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Abstract1

This paper focuses on static solutions for the following Choquard equation with zero2

mass and Coulomb potential3

−�u +
(

1

4π |x | ∗ u2
)

u = μ|u|p−2u + (Iα ∗ |u|α+3)|u|α+1u, x ∈ R
3,4

where μ > 0, 18
7 < p ≤ 6, α ∈ (0, 3), α+3 is the upper critical exponent in the sense5

of the Hardy–Littlewood–Sobolev inequality, Iα: R3 → R is the Riesz potential, and6

1
4π |x | is the Coulomb potential. By carefully analyzing the intricate interplay between7

the power and Coulomb terms, we establish three types of variational geometries of 18

the problem and prove the following existence results based on the behavior of p:9

(1) the existence of two solutions, one being a local minimizer and the other of10

mountain-pass type, for an explicit range 0 < μ < Const. when 18
7 < p < 3;11

(2) the existence of a positive solution if μ takes some particular value when p = 3;12

(3) the existence of a ground state solution for all μ > 0 when 4 < p < 6, and for13

two explicit ranges μ > Const. when 3 < p < 4 and p = 4.14
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Furthermore, we obtain a non-existence result for the case p = 6. Particularly, we15

identify different compactness thresholds for above three cases, and introduce three16

types of test functions to control the corresponding minimax levels to be less than17

prescribed thresholds, thereby overcoming the loss of compactness arising from the18

nonlocal critical term. The derivation of these strict inequalities is a novel contribution19

and constitutes one of the noteworthy highlights of this work, which is available and20

new for the limiting Sobolev critical problem as α → 0. We believe that the underlying21

ideas have potential for future development and can be applied to a broader range of22

variational problems with critical growth.23

Mathematics Subject Classification 35J20 · 35J62 · 35Q5524

1 Introduction25

In this paper, we consider the following upper critical Choquard equation with zero26

mass and Coulomb potential:27

− �u +
(

1

4π |x | ∗ u2
)

u = μ|u|p−2u + (Iα ∗ |u|α+3)|u|α+1u, x ∈ R
3,28

(1.1)29

where μ > 0, 18
7 < p ≤ 6, α ∈ (0, 3), Iα: R3 → R is the Riesz potential defined by30

Iα(x) = �
( 3−α

2

)
�
(

α
2

)
2απ

3
2 |x |3−α

:= Kα

|x |3−α
, x ∈ R

3\{0}, (1.2)31

and 1
4π |x | is the Coulomb potential, which coincides with the Riesz potential I2. Given32

the fact that the Coulomb potential is the fundamental solution of the operator −�, it33

follows that solutions of (1.1) correspond to solutions (u, φ) of the nonlinear system34

{−�u + φu = μ|u|p−2u + (Iα ∗ |u|α+3)|u|α+1u, x ∈ R
3,

−�φ = u2, x ∈ R
3.

35

A notable feature of this problem is that the local linearized operator at zero involves36

only the Laplacian operator. Following the pioneering work [4] by Berestycki and37

Lions, we can also say that this is a zero mass problem, whose solutions are called38

static solutions. Here, α + 3 is called the upper critical exponent in the sense of the39

Hardy–Littlewood–Sobolev inequality, due to the following estimate:40

∫
R3

∫
R3

|u(x)|α+3|u(y)|α+3

|x − y|3−α
dxdy ≤ 4

α
3 π

9−4α
6

�
(
α
2

)
�
(

3+α
2

)‖u‖α+3
6 ‖v‖α+3

641

: =Lα‖u‖α+3
6 ‖v‖α+3

6 < +∞, ∀ u, v ∈ D1,2(R3).

(1.3)
42
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Static solutions for Choquard equations with Coulomb potential…

1.1 Researchmotivation andmain difficulty43

The study of (1.1) stems from the following Brezis–Nirenberg type problem for the44

Choquard equation with upper critical exponent:45

− �u + ωu = μ|u|p−2u + (Iα ∗ |u|α+3)|u|α+1u, x ∈ R
3, (1.4)46

where ω corresponds to the phase of the standing wave for the time-dependent equa-47

tion, if ω = 0, its solutions correspond to static solutions (not periodic ones). Choquard48

equations arise in various fields of mathematical physics, such as the description of49

the quantum theory of a polaron at rest by Pekar [27] in 1954 and the modelling of50

an electron trapped in its own hole in 1976 in the work of Choquard [21]. It was also51

treated as a certain approximation to Hartree–Fock theory of one-component plasma.52

Mathematically, the study of Choquard equations goes back to the seminal work of53

Lieb [21] and Lions [23], which established the first existence and symmetry results of54

solutions to (1.4) with μ = 0 and replacing (Iα∗|u|α+3)|u|α+1u by (I2∗u2)u. Over the55

past decades, a great deal of mathematical effort has been devoted to studying the exis-56

tence, multiplicity and properties of solutions to Choquard equations. In 2018, Gao and57

Yang [10] first considered Brezis–Nirenberg type problems for Choquard equations58

on a bounded domain of R
N (N ≥ 3). To overcome the possible loss of compactness59

caused by the critical growth, Gao and Yang [10] proved that the best constant Sα60

of the Hardy–Littlewood–Sobolev inequality (defined in the three-dimensional case61

by [1.16]) can be attained, and used the extremal function of Sα as a test function to62

ensure that the associated minimax level is strictly less than the compactness threshold63

under which the (PS) condition holds. This played a similar role to the Aubin–Talenti64

bubble, which is the optimal function of the best Sobolev constant S for the continu-65

ous embedding D1,2(RN ) ↪→ L
2N

N−2 (RN ) for N ≥ 3 in the study of the well-known66

Brezis–Nirenberg problems [5]. Since then, the extremal function of Sα has become a67

standard tool to study various types of upper critical Choquard problems, considering68

different subcritical perturbations. Specifically, Alves et al. [1] dealt with singularly69

perturbed critical Choquard problems with the nonlocal subcritical perturbation, and70

extended the above results of [10] obtained in bounded domains to the whole space71

R
3. Moreover, they showed that the Choquard equation (1.4) has no nontrivial solu-72

tion for μ = 0 and ω 
= 0. Instead of the nonlocal subcritical perturbation, Li and73

Ma [18] considered the power subcritical perturbation case of form (1.4), and proved74

the existence of a positive ground state solution if 4 < p < 6 and μ > 0; or 2 < p ≤ 475

and μ > 0 large enough. Moreover, they also considered higher dimensions N > 3.76

Guo et al. [13] studied the linear perturbation case of form (1.4) with μ = 0 and77

replacing the positive number ω by the non-negative continuous function ω(x), and78

established the existence of a positive solution if ‖ω‖3/2 > 0 is sufficiently small.79

For further details and important advances on this subject, we refer the reader to [6,80

14, 26, 29, 38]. However, to the best of our knowledge, the existing results on upper81

critical Choquard problems were obtained exclusively under the positive potential or82

the nonnegative case where ω(x) > 0 at least on a set of positive measure. It seems83

open what happens for the zero mass case ω = 0, which is one of the reasons that84

motivates the present research.85
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Another motivation in this paper comes from recent studies on the static solutions86

of the following Schrödinger–Poisson–Slater equation:87

− �u +
(

1

4π |x | ∗ u2
)

u = μ|u|p−2u + u5, x ∈ R
3, (1.5)88

which can be seen as the limiting equation of (1.1) as α → 0. This is because the89

nonlocal upper critical term (Iα ∗ |u|α+3)|u|α+1u formally degenerates to the local90

Sobolev critical term u5 as α → 0. This equation is also called as the Schrödinger–91

Newton equation as introduced by Penrose [28]. It arises in quantum mechanics as a92

Slater approximation of the exchange term in the Hartree–Fock model, as discussed93

in Slater [31]. In [31], without the critical term u5, p = 8/3 and μ is called the94

Slater constant (up to renormalization). Other exponents have been used in different95

approximations, and we refer to [3, 22, 24] for more information on the relevance of96

these models and their derivation.97

From a variational perspective, the absence of a phase term, i.e., the zero mass ω =98

0, means that the standard Sobolev space H1(R3) is not the appropriate framework for99

the problem. To overcome this, Ruiz [30] introduced the following Coulomb-Sobolev100

space:101

E =
{

u ∈ D1,2(R3):
∫

R3

∫
R3

u2(x)u2(y)

|x − y| dxdy < ∞
}

(1.6)102

with the norm103

‖u‖E :=
⎡
⎣∫

R3
|∇u|2dx +

(∫
R3

∫
R3

u2(x)u2(y)

4π |x − y| dxdy

) 1
2

⎤
⎦

1
2

, (1.7)104

where the double integral expression is the so-called Coulomb energy of the wave.105

Ruiz proved that (E, ‖·‖E ) is a uniformly convex Banach space, and that E ↪→ Ls(R3)106

for all s ∈ [3, 6], and Er ↪→ Ls(R3) for all s ∈ ( 18
7 , 6

]
, where107

Er := {u ∈ E : u is a radial function} . (1.8)108

In this framework, the following subcritical problem109

− �u +
(

1

4π |x | ∗ u2
)

u = μ|u|p−2u, x ∈ R
3 (1.9)110

was studied by Ruiz [30] for 18
7 < p < 3 and by Ianni and Ruiz [15] for 3 ≤ p < 6.111

Specifically, (1.9) admits a radial positive solution for 18
7 < p < 3 [30, Theorem112

1.3], and a positive ground state solution for 3 < p < 6 [15, Theorem 1.2]. A new113

critical phenomenon appears in the study of (1.9), that is Coulomb–Sobolev critical114

case p = 3. This case presents a certain scaling invariance, that is, given a solution115

u of (1.9) and a parameter l ∈ R, the family of functions l2u(lx) is also a solution.116
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Static solutions for Choquard equations with Coulomb potential…

Table 1 Results in [25]

p μ Conclusion

(
18
7 , 3

)
0 < μ < μ̂ (∃ μ̂ > 0) (1.5) has a positive solution in Er being a local minimizer of

negative energy

3 μ > 0 sufficiently large (1.11) has a couple solution (ū, λū) ∈ Er × R
+

(3, 4] μ > 0 sufficiently large (1.5) has a ground state solution in E

(4, 6) μ > 0

Furthermore, p = 3 turns out to be the threshold exponent determining whether117

the associated energy functional has a mountain pass geometry on E or Er (see [15,118

Remark 5.2]), leading to distinct research directions for p 
= 3 and p = 3. Specifically,119

in contrast with the cases 18
7 < p < 3 and 3 < p < 6, for the Coulomb–Sobolev120

critical case p = 3, (1.9) was interpreted as an eigenvalue problem, and the following121

result was established in [15]:122

Theorem [IR] ([15, Theorem 1.3]) There exists an increasing sequence μk > 0, μk →123

+∞ such that the Coulomb–Sobolev critical problem124

− �u +
(

u2 ∗ 1

4π |x |
)

u = μk |u|u (1.10)125

has a radial solution uk ∈ Er . Here μk is the Lagrange multiplier which is not priori.126

In 2019, Liu et al. [25] extended these results on the Sobolev subcritical problem127

(1.9) and the Coulomb–Sobolev critical problem (1.10) to the Sobolev critical problem128

(1.5) and the following double-critical problem with a Lagrange multiplier λ:129

− �u +
(

1

4π |x | ∗ u2
)

u = λμ|u|u + u5, x ∈ R
3. (1.11)130

In that paper, the related results are summarized in Table 1.131

Note that the case p ∈ ( 18
7 , 3

)
is special, as the increasing rate of the local power132

term is lower than that of the non-local convolution term. This allows the creation133

of a geometry of local minima for small values of μ > 0. The presence of such a134

structure of local minima had already been observed in several related situations, see,135

for example, [2, 9, 11, 32] for L2-constrained problems, and its presence suggests136

the possibility to search for another solution lying at a mountain pass level, besides137

the existence of one solution being a local minimum. However, compared with these138

works, due to the presence of the Coulomb term
(

1
4π |x | ∗ u2

)
u, the compactness anal-139

yses in the Coulomb–Sobolev space E or Er is more difficult than that in the usual140

Sobolev space. Based on these observations, Liu et al. [25] were only able to find a141

negative energy solution which is a local minimizer in the case p ∈ ( 18
7 , 3

)
, as shown in142

Table 1. Specifically, they first constructed a truncation functional (containing a non-143

local perturbed term with a sufficiently small coefficient) which is bounded below144
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and its infimum on the whole space Er is negative, then obtained a local (PS) condi-145

tion to the truncation functional at the negative energy level based on very involved146

arguments relying on a measure representation concentration-compactness of Lions,147

finally returning to the original problem. In the cases 3 < p < 6 and p = 3, to148

overcome the loss of compactness caused by the Sobolev critical term, Liu et al. [25]149

proved that the associated energy level is strictly less than the compactness threshold150

of the problem, specifically:151

c <

⎧⎪⎨
⎪⎩

1
3S 3

2 , if 4 < p < 6 and μ > 0; or 3 < p ≤ 4 and

μ > 0 sufficiently large in (1.5),
3√6
2 S, if μ > 0 sufficiently large in (1.11),

(1.12)152

below which the (PS) condition holds, see also [16, 17, 37] and see [12] for recent153

improvements from μ large enough to larger than some explicit lower bounds. How-154

ever, it is worth pointing out that the effectiveness of their method for the case p = 3155

remains to be further verified, as there appears to be a flaw in the proof of Lemma156

4.2 in [25], where the claim G(u0) = 1 (page 5933, line 8 from bottom) seems to be157

impossible to establish conclusively.158

The study in [25] presents the different compactness thresholds of the problem for159

p ∈ (3, 6) and p = 3, but leaves a gap for p ∈ ( 18
7 , 3

)
. In fact, as pointed out in160

[25], it is very challenging to find a concrete critical threshold and precisely control161

the associated energy level, since the energy functional does not have the standard162

geometric properties of Mountain Pass type. To the best of our knowledge, nothing is163

known in the existing literature regarding this gap.164

Inspired by the aforementioned work, especially critical problems (1.4), (1.5) and165

(1.11), in this paper, we focus on the existence and non-existence of static solutions166

to the upper critical Choquard problem (1.1) with Coulomb potential. Particularly, we167

give a complete analysis of the power exponent p ∈ ( 18
7 , 6

]
, which is supposed to be168

the maximum range that allows us to use variational methods to study (1.1) in E or169

Er , based on the conjecture in [30, Remark 4.1] that Er is not included in L
18
7 (R3).170

Let171


μ(u) := 1

2

∫
R3

|∇u|2dx + 1

4

∫
R3

∫
R3

u2(x)u2(y)

4π |x − y| dxdy − μ

p

∫
R3

|u|pdx172

− 1

2(α + 3)

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx . (1.13)173

From (1.3) and the continuity of the embeddings E ↪→ Ls(R3) for all s ∈ [3, 6], and174

Er ↪→ Ls(R3) for all s ∈ ( 18
7 , 6

]
, it follows that the functional 
μ is well defined and175

C1 in E for p ∈ [3, 6], the functional 
μ is well defined and C1 in Er for p ∈ ( 18
7 , 3

)
.176

Following the work of [30], solutions to (1.1) can be obtained as critical points of 
μ177

in E and Er for p ∈ (3, 6] and p ∈ ( 18
7 , 3

)
, respectively. In the Sobolev critical case178

p = 6, we will prove that (1.1) has no nontrivial solution for any μ > 0. In the case179

p ∈ ( 18
7 , 6

)
, we are particularly interested in ground state solutions to (1.1). We recall180

123

Journal: 208 Article No.: 3143 TYPESET DISK LE CP Disp.:2025/3/20 Pages: 50 Layout: Small-Ex



un
co

rr
ec

te
d

pr
oo

f

Static solutions for Choquard equations with Coulomb potential…

a solution ū to be a ground state solution if ū minimizes the functional 
μ among all181

nontrivial solutions to (1.1), specifically,182


μ(ū) = inf
u∈Kμ


μ(u) with Kμ :=
{{

u ∈ E\{0}:
′
μ(u) = 0

}
for p ∈ (3, 6);{

u ∈ Er\{0}:
′
μ(u) = 0

}
for p ∈ ( 18

7 , 3
)
.

183

(1.14)184

In what follows, we always assume that 
μ: E → R for p ∈ (3, 6] and 
μ: Er → R185

for p ∈ ( 18
7 , 3

)
.186

Compared to the previous work, the study of (1.1) with zero mass is much more187

challenging, due to the combined effect of the Coulomb potential and the upper critical188

growth of Choquard-type nonlinearity. For example,189

(i) In the zero mass context, the presence of the Coulomb term necessitates studying190

the problem in the Coulomb–Sobolev space E or Er by variational methods,191

rather than the standard Sobolev space H1(R3). The interplay between the192

Coulomb term and the nonlinear terms, especially the strong competition with193

the power function, not only significantly affects the geometric structure of 
μ,194

but also increases the complexity in identifying critical points of 
μ.195

(ii) As is well known, the crucial step in dealing with critical problems is through the196

use of test functions to obtain a good energy estimate of minimax levels, such197

that the compactness of minimizing sequences or (PS) sequences at that energy198

level holds. This has been achieved for the upper critical Choquard problem (1.4)199

with ω > 0 and 2 < p < 6. Specifically, inspired by Gao and Yang [10], the200

following strict upper bound estimate has been derived by Li and Ma [18]:201

c <
α + 2

2(α + 3)
S

α+3
α+2
α

{
for 4 < p < 6 and μ > 0;
for 2 < p ≤ 4 and μ > 0 large enough.

(1.15)202

In the zero mass case ω = 0, there is also a need to establish a similar203

inequality. However, extra efforts are always required to balance the compet-204

ing effects between the Coulomb term and the power term, especially for the205

case p ∈ ( 18
7 , 3), in which the power term dominates the Coulomb term for 
μ206

near zero. It is natural to expect that the domination of the power term could207

help to lower the energy value, and this paper will confirm this expectation, as208

discussed in Remark 1.6 (iii) below. As mentioned in [25], there do not seem to209

be any relevant results in the existing literature even for the limit problem (1.5).210

(iii) The case where p = 3 appears to be the most delicate. As observed in [15] for211

the study of (1.9), this is viewed as the Coulomb–Sobolev critical case, as this212

problem presents scaling invariance under the transformation t2u(t x). In this213

case, the Coulomb term and the power term are in balance, leading to a subtle214

interplay that requires the introduction of a Lagrange multiplier λ in front of215

μ|u|p−2u to establish the appropriate variational characterization of the problem.216

As one would naturally expect, this dual critical nature further complicates the217

variational study of the problem.218
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1.2 Statement of themain results219

To obtain the sharp energy estimates, following [10, Lemma 1.2] dealing with the220

Brezis–Nirenberg problem of Choquard type, we define the best constant Sα of the221

Hardy–Littlewood–Sobolev inequality:222

Sα := inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2dx[∫

R3

(
Iα ∗ |u|α+3

) |u|α+3dx
] 1

α+3

. (1.16)223

Define the following important constant:224

Tα :=
∫

R3

(
Iα ∗ e−(α+3)|·|) e−(α+3)|x |dx, (1.17)225

which will be required in the cases p = 3, and p ∈ (3, 4). Setting226

U (x) :=
4
√

3√
1 + |x |2 , (1.18)227

then we have the following equation:228

(LαKα)
3(α+2)
2(α+3) S

α
2
α

∫
R3

|∇U |2dx =
∫

R3

(
Iα ∗ |U |α+3

)
|U |α+3dx = (LαKα)

3
2 S

α+3
2

α ,229

(1.19)230

where the constants Kα and Lα are defined by Eqs. (1.2) and (1.3), respectively.231

Combining (1.16) and (1.19), we see that U (x) and the extremal function of Sα differ232

only by a constant coefficient.233

Letting234

Jμ(u) := d

dt

μ(t2ut )

∣∣
t=1235

= 3

2
‖∇u‖2

2 + 3

4

∫
R3

∫
R3

u2(x)u2(y)

4π |x − y| dxdy − (2p − 3)μ

p
‖u‖p

p236

− 3

2

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx, (1.20)237

we define the following set:238

Mμ :=
{

{u ∈ E\{0}: Jμ(u) = 0} for p ∈ (3, 6);
{u ∈ Er\{0}: Jμ(u) = 0} for p ∈ ( 18

7 , 3
)
.

(1.21)239

From [15, Page 9], we know that any critical point of 
μ stays in Mμ.240

As mentioned previously, the strong interplay between the Coulomb term and the241

power term causes the geometry of 
μ to change according to the behavior of p. In242
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the following, we will separately address the three cases: p ∈ ( 18
7 , 3

)
, p = 3, and243

p ∈ (3, 6), based on the observations provided earlier.244

Case I: 18
7 < p < 3. For any 18

7 < p < 3, let us introduce the embedding constant245

Cs > 0 ( [15, Lemma 3.1]), which only depends on s, given by246

∫
R3

|u|sdx ≤ Cs

[∫
R3

|∇u|2dx +
∫

R3

∫
R3

u2(x)u2(y)

8π |x − y| dxdy

] 2s−3
3

, ∀ u ∈ Er .247

(1.22)248

By introducing an auxiliary function [see (3.1) below] and performing careful energy249

estimates, we manage to find an explicit value μ0 = μ0(p), defined by250

μ0 := 3(α + 2)p
[
4(α + 3)(3 − p)Sα+3

α

] 2(3−p)
3(α+2)

Cp[2(3α + 12 − 2p)] 3α+12−2p
3(α+2)

, (1.23)251

such that 
μ has a geometry of local minima:252

inf
u∈As0


μ(u) < 0 < inf
u∈∂ As0


μ(u) (1.24)253

when 0 < μ < μ0, where254

s0 :=
[

2(α + 3)(3 − p)Sα+3
α

3α + 12 − 2p

] 1
α+2

(1.25)255

and256

As0 :=
{

u ∈ Er : ‖∇u‖2
2 + 1

2

∫
R3

∫
R3

u2(x)u2(y)

4π |x − y| dxdy < s0

}
. (1.26)257

Starting from the local minimizer involved in (1.24), we also construct a new min–max258

structure: the non-standard mountain pass geometry. On this basis, we establish the259

existence of two solutions—one being a local minimizer and one of mountain-pass260

type. Our first result is as follows.261

Theorem 1.1 Let 18
7 < p < 3. Then for any μ ∈ (0, μ0), the following statements262

hold:263

(i) (1.1) has a positive radial solution uμ ∈ Er which is a minimizer of 
μ in the264

set As0 such that265


μ(uμ) = mμ := inf
u∈As0


μ(u) < 0. (1.27)266
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Moreover, any ground state solution to (1.1) is a minimizer of 
μ on As0 , that is267

ũ ∈ Kμ and 
μ(ũ) = inf
Kμ


μ �⇒ ũ ∈ As0 and 
μ(ũ) = inf
As0


μ = mμ.268

(ii) (1.1) has a second solution (mountain pass type) ū ∈ Er , which satisfies269

0 < 
μ(ū) < mμ + α + 2

2(α + 3)
S

α+3
α+2
α . (1.28)270

Case II: p = 3. As mentioned before, due to the scaling invariance under the trans-271

formation t2u(t x), we need the introduction of a Lagrange multiplier λ, and consider272

the following problem:273

− �u +
(

1

4π |x | ∗ u2
)

u = λμ|u|u + (Iα ∗ |u|α+3)|u|α+1u, x ∈ R
3.274

(1.29)275

To find solutions to (1.29), we seek for critical points of the C1-functional I : Er → R276

defined by277

I (u) := 1

2
‖∇u‖2

2 + 1

4

∫
R3

∫
R3

u2(x)u2(y)

4π |x − y| dxdy (1.30)278

under the constraint279

M̃μ :=
{

u ∈ Er : G(u) := μ

3
‖u‖3

3 + 1

2(α + 3)

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx = 1

}
.280

(1.31)281

We will consider the minimizing problem: m̃μ = infu∈M̃μ
I (u), and find an explicit282

lower bound μ∗ of μ defined by283

μ∗ := 75 6
√

2000π [2(α + 3)] −1
α+3

16π
√

4 − πSα

[
1 −

(Sα

4

)α+3

Tα

]
, (1.32)284

to ensure the attainability of m̃μ when μ > μ∗. Our result is stated as follows.285

Theorem 1.2 Assume that p = 3. Then for any μ > μ∗, there exists (u, λμ) ∈ Er ×R
+

286

such that the following equation holds287

−�u +
(

1

4π |x | ∗ u2
)

u = λμμ|u|u + (Iα ∗ |u|α+3)|u|α+1u, x ∈ R
3.288

Remark 1.3 Theorem 1.2 implies that, in a sense, (1.1) with p = 3 has at least one289

solution only when μ takes some particular value.290
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Case III: p ∈ (3, 6). In this case, it is not difficult to prove that 
μ is bounded from291

below on Mμ for any μ > 0. By distinguishing the three subcases: p ∈ (4, 6), p = 4292

and p ∈ (3, 4), we could specify explicit conditions on μ under which the infimum293

infu∈Mμ

μ(u) is achieved, and the minimizer is a critical point of 
μ. Particularly,294

the case p ∈ (3, 4) is the most involved, in which we define the number:295

μ∗ := 3p4

16(2p − 3)

[
4(p − 3)(α + 3)π

(2p − 3)(α + 2)

] 2(p−3)
3

296

×
[

3
3
√

2π

(
6

5

)5 ( Tα

2α+2

) 1
α+3

] p−6
6

S
24+6α−3pα−14p

6(α+2)
α . (1.33)297

In this direction, our result reads as follows.298

Theorem 1.4 Assume that one of the following conditions holds:299

(i) p ∈ (4, 6) and μ > 0;300

(ii) p = 4 and μ > 7
√

3
π

(LαKα)
1

α+3 S
α

3(α+2)
α ;301

(iii) p ∈ (3, 4) and μ > μ∗.302

Then (1.1) has a ground state solution ū ∈ E such that 
μ(ū) = infMμ

μ > 0.303

Finally, by means of a Pohozaev type identity, we could prove the following non-304

existence result.305

Theorem 1.5 Assume that p = 6. Then for any μ > 0, (1.1) has no nontrivial solution.306

To highlight the significant impact of the different power perturbations, let us sum-307

marize the results of our theorems in Table 2 as follows.308

Remark 1.6 (i) Compared to the upper critical Choquard problem (1.4) in the non-309

static case where ω 
= 0, the presence of the Coulomb potential gives rise to310

new phenomena in the static case where ω = 0, occurring at different ranges of311

the power p, as present in Table 2. This makes the structure of the solution set312

considerably richer.313

(ii) The existence results for the cases p ∈ ( 18
7 , 3) and p ∈ (3, 6) in (1.1) can be314

viewed as exhibiting certain parallels with the analysis of L2-subcritical and315

L2-supercritical perturbation cases, respectively, in the context of the Brezis–316

Nirenberg problem with prescribed norm. Despite the similarities in the existence317

results between the two problems, the essential difficulties in the problem at hand318

mentioned previously lead to the failure of many existing methods that have been319

successfully employed to study problems with analogous results in the standard320

Sobolev space. It forces the implementation of new ideas to catch static solutions321

to (1.1).322

(iii) For the ranges p ∈ ( 18
7 , 3), p = 3, and p ∈ (3, 6), we establish distinct posi-323

tive minimax levels, and succeed in identifying the compactness thresholds for324

the corresponding (PS) sequences or minimizing sequences, respectively. These325
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Table 2 Our results

p μ Conclusion Energy level

( 18
7 , 3) 0 < μ < μ0 (1.1) has a ground state solution

being local minimizer

mμ := inf As0

μ

= infKμ

μ < 0

(1.1) has a second solution of
mountain pass type

< mμ + α+2
2(α+3)

S
α+3
α+2
α

3 μ > μ∗ (1.29) has a couple solution
(u, λu) ∈ Er × R

+

0 < infM̃μ
I

<
[2(α+3)]

1
α+3

2 Sα

(3, 4) μ > μ∗ (1.1) has a ground state solution
0 < infMμ


μ

< α+2
2(α+3)

S
α+3
α+2
α

4 μ > 7
√

3
π (LαKα)

1
α+3 S

α
3(α+2)
α

(4, 6) μ > 0

6 μ > 0 (1.1) has no nontrivial solution

compactness thresholds are presented in the “Energy Level” column of Table 2326

and are highlighted in red. Through the careful selection of test functions, we327

provide rigorous energy estimates to ensure that the obtained minimax levels lie328

within the range where compactness holds. Precisely, we can derive the com-329

pactness of the obtained (PS) sequences and minimizing sequences provided that330

the corresponding energy level, denoted by C(p), satisfies the following strict331

inequality:332

C(p) <

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mμ + α+2
2(α+3)

S
α+3
α+2
α , if p ∈ ( 18

7 , 3
)
,

[2(α+3)] 1
α+3

2 Sα, if p = 3,

α+2
2(α+3)

S
α+3
α+2
α , if 3 < p < 6,

(1.34)333

where mμ = inf As0

μ < 0. The derivation of these strict inequalities is a novel334

contribution and constitutes one of the noteworthy highlights of this work, see335

Lemmas 3.6, 4.2 and 5.8 for more details.336

(iv) For the case p ∈ ( 18
7 , 3

)
, the power term dominates the Coulomb term for 
μ337

near zero. This feature not only leads to a different geometric structure of 
μ338

from the one for the study of (1.4) in the non-static case where ω 
= 0, but also339

lower the upper bound of the involved minimax level. Specifically, we develop340

a careful construction of the test functions, which can be viewed as the sum of341

a suitable truncated extremal function of Sα and a local minimizer of mμ < 0.342

With refined energy estimates, we reduce the upper bound from α+2
2(α+3)

S
α+3
α+2
α for343

μ large enough, as given by (1.15), to mμ + α+2
2(α+3)

S
α+3
α+2
α for μ ∈ (0, μ0).344
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Static solutions for Choquard equations with Coulomb potential…

(v) For the cases p = 3 and 3 < p < 6, as α → 0, the inequality (1.34) formally345

reduces to the corresponding strict inequality (1.12) for the limiting problem346

(1.11). However, compared to the Sobolev critical term u5, the nonlocal critical347

term (Iα ∗ |u|α+3)|u|α+1u leads to more mathematical difficulties, especially for348

the dual critical scenario when p = 3, where the Coulomb term and the power349

term exhibit the same growth rate, necessitating a more delicate analysis of the350

underlying variational geometry of the problem. Particularly, we introduce novel351

analytical techniques employing subtle test functions and paths (see (4.4) and352

(4.14)) to control the minimizing level m̃μ = infu∈M̃μ
I (u) to be less than a353

prescribed threshold, thereby overcoming the loss of compactness arising from354

the nonlocal critical term.355

The paper is organized as follows. In Sect. 2 we present some preliminary results.356

In Sect. 2 we study the case when 18
7 < p < 3, and finish the proof of Theorem 1.1.357

In Sect. 4, we focus on the Coulomb–Sobolev critical case p = 3, and complete the358

proof of Theorem 1.2 In Sect. 5, we deal with the case when 3 < p < 6, and complete359

the proof of Theorem 1.4. In Sect. 6, establish the non-existence result for the case360

when p = 6, and prove Theorem 1.5.361

Throughout this paper, we let ut (x) := u(t x) for t > 0, and denote the norm of362

Ls(R3) by ‖u‖s = (∫
R3 |u|sdx

)1/s for s ≥ 2, Br (x) = {y ∈ R
3: |y − x | < r}, and363

positive constants possibly different in different places, by C1, C2, . . ..364

2 Preliminaries365

In this section, we recall some properties of the working space E and Er , and present366

some preliminary results, which will be of use throughout the paper.367

Set368

N [u] :=
∫

R3

∫
R3

u2(x)u2(y)

4π |x − y| dxdy and Q[u] := ‖∇u‖2
2 + 1

2
N [u]. (2.1)369

By (1.7) and (2.1), we have370

‖u‖E =
[
‖∇u‖2

2 + √
N [u]

]1/2
. (2.2)371

Lemma 2.1 [30] ‖ · ‖E is a norm, and (E, ‖ · ‖E ) is a uniformly convex Banach space.372

Moreover, C∞
0 (R3) is dense in E, and E ↪→ Ls(R3) is continuous for p ∈ [3, 6].373

Lemma 2.2 [30] Er ↪→ Ls(R3) is continuous for p ∈ ( 18
7 , 6], and the inclusion is374

compact for p ∈ ( 18
7 , 6).375

Lemma 2.3 [15] For any s ∈ ( 18
7 , 6], there exists Cs > 0 such that376

‖u‖s
s ≤ Cs(Q[u])(2s−3)/3, ∀ u ∈ Er , s ∈

(
18

7
, 6

]
. (2.3)377
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Lemma 2.4 [34] Assume that a, b > 0. Then there holds378

a‖∇u‖2
2 + bN [u] ≥ 2

√
ab‖u‖3

3, ∀ u ∈ E . (2.4)379

Let us define380

φu(x) := 1

4π |x | ∗ u2 =
∫

R3

u2(y)

4π |x − y|dy, ∀ x ∈ R
3, (2.5)381

then, u ∈ E if and only if both u, φu ∈ D1,2(R3). In such a case, −�φu = u2 in a382

weak sense, and383

∫
R3

∇φu · ∇vdx =
∫

R3
u2vdx, ∀ v ∈ E, (2.6)384

385

∫
R3

∫
R3

u2(x)u2(y)

4π |x − y| dxdy =
∫

R3
φu(x)u2dx . (2.7)386

Moreover, φu(x) > 0 when u 
= 0. By using Hardy–Littlewood–Sobolev inequality387

(see [19] or [20, page 98]), we have the following inequality:388

∫
R3

∫
R3

|u(x)v(y)|
|x − y| dxdy ≤ 8 3

√
2

3 3
√

π
‖u‖6/5‖v‖6/5, u, v ∈ L6/5(R3). (2.8)389

Lemma 2.5 [30] Suppose that {un} ⊂ E. Then390

(i) un → ū in E if and only if un → ū and φun → φū in D1,2(R3);391

(ii) un⇀ū in E if and only if un⇀ū in D1,2(R3) and sup N [un] < +∞. In such392

case, φun ⇀φū in D1,2(R3).393

As in [15, 30], we define394

T : E4 → R, T (u, v, w, z) :=
∫

R3

∫
R3

u(x)v(x)w(y)z(y)

4π |x − y| dxdy (2.9)395

and396

D: E2 → R, D(u, v) :=
∫

R3

∫
R3

u(x)v(y)

4π |x − y|dxdy. (2.10)397

Lemma 2.6 [15] Suppose that {un}, {vn}, {wn} ⊂ E, z ∈ E. If un⇀ū, vn⇀v̄,wn⇀w̄398

in E, then399

T (un, vn, wn, z) → T (ū, v̄, w̄, z).400
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Lemma 2.7 Assume that un⇀ū in E. Then401

N [un] = N [ū] + N [un − ū] + o(1). (2.11)402

Proof Let vn = un − ū. Then un⇀ū and vn⇀0 in E . From (2.7), (2.9), (2.10) and403

Lemma 2.6, we have404

N [un] = D((ū + vn)2, (ū + vn)2)405

= D(ū2, ū2) + D(v2
n, v2

n) + 4D(ū2, ūvn) + 4D(v2
n, ūvn)406

+ 4D(ūvn, ūvn) + 2D(ū2, v2
n)407

= D(ū2, ū2) + D(v2
n, v2

n) + o(1) = N [ū] + N [vn] + o(1).408

��409

Lemma 2.8 [20, Page 107:(6) and (9)] For any q > 3
3−α

, there exists a constant410

C(α, q) > 0 such that411

‖Iα ∗ |u|‖q ≤ C(α, q)‖u‖ 3q
3+αq

, ∀ u ∈ L
3q

3+αq (R3). (2.12)412

In order to prove a Brezis–Lieb lemma for the functional
∫

R3

(
Iα ∗ |u|α+3

) |u|α+3dx ,413

we state an easy variant of the classical Brezis–Lieb lemma [36, Theorem 4.2.7].414

Lemma 2.9 [36] Let  ⊆ R
N be a domain, q ∈ [1,∞) and {un} be a bounded415

sequence in Lr (). If un → ū a.e. x ∈ , then for every q ∈ [1, r ]416

lim
n→∞

∫


(|un|q − |un − ū|q − |ū|q) r
q dx = 0. (2.13)417

Lemma 2.10 Assume that un → ū a.e. x ∈ R
3 and supn∈N ‖un‖6 < +∞. Then418

lim
n→∞

[∫
R3

(
Iα ∗ |un|α+3

)
|un|α+3dx −

∫
R3

(
Iα ∗ |un − ū|α+3

)
|un − ū|α+3dx

]
419

=
∫

R3

(
Iα ∗ |ū|α+3

)
|ū|α+3dx . (2.14)420

Proof Set vn = un − ū. Then vn → 0 a.e. x ∈ R
3. Since supn∈N ‖vn‖6 < +∞, it421

follows that |vn|α+3⇀0 in L
6

α+3 (R3). By Lemma 2.8 and the Fatou’s lemma, one has422

∫
R3

∣∣∣Iα ∗ |ū|α+3
∣∣∣

6
3−α

dx ≤ C

(∫
R3

|ū|6dx

) α+3
3−α

< ∞. (2.15)423

This shows that Iα ∗ |ū|α+3 ∈ L
6

3−α (R3), it follows that424

∫
R3

(
Iα ∗ |ū|α+3

)
|vn|α+3dx = o(1). (2.16)425
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By (2.16) and Lemma 2.9 with q = α + 3 and r = 6, we have426

∫
R3

[(
Iα ∗ |un|α+3

)
|un|α+3 −

(
Iα ∗ |vn|α+3

)
|vn|α+3 −

(
Iα ∗ |ū|α+3

)
|ū|α+3

]
dx427

=
∫

R3

[
Iα ∗

(
|un|α+3 − |vn|α+3 − |ū|α+3

)] (
|un|α+3 − |vn|α+3

)
dx428

+
∫

R3

(
Iα ∗ |ū|α+3

) (
|un|α+3 − |vn|α+3 − |ū|α+3

)
dx429

+
∫

R3

[
Iα ∗

(
|un|α+3 − |vn|α+3 − |ū|α+3

)]
|vn|α+3dx430

+
∫

R3

(
Iα ∗ |vn|α+3

) (
|un|α+3 − |vn|α+3 − |ū|α+3

)
dx431

+
∫

R3

(
Iα ∗ |ū|α+3

)
|vn|α+3dx +

∫
R3

(
Iα ∗ |vn|α+3

)
|ū|α+3dx432

≤ Lα

∫
R3

∣∣∣|un|α+3 − |vn|α+3 − |ū|α+3
∣∣∣

6
α+3

dx
∫

R3

∣∣∣|un|α+3 − |vn|α+3
∣∣∣

6
α+3

dx433

+ Lα‖ū‖α+3
6

∫
R3

∣∣∣|un|α+3 − |vn|α+3 − |ū|α+3
∣∣∣

6
α+3

dx434

+ 2Lα‖vn‖α+3
6

∫
R3

∣∣∣|un|α+3 − |vn|α+3 − |ū|α+3
∣∣∣

6
α+3

dx435

+ 2
∫

R3

(
Iα ∗ |ū|α+3

)
|vn|α+3dx436

= o(1).437

This shows (2.14) holds. ��438

Lemma 2.11 Assume that un → ū a.e. x ∈ R
3 and supn∈N ‖un‖6 < +∞. Then for439

any v ∈ L6(R3),440

lim
n→∞

∫
R3

(
Iα ∗ |un |α+3

)
|un |α+1unvdx =

∫
R3

(
Iα ∗ |ū|α+3

)
|ū|α+1ūvdx .441

(2.17)442

Proof By (2.12) and the Hölder inequality, we have443

∫
R3

∣∣∣(Iα ∗ |un|α+3
)

|un|α+1un

∣∣∣
6
5

dx444

≤
(∫

R3

∣∣∣Iα ∗ |un|α+3
∣∣∣

6
3−α

dx

) 3−α
5

(∫
R3

|un|6dx

) α+2
5 ≤ C‖un‖

6(2α+5)
5

6 . (2.18)445

This shows that446

(
Iα ∗ |un|α+3

)
|un|α+1un⇀

(
Iα ∗ |ū|α+3

)
|ū|α+1ū in L

6
5 (R3). (2.19)447
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It follows that (2.17) holds. ��448

From Lemmas 2.1–2.6 and 2.11, we derive that the functional 
μ, defined by449

(1.13), is well defined and C1 in E for p ∈ [3, 6], and is well defined and C1 in450

Er for p ∈ (18/7, 3), moreover, for any u, v ∈ E if p ∈ [3, 6], any u, v ∈ Er if451

p ∈ (18/7, 3), there holds452

〈
′
μ(u), v〉 =

∫
R3

∇u · ∇vdx +
∫

R3

u(x)v(x)u2(y)

4π |x − y| dxdx −
∫

R3
|u|p−2uvdx453

−
∫

R3

(
Iα ∗ |u|α+3

)
|u|α+1uvdx . (2.20)454

Therefore, solutions of (1.13) are critical points of 
μ in E and Er for p ∈ [3, 6] and455

p ∈ (18/7, 3), respectively.456

Lemma 2.12 [15] If u is a weak solution of (1.1) (i.e. 
′
μ(u) = 0), then Jμ(u) = 0,457

where J is defined by (1.20).458

Lemma 2.13 [10, 15] If u is a weak solution of (1.1) (i.e. 
′
μ(u) = 0), then459

1

2
‖∇u‖2

2 + 5

4
N [u] − 3μ

p
‖u‖p

p − 1

2

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx = 0. (2.21)460

3 Case 18
7 < p < 3461

In this section, we study the case when 18
7 < p < 3, restricting ourselves to the462

radial subspace Er , and provide the proof of Theorem 1.1. We will find the specific463

condition 0 < μ < μ0 to ensure that the functional 
μ has a geometry of local minima464

and a minimax structure on Er , and prove the existence of two solutions—one being465

a local minimizer and one of mountain-pass type.466

For the existence of a geometry of local minima, for any μ > 0, let us define the467

function gμ(s) on s ∈ (0,+∞) as follows:468

gμ(s) := 1

2
− μCp

p
s

−2(3−p)
3 − S−(α+3)

α

2(α + 3)
sα+2. (3.1)469

A straightforward calculation can lead to the following property on gμ.470

Lemma 3.1 Let 18
7 < p < 3 and 0 < μ < μ0. Then the function gμ(s) has a unique471

global maximum and the maximum value satisfies472

max
0<s<+∞ gμ(s) = gμ(sμ)473

= 1

2
− 3α + 12 − 2p[

4(α + 3)(3 − p)Sα+3
α

] 2(3−p)
3α+12−2p

[
μCp

3(α + 2)p

] 3(α+2)
3α+12−2p

474
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⎧⎨
⎩

> 0, if μ < μ0,

= 0, if μ = μ0,

< 0, if μ > μ0,

(3.2)475

where476

sμ :=
[

4(α + 3)(3 − p)μCpSα+3
α

3(α + 2)p

] 3
3α+12−2p

. (3.3)477

In particular, we have sμ0 = s0.478

The function gμ plays a role in the following lemma.479

Lemma 3.2 Let 18
7 < p < 3 and 0 < μ < μ0. Then480


μ(u) ≥ Q[u] gμ(Q[u]), ∀ u ∈ Er . (3.4)481

Proof From (1.13), (1.16), (2.1), (2.3) and (3.1), we have482


μ(u) = 1

2
‖∇u‖2

2 + 1

4
N [u] − μ

p
‖u‖p

p − 1

2(α + 3)

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx483

≥ 1

2
Q[u] − S−(α+3)

α

2(α + 3)
(Q[u])α+3 − μCp

p
(Q[u]) 2p−3

3484

= Q[u] gμ(Q[u]), ∀ u ∈ Er .485

��486

For any u ∈ Er , we define487

hu(t) := 
μ(t2ut ) = t3

2
‖∇u‖2

2 + t3

4
N [u] − μt2p−3

p
‖u‖p

p488

− t3(α+3)

2(α + 3)

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx . (3.5)489

Then490

h′
u(t) = 1

t

{
3t3

2
‖∇u‖2

2 + 3t3

4
N [u] − (2p − 3)μt2p−3

p
‖u‖p

p491

−3t3(α+3)

2

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx

}
= 1

t
J (t2ut ). (3.6)492

For ρ > 0, we set493

Aρ := {u ∈ Er : Q[u] < ρ} .494

A geometry of local minima is established in the following lemma.495
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Lemma 3.3 Let 18
7 < p < 3 and 0 < μ < μ0. Then the following properties hold:496

(i)

mμ = inf
u∈As0


μ(u) < 0 < inf
u∈∂ As0


μ(u). (3.7)497

(ii) infMμ

μ ≥ mμ, where Mμ is defined by (1.21).498

Proof (i) For any u ∈ ∂ As0 , we have Q[u] = s0. Thus, by using Lemmas 3.1 and 3.2,499

we get500


μ(u) ≥ Q[u] gμ(Q[u]) = s0gμ(s0) > s0gμ0(s0) = 0.501

Now let u ∈ As0 be arbitrary but fixed. From (1.13), we have502


μ(t2ut ) = t3

2
‖∇u‖2

2 + t3

4
N [u] − μt2p−3

p
‖u‖p

p503

− t3(α+3)

2(α + 3)

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx, ∀ t > 0.504

Since 18
7 < p < 3, it follows that limt→0+ 
μ(t2ut ) = 0−. Therefore, there exists505

t0 > 0 small enough such that Q[t2
0 ut0 ] = t3

0 Q[u] < s0 and 
μ(t2
0 ut0) < 0. This506

implies that mμ < 0.507

(ii) Let ū ∈ Mμ be arbitrary but fixed. Then it follows from (3.6) that508

h ′̄
u(t)

t2 = 3

2
‖∇ū‖2

2 + 3

4
N [ū] − (2p − 3)μt2(p−3)

p
‖ū‖p

p509

− 3t3(α+2)

2

∫
R3

(
Iα ∗ |ū|α+3

)
|ū|α+3dx, ∀ t > 0, (3.8)510

which implies that511

d

dt

[
h ′̄

u(t)

t2

]
= 2(2p − 3)(3 − p)μt2p−7

p
‖ū‖p

p512

− 9(α + 2)t3α+5

2

∫
R3

(
Iα ∗ |ū|α+3

)
|ū|α+3dx, ∀ t > 0. (3.9)513

Since 18
7 < p < 3, then d

dt

[
h ′̄

u(t)
t2

]
= 0 has a unique solution, and so

h ′̄
u(t)
t2 has at514

most two zeros. Thus h ′̄
u(t) has also at most two zeros.515

To prove (ii), there are two possible cases.516

Case (a). Q[ū] ≤ s0. In this case, we have ū ∈ As0 , it follows that 
μ(ū) ≥ mμ.517

Case (b). Q[ū] > s0. It follows from (3.6) that h ′̄
u(1) = 0. By (3.5) and i), we518

have519

lim
t→0+ hū(t) = 0−, hū

(
3
√

s0/Q[ū]
)

> 0, lim
t→+∞ hū(t) = −∞. (3.10)520
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(3.10) shows that h ′̄
u(t) has a first zero t− ∈ (0, 3

√
s0/Q[ū]) corresponding to521

a local maximum such that h ′̄
u(t−) = 0. Since h ′̄

u(t) has at most two zeros, so522

1 ∈ ( 3
√

s0/Q[ū],+∞) is the second zero of h ′̄
u(t) corresponding to a unique local523

maximum of hū(t). Thus, 
μ(ū) = hū(1) > 0 > mμ. ��524

Proof of (i) in Theorem 1.1 Let {un} ⊂ As0 be a minimizing sequence for mμ. Then525

{|un|} ⊂ As0 be also a minimizing sequence for mμ, so we may assume that un ≥ 0.526

By Lemma 3.3, we have527

Q[un] < s0, 
μ(un) = mμ + o(1) < 0. (3.11)528

Since {‖un‖E } is bounded, then from Lemma 2.2, we may thus assume, passing to a529

subsequence if necessary, that530

⎧⎨
⎩

un⇀ũ, in Er ;
un → ũ, in Ls(R3), ∀ s ∈ ( 18

7 , 6
) ;

un → ũ, a.e. on R
3.

(3.12)531

To obtain a minimizer for mμ, we split the proof into the following steps.532

Step 1. We prove that ũ 
= 0. Otherwise, we assume that ũ = 0. Then (3.12) yields533

‖un‖p
p = o(1). (3.13)534

From (1.13), (1.16), (2.1), (3.1), (3.2), (3.11) and (3.13), we have535

mμ + o(1) = 1

2
‖∇un‖2

2 + 1

4
N [un] − μ

p
‖un‖p

p536

− 1

2(α + 3)

∫
R3

(
Iα ∗ |un|α+3

)
|un|α+3dx537

≥ 1

2
Q[un] − S−(α+3)

α

2(α + 3)
(Q[un])α+3 + o(1)538

≥ Q[un]
[

1

2
− S−(α+3)

α

2(α + 3)
sα+2

0

]
+ o(1)539

= Q[un]
[

gμ(s0) + μCp

p
s

−2(3−p)
3

0

]
+ o(1) ≥ o(1).540

This contradiction shows that ũ 
= 0 due to mμ < 0.541

Step 2. Set vn := un − ũ. By (3.12), we have542

‖∇un‖2
2 = ‖∇ũ‖2

2 + ‖∇vn‖2
2 + o(1). (3.14)543

Then it follows from (1.13), (2.11), (3.14), the Brezis–Lieb lemma and Lemma 2.10544

that545

Q[un] = Q[ũ] + Q[vn] + o(1) (3.15)546
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Static solutions for Choquard equations with Coulomb potential…

and547


μ(un) = 
μ(ũ) + 
μ(vn) + o(1). (3.16)548

Step 3. By the weakly lower semi-continuity for the norm and the Fatou’s lemma, we549

have550

lim inf
n→∞ Q[un] ≥ Q[ũ]. (3.17)551

This shows that ũ ∈ As0 , and so 
μ(ũ) ≥ mμ. Jointly with (1.13), (1.16), (3.2), (3.11),552

(3.12), (3.15), (3.16) and (3.17), we have553

mμ + o(1) = 
μ(un)554

= 
μ(ũ) + 
μ(vn) + o(1)555

= 1

2
‖∇vn‖2

2 + 1

4
N [vn]556

− 1

2(α + 3)

∫
R3

(
Iα ∗ |vn|α+3

)
|vn|α+3dx + 
μ(ũ) + o(1)557

≥ 1

2
Q[vn] − S−(α+3)

α

2(α + 3)
(Q[vn])α+3 + 
μ(ũ) + o(1)558

≥ Q[vn]
[

1

2
− S−(α+3)

α

2(α + 3)
sα+2

0

]
+ mμ + o(1)559

= Q[vn]
[

gμ(s0) + μCp

p
s

−2(3−p)
3

0

]
+ mμ + o(1), (3.18)560

which yields that Q[vn] = o(1), and so un → ũ in Er . From (3.18), we can also561

derive that562

Q[ũ] ≤ s0, 
μ(ũ) = mμ,563

which, together with Lemma 3.3, implies that Q[ũ] < s0. Therefore, we obtain that564

ũ ≥ 0 and 
′
μ(ũ) = 0. In view of the maximum principle, we have ũ > 0.565

Step 4. By Lemma 2.12 and Step 3, we have ũ ∈ Kμ ⊂ Mμ. Then it follows from566

Lemma 3.3 ii) that mμ = 
μ(ũ) ≥ infKμ

μ ≥ infMμ


μ ≥ mμ, which leads567

to 
μ(ũ) = infKμ

μ. Therefore, ũ is a ground state solution of (1.1) which is a568

minimizer of 
μ in the set As0 .569

Finally, we prove that any ground state solution to (1.1) is a minimizer of 
μ on570

As0 . let ū be any ground state solution of (1.1), i.e. ū ∈ Kμ and 
μ(ū) = infKμ

μ.571

Following the above arguments, we have infKμ

μ ≥ infMμ


μ ≥ mμ ≥ infKμ

μ.572

Hence, we obtain 
μ(ū) = mμ. By the proof of Lemma 3.3 (ii), we have Q[ū] < s0,573

and thus ū is a minimizer of 
μ on As0 . This completes the proof. ��574

To establish the existence of the second solution to (1.1), being of mountain-pass575

type. Using the positive ground state solution uμ ∈ Er through the above process as a576

123

Journal: 208 Article No.: 3143 TYPESET DISK LE CP Disp.:2025/3/20 Pages: 50 Layout: Small-Ex



un
co

rr
ec

te
d

pr
oo

f

S. Chen et al.

starting point, we will construct a new minimax structure: the mountain pass geometry,577

which reads as follows.578

Lemma 3.4 Let 18
7 < p < 3 and 0 < μ < μ0. Then there exists κμ > 0 such that579

Mμ := inf
γ∈�μ

max
t∈[0,1] 
μ(γ (t)) ≥ κμ > sup

γ∈�μ

max
{

μ(γ (0)),
μ(γ (1))

}
, (3.19)580

where581

�μ = {
γ ∈ C([0, 1], Er ): γ (0) = uμ,
μ(γ (1)) < 2mμ

}
(3.20)582

and uμ ∈ Er is the positive ground state solution of (1.1) obtained in (i) of Theorem583

1.1.584

Proof Setting κμ := infu∈∂(As0 ) 
μ(u), we have κμ > 0 due to (3.7). Let γ ∈ �μ be585

arbitrary. Since γ (0) = uμ ∈ As0 and 
μ(γ (1)) < 2mμ < mμ, it follows from (3.7)586

that γ (1) /∈ As0 . From the continuity of γ (t) on [0, 1], we derive that there exists a587

t0 ∈ (0, 1) such that γ (t0) ∈ ∂ As0 , and so maxt∈[0,1] 
μ(γ (t)) ≥ κμ. This shows that588

(3.19) holds. ��589

In view of the Mountain pass theorem and Lemma 3.4, we can derive the following590

lemma.591

Lemma 3.5 Let 18
7 < p < 3 and 0 < μ < μ0. Then there exists a sequence {un} ⊂ Er592

such that593


μ(un) → Mμ > 0, and 
′
μ(un) → 0. (3.21)594

To ensure that the above (PS) sequence lies within the range where the (PS) condi-595

tion holds, we will provide a precise estimate for Mμ, which is one of the key highlights596

of the present paper. Before proceeding, we will first introduce some necessary nota-597

tions and provide new integral estimates.598

In view of [10, Lemma 1.2] and [35, Theorem 1.4.2], we have599

(LαKα)
1

α+3 Sα = S := inf
u∈D1,2(R3)\{0}

‖∇u‖2
2

‖u‖2
6

=
(

3
√

3π2

4

) 2
3

. (3.22)600

As in [8], let us define functions Un(x) := �n(|x |), where601

�n(r) = 4
√

3

⎧⎪⎪⎨
⎪⎪⎩

√
n

1+n2r2 , 0 ≤ r < 1;√
n

1+n2 (2 − r), 1 ≤ r < 2;
0, r ≥ 2.

(3.23)602
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Using (1.2), (1.3), (1.18), (1.19), (3.22), (3.23) and detailed calculations, we can deduce603

‖∇Un‖2
2 =

∫
R3

|∇Un |2dx = 4π

∫ +∞
0

r2|�′
n(r)|2dr604

= 4
√

3π

[∫ 1

0

n5r4

(
1 + n2r2

)3 dr + n

1 + n2

∫ 2

1
r2dr

]
605

= 4
√

3π

[∫ n

0

s4

(
1 + s2

)3 ds + 7n

3(1 + n2)

]
606

= S
3
2 + 4

√
3π

[
−

∫ +∞
n

s4

(
1 + s2

)3 ds + 7n

3(1 + n2)

]
607

< S
3
2 + 28

√
3πn

3(1 + n2)
= (LαKα)

3
2(α+3) S

3
2
α + 28

√
3πn

3(1 + n2)
, (3.24)608

∫
R3

(
Iα ∗ |Un |α+3

)
|Un |α+3dx609

= Kα

∫
R3

∫
R3

|Un(x)|α+3|Un(y)|α+3

|x − y|3−α
dxdy610

≥ Kα

∫
B1

∫
B1

|Un(x)|α+3|Un(y)|α+3

|x − y|3−α
dxdy611

= 3
α+3

2 Kα

∫
R3

∫
R3

(
n

1+n2|x |2
) α+3

2
(

n
1+n2|y|2

) α+3
2

|x − y|3−α
dxdy612

− 2 · 3
α+3

2 Kα

∫
R3\B1

∫
B1

(
n

1+n2|x |2
) α+3

2
(

n
1+n2|y|2

) α+3
2

|x − y|3−α
dxdy613

− 3
α+3

2 Kα

∫
R3\B1

∫
R3\B1

(
n

1+n2|x |2
) α+3

2
(

n
1+n2|y|2

) α+3
2

|x − y|3−α
dxdy614

:= (LαKα)
3
2 S

α+3
2

α − 2D1 − D2, (3.25)615

D1 =
∫

R3\B1

∫
B1

(
n

1+n2|x |2
) α+3

2
(

n
1+n2|y|2

) α+3
2

|x − y|3−α
dxdy616

≤ Lα

[∫
R3\B1

(
n

1 + n2|x |2
)3

dx

] α+3
6

[∫
B1

(
n

1 + n2|y|2
)3

dy

] α+3
6

617

= Lα

[
4π

∫ +∞
1

n3r2

(
1 + n2r2

)3 dr

] α+3
6

[
4π

∫ 1

0

n3r2

(
1 + n2r2

)3 dr

] α+3
6

618

= Lα

[
16π2

∫ +∞
n

s2

(
1 + s2

)3 ds
∫ n

0

s2

(
1 + s2

)3 ds

] α+3
6

619

= O

(
1

n(α+3)/2

)
, n → ∞, (3.26)620
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D2 =
∫

R3\B1

∫
R3\B1

(
n

1+n2|x |2
) α+3

2
(

n
1+n2|y|2

) α+3
2

|x − y|3−α
dxdy621

≤ Lα

[∫
R3\B1

(
n

1 + n2|x |2
)3

dx

] α+3
6

[∫
R3\B1

(
n

1 + n2|y|2
)3

dy

] α+3
6

622

= Lα

[
4π

∫ +∞
1

n3r2

(
1 + n2r2

)3 dr

] α+3
6

[
4π

∫ +∞
1

n3r2

(
1 + n2r2

)3 dr

] α+3
6

623

= Lα

[
16π2

∫ +∞
n

s2

(
1 + s2

)3 ds
∫ +∞

n

s2

(
1 + s2

)3 ds

] α+3
6

624

= O

(
1

nα+3

)
, n → ∞, (3.27)625

‖Un‖q
q =

∫
R3

|Un |q dx = 4π

∫ +∞
0

r2|�N (r)|q dr626

= 4(
4√3)qπ

[∫ 1

0

nq/2r2

(
1 + n2r2

)q/2 dr +
(

n

1 + n2

)q/2 ∫ 2

1
r2(2 − r)q dr

]
627

= 4(
4√3)qπ

[
1

n(6−q)/2

∫ n

0

s2

(1 + s2)q/2 ds +
(

n

1 + n2

)q/2 ∫ 1

0
sq (2 − s)2ds

]
628

= 4(
4√3)qπ

[
1

n(6−q)/2

∫ n

0

s2ds

(1 + s2)q/2 + q2 + 7q + 14

(q + 1)(q + 2)(q + 3)

(
n

1 + n2

) q
2
]

(3.28)

629

and630

‖Un‖12/5
12/5 = 4(

4
√

3)12/5π

[
1

n9/5

∫ n

0

s2

(1 + s2)6/5
ds + 2285

5049

(
n

1 + n2

) 6
5
]

. (3.29)631

The combination of (2.8), (3.24) and (3.29) yields that Un ∈ Er for all n ∈ N. Using632

the above estimates, we will prove the following lemma.633

Lemma 3.6 Let 18
7 < p < 3 and 0 < μ < μ0. Then there holds:634

Mμ < mμ + α + 2

2(α + 3)
S

α+3
α+2
α . (3.30)635

Proof Let uμ ∈ Er be given in i) of Theorem 1.1. Then by (i) of Theorem 1.1, we636

have637


(uμ) = mμ, uμ ∈ Ls(R3), ∀ s ∈
(

18

7
, 6

]
, uμ(x) > 0, ∀ x ∈ R

3 (3.31)638
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and639

∫
R3

∇uμ · ∇Undx +
∫

R3

∫
R3

u2
μ(x)uμ(y)Un(y)

4π |x − y| dxdy640

= μ

∫
R3

|uμ|p−2uμUndx +
∫

R3

(
Iα ∗ |uμ|α+3

)
|uμ|α+1uμUndx . (3.32)641

By (2.8), (3.28), (3.29), (3.31), Lemma 2.8 with α = 2, q = 4 and the Hölder inequal-642

ity, we have643

∣∣∣∣
∫

R3

∫
R3

uμ(x)Un(x)uμ(y)Un(y)

4π |x − y| dxdy

∣∣∣∣ ≤ C‖uμUn‖2
6/5644

≤ C‖uμ‖2
3‖Un‖2

2 = O

(
1

n

)
, n → ∞,

(3.33)

645

∣∣∣∣∣
∫

R3

∫
R3

u2
μ(x)U 2

n (y)

4π |x − y| dxdy

∣∣∣∣∣ =
∣∣∣∣
∫

R3

(
I2 ∗ U 2

n

)
u2

μ(x)dx

∣∣∣∣646

≤
∥∥∥I2 ∗ U 2

n

∥∥∥
4
‖uμ‖2

8/3647

≤ C‖uμ‖2
8/3‖Un‖2

24/11648

= O

(
1

n

)
, n → ∞, (3.34)649

∣∣∣∣
∫

R3

∫
R3

uμ(x)Un(x)U 2
n (y)

4π |x − y| dxdy

∣∣∣∣ ≤ C‖uμUn‖6/5‖Un‖2
12/5650

≤ C‖uμ‖3‖Un‖2‖Un‖2
12/5651

= O

(
1

n
√

n

)
, n → ∞ (3.35)652

and653

∣∣∣∣
∫

R3

∫
R3

U 2
n (x)U 2

n (y)

4π |x − y| dxdy

∣∣∣∣ ≤ C‖Un‖4
12/5 = O

(
1

n2

)
, n → ∞. (3.36)654

Setting B := inf |x |≤1 uμ(x), we have B > 0. Then it follows from (3.23), (3.25),655

(3.26) and (3.27) that656

∫
R3

[
Iα ∗

(
|uμ||Un|α+2

)]
|Un|α+3dx657

= Kα

∫
R3

∫
R3

|Un(x)|α+3|uμ(y)||Un(y)|α+2

|x − y|3−α
dxdy658

≥ Kα

∫
B1

∫
B1

|Un(x)|α+3|uμ(y)||Un(y)|α+2

|x − y|3−α
dxdy659
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≥ Kα B
4
√

3
√

n

∫
B1

∫
B1

|Un(x)|α+3|Un(y)|α+3

|x − y|3−α
dxdy660

= B(LαKα)
3
2 S

α+3
2

α

4
√

3
√

n
− O

(
1

n(α+3)/2

)
, n → ∞. (3.37)661

To obtain the suitable testing function for the proof of (3.30), let us define a sequence662

of functions as follows:663

Wn,t (x) := uμ(x) + tUn(x). (3.38)664

It is easy to verify the following two inequalities665

(s + t)p ≥ s p + ps p−1t + t p, ∀ s, t ≥ 0 (3.39)666

and667

(s + t)α+3 ≥sα+3+(α + 3)sα+2t+(α + 3)stα+2 + tα+3, ∀ s, t ≥ 0. (3.40)668

From (3.33)–(3.36) and (3.40), we can derive that669

N [Wn,t ] =
∫

R3

∫
R3

[uμ(x) + tUn(x)]2[uμ(y) + tUn(y)]2

4π |x − y| dxdy670

= N [uμ] + t4N [Un] + 4t
∫

R3

∫
R3

u2
μ(x)uμ(y)Un(y)

4π |x − y| dxdy671

+ 4t2
∫

R3

∫
R3

uμ(x)Un(x)uμ(y)Un(y)

4π |x − y| dxdy672

+ 2t2
∫

R3

∫
R3

u2
μ(x)U 2

n (y)

4π |x − y| dxdy+4t3
∫

R3

∫
R3

uμ(x)Un(x)U 2
n (y)

4π |x − y| dxdy673

= N [uμ] + 4t
∫

R3

∫
R3

u2
μ(x)uμ(y)Un(y)

4π |x − y| dxdy674

+ t2
[

O

(
1

n

)]
+ t3

[
O

(
1

n
√

n

)]
+ t4

[
O

(
1

n2

)]
, n → ∞ (3.41)675

and676

∫
R3

(
Iα ∗ |Wn,t |α+3) |Wn,t |α+3dx677

=
∫

R3

(
Iα ∗ |uμ + tUn |α+3) |uμ + tUn |α+3dx678

≥
∫

R3

(
Iα ∗ [|uμ|α+3 + (α + 3)t |uμ|α+2Un + (α + 3)tα+2uμ|Un |α+2 + tα+3|Un |α+3])

679

× [|uμ|α+3 + (α + 3)t |uμ|α+2Un + (α + 3)tα+2uμ|Un |α+2 + tα+3|Un |α+3] dx680
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≥
∫

R3

(
Iα ∗ |uμ|α+3) |uμ|α+3dx + t2(α+3)

∫
R3

(
Iα ∗ |Un |α+3) |Un |α+3dx681

+ 2(α + 3)t
∫

R3

(
Iα ∗ |uμ|α+3) |uμ|α+2Undx682

+ 2(α + 3)t2α+5
∫

R3

[
Iα ∗ (|uμ||Un |α+2)] |Un |α+3dx . (3.42)683

From (1.13), (3.24)–(3.29), (3.31), (3.32), (3.37), (3.38), (3.39), (3.41) and (3.42), we684

have685


μ(Wn,t )686

= 1

2
‖∇Wn,t‖2

2 + 1

4
N [Wn,t ] − 1

2(α + 3)
687

×
∫

R3

(
Iα ∗ |Wn,t |α+3

)
|Wn,t |α+3dx − μ

p
‖Wn,t‖p

p688

≤ 1

2
‖∇uμ‖2

2 + 1

4
N [uμ] − 1

2(α + 3)

∫
R3

(
Iα ∗ |uμ|α+3

)
|uμ|α+3dx − μ

p
‖uμ‖p

p689

+ t2

2
‖∇Un‖2

2 − t2(α+3)

2(α + 3)

∫
R3

(
Iα ∗ |Un |α+3

)
|Un |α+3dx + t

∫
R3

∇uμ · ∇Undx690

+ t
∫

R3

∫
R3

u2
μ(x)uμ(y)Un(y)

4π |x − y| dxdy691

− t
∫

R3

(
Iα ∗ |uμ|α+3

)
|uμ|α+2Undx − μt

∫
R3

u p−1
μ Undx692

− t2α+5
∫

R3

[
Iα ∗

(
|uμ||Un |α+2

)]
|Un |α+3dx +

(
t2 + t4

) [
O

(
1

n

)]
693

= 
μ(uμ) + t2

2
‖∇Un‖2

2 − t2(α+3)

2(α + 3)

∫
R3

(
Iα ∗ |Un |α+3

)
|Un |α+3dx694

− t2α+5
∫

R3

(
Iα ∗ (|uμ||Un |α+2)

)
|Un |α+3dx +

(
t2 + t4

) [
O

(
1

n

)]
695

= mμ + t2

2
‖∇Un‖2

2 − t2(α+3)

2(α + 3)

∫
R3

(
Iα ∗ |Un |α+3

)
|Un |α+3dx696

− t2α+5
∫

R3

(
Iα ∗ (|uμ||Un |α+2)

)
|Un |α+3dx +

(
t2 + t4

) [
O

(
1

n

)]
697

< mμ + t2

2

[
(LαKα)

3
2(α+3) S

3
2
α + 28

√
3πn

3(1 + n2)

]
698

− t2(α+3)

2(α + 3)

[
(LαKα)

3
2 S

α+3
2

α − O

(
1

n(α+3)/2

)]
699

− B(LαKα)
3
2 S

α+3
2

α t2α+5

4√3
√

n
+ t2α+5

[
O

(
1

n(α+3)/2

)]
+

(
t2 + t4

) [
O

(
1

n

)]
700

< mμ +
[

t2

2
(LαKα)

3
2(α+3) − t2(α+3)

2(α + 3)
(LαKα)

3
2 S

α
2
α

]
S

3
2
α701
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− B(LαKα)
3
2 S

α+3
2

α t2α+5

4√3
√

n
+ t2(α+3)

[
O

(
1

n(α+3)/2

)]
+

(
t2 + t4

) [
O

(
1

n

)]

(3.43)

702

≤ mμ + α + 2

2(α + 3)
S

α+3
α+2
α − O

(
1√
n

)
, ∀ t > 0. (3.44)703

This shows that there exists n̄ ∈ N such that704

sup
t>0


μ(Wn̄,t ) < mμ + α + 2

2(α + 3)
S

α+3
α+2
α . (3.45)705

From (3.38) and (3.43), we derive that Wn̄,0 = uμ and 
μ(Wn̄,t ) < 2mμ for large706

t > 0. Thus, there exists t̄ > 0 such that707


μ(Wn̄,t̄ ) < 2mμ. (3.46)708

Let γn̄(t) := Wn̄,t t̄ . Then γn̄ ∈ �μ, where �μ is defined by (3.20). Hence, (3.30)709

follows from (3.19) and (3.45). ��710

Proof of (ii) in Theorem 1.1 In view of Lemmas 3.5 and 3.6, there exists {un} ⊂ Er711

such that712


μ(un) → Mμ ∈
(

0, mμ + α + 2

2(α + 3)
S

α+3
α+2
α

)
, 
′

μ(un) → 0. (3.47)713

By (1.13), (2.1) and (3.47), we have714

Mμ + o(1) = 1

2
‖∇un‖2

2 + 1

4
N [un] − 1

2(α + 3)
715

∫
R3

(
Iα ∗ |un|α+3

)
|un|α+3dx − μ

p
‖un‖p

p (3.48)716

and717

o(1)‖un‖E = ‖∇un‖2
2 + N [un] −

∫
R3

(
Iα ∗ |un|α+3

)
|un|α+3dx − μ‖un‖p

p.718

(3.49)719

Combining (2.3), (3.48) and (3.49), we obtain720

Mμ + o(1)‖un‖E = α + 2

2(α + 3)
‖∇un‖2

2 + α + 1

4(α + 3)
N [un] − (2α + 6 − p)μ

2p(α + 3)
‖un‖p

p721

≥ α + 1

2(α + 3)
Q[un] − (2α + 6 − p)μCp

2p(α + 3)
(Q[un]) 2p−3

3 , (3.50)722
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which, together with 18
7 < p < 3, shows that {Q[un]} is bounded, and so {‖un‖E }723

is bounded. Then by Lemma 2.2, we may thus assume, passing to a subsequence if724

necessary, that725

⎧⎨
⎩

un⇀ū, in Er ;
un → ū, in Ls(R3), ∀ s ∈ ( 18

7 , 6
) ;

un → ū, a.e. on R
3.

(3.51)726

Now, we claim that ū 
= 0. Otherwise, we assume that ū = 0. Then ‖un‖p
p → 0, and727

so (3.49), together with supn∈N ‖un‖E < ∞, implies that728

o(1) = ‖∇un‖2
2 + N [un] −

∫
R3

(
Iα ∗ |un|α+3

)
|un|α+3dx . (3.52)729

Up to a subsequence, we assume that730

‖∇un‖2
2 → l̂1 ≥ 0,

∫
R3

(
Iα ∗ |un|α+3

)
|un|α+3dx → l̂2 ≥ 0. (3.53)731

From (1.16), (3.52) and (3.53), we obtain732

l̂2 = lim
n→∞

∫
R3

(
Iα ∗ |un|α+3

)
|un|α+3dx733

≤ S−(α+3)
α lim

n→∞ ‖∇un‖2(α+3)
2 = S−(α+3)

α l̂α+3
1 ≤ S−(α+3)

α l̂α+3
2 . (3.54)734

We next derive a contradiction by distinguishing the two cases: l̂2 > 0 and l̂2 = 0. If735

l̂2 > 0, then (3.54) implies that l̂2 ≥ S
α+3
α+2
α and l̂1 ≥ S

α+3
α+2
α . This, together with (3.48)736

and (3.52), implies that737

Mμ + o(1) = 1

2
‖∇un‖2

2 + 1

4
N [un]738

− 1

2(α + 3)

∫
R3

(
Iα ∗ |un|α+3

)
|un|α+3dx − μ

p
‖un‖p

p739

= α + 2

2(α + 3)
‖∇un‖2

2 + α + 1

4(α + 3)
N [un] + o(1)740

≥ α + 2

2(α + 3)
S

α+3
α+2
α + o(1).741

This contradicts with (3.47) due to mμ < 0. If l̂2 = 0, then (3.52) implies that742

‖∇un‖2
2 + N [un] → 0. This, together with (3.48) and (3.52), implies that743

Mμ + o(1) = 1

2
‖∇un‖2

2 + 1

4
N [un] − 1

2(α + 3)

∫
R3

(
Iα ∗ |un|α+3

)
|un|α+3dx744

− μ

p
‖un‖p

p = o(1).745
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This contradicts with (3.47). The above argument shows that ū 
= 0. By Lemmas 2.6,746

2.11 and a standard argument, we have 
′
μ(ū) = 0. Hence, Lemmas 2.12 and 3.3747

show that 
(ū) ≥ mμ.748

Finally, we prove that ‖un − ū‖E → 0. Let vn := un − ū. Then vn⇀0 in Er749

and vn → 0 in Ls(R3) for all s ∈ ( 18
7 , 6

)
. Using (3.51), the Brezis–Lieb lemma and750

Lemma 2.10, we have751

⎧⎪⎪⎨
⎪⎪⎩

‖∇un‖2
2 + o(1) = ‖∇ū‖2

2 + ‖∇vn‖2
2 + o(1);

‖vn‖p
p = ‖un‖p

p − ‖ū‖p
p + o(1) = o(1);∫

R3

(
Iα ∗ |vn|α+3

) |vn|α+3dx
= ∫

R3

(
Iα ∗ |un|α+3

) |un|α+3dx − ∫
R3

(
Iα ∗ |ū|α+3

) |ū|α+3dx + o(1).

(3.55)752

From (2.10) and Lemma 2.6, we deduce753

∫
R3

∫
R3

u2
n(x)un(y)vn(y)

4π |x − y| dxdy = D(u2
n, unvn)754

= D(v2
n, v2

n) + 2D(ūun, v2
n) − D(ū2, v2

n) + D(u2
n, ūvn) + o(1)755

= N [vn] + o(1). (3.56)756

It follows from (1.13), (3.47), (3.51), (3.55), (3.56) and Lemma 2.11 that757

o(1) = 〈
′
μ(un), vn〉758

=
∫

R3
∇un · ∇vndx +

∫
R3

∫
R3

u2
n(x)un(y)vn(y)

4π |x − y| dxdy759

− μ

∫
R3

|un|p−2unvndx −
∫

R3

(
Iα ∗ |un|α+3

)
|un|α+1unvndx760

= ‖∇vn‖2
2 + N [vn] −

∫
R3

(
Iα ∗ |vn|α+3

)
|vn|α+3dx + o(1). (3.57)761

Up to a subsequence, we assume that762

‖∇vn‖2
2 → l̃1 ≥ 0,

∫
R3

(
Iα ∗ |vn|α+3

)
|vn|α+3dx → l̃2 ≥ 0. (3.58)763

From (1.16) and (3.57), we obtain764

l̃2 = lim
n→∞

∫
R3

(
Iα ∗ |vn|α+3

)
|vn|α+3dx765

≤ S−(α+3)
α lim

n→∞ ‖∇vn‖2(α+3)
2 = S−(α+3)

α l̃α+3
1 ≤ S−(α+3)

α l̃α+3
2 . (3.59)766

If l̃2 > 0, then (3.59) yields that l̃2 ≥ S
α+3
α+2
α and l̃1 ≥ S

α+3
α+2
α . This, together with (1.13),767

(3.48), (3.55) and (3.57), implies that768
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Mμ + o(1) = 1

2
‖∇un‖2

2 + 1

4
N [un]769

− 1

2(α + 3)

∫
R3

(
Iα ∗ |un|α+3

)
|un|α+3dx − μ

p
‖un‖p

p770

= 1

2
‖∇vn‖2

2 + 1

4
N [vn]771

− 1

2(α + 3)

∫
R3

(
Iα ∗ |vn|α+3

)
|vn|α+3dx + 
μ(ū) + o(1)772

= α + 2

2(α + 3)
‖∇un‖2

2 + α + 1

4(α + 3)
N [un] + 
μ(ū) + o(1)773

≥ α + 2

2(α + 3)
S

α+3
α+2
α + mμ + o(1).774

Thus, l̃2 = 0. It follows from (3.57) that ‖un − ū‖E → 0. Using (1.13), (3.48) and775

(3.55), it is easy to deduce that776


μ(ū) = Mμ, 
′
μ(ū) = 0.777

��778

4 Case p = 3779

In this section, based on the Lagrange multipliers theorem, we establish the existence780

of solutions to (1.29) by looking for critical points of the following C1-functional:781

I (u) = 1

2
‖∇u‖2

2 + 1

4
N [u], ∀ u ∈ Er (4.1)782

constrained on M̃μ, and complete the proof of Theorem 1.2. Here, N [u] and M̃μ783

are given by (2.1) and (1.31), respectively. For this, we will deal with the minimizing784

problem: m̃μ = infu∈M̃μ
I (u), and find the specific condition μ > μ∗ to prove the785

attainability of m̃μ.786

We now begin by the following lemma.787

Lemma 4.1 Assume that μ > 0. Then788

m̃μ = inf
u∈M̃μ

I (u) > 0. (4.2)789

Proof By (1.31), one has790

μ

3
‖u‖3

3 + 1

2(α + 3)

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx = 1, ∀ u ∈ M̃μ. (4.3)791
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Hence, it follows from (1.16), (2.4), (4.1) and (4.3) that792

I (u) = 1

2
‖∇u‖2

2 + 1

4
N [u]793

≥ Sα

4

[∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx

] 1
α+3 + 1

2
‖u‖3

3794

≥ [2(α + 3)] 1
α+3 Sα

4

[
1

2(α + 3)

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx

]
+ 1

2
‖u‖3

3795

≥ min

{
[2(α + 3)] 1

α+3 Sα

4
,

3

2μ

}
796

×
(

μ

3
‖u‖3

3 + 1

2(α + 3)

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx

)
797

= min

{
[2(α + 3)] 1

α+3 Sα

4
,

3

2μ

}
, ∀ u ∈ M̃μ.798

This shows that (4.2) holds. ��799

We will proceed from the minimizing sequence of m̃μ to prove that m̃μ is attained.800

In order to overcome the lack of compactness caused by the upper critical exponent,801

we need to make precise estimates on m̃μ to ensure that it is less than the compactness802

threshold. To this end, for any fixed κ > 0, we consider the following function:803

w(x) := κe−|x |, ∀ x ∈ R
3. (4.4)804

Straightforward calculations yield that w ∈ H1(R3), moreover,805

‖∇w‖2
2 =

∫
R3

|∇w|2dx = 4πκ2
∫ +∞

0
r2e−2r dr = πκ2, (4.5)806

807

‖w‖s
s =

∫
R3

|w|sdx = 4πκs
∫ +∞

0
r2e−sr dr = 8πκs

s3 , ∀ s ∈ [2, 6] (4.6)808

and809

‖w‖4
12/5 =

(∫
R3

|w|12/5dx

) 5
3 =

[
8πκ

12
5

(
5

12

)3
] 5

3

=
(

5

6

)5

π
3
√

π2κ4. (4.7)810

By (1.16), (1.17) and (4.5), we have811

Sα ≤ ‖∇w‖2
2[∫

R3

(
Iα ∗ |w|α+3

) |w|α+3dx
] 1

α+3

= π

T
1

α+3
α

. (4.8)812
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Setting813

κ1 =
[

16π(α + 3)

81

(Sα

4

)α+3

μ

] 1
2α+3

[
1 −

(Sα

4

)α+3

Tα

]− 1
2α+3

, (4.9)814

then (4.8) leads to κ1 > 0. By means of the function w(x) with κ = κ1, we obtain the815

sharp estimate of m̃μ in the following lemma.816

Lemma 4.2 Assume that μ > μ∗. Then817

m̃μ <
[2(α + 3)] 1

α+3

2
Sα. (4.10)818

Proof By (2.8) and (4.7), we have819

N [w] =
∫

R3

∫
R3

w2(x)w2(y)

4π |x − y| dxdx ≤ 2 3
√

2

3π 3
√

π
‖w‖4

12/5 = 2 3
√

2π

3

(
5

6

)5

κ4
1 .820

(4.11)821

Using (4.6), we can choose t0 > 0 such that822

t
3(α+3)
2α+3

0 :=
[
μ

3
‖w‖3

3 + 1

2(α + 3)

∫
R3

(
Iα ∗ |w|α+3

)
|w|α+3dx

]−1

823

=
[

162(α + 3)

16π(α + 3)μ + 81Tακ2α+3
1

]
κ−3

1 . (4.12)824

By (4.9), one has825

81κ2α+3
1 =

[
16π(α + 3)μ + 81Tακ2α+3

1

](Sα

4

)α+3

. (4.13)826

Setting w̃(x) = t
−α

2α+3
0 w(x/t0), we have w̃ ∈ M̃μ due to (4.12). Then it follows from827

(1.32), (4.5), (4.9), (4.11), (4.12) and (4.13), that828

I (w̃) = 1

2
‖∇w̃‖2

2 + 1

4
N [w̃]829

= 1

2
‖∇w‖2

2t
3

2α+3
0 + 1

4
N [w]t

3(2α+5)
2α+3

0830

≤ πκ2
1

2
t

3
2α+3

0 +
3
√

2π

6

(
5

6

)5

κ4
1 t

3(2α+5)
2α+3

0831

=
⎡
⎣π

2
+ 55 3

√
2π

66

[
162(α + 3)κ2α+3

1

16π(α + 3)μ + 81Tακ2α+3

] 2(α+2)
α+3

κ
−2(2α+3)
1

⎤
⎦832
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×
[

162(α + 3)κ2α+3
1

16π(α + 3)μ + 81Tακ2α+3
1

] 1
α+3

833

= [2(α + 3)] 1
α+3

4
Sα

⎧⎨
⎩

π

2
+ 28125 3

√
2π [2(α + 3)] −2

α+3

256π2μ2S2
α

[
1 −

(Sα

4

)α+3

Tα

]2
⎫⎬
⎭834

<
[2(α + 3)] 1

α+3

2
Sα, ∀ μ > μ∗. (4.14)835

This, together with (4.2), shows that (4.10) holds. ��836

Next, we prove that m̃μ can be attained.837

Lemma 4.3 Assume that the conditions in Theorem 1.2 hold. Then there exists ū ∈ M̃μ838

such that I (ū) = m̃μ.839

Proof Let {un} ⊂ M̃μ be such that I (un) → m̃μ. Since G(un) = 1, then it follows840

from (1.31) and (4.1) that841

m̃μ + o(1) = I (un) = 1

2
‖∇un‖2

2 + 1

4
N [un] (4.15)842

and843

G(un) = μ

3
‖un‖3

3 + 1

2(α + 3)

∫
R3

(
Iα ∗ |un|α+3

)
|un|α+3dx = 1. (4.16)844

(4.15) shows that {un} is bounded in Er . Therefore, from Lemma 2.2, there exists845

ū ∈ Er such that, passing to a subsequence,846

⎧⎨
⎩

un⇀ū, in Er ;
un → ū, in Ls(R3), ∀ s ∈ ( 18

7 , 6
) ;

un → ū, a.e. on R
3.

(4.17)847

We claim that ū 
= 0. Indeed, suppose that ū = 0. Then by (4.16) and (4.17), we have848

∫
R3

(
Iα ∗ |un|α+3

)
|un|α+3dx → 2(α + 3). (4.18)849

Then it follows from (1.16), (4.15) and (4.18) that850

m̃μ = lim
n→∞

(
1

2
‖∇un‖2

2 + 1

4
N [un]

)
≥ 1

2
lim inf
n→∞ ‖∇un‖2

2851

≥ [2(α + 3)] 1
α+3

2
lim inf
n→∞

‖∇un‖2
2[∫

R3

(
Iα ∗ |un|α+3

) |un|α+3dx
] 1

α+3

852
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≥ [2(α + 3)] 1
α+3

2
Sα,853

which contradicts with (4.10). Therefore, ū 
= 0.854

Let wn = un − ū. Up to a subsequence, we assume that855

lim
n→∞

∫
R3

(
Iα ∗ |wn|α+3

)
|wn|α+3dx := Aα+3. (4.19)856

By (4.15), (4.16), (4.17), the Brezis–Lieb lemma, Lemmas 2.7 and 2.10, we have857

m̃μ = lim
n→∞ I (un) = I (ū) + lim

n→∞ I (wn) (4.20)858

and859

1 = G(ū) + lim
n→∞ G(wn)860

= G(ū) + 1

2(α + 3)
lim

n→∞

∫
R3

(
Iα ∗ |wn|α+3

)
|wn|α+3dx861

= G(ū) + Aα+3

2(α + 3)
. (4.21)862

To derive the conclusion of Lemma 4.3, we distinguish two cases on A as follows.863

Case (1). A > 0. Using (4.21), we can choose tn, t̄ ∈ [1,+∞) such that864

μt3
n

3
‖wn‖3

3 + t3(α+3)
n

2(α + 3)

∫
R3

(
Iα ∗ |wn|α+3

)
|wn|α+3dx = 1 (4.22)865

and866

μt̄3

3
‖ū‖3

3 + t̄3(α+3)

2(α + 3)

∫
R3

(
Iα ∗ |ū|α+3

)
|ū|α+3dx = 1. (4.23)867

Then it follows from (1.31), (4.17), (4.19), (4.22) and (4.23) that868

lim
n→∞ t3(α+3)

n = 2(α + 3)

Aα+3 , (4.24)869

870

G(t2
n (wn)tn ) = G(t̄2ūt̄ ) = 1 (4.25)871

and872

1 = μt̄3

3
‖ū‖3

3 + t̄3(α+3)

2(α + 3)

∫
R3

(
Iα ∗ |ū|α+3

)
|ū|α+3dx ≥ t̄3G(ū). (4.26)873
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Combining (4.2), (4.20), (4.21), (4.24), (4.25) and (4.26), we have874

m̃μ − I (ū) = lim
n→∞ I (wn) = lim

n→∞
[
t−3
n I

(
t2
n (wn)tn

)]
875

≥ A

[2(α + 3)] 1
α+3

m̃μ = [1 − G(ū)] 1
α+3 m̃μ (4.27)876

and877

m̃μ ≤ I (t̄2ūt̄ ) = t̄3 I (ū) ≤ I (ū)

G(ū)
. (4.28)878

From (4.27) and (4.28), we derive879

G(ū) ≤ I (ū)

m̃μ

≤ 1 − [1 − G(ū)] 1
α+3 , (4.29)880

which yields that881

G(ū) + [1 − G(ū)] 1
α+3 ≤ 1.882

This shows that G(ū) = 1, and so (4.21) implies that A = 0, a contradiction.883

Case (2). A = 0. Then (4.21) yields that884

1 = G(ū) + lim
n→∞ G(wn) = G(ū). (4.30)885

By (4.2), (4.20) and (4.30), we have886

m̃μ = lim
n→∞ I (un) = I (ū) + lim

n→∞ I (wn) ≥ m̃μ + lim
n→∞ I (wn), (4.31)887

which implies that un → ū in Er , and so G(ū) = 1 and I (ū) = m̃μ. ��888

Proof of Theorem 1.2 From Lemma 4.3, we know that ū is a radially symmetric non-889

negative minimizer of I constrained on M̃μ. By Lagrange Multipliers theorem there890

exists a multiplier λ̄ > 0 such that ū satisfies the following equation891

− �ū +
(

1

4π |x | ∗ ū2
)

ū = λ̄
[
μ|ū|ū +

(
Iα ∗ |ū|α+3

)
|ū|α+1ū

]
, x ∈ R

3.892

(4.32)893

Let ũ(x) := λ̄
2

3(α+2) ū
(
λ̄

1
3(α+2) x

)
, then ũ satisfies the following equation894

− �ũ +
(

1

4π |x | ∗ ũ2
)

ũ = λμμ|ũ|ũ +
(

Iα ∗ |ũ|α+3
)

|ũ|α+1ũ, x ∈ R
3.895

(4.33)896
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Static solutions for Choquard equations with Coulomb potential…

Here, λμ depends on μ. The proof is completed. ��897

5 Case 3 < p < 6898

In this section, working on the whole space E instead of Er used in the previous two899

sections, we establish the existence of ground state solutions to (1.1) with 3 < p < 6,900

and provide the proof of Theorem 1.4. We will first show that 
μ is bounded from901

below on Mμ. By distinguishing the three subcases: p ∈ (4, 6), p = 4, and p ∈902

(3, 4), we will control the minimum infu∈Mμ

μ(u) from above by the compactness903

threshold. We will then prove that the minimum infu∈Mμ

μ(u) is achieved, and904

moreover, the minimizer is a critical point of 
μ, where Mμ is defined by (1.21).905

To do the first step, let us consider two functions as follows:906

g(t) := 2(p − 3) − (2p − 3)t3 + 3t2p−3

3p
, t > 0 (5.1)907

and908

h(t) := α + 2 − (α + 3)t3 + t3(α+3)

2(α + 3)
, t > 0. (5.2)909

A simple computation can lead to the following lemma.910

Lemma 5.1 Assume that p ∈ (3, 6) and μ > 0. Then g(t) > g(1) = 0 and h(t) >911

h(1) = 0 for all t ∈ (0, 1) ∪ (1,+∞).912

Lemma 5.2 Assume that p ∈ (3, 6) and μ > 0. Then913


μ(u) ≥ 
μ

(
t2ut

)
+ 1 − t3

3
Jμ(u) + α + 2 − (α + 3)t3 + t3(α+3)

2(α + 3)
914

×
∫

R3

(
Iα ∗ |u|α+3

)
|u|α+3dx, ∀ u ∈ E, t ≥ 0.

(5.3)

915

Proof Note that916


μ

(
t2ut

)
= t3

2
‖∇u‖2

2 + t3

4
N [u] − μt2p−3

p
‖u‖p

p917

− t3(α+3)

2(α + 3)

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx . (5.4)918

Then by (1.13), (1.20), (5.1) and (5.4), we have919


μ(u) − 
μ

(
t2ut

)
= 1 − t3

2
‖∇u‖2

2 + 1 − t3

4
N [u] + μ(t2p−3 − 1)

p
‖u‖p

p920
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+ t3(α+3) − 1

2(α + 3)

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx921

= 1 − t3

3
Jμ(u) + μg(t)‖u‖p

p922

+ h(t)
∫

R3

(
Iα ∗ |u|α+3

)
|u|α+3dx .923

This, together with Lemma 5.1, shows that (5.3) holds. ��924

From Lemma 5.2, we have the following corollary.925

Corollary 5.3 Assume that p ∈ (3, 6) and μ > 0. Then for u ∈ Mμ,926


μ(u) = max
t≥0


μ(t2ut ). (5.5)927

Lemma 5.4 Assume that p ∈ (3, 6) and μ > 0. Then for any u ∈ E\{0}, there exists928

a unique tu > 0 such that t2
u utu ∈ Mμ.929

Proof Let u ∈ E\{0} be fixed and define a function ζ(t) := 
μ(t2ut ) on [0,∞).930

Clearly, by (5.4), we have931

ζ ′(t) = 0 ⇔ 3t3

2
‖∇u‖2

2 + 3t3

4
N [u] − (2p − 3)μt2p−3

p
‖u‖p

p932

− 3t3(α+3)

2

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx = 0933

⇔ Jμ(t2ut ) = 0 ⇔ t2ut ∈ Mμ.934

It is easy to verify that ζ(0) = 0, ζ(t) > 0 for t > 0 small and ζ(t) < 0 for t935

large. Therefore maxt∈[0,∞) ζ(t) is achieved at a t0 = tu > 0 so that ζ ′(t0) = 0 and936

t2
0 ut0 ∈ Mμ.937

Next we claim that tu is unique for any u ∈ E\{0}. In fact, for any given u ∈ E\{0},938

let t1, t2 > 0 such that ζ ′(t1) = ζ ′(t2) = 0. Then Jμ(t2
1 ut1) = Jμ(t2

2 ut2) = 0. Jointly939

with (5.3), we have940


μ

(
t2
1 ut1

)
≥ 
μ

(
t2
2 ut2

)
+ t3

1 − t3
2

3t3
1

Jμ

(
t2
1 ut1

)
941

+ (α + 2)t3(α+3)
1 − (α + 3)t3(α+2)

1 t3
2 + t3(α+3)

2

2(α + 3)t3(α+3)
1

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx942

= 
μ

(
t2
2 ut2

)
943

+ (α + 2)t3(α+3)
1 − (α + 3)t3(α+2)

1 t3
2 + t3(α+3)

2

2(α + 3)t3(α+3)
1

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx944
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and945


μ

(
t2
2 ut2

)
≥ 
μ

(
t2
1 ut1

)
+ t3

2 − t3
1

3t3
2

Jμ

(
t2
2 ut2

)
946

+ (α + 2)t3(α+3)
2 − (α + 3)t3

1 t3(α+2)
2 + t3(α+3)

1

2(α + 3)t3(α+3)
2

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx947

= 
μ

(
t2
1 ut1

)
948

+ (α + 2)t3(α+3)
2 − (α + 3)t3

1 t3(α+2)
2 + t3(α+3)

1

2(α + 3)t3(α+3)
2

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx .949

The combination of the above two inequalities implies that t1 = t2. Therefore, tu > 0950

is unique for any u ∈ E\{0}. ��951

From Corollary 5.3 and Lemma 5.4, we can obtain the following lemma.952

Lemma 5.5 Assume that p ∈ (3, 6) and μ > 0. Then953

inf
u∈Mμ


μ(u) := m̂μ = inf
u∈E\{0} max

t≥0

μ(t2ut ).954

Lemma 5.6 Assume that p ∈ (3, 6) and μ > 0. Then955

(i) there exists ρ0 > 0 such that ‖∇u‖2
2 ≥ ρ0, ∀ u ∈ Mμ;956

(ii) m̂μ = infu∈Mμ

μ(u) > 0.957

Proof Since Jμ(u) = 0, ∀u ∈ Mμ, by (1.16), (1.20), (2.4), the Sobolev inequality958

and the Young inequality, it has959

3

4
‖∇u‖2

2 + 3

2
‖u‖3

3 ≤ 3

2
‖∇u‖2

2 + 3

4
N [u]960

= (2p − 3)μ

p
‖u‖p

p + 3

2

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx961

≤ 3

2
‖u‖3

3 + C1‖u‖6
6 + 3

2

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx962

≤ 3

2
‖u‖3

3 + C2‖∇u‖6
2 + 3

2Sα+3
α

‖∇u‖2(α+3)
2 , (5.6)963

where C1 and C2 are positive constants. This implies there exists ρ0 > 0 such that964

‖∇u‖2
2 ≥ ρ0, ∀ u ∈ Mμ. (5.7)965

From (1.13), (1.20) and (5.7), we have966


μ(u) = 
μ(u) − 1

2p − 3
Jμ(u)967
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= p − 3

2p − 3
‖∇u‖2

2 + p − 3

2(2p − 3)
N [u]968

+ 3α + 2(6 − p)

2(2p − 3)(α + 3)

∫
R3

(
Iα ∗ |u|α+3

)
|u|α+3dx969

≥ p − 3

2p − 3
‖∇u‖2

2970

≥ p − 3

2p − 3
ρ0, ∀ u ∈ Mμ.971

This shows that m̂μ = infu∈Mμ

μ(u) > 0. ��972

Next, by distinguishing the three cases: p ∈ (4, 6), p = 4 and p ∈ (3, 4), we could973

find the specific conditions on μ to obtain the sharp estimate of m̂μ. The following974

lemma deals with the first two cases.975

Lemma 5.7 Assume that condition (i) or (ii) in Theorem 1.4 holds. Then there exists976

a positive integer n̂ such that977

m̂μ ≤ sup
t>0


μ

(
t2(Un̂)t

)
<

α + 2

2(α + 3)
S

α+3
α+2
α , (5.8)978

where the function Un(x) = �n(|x |) and �n(r) is defined by (3.23).979

Proof By (2.8), (3.24), (3.25), (3.28), (3.29) and (5.4), we have980


μ

(
t2(Un)t

)
981

= t3

2
‖∇Un‖2

2 + t3

4
N [Un] − μt2p−3

p
‖Un‖p

p982

− t3(α+3)

2(α + 3)

∫
R3

(
Iα ∗ |Un|α+3

)
|Un|α+3dx983

<
t3

2

[
(LαKα)

3
2(α+3) S

3
2
α + 28

√
3πn

3(1 + n2)

]
984

+ 4 3
√

4π t3

[
1

n9/5

∫ n

0

s2

(1 + s2)6/5
ds + 2285

5049

(
n

1 + n2

) 6
5
] 5

3

985

− 4(
4
√

3)pπμt2p−3

pn(6−p)/2

∫ n

0

s2

(1 + s2)p/2 ds986

− t3(α+3)

2(α + 3)

[
(LαKα)

3
2 S

α+3
2

α − O

(
1

n(α+3)/2

)]
987

<

[
t3

2
(LαKα)

3
2(α+3) − t3(α+3)

2(α + 3)
(LαKα)

3
2 S

α
2
α

]
S

3
2
α988

+ 29
√

3π

6n
t3 +

[
O

(
1

n(α+3)/2

)]
t3(α+3)

989
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− 4(
4
√

3)pπμt2p−3

pn(6−p)/2

∫ n

0

s2

(1 + s2)p/2 ds, ∀ n ≥ 100. (5.9)990

Under condition (i) or (ii) of Theorem 1.4, we distinguish the following three cases991

on t .992

Case 1. t ∈
[
(α + 3)

1
3(α+2) (LαKα)

−1
2(α+3) S

− α
6(α+2)

α ,+∞
)

, p ∈ (3, 6) and μ > 0. It993

follows from (5.9) that994


μ

(
t2(Un)t

)
<

[
t3

2
(LαKα)

3
2(α+3) − t3(α+3)

2(α + 3)
(LαKα)

3
2 S

α
2
α

]
S

3
2
α995

+ 29
√

3π

6n
t3 +

[
O

(
1

n(α+3)/2

)]
t3(α+3)

996

≤ O

(
1

n

)
, n → ∞. (5.10)997

Case 2. t ∈
(

0, (α + 3)
1

3(α+2) (LαKα)
−1

2(α+3) S
− α

6(α+2)
α

)
, p ∈ (4, 6) and μ > 0. It998

follows from (5.9) that999


μ

(
t2(Un)t

)
<

[
t3

2
(LαKα)

3
2(α+3) − t3(α+3)

2(α + 3)
(LαKα)

3
2 S

α
2
α

]
S

3
2
α1000

+ O

(
1

n

)
− C1μ

n(6−p)/2
t3(α+3)

1001

≤ α + 2

2(α + 3)
S

α+3
α+2
α − C2μ

n(6−p)/2
, n → ∞, (5.11)1002

where C1, C2 > 0.1003

Case 3. t ∈
(

0, (α + 3)
1

3(α+2) (LαKα)
−1

2(α+3) S
− α

6(α+2)
α

)
, p = 4 andμ > 7

√
3

π
(LαKα)

1
α+31004

S
α

3(α+2)
α . It follows from (5.9) that1005


μ

(
t2(Un)t

)
<

[
t3

2
(LαKα)

3
2(α+3) − t3(α+3)

2(α + 3)
(LαKα)

3
2 S

α
2
α

]
S

3
2
α1006

+ 5
√

3π t3

n
− 3πμt5

n

∫ n

0

s2

(1 + s2)2 ds1007

=
[

t3

2
(LαKα)

3
2(α+3) − t3(α+3)

2(α + 3)
(LαKα)

3
2 S

α
2
α

]
S

3
2
α1008

+ 5
√

3π

n
t3 − 3π2μ

4n
t5 + O

(
1

n2

)
1009
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≤ α + 2

2(α + 3)
S

α+3
α+2
α − O

(
1

n

)
, n → ∞. (5.12)1010

Cases 1–3 imply that there exists a positive integer n̂ > 100 such that (5.8) holds. ��1011

The following lemma deals with the case p ∈ (3, 4). Setting1012

κ2
2 := 3

3
√

2π

(
6

5

)5 ( Tα

2α+2

) 1
α+3

Sα, (5.13)1013

we consider the function w(x) with κ = κ2, where the constant Tα and the function1014

w(x) are defined by (1.17) and (4.4), respectively. With this, we establish the following1015

sharp estimate of m̂μ.1016

Lemma 5.8 Assume that condition (iii) in Theorem 1.4 holds. Then1017

m̂μ ≤ sup
t>0


μ

(
t2wt

)
<

α + 2

2(α + 3)
S

α+3
α+2
α . (5.14)1018

Proof From (1.17), (1.33), (2.8), (4.5), (4.6), (4.11) by utilizing κ2 instead of κ1, (5.13)1019

and condition (iii) in Theorem 1.4, we have1020


μ(t2wt ) = t3

2
‖∇w‖2

2 + t3

4
N [w] − μt2p−3

p
‖w‖p

p1021

− t3(α+3)

2(α + 3)

∫
R3

(
Iα ∗ |w|α+3

)
|w|α+3dx1022

≤ πκ2
2 t3

2
+

3√2π t3

6

(
5

6

)5
κ4

2 − 8πκ
p
2 μt2p−3

p4 − Tακ
2(α+3)
2 t3(α+3)

2(α + 3)
1023

= πκ2
2

[
t3

2
− 8κ

p−2
2 μt2p−3

p4

]
+ κ4

2
2

[
3√2π t3

3

(
5

6

)5
− Tακ

2(α+1)
2 t3(α+3)

α + 3

]
1024

≤ (p − 3)π

2p − 3
κ

p−6
2(p−3)

2

[
3p4

16(2p − 3)μ

] 3
2(p−3)

1025

+ α + 2

2(α + 3)

[
3√2π

3

(
5

6

)5
κ2

2

] α+3
α+2

T − 1
α+2

α1026

= (p − 3)π

2p − 3
κ

p−6
2(p−3)

2

[
3p4

16(2p − 3)μ

] 3
2(p−3)

+ α + 2

4(α + 3)
S

α+3
α+2
α1027

<
α + 2

2(α + 3)
S

α+3
α+2
α . (5.15)1028

This shows that (5.14) holds. ��1029

In view of the Brezis–Lieb lemma, Lemmas 2.7 and 2.10, one can easily prove the1030

following lemma.1031
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Lemma 5.9 Assume that p ∈ (3, 6) and μ > 0. If un⇀ū in E, then1032


μ(un) = 
μ(ū) + 
μ(un − ū) + o(1), (5.16)1033

1034

〈
′(un), un〉 = 〈
′(ū), ū〉 + 〈
′(un − ū), un − ū〉 + o(1) (5.17)1035

and1036

Jμ(un) = Jμ(ū) + Jμ(un − ū) + o(1). (5.18)1037

Following the idea of [33], we prove the attainable of m̂μ, which reads as follows.1038

Lemma 5.10 Assume that the conditions in Theorem 1.4 hold. Then m̂μ is achieved.1039

Proof Let {un} ⊂ Mμ be such that 
μ(un) → m̂μ. Since Jμ(un) = 0, then it1040

follows from (1.13) and (1.20) that1041

m̂μ + o(1) = 2(p − 3)μ

3p
‖un‖p

p + α + 2

2(α + 3)

∫
R3

(
Iα ∗ |un|α+3

)
|un|α+3dx1042

(5.19)1043

and1044

m̂μ + o(1) = α + 2

2(α + 3)
‖∇un‖2

2 + α + 2

4(α + 3)
N [un] − [3(α + 4) − 2p]μ

3p(α + 3)
‖un‖p

p.1045

(5.20)1046

By (1.20) and Jμ(un) = 0, we have1047

3

2
‖∇un‖2

2 + 3

4
N [un] = (2p − 3)μ

p
‖un‖p

p + 3

2

∫
R3

(
Iα ∗ |un|α+3

)
|un|α+3dx .1048

(5.21)1049

The combination of (5.19) and (5.21) shows that {un} is bounded in E . From (5.21),1050

we have also1051

‖∇un‖2
2 ≤ 2(2p − 3)μ

3p
‖un‖p

p +
∫

R3

(
Iα ∗ |un|α+3

)
|un|α+3dx . (5.22)1052

We claim that there exist a δ > 0 and a sequence {yn} ⊂ R
3 such that1053

lim inf
n→∞

∫
B1(yn)

|un|3dx > δ. (5.23)1054
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Indeed, suppose that (5.23) does not hold. Then we have1055

lim sup
n→∞

sup
y∈R3

∫
B1(y)

|un|3dx = 0. (5.24)1056

By [12, Lemma 2.5], we have1057

‖un‖p
p → 0. (5.25)1058

Up to a subsequence, we assume that1059

‖∇un‖2
2 → l1 ≥ 0,

∫
R3

(
Iα ∗ |un|α+3

)
|un|α+3dx → l2 ≥ 0. (5.26)1060

Then it follows from (1.16), (5.22), (5.25) and (5.26) that1061

l1 = lim
n→∞ ‖∇un‖2

2 ≤ lim
n→∞

∫
R3

(
Iα ∗ |un|α+3

)
|un|α+3dx1062

≤ S−(α+3)
α lim

n→∞ ‖∇un‖2(α+3)
2 = S−(α+3)

α lα+3
1 . (5.27)1063

If l1 > 0, then (5.27) implies that l1 ≥ S
α+3
α+2
α , which, together with (5.20) and (5.25),

implies that

m̂μ ≥ α + 2

2(α + 3)
S

α+3
α+2
α .

This contradicts with (5.8) and (5.14). Therefore, (5.23) holds.1064

Letting ûn(x) = un(x + yn), we have ‖ûn‖E = ‖un‖E and1065

Jμ(ûn) = 0, 
μ(ûn) → m̂μ, lim inf
n→∞

∫
B1(0)

|ûn|3dx > δ. (5.28)1066

Then there exists û ∈ E\{0} such that, passing to a subsequence,1067

⎧⎨
⎩

ûn⇀û, in E;
ûn⇀û, in Ls

loc(R
3), ∀ s ∈ [1, 6);

ûn → û, a.e. on R
3.

(5.29)1068

Letting wn = ûn − û, it follows from (5.29) and Lemma 5.9 that1069


μ(ûn) = 
μ(û) + 
μ(wn) + o(1) (5.30)1070

and1071

Jμ(ûn) = Jμ(û) + Jμ(wn) + o(1). (5.31)1072
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By (1.13), (1.20), (5.28), (5.30) and (5.31), we have1073

2(p − 3)μ

3p
‖wn‖p

p + α + 2

2(α + 3)

∫
R3

(
Iα ∗ |wn|α+3

)
|wn|α+3dx1074

= m̂μ − 2(p − 3)μ

3p
‖û‖p

p − α + 2

2(α + 3)

∫
R3

(
Iα ∗ |û|α+3

)
|û|α+3dx + o(1)

(5.32)

1075

and1076

Jμ(wn) = −Jμ(û) + o(1). (5.33)1077

If there exists a subsequence {wni } of {wn} such that wni = 0, then going to this1078

subsequence, we have1079


μ(û) = m̂μ, Jμ(û) = 0, (5.34)1080

which implies the conclusion of Lemma 5.10 holds. Next, we assume that wn 
= 0.1081

In view of Lemma 5.4, there exists tn > 0 such that t2
n (wn)tn ∈ Mμ. We claim that1082

Jμ(û) ≤ 0. Otherwise, if Jμ(û) > 0, then (5.33) implies that Jμ(wn) < 0 for large n.1083

From (1.13), (1.20), (5.3) and (5.32), we obtain1084

m̂μ − 2(p − 3)μ

3p
‖û‖p

p − α + 2

2(α + 3)

∫
R3

(
Iα ∗ |û|α+3

)
|û|α+3dx + o(1)1085

= 2(p − 3)μ

3p
‖wn‖p

p + α + 2

2(α + 3)

∫
R3

(
Iα ∗ |wn|α+3

)
|wn|α+3dx1086

= 
μ(wn) − 1

3
Jμ(wn)1087

≥ 
μ

(
t2
n (wn)tn

)
− t3

n

3
Jμ(wn)1088

≥ m̂μ − t3
n

3
Jμ(wn) ≥ m̂μ,1089

which implies Jμ(û) ≤ 0 due to 2(p−3)μ
3p ‖û‖p

p + α+2
2(α+3)

∫
R3

(
Iα ∗ |û|α+3

) |û|α+3dx >1090

0. Since û ∈ E\{0}, from Lemma 5.4, there exists t̂ > 0 such that t̂2ût̂ ∈ Mμ. From1091

(1.13), (1.20), (5.3), (5.28) and Fatou’s lemma, we derive1092

m̂μ = lim
n→∞

[

μ(ûn) − 1

3
Jμ(ûn)

]
1093

= lim
n→∞

[
2(p − 3)μ

3p
‖ûn‖p

p + α + 2

2(α + 3)

∫
R3

(
Iα ∗ |ûn|α+3

)
|ûn|α+3dx

]
1094

≥ 2(p − 3)μ

3p
‖û‖p

p + α + 2

2(α + 3)

∫
R3

(
Iα ∗ |û|α+3

)
|û|α+3dx1095
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= 
μ(û) − 1

3
Jμ(û)1096

≥ 
μ

(
t̂2ût̂

)
− t̂3

3
Jμ(û)1097

≥ m̂μ − t̂3

3
Jμ(û) ≥ m̂μ,1098

which implies that (5.34) holds also. ��1099

Following the idea of [7], we prove the following lemma.1100

Lemma 5.11 Assume that the conditions in Theorem 1.4 hold. If û ∈ Mμ and1101


μ(û) = m̂μ, then û is a critical point of 
μ.1102

Proof Assume that 
′
μ(û) 
= 0. Then there exist δ > 0 and � > 0 such that1103

‖u − û‖E ≤ 3δ ⇒ ‖
′
μ(u)‖ ≥ �. (5.35)1104

Let {tn} ⊂ R such that tn → 1. Since t2
n ûtn ⇀û in E , then it follows from (2.10) and1105

Lemma 2.6 that1106

∥∥∥∇ (
t2
n ûtn

)
− ∇û

∥∥∥2

2
=

∫
R3

∣∣∣∇ (
t2
n ûtn

)
− ∇û

∣∣∣2 dx1107

= (t3
n + 1)

∫
R3

|∇û|2dx − 2
∫

R3
∇
(

t2
n ûtn

)
· ∇ûdx = o(1)

(5.36)

1108

and1109

N
(

t2
n ûtn − û

)
1110

= D
(
(t2

n ûtn − û)2, (t2
n ûtn − û)2

)
1111

= D
(
(t2

n ûtn )
2, (t2

n ûtn )
2
)

+ D
(

û2, û2
)

− 4D
(
(t2

n ûtn )
2, (t2

n ûtn )û
)

1112

− 4D
(

û2, (t2
n ûtn )û

)
+ 4D

(
(t2

n ûtn )û, (t2
n ûtn )û

)
+ 2D

(
(t2

n ûtn )
2, û2

)
1113

= D
(
(t2

n ûtn )
2, (t2

n ûtn )
2
)

− D
(

û2, û2
)

+ o(1)1114

= (t3
n − 1)D

(
û2, û2

)
+ o(1) = o(1). (5.37)1115

Combining (5.36) with (5.37), we have1116

lim
t→1

∥∥∥t2ût − û
∥∥∥

E
= 0. (5.38)1117

Thus, there exists δ1 > 0 such that1118

|t − 1| < δ1 ⇒ ‖t2ût − û‖E < δ. (5.39)1119
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From Lemma 5.1, we derive1120


μ

(
t2ût

)
≤ 
μ(û) − α + 2 − (α + 3)t3 + t3(α+3)

2(α + 3)

∫
R3

(
Iα ∗ |û|α+3

)
|û|α+3dx1121

= m̂μ − α + 2 − (α + 3)t3 + t3(α+3)

2(α + 3)
1122

∫
R3

(
Iα ∗ |û|α+3

)
|û|α+3dx, ∀ t > 0. (5.40)1123

Using (1.20), it is easy to check that there exist T1 ∈ (0, 1) and T2 ∈ (1,∞) such that1124

J
(

T 2
1 ûT1

)
> 0, J

(
T 2

2 ûT2

)
< 0. (5.41)1125

Set � = 1
2(α+3)

min {h(T1), h(T2)}
∫

R3

(
Iα ∗ |û|α+3

) |û|α+3dx , where h(t) is defined1126

by (5.2). Let S := B(û, δ) and ε := min{�/24, 1, �δ/8}. Then [35, Lemma 2.3]1127

yields a deformation η ∈ C([0, 1] × E, E) such that1128

(i) η(1, u) = u if 
μ(u) < m̂μ − 2ε or 
μ(u) > m̂μ + 2ε;1129

(ii) η
(

1,
m̂μ+ε ∩ B(û, δ)
)

⊂ 
m̂μ−ε;1130

(iii) 
μ(η(1, u)) ≤ 
μ(u), ∀ u ∈ E ;1131

(iv) η(1, u) is a homeomorphism of E .1132

Noting that 
μ

(
t2ût

) ≤ 
μ(û) = m̂μ for t > 0, it follows from Corollary 5.3, (5.39)1133

and the above ii) that1134


μ

(
η(1, t2ût )

)
≤ m̂μ − ε, ∀ t > 0, |t − 1| < δ1. (5.42)1135

On the other hand, by iii) and (5.40), we have1136


μ

(
η(1, t2ût )

)
≤ 
μ

(
t2ût

)
1137

≤ m̂μ − α + 2 − (α + 3)t3 + t3(α+3)

2(α + 3)

∫
R3

(
Iα ∗ |û|α+3

)
|û|α+3dx1138

≤ m̂μ − δ2, ∀ t > 0, |t − 1| ≥ δ1, (5.43)1139

where δ2 := min {h(1 − δ1), h(1 + δ1)}
∫

R3

(
Iα ∗ |û|α+3

) |û|α+3dx > 0. The combi-1140

nation of (5.42) and (5.43) yields that1141

max
t∈[T1,T2] 
μ

(
η(1, t2ût )

)
< m̂μ. (5.44)1142

Set �0(t) := J
(
η
(
1, t2ût

))
for t > 0. It follows from (5.43) and (i) that η(1, ût ) = ût1143

for t = T1 and t = T2, which, together with (5.41), implies1144

�0(T1) = J
(

T 2
1 ûT1

)
> 0, �0(T2) = J

(
T 2

2 ûT2

)
< 0.1145
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Since �0(t) is continuous on [T1, T2], then we have that η
(
1, t2ût

) ∩ Mμ 
= ∅ for1146

some t0 ∈ [T1, T2], contradicting to the definition of m̂μ. ��1147

Theorem 1.4 is a direct consequence of Lemmas 5.6, 5.10 and 5.11.1148

6 Case p = 61149

In the last section, we establish the non-existence result to (1.1) with p = 6, and1150

complete the proof of Theorem 1.5.1151

Proof of Theorem 1.5 Assume that û ∈ E is a solution of Problem (1.1). Multiplying1152

(1.1) by û, and then integrating, we have1153

‖∇û‖2
2 + N [û] − μ‖û‖6

6 −
∫

R3

(
Iα ∗ |û|α+3

)
|û|α+3dx = 0. (6.1)1154

Recalling the Pohozaev identity as Lemma 2.13, we also have1155

1

2
‖∇û‖2

2 + 5

4
N [û] − μ

2
‖û‖6

6 − 1

2

∫
R3

(
Iα ∗ |û|α+3

)
|û|α+3dx = 0. (6.2)1156

Combining (6.1) with (6.2), we obtain1157

N [û] = 0. (6.3)1158

This shows that û = 0. ��1159
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