A (x) ∩ V 
= ∅ ∀x ∈ U.

Then, H (x) ∩ V 
= ∅, for every x ∈ U . Otherwise, suppose that x0 ∈ fix
(
A|C0

)
.

Then, by continuity of g on fix
(
A|C0

)
, let U1 be an open neighborhood of x0 in C0

such that

g (x) ∈ V ∀x ∈ U1 ∩ fix
(
A|C0

)
.

On the other hand, by lower semicontinuity of A onC0, letU2 be an open neighborhood
of x0 in C0 such that

A (x) ∩ V 
= ∅ ∀x ∈ U2.

Clearly, H (x) ∩ V 
= ∅, for every x ∈ U1 ∩ U2. Hence, H is lower semicontinuous
at x0. Now, by applying the Michael selection theorem, the set-valued mapping H
has a continuous selection f . Since H (C0) ⊂ A (C0) ⊂ K , f : C0 → C0 is a
compact mapping, and it follows from the Schauder fixed point theorem (see [20,
Theorem 4.14]) that f has a fixed point. This means that there exists x ∈ C0 such that
x = f (x) ∈ A (x). Therefore, x ∈ fix

(
A|C0

)
, and then x ∈ G (x) ⊂ F (x). It follows

that Φ (x, x) < 0, which yields a contradiction and completes the proof. ��
Remark 4.1 As stated in [10], in the proof ofTheorem4.1,we remark that the condition
of the restriction of Φ on fix

(
A|C0

) × C is quasi-convex in its second variable that
can be replaced by the following weaker condition: the set

F (x) := {y ∈ C : Φ (x, y) < 0}

is convex, for every x ∈ fix
(
A|C0

)
.

As in the previous section, let us now give some conditions on the initial data for
which the conditions in Theorem 4.1 are satisfied. We remark that all the conditions
involve only the initial data of the quasi-equilibrium problem (QEP), the unique point
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which maybe need to be discussed is that about the fixed points set of the set-valued
mapping A|C0 . By a similar statement involving the Michael selection theorem and
the Schauder fixed point theorem, as in the proof of the theorem above, we give here
the following sufficient conditions under which the fixed points set of the set-valued
mapping A is nonempty and closed. Note that every set-valued mapping with closed
graph has closed values. The converse is true under additional conditions such as the
upper semicontinuity.

Proposition 4.1 LetC be a nonempty subset of a real Banach space E and A : C ⇒ C
be a set-valued mapping. Suppose further that there exist a nonempty, closed and
convex subset C0 of C and a compact subset K of C0 such that the following conditions
hold:

1. A|C0 : C0 ⇒ C is lower semicontinuous;
2. A|C0 : C0 ⇒ C has nonempty, closed and convex values in K ;
3. the graph of A|C0 is closed in C0 × C.

Then, fix
(
A|C0

)
is a nonempty, closed and compact set.

5 Existence of Approximate Solutions of the Quasi-Equilibrium Problem

Like approximate selections, approximate solutions are well-known and important
tools, which have already been used in quasi-variational inequality studies and in
many other areas of nonlinear analysis. Such notions have been also used recently for
the quasi-equilibrium problem, see, for instance, [7–9] and the references therein.

In the sequel, for ε > 0 and a set-valued mapping F : X ⇒ Y , we denote by
Fε : X ⇒ Y the set-valued mapping defined by

Fε (x) := B (F (x) , ε) .

For ε > 0, we call in what follows an ε-solution of the quasi-equilibrium problem
(QEP), any xε ∈ cl (fix (Aε ∩ C)) such that

Φ (xε, y) ≥ 0 ∀y ∈ Aε (xε) ∩ C,

where the closure is taken with respect to the subsetC . An approximate solution of the
quasi-equilibrium problem (QEP) is any ε-solution of the quasi-equilibrium problem
(QEP), for any ε > 0.

We remark that the set-valued mapping Aε has open values. Then, the techniques
developed in the previous sections fail to be applied to Aε.

Now, we present the notion of sub-lower semicontinuity considered in [24] in the
realm of topological vector spaces, see also [25,26] for other notions such as almost
lower semicontinuity and quasi lower semicontinuity. All these notions are weaker
than that of lower semicontinuity and fit very well with the notion of approximate
continuous selections. However, the notion of sub-lower semicontinuity seems to be
more adapted to our purpose.
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Let X be a Hausdorff topological space and Y be a normed vector space. A set-
valued mapping F : X ⇒ Y is said to be sub-lower semicontinuous at x ∈ X iff for
every ε > 0, there exist zx ∈ F (x) and a neighborhood Ux of x such that

zx ∈ Fε

(
x ′) ∀x ′ ∈ Ux .

The set-valued mapping F is said to be sub-lower semicontinuous on X iff it is sub-
lower semicontinuous at every point of X .

In the sequel, we will make use of the following result where the proof holds from
classical arguments, see [8,22–25]. It provides us with a localization of the continuous
selections of sub-lower semicontinuous set-valued mappings.

Lemma 5.1 Let X be a paracompact Hausdorff topological space, Y be a normed
vector space, S be a convex subset of Y , F : X ⇒ Y be a set-valued mapping and
ε > 0. Suppose that for every x ∈ X, there exist zx ∈ F (x) and an open neighborhood
Ux of x such that

zx ∈ Fε

(
x ′) ∩ S ∀x ′ ∈ Ux .

Then, there exists a continuous selection f : X → S of Fε.

Proof For every x ∈ X , letUx be an open neighborhood of x and zx ∈ F (x) such that
zx ∈ Fε

(
x ′) ∩ S, for every x ′ ∈ Ux . Let (Oi )i∈I be an open refinement of the open

cover (Ux )x∈X of the paracompact Hausdorff topological space X , and let (pi )i∈I be
a partition of unity subordinated to (Oi )i∈I . For every i ∈ I , take xi ∈ X such that
Oi ⊂ Uxi , and define the function f : X → Y by

f (x) =
∑

i∈I
pi (x) zxi .

Then f is continuous since it is locally a finite sum of continuous functions. For every
i ∈ I such that pi (x) 
= 0, we have x ∈ Uxi , and then zxi ∈ Fε (x). By the convexity
of F (x), Fε (x) is also convex, and then f (x) ∈ Fε (x). Also, since S is convex and
zxi ∈ S for every i ∈ I , f (x) ∈ S, for every x ∈ X . ��

An adaptation of the proof of the above lemma to our purpose yields the following
important tool for the existence of approximate solutions of the quasi-equilibrium
problem. This result is presented for sub-lower semicontinuous and can be compared
to [8, Lemma 2.1] and [9, Theorem 2.3].

Lemma 5.2 Let X be a paracompact Hausdorff topological space, Y be a normed
vector space, S be a convex subset of Y , F : X ⇒ Y be a set-valued mapping with
nonempty convex values in S, Ψ : X × S → R a bifunction, ε > 0 and α ∈ R. We
define

BΨ,α (x) = {y ∈ S : Ψ (x, y) < α} ,

and suppose that for every x ∈ X, the following conditions hold:
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1. the set Fε (x) ∩ BΨ,α (x) is nonempty and convex;
2. there exist zx ∈ F (x) and an open neighborhood Ux of x such that

zx ∈ Fε

(
x ′) ∩ BΨ,α

(
x ′) ∀x ′ ∈ Ux .

Then, there exists a continuous selection fε : X → S of Fε such that Ψ (x, fε (x)) <

α, for every x ∈ X.

Proof For every x ∈ X , let zx ∈ F (x) and take Ux defined by condition (2). By
proceeding as in Lemma 5.1, the convexity of Fε (x) ∩ BΨ,α (x) for every x ∈ X ,
yields a continuous selection fε : X → S of the set-valued mapping Hε : X ⇒ Y
defined by

Hε (x) = Fε (x) ∩ BΨ,α (x) .

Thus, fε (x) ∈ Fε (x) and Ψ (x, fε (x)) < α, for every x ∈ X . ��
Remark 5.1 While the convexity of BΨ,α (x) in the above lemma requires conditions
only on Ψ and it is satisfied if Ψ is quasi-convex in its second variable on X , the other
conditions seem to be more complicated and require connections between Ψ and F .

Here, we give the following result which provides sufficient conditions involving
Ψ and F in order to satisfy hypotheses (1) and (2) of the above lemma.

Proposition 5.1 Let X be a paracompact Hausdorff topological space, Y be a normed
vector space, S be a convex subset of Y , F : X ⇒ Y be a set-valued mapping with
nonempty convex values in S, Ψ : X × S → R be a bifunction, ε > 0 and α ∈ R.

1. If Ψ is quasi-convex in its second variable on X, then for every x ∈ X, BΨ,α (x)
is convex.

2. If inf
y∈Fε(x)

Ψ (x, y) < α for some x ∈ X, then Fε (x) ∩ BΨ,α (x) 
= ∅.
3. If one of the following two conditions holds:

(a) F is lower semicontinuous on X and Ψ is upper semicontinuous in its first
variable on X and F (x) ∩ BΨ,α (x) 
= ∅, for every x ∈ X;

(b) F is sub-lower semicontinuous on X andΨ is upper semicontinuous in its first
variable on X and F (x) ⊂ BΨ,α (x), for every x ∈ X,

then condition (2) of Lemma 5.2 is satisfied.

Proof We verify only the last condition, the other conditions being obvious or already
discussed. Let x ∈ X .

In the case where condition (3a) is satisfied, F is lower semicontinuous. Let zx ∈
F (x) ∩ BΨ,α (x), and by lower semicontinuity of F , letU 1

x be an open neighborhood
of x such that F

(
x ′) ∩ B (zx , ε) 
= ∅, for every x ′ ∈ U 1

x . By upper semicontinuity of
Ψ in its first variable, let U 2

x be an open neighborhood of x such that zx ∈ BΨ,α

(
x ′),

for every x ′ ∈ U 2
x . Clearly, for every x ′ ∈ Ux = U 1

x ∩U 2
x , zx ∈ Fε

(
x ′) ∩ BΨ,α

(
x ′).

In the case where condition (3b) is satisfied, F is sub-lower semicontinuous.
Let zx ∈ F (x) and Ux

1 be as in the definition of sub-lower semicontinuity. Since
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zx ∈ BΨ,α (x), we choose by upper semicontinuity of Ψ in its first variable, an open
neighborhood U 2

x of x such that zx ∈ BΨ,α

(
x ′), for every x ′ ∈ U 2

x . As above, the
result comes by taking Ux = U 1

x ∩U 2
x . ��

In [9], the nonemptiness of the fixed points set of Aε, which is crucial for the
existence of approximate solutions of the quasi-equilibrium problem (QEP), has been
obtained by applying the Fan–Browder fixed point theorem since the lower semicon-
tinuity of A implies that the set-valued mapping Aε has open fibers. It can be showed
as follows. For y ∈ C , we have

A−1
ε (y) = {x ∈ C : y ∈ B (A (x) , ε)} = {x ∈ C : A (x) ∩ B (y, ε) 
= ∅}

= A−1 (B (y, ε)) .

We remark that this fact has been used only to prove the existence of fixed points of
Aε. The existence of a fixed point of any selection of Aε will suffice to overcome the
strong condition of the openness of the fibers of Aε.

Now, we present an existence result of approximate solutions of the quasi-
equilibrium problem (QEP) in the case of sub-lower semicontinuous set-valued
mappings.

Theorem 5.1 Let C be a nonempty, closed and convex subset of a real Banach space
E, A : C ⇒ C be a set-valued mapping, and Φ : C × C → R be a bifunction.
Suppose further that the following conditions hold:

1. A is sub-lower semicontinuous on C;
2. there exists a compact subset K of C such that A has nonempty convex values in

K .

Then, for every ε > 0, the set-valued mapping Aε : C ⇒ C has a nonempty fixed
points set.

In addition, we assume that the following hypotheses are fulfilled:

1. Φ is quasi-convex in its second variable;
2. Φ is upper semicontinuous in its first variable on C;
3. there exists ε0 > 0 such that Φ (x, x) ≥ 0, for every x ∈ B (A (x) , ε0) ∩ C;
4. for every 0 < ε < ε0,

(a) the function defined on cl (fix (Aε ∩ C)) by

x �→ inf
y∈Aε(x)∩C

Φ (x, y)

attains its supremum γε on cl (fix (Aε ∩ C)) and this supremum is finite;
(b) A (x) ⊂ BΦ,γε+ 1

n
(x), for every x ∈ C and n ∈ N

∗.

Then, for every 0 < ε < ε0, the quasi-equilibrium problem (QEP) has an ε-solution.

Proof Let ε > 0. The set-valued mapping Aε has a nonempty fixed points set. Indeed,
put K0 = clconv (K ), which is a nonempty, compact and convex subset of C , and
A (C) ⊂ K0. The set-valued mapping A : C ⇒ E is sub-lower semicontinuous
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and has nonempty convex values in the convex subset K0. Thus, by Lemma 5.1, we
consider a continuous selection fε : C → K0 of Aε. By the Schauder fixed point
theorem, fε has a fixed point x∗

ε , which is necessarily in K0. Thus, cl (fix (Aε ∩ C))

is nonempty. Note that the set cl (fix (Aε ∩ C)) is contained in K0, then it is compact.
Now, for 0 < ε < ε0, let xε ∈ cl (fix (Aε ∩ C)) be such that

sup
x∈cl(fix(Aε∩C))

inf
y∈Aε(x)∩C

Φ (x, y) = inf
y∈Aε(xε)∩C

Φ (xε, y) = γε.

Put αε,n = γε + 1
n , for n ∈ N

∗.
By taking X = S = K0 and Y = E , it follows by Lemma 5.2 applied to A and Φ

that there exists a continuous selection fε : K0 → K0 of Aε such that

Φ (x, fε (x)) < αε,n ∀x ∈ K0.

Again by the Schauder fixed point theorem, let xε ∈ K0 be a fixed point of fε. That
is,

xε = fε (xε) ∈ Aε (xε) ∩ K0 ⊂ B (A (xε) , ε0) ∩ C.

Therefore

0 ≤ Φ (xε, xε) = Φ (xε, fε (xε)) < αε,n = γε + 1

n
.

By letting n → +∞, we obtain that inf
y∈Aε(xε)∩C

Φ (xε, y) = γε ≥ 0. It follows that

we have xε ∈ cl (fix (Aε ∩ C)) and

Φ (xε, y) ≥ 0 ∀y ∈ Aε (xε) ∩ C,

which states that the quasi-equilibriumproblem (QEP) has an ε-solution and completes
the proof. ��
Remark 5.2 Let us point out that the function x �→ inf y∈Aε(x)∩C Φ (x, y) defined on
the set cl (fix (Aε ∩ C)), in the above theorem, is supposed to have a finite supremum. It
iswell known that theBergemaximum theorem is an important tool usually used to deal
with such properties when the set-valued A is lower semicontinuous. Unfortunately,
and even if A is lower semicontinuous and the above function is proper, nothing can
guarantee that its supremum is finite if no additional conditions onΦ and on the values
of A are assumed.

6 Conclusions

The equilibrium problem and, by consequent, the quasi-equilibrium problem studied
in the paper have been introducedmainly to describe in a unifiedway various problems
arising in nonlinear analysis and in mathematics in general. The family of problems
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that can be expressed as an equilibrium problem is growing as far as the other related
areas are being developed. Recently, it has been proved that quasi-hemivariational
inequalities, which constitute an important variational formulation for several classes
of mechanical problems, can be also expressed as an equilibrium problem. On the
other hand, and as already mentioned, one of the interests of such a unified formula-
tion is that many techniques and methods developed for solving a special case may
be adapted, with suitable modification, to the other special cases. Motivated by these
facts, it has been proved in some recent works that the techniques on weakening semi-
continuity and hemicontinuity to the set of coerciveness developed to the equilibrium
problem can be applied to various special cases such as quasi-hemivariational inequal-
ities and can be used with other techniques such as the Ekeland variational principle.
These techniques have been also highlighted here by an example and an application
to nonlinear variational inequalities.

In this direction, we have been concerned here in the paper with the quasi-
equilibrium problem, which constitutes a relevant mathematical formulation including
the equilibrium problem and other concepts such as quasi-variational inequalities. We
remark that in the approach based on fixed point theory developed in the paper, our
techniques on weakening semicontinuity and hemicontinuity are applied easily and
directly to the quasi-equilibrium problem. And because of our conviction of always
looking for optimal conditions when dealing with such problems, we have also consid-
ered the approach based on selection theory. In such a way, we have been able to obtain
results improving some recent properties in the literature. We have been also inter-
ested in approximate solutions of the quasi-equilibrium problem and highlighted the
necessary background for their existence by using the notion of sub-lower semicontin-
uous set-valued mappings. This study is motivated by the importance of approximate
solutions in general in many areas of mathematics, but also by some recent works on
approximate solutions of the quasi-equilibrium problem and its special cases.

The techniques developed in the two approaches based on fixed point theory and on
selection theory as well as those developed for approximate solutions are given under
general settings. In such a way, they can be easily applied to several particular cases.

Finally, we point out that this subject is under perpetual advancement, and it may
be also interesting to look for weakened conditions on convexity when dealing with
existence of solutions and approximate solutions of the quasi-equilibrium problem.
The convergence of the sequence of approximate solutions of the quasi-equilibrium
problem is also a challenge which has to be considered in the future.
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