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Abstract

This paper investigates the qualitative properties of normalized solutions to the upper critical

Choquard equation with nonlocal perturbations:
N+4+ao N+4a
— A+ A= (Lo Jul M5 u N3 20 (T fuf?)ulP 2, @ € RY,
/ w?dz = ¢,
RN

where N >3, a,8€ (0,N), p € (NT"LB N—w) uwER, ¢>0, A €R is an unknown Lagrange mul-

P N-2
tiplier, and I, Ig denote the Riesz potentials. For u > 0, we establish the existence of normalized
solutions in several regimes, that is, when NTW <p< N+TB+2 (mass-subcritical), p = N+TB+2

N+
N—-2

result. Particularly, to obtain sharp energy estimates crucial for restoring compactness, we clas-

(mass-critical), and N+TB+2 <p<

(mass-supercritical). For u < 0, we derive a non-existence

sify analyses by ranges of «, 8 across different dimensions, developing tailored scaling techniques
within each range to control energy levels below the corresponding compactness thresholds. This
enables us to resolve open problems in sharp energy estimation for the mass-subcritical regime: we
cover full parameter ranges for N = 3,4 and extend admissible parameter ranges for N > 5, while
providing a more comprehensive characterization of a, 8 to advance related research. Moreover,
the framework applies directly to special cases including o« = 8 and van der Waals-type potentials

(p = ¥t with o < 8), improving upon existing literature in these settings. We anticipate that

the energy estimation techniques introduced in this paper will be extended to wider classes of

nonlocal critical elliptic equations with mass constraint.
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1 Introduction

This paper investigates the normalized solutions to the following upper critical Choquard problem
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with nonlocal perturbation:

~Aut Au = (Lo [0l ¥ ) [l 35 20 (L ul?) [uP~2u, @€ RY,

(1.1)
/ lu|? dz = ¢,
RN

where N >3, a,8€ (0,N),u>0,p € (N'Hg M), ¢ > 0, A € Ris an unknown Lagrange multiplier,

N N—2
and I (€ = a, ) is the Riesz potential defined for x € R \ {0} by
N=¢
Ave . ( 2 )
Ig(;{}) = |;L'|N*§ with -AN§ == (12)

2envr (5)

with T denoting the Gamma function. From a variational perspective, normalized solutions (solutions
with prescribed mass ¢ > 0) to problem ([1.1)) correspond to critical points of the energy functional
®, : HY(RY) — R defined as:

1 N -2 Nta Nito jz
B(0) = 5IVull — gy [ (e 5 ¥ ae— @l P ae, (03)

constrained on the mass manifold
S, = {u e Hl(]RN) : ||u||§ = c}. (1.4)

We say that u is a ground state solution of (|1.1)) if it minimizes the energy functional ®, among all

solutions on S, i.e.,
‘I)u|:s (u) =0 and ®,(u) = inf {q)”(u) cu € S, @M‘; (u) = O}.

Problem (1.1]) arises when seeking standing wave solutions v (t, z) = e u(x) with prescribed mass

(L?-norm) for the time-dependent nonlinear Choquard equation:

0
08 = A+ (L + FW) f(9), mBY xR (N >1) (15)
where ¢ denotes time, ¢ : RY x R — C is complex-valued, i is the imaginary unit, and f(¢)) = F’(1)).
The solitary wave ansatz yields the Choquard-type equation:

—Au+ M u= (I, * F(u)) f(u), inRY. (1.6)

In the classical case N = 3, o = 2, and f(u) = u, reduces to the Choquard-Pekar equation,
originating in Pekar’s quantum-theoretic model of the stationary polaron [I]. Subsequent works [2] [3]
4, [5],[6] extended its applications to plasma physics and self-gravitating matter. Mathematical analysis
began with Lieb [6] and Lions [7], which established existence of radial positive solutions for prescribed
frequency A\ > 0 and prescribed mass ¢ > 0, respectively. This foundation stimulated extensive study
of under both prescribed frameworks.

For the prescribed frequency approach (A > 0), Moroz-Van Schaftingen [8] considered the special
case f(u) = |u[P~%u in , deriving the optimal range % < p < 2% for existence of ground
states, where 27, := %f‘; for N > 3 and 2}, := +oo for N = 1,2. The endpoints of this interval are
extremal values for the Hardy-Littlewood-Sobolev inequality and sometimes called lower and upper

critical exponents. The Pohozaev identity precludes nontrivial solutions at critical exponents, but
solvability can be restored via suitable subcritical perturbations (e.g.,u|u|?"2u for 2 < ¢ < 2* or
(Lo * [u]) |ul92u for 222 < ¢ < 2% under suitable conditions on p > 0); see [9} [0, [T} 12, 13] for
upper and lower critical cases. Here, 2* := % (N >3)or 400 (N =1,2).

2a) Ju?a=2u — |u* "2u for u € C(RY) and N > 3, since

— an o x F(u u) — F(u)f(u) formally. e upper critical exponent =5 plays an
2% 2*/2 and (I, * F f F(u)f(u) fi lly. Th itical %*gl

Particularly, as a — 0, (Ia * |u




analogous role to the Sobolev critical exponent % in local semilinear elliptic equations for N > 3.
Consequently, upper critical exponent problems for Choquard equations can be viewed as nonlocal

counterparts of the Sobolev critical Schrédinger equation (Brezis-Nirenberg type problem [14]):
—Au+ M= plul" %0+ u> "2, 2 e RY (N > 3). (1.7)

This paper focuses on the upper critical Choquard problem under the prescribed mass framework.

The prescribed mass approach has garnered increasing interest in recent years due to its physical
significance, for example, the mass (L?-norm) is a preserved quantity of the evolution and variational
characterization of such solutions can help to analyze their orbital stability/instability. Mathemat-
ically, this approach presents greater complexity than prescribed frequency problems. Specifically,
while nontrivial weak limits typically solve prescribed frequency problems, the non-compact embed-
ding HY(RY) — L?(RYM) complicates verification of the constraint condition for prescribed mass
problems. The subsequent subsection reviews relevant literature motivating our work and highlights
novel aspects of our study of .

1.1 Previous developments and perspectives

Within the framework of normalized solutions, in addition to the lower and upper critical exponents,
a new mass-critical exponent W arises. This critical threshold determines the boundedness below
of the constrained functional on S., thereby fundamentally influencing our choice of approaches for
the search of constrained critical points. If F(u) in grows faster than ‘U|W at infinity,
the functional is unbounded below on S, (mass-supercritical); otherwise, it is bounded below (mass-
subcritical). The mass-critical case occurs precisely when the boundedness depends explicitly on the

parameter ¢ > 0. For the prototypical case f(u) = |u|P~2u, the ranges NI“\;O‘ <p< W, p =

W, and % <p< %fg correspond to mass-subcritical, mass-critical, and mass-supercritical
scenarios, respectively.

For the mass-subcritical power nonlinearity f(u) = |u[P~2u with % <p< W in , Ye
[15] established the existence of normalized ground states via global minimization on S.. Regarding
mass-supercritical nonlinearities of the form f(u) ~ Ele lulPi—2u with M2E2 < p; < 2% (1 < i <k,
N > 3), Li-Ye [16] obtained the existence of normalized solutions of mountain-pass type using minimax
procedures from [I7]. This result was subsequently extended by Bartsch-Liu-Liu [I8] to broader classes
of mass-supercritical nonlinearities (N > 1). Upper critical Choquard equations present significantly
greater complexity under the prescribed mass constraint compared to their subcritical counterparts,
primarily due to inherent non-compactness issues. In [19] 20], Li studied the upper critical Choquard

equation with local homogeneous perturbation:
—Au+ M= (Io* [u?) |ul®2u + plul7%u, zeRY (N >3),
(1.8)
/ |u|? dz = c.
RN

Adapting strategies from [21] 22], 23] 24] originally developed for normalized solutions of the Sobolev
critical Schrodinger equation (1.7]), she proved the existence of two radial solutions for 2 < ¢ < 2+ %

and one radial solution for 2 + % < g < 2*, while simultaneously analyzing qualitative properties and
stability. Here, 2 + % is the mass-critical exponent for Schrédinger equations. Further developments
concerning mixed Choquard-type and local power nonlinearities can be found in Yao-Chen-Radulescu-
Sun [25].

In contrast to local perturbations, Ye-Shen-Yang [26] and Shang-Ma [27] considered the nonlocal
perturbation case, and investigated the existence and multiplicity of normalized solutions for the upper
critical Choquard problem with o = § using methods from [23] and [21], respectively. Their



main results are summarized in Table [I|and Table [2] respectively. Recently, Ding-Wang [28] partially

unified and improved their results, with key findings systematically summarized in Table

«@ p w, ¢ Type of solution
N >3 % <p< W 0 < pc® <9 <oo | A ground state solution with negative energy
N > (0, V) D= % 0<pck <6< oo A ground state solution
N =4 ’ 0 < pck < oo
N+a+2 N+a .
SLETE O p < S8 A ground state solution
N>5 N N=2 1 0 < pck <0< o0 &
Table 1: Existence results on (l.1) with o = 3 in [20]
@ D w, ¢ Type of solution
N > (0, N) % <p< W 0 < pck < < oo | A ground state solution with negative energy
N=3 (0,1)
N=4 (0,4) p= % 0< pck <0< oo A mountain pass solution
N>5|[N—-4,N)
N =3 (0,1) 0 < pek <
¥ < 00
N (0,4) % <p< ]]\\],*_'2 K A mountain pass solution
N>5|[N—-4,N) 0< puck <0 <oo
Table 2: Existence results on (1.1) with a = 8 in [27]
N «a P u, ¢ Type of solution
N>3 (0, ) N[J\;a p< N+ﬁ+2 0< ek <0< oo A ground stéte solution
with negative energy

3< N <5 | max{N —2,2N —6},N) 2 < p< Ntz A mountain pass

N=5 (0,5 max{8Ee, 20} < < T 0<puck <6< oo solution with

N>6 (0,N —2) max{ 2 a2 Nia-2} o o Ntadd positive energy

N=3 (0,1) p— Mot 0<pck <6< oo A groun(.i

N >4 (0,N) state solution

N=3 (0, min{p — 1, 3}) NJS\(;H “p< %t; 0 < ek < oo A grounc}

N >4 (0,N) state solution

Table 3: Existence results on (1.1) with a = § in [2§]

Here k = k(N,a,p) > 0,0 = 0(N,a,p) > 0, which may take different values in different works and
under different situations.

Compared to the extensively studied case o = f, the solution set for problems with differing
potential ranges (o # () exhibits richer structure. Jia-Luo [29] pioneered the investigation of the

critical problem:

—Au+du= (Jz|~*« [u]?) u+ p (|z|’fé * |u|2> u, r€RN (N >5),
(1.9)
/ w?de = ¢,
RN

which corresponds to the special case of our problem (1.1 with parameters o = N —4, %‘fg =2,p=2,
and 8 = N — 3. Here, for 3 € (0,2), B=2 and B € (2,4), it follows that, respectively, % <2<
NEOE2 o = NHOH2 N4B42 9 « T8 - Accordingly, the regimes 3 € (0,2), 8 = 2, and 3 € (2,4)
correspond to mass-subcritical, mass-critical, and mass-supercritical nonlocal perturbations. Building

on techniques from [23] 24] for normalized solutions of the Sobolev-critical Schrodinger equation (1.7)

via Pohozaev manifold decomposition, Jia-Luo established the following existence results:



e when 0 < 3 < 2, for sufficiently small ,uc(4’B)/ 2 (1.9) admits two solutions: one local minimizer

and one saddle point;

o for B = 2 (with pc below a threshold) and 2 < B < 4, (1.9) possesses a normalized ground state

solution.

However, for the mass-subcritical case (0 < B < 2), the existence proof for the second solution
requires careful re-examination. The energy level estimate (3.21) on page 22 appears to be insufficient
for recovering the compactness of (PS) sequences, which is a crucial step for the second solution.

Very recently, Chen-Chen [30] investigated the general critical problem . Adopting techniques
from [21], the authors proved that for any fixed p > 0, there exist

) 1\ PO =D > _
c= (35 >0, We:={ueS.:||Vullz < p}
where

*
yp—1 2% —1

p 251 =) 2 \T T 1 o (201 27\ 2P
D:.=—-C 2 CNpSa” —80 | L CON pSa®
% N,p <2p(2;§ — 1)u N,pOa + 227 « (2 — 1) N,pOa )

[0

1
_ 1251 —p) p(1—yp) 25 | 2 TPP
= C P Yp Saa
g ( (2 1) 7

_Np—(N+5)

2p
and Cy, = W (Qp is defined in (2.5)), such that the following existence results hold:
pli2

Theorem C. [30, Theorems 1.1 and 1.2] Let N >3, 0< a < f < N, and NTW <p< N+TB+2 For
any p >0 and any c € (0,¢):

’YP : 9 (110)

(i) (L.1) admits a ground state solution u. that is a local minimizer of ®,, in W, satisfying ®,,(u.) =
1I/rl}cf o, <0< ueilg‘f/[/c P, (u);

(ii) (L.1) has another solution with positive energy if N > %.

A detailed re-examination, however, suggests that the explicit expressions for ¢ and p in Theorem
C may require further clarification. We will subsequently provide revised expressions to refine the
statement of Theorem C. It is also worth noting that the dimensional constraint in (ii) implicitly

requires
2N +28 -1 <N+B+2
oN—2) P N

Now a natural question arises: Does (|1.1|) admit normalized solutions with positive energy for

N
N29’0<ﬁ<Z_2’ and

3 < N <9 in the mass-subcritical perturbation? To the best of our knowledge, no relevant results
exist.
Motivated by the aforementioned work, we systematically investigate the existence and multiplicity

of normalized solutions to ([1.1]) for all N > 3 and the full range p € (NTJFB, %), addressing the

open problem. The intricate interplay between nonlocal terms induces distinct geometric structures

of ® across different p-regimes, necessitating separate analyses of three cases: w <p< %

N+1€+2 (mass-critical), and N%M <p< N8 (mass-supercritical).

(mass-subcritical), p = N—5



1.2 Statement of the main results

Before stating our main results, we introduce some definitions. Define the Pohozaev type function
Pl = [Vl = [ (el ¥ ¥ a0 = u XD [ gz, )

RN 2p RN

It is straightforward to verify that

t2 N - 2 & e [
B, (¥ 2u) = [Vul} — S [ () s
2 2 ) .

(N+a
- o=t /]R (T ) ulPd (1.12)
and d
Pulu) = 2@, (" 2up)| .

We recall that any solution of (1.1)) lies in the L2-Pohozaev manifold given by

M. :={ueS.:Pu(u)=0}. (1.13)
For any given ¢ > 0, we define
my(c) = uler}\ﬁc D, (u). (1.14)

Clearly, if a solution u,. of (L.1]) satisfies ®,,(u.) = ir}a ®,,(u), then it is a ground state solution.
ue c

To derive sharp energy estimates, following [I3] Lemma 1.2] (which addresses the Choquard-
type Brezis-Nirenberg problem), we define the best constant S, for the Hardy-Littlewood-Sobolev

inequality:
S, = inf Jo [Vul*dz (1.15)
C T ueDt2(RN)\{0 o o 1N ’
O o T 8 ¥ 0]
Setting
N(N —2)|(N=2)/4
Ux) := [V ( ) ) (1.16)
(1 +laP) =2
we have the identity
N(a42) a 9 Nito Nto N Nta
(AN7aCN7a)2(N+‘*) Sa [VU|*dz = (Io x [U|"=2)|U|¥—2dx = (AN7QCN7Q) 28,2, (1.17)
RN RN

where the constants Ay o and Cy , are defined by equations (1.2]) and (2.3)), respectively. Combining
(1.15) and (1.17)), we see that U(x) and the extremal function of S, differ only by a constant coefficient.

Following the argument in [30, Lemmas 3.1 and 3.4], for any fixed p > 0, we obtain the explicit
value

1—vpp

2% —vpp . o 1TpP
B e ] 1 R (e ) e A T
2 — (25 - DIQ[13"? ’

such that, for each ¢ € (0, ¢p), the set V. C S, satisfies the property

my(c) = ulél‘f/u ®,(u) <0< ué%fvc D, (u). (1.19)
Here the sets are defined by:
Ver={ueS:|Vuli <po}, OVe:={ueS.:|Vuli=po}, (1.20)



where pg := p(cp) and the radius function p(c) is given by

1

25 (1 — S2e \ TP vy

plc) = ( o p’yp)/LQP 2) c%-rr . Ve>0. (1.21)
(25 = DIyl

A minor modification of the proof of [30, Theorem 1.1] now yields the existence of a first solution, as

stated below.

Theorem 1.1. Let N > 3, a, 3 € (0,N), and w <p< W For any p > 0, there exists a
co = co(p) > 0 (defined in (L.18) such that, for any c € (0,¢o), (1.1) admits a ground state solution

ue, which is a local minimizer of ®,, in V, satisfying ®,(u.) = m,(c) < 0.

For u > 0, by developing new compactness arguments and refined energy estimates, we establish
three existence results for the cases N+B <p< N+ﬁ+27 p= N+5+2 , and N+ﬁ+2 <p< N+ﬁ

Theorem 1.2. Let N > 3, o,8 € (0,N), W <p< %, and p > 0. For any ¢ € (0,¢),
problem (L.1) admits a second solution (e, Ac) € (RN) x (0,+00) satisfying

rad

) Nta
+a$

24«

0<®y(ue) <myle)+ m e
under the following dimensional regimes:
(i) N =3,4: No additional constraints on «, 8, and p (beyond the general assumptions).
(i) N =5:
e a€1,2)U4,5) (no additional constraints);

e a€(0,1)U[2,4), B€(0,1), 48 —5a <2, and

7+25 848 8+28-— 7+5
max { 6 6 6 @ } < P < —
(iii) N>6: € (0,N —2),48— Na < 2N — 8, and
N+p—2 2N—-248 2N-—-2425— N+5+2
max{ N-2  2N—4 ° 2N—4 a} <P<TN

Theorem 1.3. Let N >3, o,8€ (0,N), p= N+T5+2, and ¢ > 0. Then problem (L.1)) has a solution
(e, Ae) € HYRYN) x (0, +00) satisfying

q)ﬂ(uc) = Efé q)ﬂa
under one of the following conditions:
2p—2
(i) N=3:5€(0,1) and 0 < p < 18lz "

2p—2
(ii) N24:0<u<%

Theorem 1.4. Let N >3, o, 8 € (0, N), N+6+2 <p< ]Nv+g, ¢ >0, and p > 0. Then problem (1.1))
has a solution (ue, \.) € HY(RY) x (0, +00) satzsfymg

(I)M(Uc) = }&E Qs
under one of the following conditions:
(i) N=3:

. 56(0,1),#<p<3+ﬂ, and pu > 0;



e 3€(1,3), # <p<1+4p, and p> p* >0, with u* sufficiently large;
e fe[,3),1+8<p<3+0, and u > 0.

(i) N > 4: No additional constraints on «, 3, p, and p (beyond the general assumptions).

For ;1 < 0, we establish the following non-existence result:

Theorem 1.5. Let N > 3, o, 8 € (0, N), NTW <p< %, u <0, and ¢ > 0. Then problem (1.1)
has no solutions in H*(RN) x (0, +00).

Remark 1.6. (i) Theorems extend and cover the relevant results in [29] [30].

(ii) Owur analysis can directly apply to the special case o = B, with principal findings summarized in
Table [4] below. Crucially, the new compactness techniques developed in this work enable us to
generalize and extend the existence results established in [26] 27, 28] (see Tables|1§3) by relazing

dimensional and parametric restrictions on (N, a,p).

N @ P I c Conclusion
N =34 0,N
i 2() 5 [i 5) Nia o« p < Ntat2 (1.1) has a mountain
N =5 : . >0 0,c ass solution with
(0.1) e <p< e ’ (Orco) | poss 5o
ositive ener
N26 | 0N -2) [ max{Zgeg? K2y <p < Mg ' "
N=3 (0,1)  Ntadt2 0 (1.1) has a ground
p="§N—" <p<po | c>0 .
N >4 (0,N) state solution
(1,3) Hacp<l+ta w>pt>0
N=3 [1,3) l+a<p<3+a 50 (1.1) has a ground
- c
(0,1) Mo cp<3ta w>0 state solution
N>4 (0, N) Niat? < p < N42

Table 4: Our results when oo = f3

. . . N N
Remark 1.7. (i) In the mass-subcritical regime (%ﬁ <p< #

), establishing the existence of
a second solution presents significant analytical challenges, primarily due to compactness issues.
The core difficulty lies in obtaining rigorous upper bounds for the minimax level M, (c):

N+ta
M, (c) <my(c) + %&f*a . (1.22)

To the best of our knowledge, the existing literature establishes this inequality only in certain
spatial dimensions N and within restricted ranges of the parameters o, 3, and p. Even in the
simpler case o = (3, the result is known only for limited ranges of a and p. The validity
of across the full parameter space has remained an open problem. This work
resolves this fundamental issue for N = 3,4, proving holds unconditionally for all 0 <
a,B8 < N and NTJFB <p< N‘LTM, thereby guaranteeing a second solution. For N > 5, we
substantially extend the known admissible ranges beyond all previous results, though these may

not be optimal.

(ii) In the L?-supercritical case, our existence results provide a more comprehensive analysis regard-

ing o and B, significantly improving and extending the related research.



As a by-product of this work, our approach can be adapted to address the following Schrodinger

equation with van der Waals type potentials:
— A A= (Lo * [ul M) |u] 75 2+ pu(Lg 5 Jul ¥ ) ju| 75 20, 2 € RV,

1.23
/ u?dz = ¢, ( )
RN

which corresponds to the special case of problem (1.1)) with p = %fg and a < . In this direction,

we obtain the following results:

Corollary 1.8. For problem (1.23)), the conclusions of Theorems hold under the following
corresponding conditions, respectively:

1) and 2a +2 < B < 4;
Sa+4 .
2) and%<ﬂ<5,
N

—4) and o + 2]\’,131 <B<min{2—|—a,1—|—%a}.

(A) N =4 with o € (0,
N =5 with a € 1,
N > 7 with « € (0,

. 4 2044 ”Q(N‘FQ)/(N*Q)H(22u+4)/(N72)
B) N>4with0<a<N-—-x—-2,8=a+55, and 0 < p< T .

(C) N=3with0<a<p <1 andu>0;
N =3 witha € (0,1), 24+ a < B <3, and pu > p* > 0, with p* sufficiently large;
N=3witha e (0,1),1 < <2+a, and p > 0;
N =3 witha €[1,3), a < <3, and u > 0;

N24with0<a<ﬂ<min{a+ 213_+§,N} and > 0.

Remark 1.9. As o, 8 — 0, (L.1) formally reduces to

—Au+ M= |ul? "2u 4 plu|?u, z € RV,

1.24
/ w?de = ¢, ( )
]RN

where p € (1, %) It is proved in [21), 23, B1] that (1.24) admits prescribed mass solutions under the
L2-suberitical (2 < 2p < 2+ &), L?-critical (2p =2+ &), and L?-supercritical (2 + % < 2p < 2X)
perturbation. Thus, Theorems may be viewed as an generalization of the results in [21], 23] [31]
to Brezis-Nirenberg-type Chogquard equation. In particular, motivated by Ding-Ji-Pucci [32], it would
be interesting to extend the present approach to the (2,q)-Laplacian equation with an additional —A g u

term, where the results are expected to depend on the value of q.

Remark 1.10. As 8 — 0, (1.1) formally reduces to

—AuA Au = (Io * [u] ¥ |u| ¥ 2 + pful?2u, z € RV,

1.25
/ w?de = ¢, ( )
]RN

where p € (1, %) It is proved in [19, 20] that (1.25)) admits nontrivial solutions. Thus, the main
results in the present paper may be viewed as an generalization of the results in [19 20] to Choquard

equations with nonlocal perturbation.
Remark 1.11. As a — 0, (L.1) formally reduces to

—Au+ M= ul* “2u + p(ls * [ulP)|uP~2u, € RN,

1.26
/ widr = c. ( )
RN

When N = 3, the existence and multiplicity of normalized solutions for problem (1.26]) were investi-
gated in [33| [34). Therefore, the main results of this paper can be regarded as an extension of those in
[33,34] to Choquard equations for all N > 3.



The paper is organized as follows. In Section 2, we give the variational setting and preliminaries.
In section 3, we study the second normalized solution of problem under the basis of Theorem
and then complete the proof of Theorem [I.2] In section 4, we complete the proof of Theorems [I.3]
and In Section 5, we establish the non-existence result, and prove Theorem

Throughout the paper, we make use of the following notations:

o L*(RN)(1 <s < o0) denotes the Lebesgue space with the norm [ulls = ( [on |u\5dx)1/s;

e For any u € HY(RY) and t > 0, we set u;(z) := u(tz);

e Forany x € Qand r >0, B.(z) :=={y € Q: |y — z| <r} and B, = B.(0);

e G(N):= % is the measure of the unit ball in RY;
>
e ('1,C5, - denote positive constants possibly different in different places.

2 Variational framework and preliminaries

In this section, we give some preliminary results which will be often used throughout the rest of the
paper.

Lemma 2.1. (Hardy-Littlewood-Sobolev inequality,[35]) Let N > 3,s,7 > 1, 0 < a < N with
% + % + % =2, g€ L*(RY), and h € L"(RY). There exists a sharp constant Cx 4.5, independent
of g, h, such that

/ (I * g)hdz < Cy s [l [l (2.1)
RN
In particular,

/RN (Io * g)hdz < Cn allgllan (N4a) 1P ll2n/ (N4+a)s (2.2)

where

Lemma 2.2. ([I5, Lemma 2.3]) Let N > 1, 8 € (0,N), and w <p< % then
Np—(N+B)
2

2’
/(Ig*|u|p)|u|pdx§pr_2(/ |u|2dx> </ |Vu|2dx> WY
RN 1Qpll2 RN RN

where equality holds for u = @, and @), is a nontrivial solution of

Np—(N+5)
2

(N+/3)72(N*2)P

N+B—(N-2)
2

AQ, + L0, = (15 +1Q,1")1Q0 P 2Q,. (2.5)

Lemma 2.3. (|8, 36]) If there exist u € H*(RY) and A\ € R such that
— At M= (T * [u] M) |u] X5 20+ (L * [ul)|uf”~2u, =€ RN,

then

MNp— (N +8)

Putu) = [Vl = [ (Lo < |ul¥5)ju ¥ do -
RN 2p

/ (I % [ul?) [ufde = 0.
RN

Lemma 2.4. ([35],Page 107:(6) and (9)) Let N > 3. If s € (1,&), then for every v € L*(RY),
I, xv € Lv (RN) and

N
E] N—as
/ |1o *v|NIXf“‘ de < C(N,a,s) (/ |v|5dm> ,
RN RN

where C'(N, a, s) > 0 depends only on N, «, and s.
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Lemma 2.5. Let N > 3 and % <p< ]]\\',fg‘ Assume that u,, — u a.e. © € RN and sup ||u, || 2xp <
neN N+ta

+00. Then for any v € L%(RN),

lim (I * [t |P) [tn P 2upvde = / (I * [ulP) JulP~2uvde. (2.6)
RN

n—oo RN

Proof. Note that |u,|P € L*(RY) with s = 22~ € (1, ¥) and 2~ = 2. Then, by Lemma

N+« Yo N—as
we have I, * |u,|P € L%(RN) and

N+ta

2N N-a
/ Iy * Jug|? T < C(N,a,s) </ |un|mdx) . (2.7)
RN RN
By Holder inequality and , we obtain
2Np
/ |(Ia * |un|p)|un|p_2un|2””*(’”‘*) dz
RN
(N—a)p (Nta)(p—1)
9N 2Np—(N+a) 2Np 2Np—(N+a)
S(/ [T * |t |P| V=2 dx) (/ [t | N F da:)
RN RN
(N—a)p
2Np Jjgtz 2Np=(N+a) 2Np éngzg\zftii
<, (/ [ty | N F dx> (/ [ty | N F da:)
RN RN
(N+e)(2p=1)
2Np 2Np—(N+ta)
=C4 (/ [th, | VT dx) .
RN
This, together with [8, Lemma 2.6.], shows that
2N
(I * [t |P) [t |P 20 — (Io * [ulP)|u|P~2u in L (RM). (2.8)

It follows (2.8]) that (2.6) holds.

Let H be a real Hilbert space whose norm and scalar product will be denoted respectively by || - || &

and (-,-)g. Let E be a real Banach space with norm || - ||[g. We assume throughout this section that
E—H<—FE" (2.9)

with continuous injections, where E* is the dual space of E. Thus H is identified with its dual space.
We will always assume in the sequel that £ and H are infinite dimensional spaces. We consider the
manifold

M:={u€E:|ullg =1} (2.10)

M is the trace of the unit sphere of H in E and is, in general, unbounded. Throughout the paper,
M will be endowed with the topology inherited from E. Moreover M is a submanifold of E of
codimension 1 and its tangent space at a given point u € M can be considered as a closed subspace

of E of codimension 1, namely
TuM :={ve E: (u,v)g =0} (2.11)

We consider a functional ¢ : E — R which is of class C* on E. We denote by |y the trace of ¢
on M. Then ¢|ss is a C! functional on M, and for any u € M,

(plar(w),v) = (¢’ (u),v),¥ v € T, M. (2.12)
In the sequel, for any u € M, we define the norm |/¢|),(w)|| by

el = sup — [g'(u),v)]. (2.13)

veT,M,||v||g=1
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Let E x R be equipped with the scalar product

((u77)7 (UJU))EXJR = (U7U)E + 70, V (’U'?T)ﬂ (U7U) € E xR,

and corresponding norm

|(w, T)|Exr = \/|Jul|% + 72, V (u,7) € E x R.

Next, we consider a functional ¢ : E x R — R which is of class C! on E x R. We denote by ¢|arxr

the trace of @ on M x R. Then p|pxr is a C' functional on M x R, and for any (u,7) € M x R,

<95|IM><R(U'7 7)7 (U7J)> = <95l(u77_>7 (U7 U)>7V (U7 U) € T(U,T)(M X R)v

where
T(u,f)(M xR):={(v,0) € ExR: (u,v)g = 0}.

In the sequel, for any (u,7) € M x R, we define the norm ||@|}; g (u)|| by

H@'?WXR(/LL?T)H = Sup |<95/(’U,,T),(’U,U)>|.

(v,0) €T,y (M XR),[|(v,0) | Exr=1

(2.14)

(2.15)

(2.16)

Lemma 2.6. [37, Lemma 3] Let ¢ € C*(E,R) and {u,} C M be a bounded sequence in E. Then the

following are equivalent:
(i) HSO|/M(Un)|| — 0 as n — oo;

(i) @' (un) — (@' (un), un)un in E* asn — oo.

Lemma 2.7. [38, Corollary 2.15] Assume that § € R, € C'(E xR,R) and T € M x R is closed set.

Let

= {& e C([0,1], M x R) : 5(0) € T, 3(5(1)) < é}.

Assume that ¢ satisfies

a:= inf max G((t)) > b := supmax{3(7(0)), 5(7(1))}.

yer te(0,1] yer

Let {3} C T be such that

sup ¢(An(t)) <a+—, VneNlN.

1

te[0,1] n

Then there exists a sequence (vp,Tn) C M x R satisfying
(1) a— % S @(Una'rn) S a+ %;

(i) min [|(vn, 70) = Fn(t)[[ xr <

te[0,1] \/ﬁ’.

(iii) ||95|§\/I><R(Unv7-n)|| S %

3 L’-subcritical perturbation case

(2.17)

(2.18)

(2.19)

In this section, we will study the second solution of equation (1.1) under the basis of Theorem
Assume that p > 0 and let co, po := p(co), and V, be given in (1.18), (1.21)), and (1.20). For any

¢ € (0,¢p), the set V.. C S, have the property:

my,(c) = ulél‘f/c D, (u) <0< ué%fvc ®,(u),

12
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where my,(c) is reached by a positive, radially symmetric non-increasing function, denoted u. € V.
that satisfies, for a A\, > 0,

Nta _o

—Aue + Aete — (I * |uc|%)\uc| N=2 "y — p(lg |uc|p)|uc|p*2uC =0, z € RV, (3.2)

To apply Lemma 2.7, we let E = HL,(RY) and H = L*(RV). Define the inner product on E and
H as

C

1
(u,v)E ::/ (Vu-Vo+w)dz, (u,v)g = f/ wodz, ¥V u,v € B,
RN RN
and the corresponding norms as
lullg == (u,w) g, ||ullg =+ (u,u)g, VueEE.

After identifying H with its dual, we have F — H < FE* with continuous injections. From the
definition of M given in (2.10]), one has

M:={ueFE:|u|lg=1}= {ue E: uzdx:c} =S.NHL,RY).
RN
Obviously, ®,, € C'(E,R), and
(@, (u),u) = | Va3 ~ / (I * |u| ¥3)[u| 2 da — p / (Is * [ul?)u[Pdz.
RN RN

Let us define a continuous map n : H} ,

(RV) x R — HY

rad

(RY) by
n(v, t)(z) :== N 2v(et) for ve HLRY), ViR, z € RY,

and consider the following auxiliary functional:

= 1 N -2 2n+a N+a Nta
P (v,t) == @u(n(v, t)(x)) :§€2t /]RN |Vol*dz — me Nzt /RN(Ia * o] V=2 )[v| V=2 dw
- QﬁeNpHNW)t / (I * [v[P)|v|Pdz. (3.3)
p RN

We see that @, is of class C', and for any (w,s) € HL (RY) x R,

<<i>;(v,t), (w, 5)> - <<i>;(u,t), (w, 0)> + <<§;L(v,t), (0, 5)>

(N+a)
=2 Vo - Vwde — ¢ 8% t/ (Ia*|v|%)|v|%_2'uwdx
RN RN

_ ueNpt—(N'i'B)t/ (Ig * [v[P)[v|P~2vwdx 4 s (ezt/ |Vol*dz
RN R
_6%1%/ (I % o] ¥55) o) 75 do
RN

Np— (N
1 p ( +ﬁ)6Npt7(N+ﬁ)t/N(Iﬁ % ’Up)’l)pdlL'>
R

2p
= (@, (n(v, 1)), n(w, ) + sPu(n(v,1)). (3.4)
Let
u(x) :=n(v,t) = eV u(e'x), ¢(x) :=n(w,t) = eV w(e'). (3.5)
Then
1 1
orn =1 [ ute)ote)is = - [ otulnis = @

This shows that

¢ €Ty (ScNHLRY)) <= (w,8) € Tppry ((Se N HLGRY)) xR), Vit,s €R. (3.6)

rad
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It follows from (3.4)), (3.5), and (3.6) that
= ot li
Pue)] = | (@0, 8), (0, 1)) < ||@u (5,1 )@ (3.7)

and

1
W= s (@), 0)
(]RN) ¢€Tu(3cﬂHr1ad(RN)) ||¢HE ’ ® ‘
1
_ S — 1w, )]
ST, (S nH}ad(RN) HVQSHZ + l#l13
_ ‘ (w o)>(
$ETu(Se anad(]RN) )V HV¢H2 + llol3
< @ 0, ), (,0)
~ sup 7‘ th , (W, ’
(w,0)E€T (v, 1) ((SeNHL 4 (RN))xR) [(w, 0)[| 2= !
<e |45,y oy a0 (3.8)

Lemma 3.1. For any p > 0 and any ¢ € (0,¢p), there exists k > 0 such that

M, (c) := inf e D, (v(t)) = K > sup max{®,(7(0)), L. (~(1))}, (3.9)
~yel'c te ~El.
where
={y€C([0,1],8. N HLG(RY)) : 7(0) = ue, Pu(v(1)) < 2my(c)}. (3.10)

Proof. Set k := i%fv ®,(u). By (3.1), k > 0. Let v € I'; be arbitrary. Since v(0) = u. € V., we have
uedVe
IVA(0)|I13 < po. If y(1) € Ve, from ®,,(y(1)) < 2m,(c) < 0, we can deduce

my(c) = ulél‘f/ O, (u) <@,(v(1)) < 2my(c) <0,

which is a contradiction. Therefore v(1) ¢ V.. According to ®,,(v(1)) < 2m,(c) < 0 < i%% @, (u),
ucoVe

we have (1) ¢ V.. By continuity of v(¢) on [0,1] and |[|[Vy(0)||3 < po, [|[VY(1)||3 > po, there exists
to € (0,1) such that ||[Vy(¢o)||3 = po and so

P > & > inf ® .
Jnax, p(y(#) > M(V(to))_ué%vc p(u) =k

Due to the arbitrariness of 7, it follows that

M,(e) = inf max @,(+(1)) 2 5> 0.

By (3.1) we have

D,,(1(0)) = By (1) = my(e) < 0. (3.11)

From and ( -, one has

sup max{,(3(0)), ,(1(1)} £0 < 1.

Thus (3.9) holds.
O

Lemma 3.2. For any > 0 and any ¢ € (0,cp), there exists a sequence {u,} C S. N HL ((RY) such
that

Dy (un) = Myu(c) >0, @05 (un) =0, and Pp(u,) — 0. (3.12)
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Proof. By Theorem Ue € Se N Hyaqg(RY). Let (i)u be defined by ({3.3)),

Foi= {5 € (0.1, (Se N HLg(RY)) X R) :5(0) = (1, 0), ®u(3(1)) < 2mu(0)} (3.13)
and
M,(c) := inf max D, (3(t)). (3.14)
yerl, t€[0,1]

It is easy to verify that I'. = {n o4 : 4 € '.}. By (B.9), there exists x > 0 such that

inf ®,(3(t)) = inf @, (n(3(t
JEL AN POV = gy B0 0D

— inf O, (~(t
Jnf max p(v(1))

>k > 52%0 max{®,(v(0)), ®,(v(1))}

= ~SU1~P max{®, (n(7(0))), L. (n(¥(1)))}

= sup max{®,(7(0)), ®,(5(1))}.
y€le
This shows that M, (c) = M,(c) and (2.18) holds with ¢ = ®,,.
For any n € N, (3.9)) implies that there exists v, € ', such that
1

&, (v, (t)) < M =,
max @,(7,(8)) < M(e) +

Set ¥, = (Yn,0). Then 4,, € I.. It is easy to see

D, (3 (1) = D, (7 (),0) = P W (1),0)) = D, (v (t
nax, pu(Fn (1)) Jnax, u(1n(1),0) Jnax, p(M(n(t),0)) Jnax, w(n(t))
1 - 1
gMu(C)+ﬁ:M#(C)+E

Then applying Lemma [2.7|to ®, there exists a sequence {(vy,t,)} C (S, N HL 4 (RV)) x R satisfying

(i) Myu(c) - % = MM(C) - % < (i)u(vmtn) < MM(C) + % = M,(c) + 2

n’

2
i) min [|(vy,£,) — (Y, _ 2
() min [(00:1) = (0.0) i < -
i = .
(iii) H(I)“|(Scerlad(RN))xR(Umtn) < =

Let u, = n(vy,t,). It follows from (i)-(iii), (3.7), and that {u,} C S. N HL (RY) is a (PS)
sequence for @, restricted to S. N H_ (RY) at level M, (c), with P, (u,,) — 0. Since the problem is
invariant under rotations, {u,} C S, N HL ;(RY) is also the (PS) sequence for ®, restricted to S, at
level M, (c), with P, (uy) — 0.

O
Let Ky := [N(N —2)]¥=2/4, Now we define functions U, () := ©,(|z|), where
N;2
(Wz ; 0<r<l
—2
O =En () T @-m). 1<r< (315)
0, r> 2.
Computing directly, we have
n
g =0 (432 - . (3.16)
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O(n), N =3;
n SN—l
&(n) :=/0 st = ¢ O(log(1+n?), N =4 (3.17)
o(1), N =5,
2 N(N-2) N 1
IVU 3 = (An,aCh.a) "7 8 + O (W) , m— oo, (3.18)
NS NS N Mo 1
/]R s U R = (Av ety Y 82T -0 (n(NM) /2> , (3.19)
and
/ (Ip* UL)USdx
]RN
(N;Z)t (N;z)s
>A Kt+s / (W) 1+”n2|y|2> dll?dy
— /AN, _
PN o) Jeio) |z —y|N o
(N—2)t (N—2)s
1 (TP)z 1\1|2> 2
1+|z =+ |w
=An g K / / dzd
NBEN L (NTB) —(N—2)(t+s)/2 B.(0) 4 B (0) |z — wN—F =dw
(N—2)t (N—=2)s
1 () far)
14|z 1+|w
>An K5 / / dzdw
PN =N 92 [ o s o) Iz —w|N-P

2
1 1
t+s
>AN Ky n(N+B) —(N—2)(t+5)/2 2(N—B)+(N—2)(t+5)/2 </Bl(0) 1dz>

1
=0 (n<N+ﬂ>—<N—2><t+s>/2> » VEseER. (3.20)

Both (3.16) and (3.18) imply that U, € HL (RY).

Lemma 3.3. Let w <p< W, w>0, and ¢ € (0,¢cq). Then there holds:

2 N+ao
T g (3.21)

M, (c) <myu(c)+ 5

(N +a)

if one of the following conditions holds:

(i) N =3,4 with a,8 € (0,N), and N§B <p< N+J€+2'

’

(ii) N =5 with a € [1,2) U[4,5), B € (0,N), and 258 < p < NEL842,

(iii) N =5 with o € (0,1)U[2,4), B € (0,%), 43 — ba < 2, and

T+28 8468 8+28 -« T+ B
max 6 6 6 <p 5

(iv) N >6 witha € (0,N), 8€(0,N—-2),48— Na < 2N — 8, and

L [N+B-23N-245 IN-2+426-q N8+
N\ " N=-2 ' 2N_—4 ° IN —4 p :

Proof. By Lemma [2.3]and (3.2)), we can deduce that

@, (ue) =mu(c), ue(r)>0,VaeRY, (3.22)

(N—=2)p—(N+5)
2p

el = p [ U e, (323

16



and

Vu, - VU, dzx = — A\, uUpdx + / (I \uc|%)|uc| NS
RN RN RN

+ u/ (Ig * |ue|P)|ue P~ 2u U, da.
RN

20U, dx

(3.24)

Set b:= inf wu.(x) and B := sup uc(x). Then 0 < b < B < +o00. Hence, it follows from (3.15) that

|| <1 || <2

1
JUnpdx < B Uy dr =0 ——5=], n— o0,
/RNu‘ x < /|x|<2 T (n(N—2)/2) n — 00

and
N
N
/ (Is  u?) (w?~Uy)da chﬁ( Wwdx) < uglynﬁfﬁdx>
RN
N
2N
SOQ / UnN+5d$
lz[<2
1 N(N—-2)
2N n N+B _
=C, N@(N)K;VW/O <1+n2r2) rNldr
2N n N1(V+/32) 2 N
+N6O N)KN+B( ) / 9 — P \N+E N1y
( N 1+n2 1 ( )
2 n N—1
—Cy | NO(N)K Y7 n wes N / s ds
0 (14 s2) ~Fp
2 n NI(VAEJ;) ! 2N
NO(N)KNT? 5 (2 — s)N-1g
o EdT () T [ g e
1 (lnn)¥ 1
=0 (n(6+2)/2) +Xﬂ0< oz | TO n(N—=2)/2
where
1, ifg=N—4,
XB =
0, ifB#AN-4
For any t > 0,

e + tUL |13 =|uclld + 2| Un |3 + 2t/N uU,dz
R

:c+2t/ uUpdz + 2 [O (ii?)} , M — 00.
RN

Let 7 := |Juc + tUpll2/+/c. Then

2
7'2:1+l uU,dx + t2 [O(?)], n — oo.

C JrN

We define
Wht(z) = r(N=2)/2 [ue(T2) + tU,(T2)] .

)

Then
IVWoill3 = IV (ue +tU)3, (1Wails =72 lue +tUn |13 = ¢,
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(3.29)
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[0 W)Wt =204 [ (1 et P+t Pr, (332)

and

/ (I # [Wit| V22) | Wi o| 72 da :/ (I % |tig + tUp | N3 ) e + tU, | V-2 da. (3.33)
RN RN

It is easy to verify the following inequalities:

ad + qa?=1b, ifg>1,a>0, b>0;
(a+b)1> a? + b7, ifg>1,a>0,b>0; (3.3)
a? + qa? b + b9, if¢g>2,a>0, b>0;

ad + qa?='b + gabd—! 4 b9, ifg>3,a>0, b>0.

From (3.34)), we can derive that
[ s WP Wi

RN

=rP(N=2)=(N+5) / (Ig * [te + tUn|P)|ue + tU, [Pdz
RN
220 [ {1yl + = Ol + e~ U
RN
—P(N=2)—(N+p) (/ (Ig * |uc|?)|uclPdx + 2pt/ (Ig * |ue|P)|ue|P~ U, dz
RN RN
+p*t? / [I5 * (|uc|p—1Un)]|uC|P—1Undx> (3.35)
RN
and
[ @ s Wl WP
RN
>7P(N=2)=(N+5) / [I5 * (|uc|? + tPUD)|(|uc|P 4 tPUP)dz
RN
=rP(N=2)—-(N+5) ( / (I * [uc|?)|ucPdz + 2tP / (I * |ucP)UPdx
RN RN
+t%P / (I5 * U};)U:;dx> . (3.36)
]RN

When N = 3 with a € (0,3), or N = 4 with o € [2,4), or N = 5 with a € [4,5), it follows that

A4 > 3. Combining this with (3.34)), we obtain

[ e W 5510, 3
IRN
N+ao N+a 24« N+C¥ 24« Nita
> I i A (10 (tU,)N=2 4 (tU,) -2
_/IRN[ *(u +t g ( )+N_2u( ) + (tUn) >]

N+a N 2+a N @ a
x <uCN_2 n Nt;‘ugv—?(wn) + Nt‘;‘uc(wﬂ)?@ +(tUn)7%t2> de
N+ao

+

N+a N 2 24 24
:/ (Ia * ucN_2 )UCN_2 dz + ( + Oé) t2 / [Ia * (ucN_2 Uvn)}(ucN_2 Un)dx
RN N -2 RN

2 o 2+a 2+a 2(N+a) N+4a N+4ao
+<N+°‘> t*‘fv*—zz/ [ * (ueUY 2 (wel,Y =2 Yda + V=2 / (In % UY2)UN 2 dz
RN RN

2 N N+ao 24« 2 N a N+ao 24
4 AN+ ) +a)t/ (Io *ud 2 ) (ud 7> Up)dz + AN+ ) 2ty / (Lo *uc' " )(uclUn % )da
RN RN

N -2

o N+a N+a 2 o 24« 24«
va [ <za*ucN*2>Ufo2dx+2<N+ “) A U
RN N —2 RN

o 2+a N+a o 2+4a Nto
ANt O‘)t%t2+1/ Fa # (u OO 2 dp 4 2N T 0) M / Lot (el YUY da
RN N - 2 RN

(3.37)
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When N = 4 with a € (0,4), or N = 5 with a € [1,5), it follows that J-+%
fact and ([3.34)), we have

5 = 2. According to this
[ o 1 5550, 3
R

a N
2/ {Lx* <|uc|%fz + S e P U, 4 (a0 ¥R >]
]RN N
a N
x <|uc\%fz + N+at|uC|N BU, 4 |tU| V53 2)dx

N+a N+a N+a) Nta Nta
:/ (Ia*|uc|N*2)\uc|N*2dx+t pe /
R3

(Ia " Uanz )Uanz dz
L Wta) e,

24a 24a 2(N + «) Nta 24a
Ia c|N72Up c|N72Unp T o Ia c| N2 c|N72Unp
i 2)2t/[ el ¥ 0] e F5 U+ 2T t/RN( « e M5 o | FE5 U, da
Nto 2AN
+2tN 2/ (I *|’LLC|N 2)UnN72dx+7( +a)
RN

Nia o Nto
o / Lo (Juel V2 U)IULS 2 o (3.38)
N -2 RN
Set
N +a) 2 _ N(N-2) _(N*ZO{O‘
T* .= <N - 2) (AN,aCN,a) A(NTa) Sa (2T a) .
Then
N(N-2) N_o ,2WN+a) n Nita o oate
0< £ (.AN oCN.o) T S 5 2(N7+1)t N—2 (AN,aCN,a) 28,2 < 25\;_&)50‘% , 0<t<Ty, (3.39)
N(N-2) N2 2(N+a) N;ra ’
? (AN,aCN,a) 2(N+O‘) S - 2(N+a)t (-AN aCN 04) Sot < 07

t>T..
Case 1: N =3 with «,5 € (0,3); N =4 with a € [2,4),8 € (0,4); N =5 with a € [4,5),
(0,5). In this case, F£2 > 3. From (L.3), (3.17)-(3.20), (3-22)-(3.37), and (3.37)), we get

(I)M(Wn,t)

1 2
szVuCH%—F—HVUnH%—M/ Vu, - VU, dz
2 2 ]RN
N -2 o o
~ Sy o o e+ 0 e+ 0, P e

(N=2)p (N+5>/ (Ig * |ue + tUn|?)|ue + tU, [Pd
2p RN

1 t2 Nta Nto
<31Vl 4 IV + o ([ (o ol )10 ¥4 20,00
RN

+u/ (Is * [uclP)|ucP"*ucUndz — Ac uCUndx>
RN

RN
N -2 N+a Nta 2(N+a) Nta  Nta
- 1, o| M2 | 2d t N—2 1, UN2\UN-2(
2(N 4+«
2N+ a)

ﬁt/ﬂ{l\, (Ia * |UC|%)|HC|%72UCUndx
A0 s [
N -2 RN
-5 (N=2)p—(N+B) (/ (Ig * |ue|P) |uc|Pdx + 2pt/ (Ig * \uc|p)|uc|p_1Undx
P RN RN
+p2t2/ [IB*(|uc|p_1Un)]|uC|p_1Undx>
RN

N -2 2wiew Nie
~0 () + GIVUIE - st [

3N I, U, U

9t (N=2)p—(N+B) *2)12 (N+8)
+{1— {1 + —/ u Uydx + 20 (5(2))
C RN n

9 (N=2)p—(N+8) 2)10 (N+B)
i s o (8] e
C JrN

% (Ip * |uc|?)|ucPdx

n2 (T fuef ") e~ U die
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N —2)p— (N
4 (M( )I;pc( + ) /RN(IB * |uC|P)|uc|pdx> t/RN ucUpdz

— %T(Nﬂ)pf(NJrﬁ)ﬁ/ [I5 * (Jue P72 [ue P~ U, da
RN

a+2 N+4a

_ tNTVZf‘;ﬂ / [Ia % (uCUanz)]UnN—Z dx
RN

t2 N —2 2(N+a) Nta Nta
<@ulue) + FIVUE - gyt T [ (G UF U

L N+H) ;p(N ) e :o (iﬁ?) ( [ e |uc|p)uc|pdx>
+ (N +5) ;(N _ 2)put2 </R uCUndx> (/RN(Ig * |uc|p)|uc|p1Undx>
G ;(N — 8 :0 (57(1’;)) </sz (Ip |uc|p)uc|p1Undx)

= B |1y P Ul Ve

a+2 N+4a
N+2u+2
/ I * uCUN 2)]UnN de

2 N(N-2)
o 2<N+a> > " 4" N2 oCN o ) 2
B AN CN S 2(N+a) (AN CN ) S

&

()] % [0 (o) 20 ()]
oo (ot )H (i) 200 (2257 <0 k)|

o (%

N -2 2(Nta) N Nta
<m# + 2

+ 12 O

2

) [ (st ) +xa0 (%) +0 (M)]
s _O (n[m)} — N [O (M)} . (3.40)

It follows from (3.39) and ({3.40) that there exists i; € N such that

+ 3 O

Sup B, (Wi s) < mp(c) + —t O 535 (3.41)
t>g pATmE K 20N +a) ’
Case 2: N =4 with a € (0,2), 8 € (0,4); N =5 with « € [1,2), 8 € (0,5). In this case,

Nte > 2. From (L.3), (3:17)-(3-20), (3-22)-(3-35), and (3.38), we get

q)M(Wn,t)

1 2 Nta Nio
SQVuC§+2||VUn|§+t</ (Lo * el ¥55 e | 523 20,0 da
]RN

+u/ (Ig * |ue|?) |ueP~2u Uy dz — )\c/
RN RN
N -2
2(N+ )
2(N + «) Nta Nta_q
— ‘¢ 1, | V=2 c| V-2
P2 [ o el P

2(N+OZ N+a+1/ I " |UC|N 2(] )]Unjz\\llﬂgdx)

— 2 F(N=2)p—(N+5) ( (I5 * |ue|P) |uc|pdx+2pt/ (Ig * \uc|p)|uc|p_1Undx
p

uCUnd:L">

o a (N+a) Nta  Nta
(/ (T # e 5 ) jue| ¥5 d 4 ¢7 72 / (Io + UY YUY da
RN RN

uU,dx

+

+p2t2/ [ * (|u6|p_1Un)]|UC|p_lUnd$>
RN
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2 N —2 2nNta Nia Nt
:¢Amﬂ+—ﬂvuﬂif————ftw5)/ (L« U U 2 d
2 ) ]RN

2(N+a
9ot )p (N+8)
+<1-— [1 + —/ u Updx + 120 (f(z)) Iﬁ * |ue|P) Jue[Pd
C JrN n
o N=2)p_(N+8)
+4¢1- {1 + —/ uUpdz + 20 (5(2))] ut/ (Ig * |uel?)JucP~ Uy da
C JrN n RN

N-2)p—(N
N (u( )prc( +5) /RN(_rﬂ % |uc|p)|uc|pdx> t/RN u Updx

_ %T(N—2)p—(N+ﬁ)t2/ [I,g % (\uc|p_1Un)Huc|p_1Undl‘
RN

N+a

N z+1/ L+ (Jue| F2UNUF S do
RN

<my(c) + [tQ

An.oC ST S]2V ——t An.oC
a — N—2
N,« N,a) o 2(N OL) ( N,« N7a)

:O <nN1—2>] TN {O (M)] + 12 {O (i(;))]
o () [ () 0 (35255 ) 0 ()|
o ()] [o(rstm) 0 (4257) v (o)
e :0 <nﬂ1+2ﬂ s {0 (M)] . (3.42)

It follows from (3.39) and (3.42) that there exists no € N such that (3.41)) holds.
Case 3: N =5 with a € (0,1)U[2,4),8€ (0,%),48 — 5a < 2, max{7+2*8,8+5 8125 a} <p<

N —2 2Nto N Nta
( 2
2

+ 2

+t3 |0

6 6
By N > 6 with o e( N),B € (0,N—2),48—Na < 2N —8, max{ -2 2N 2408 2N_2420-01
p< Nﬁ@“. From (L.3), B-17)-(3-20), (3:22)-(-34), and (3-36), we get
®,(Wpi)
1 . .
<= || Vue||3 + ||VUn||§ +t ( / (o # e ) ue| M2 20U da
2 -
b [ (@ el 2, =, [ ucUndx)
]RN ]RN
N —2 N+ta N+o 2(N+a) Nta NJ:oc
— m (/RN([a * |[ue| M=2)|ue| V2 dx + ¢t N2 /]RN(I(X « UN Z)UnN le‘)

- L v-2p-(vs) ( / (Ig * [uc|”) Juc|Pdz + 27 / (Iﬂ*Uﬁ)Uﬁdx>
2p RN RN

t2 N —2 2N+ Lo Nta
=0, (uc) + = |IVUL|3 — 57—t ¥ 2 I« Uy 2 UL 2d
1)+ SIV0 I = sy [ v e
o (N =2)p— (V)
+41- [1+/ u U, da + t20 <§(2)>} ﬂ/ (Ig * |uc|P)|uclPde
c JrN n 2p Jr~

+ (,u e /RN(IQ* [ue]?)|ue| dx) t/]RN u U, dx

+o¢

+t/ (In *|uc\N 2)|u | V=2 2uCUndx+ut/ (IB*|uc|p)|uc|p_1Undx
RN RN

L A
2 RN

t2 N —2 2@+a) Nta  Nito
<o c — n 2 _ " N2 Ia nN—2 nNi—Qd
u(ue) + S IV U2 Nt /RN( « UN2)U T
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D=0 o (SN ([ (1)

+t/ (Ia*|uc\%)|uc|%*2ucrjndx+ut/ (Ig * |uel?)|ue[P ' Updz
RN RN

_HP_(N-2p-(N+8) 2 / (I * UP)UPdz
2 RN

+2 N(N—2) N N —2 2N+a) N Nto
<mu<c>+{ (Aw.aCa) X5 Sl = 5oyt 2 }

+¢ |0 [ ( )} +tNE [0 (Wﬂ +12 {O (iﬂ?)}
O< <a+2)/2> T Xa0 (M) o (M)]

N-—2

1 (lnn)T_ 1 2% 1
O<n(ﬁ+2)/2>+xﬁo<(1\i—2)/2>+0<n(1\1_2)/2>]—t O\ ~wvep—v=op ) |- (343)

Tt follows from (3.39)) and ([3.43) that there exists fi3 € N such that (3.41)) holds.
Next, we prove that (3.21) holds. Let 7 = max{n1, fia, g }. By (3.28)), (3.30)), and (3.31)), we have

+1

Wﬁ’t(x) = T(N_Q)/Q [UC(T(E) + tUﬁ(T.’E)] 5 ||Wﬁ’t||§ = C (344)
and
IVWailld = IV (ue + tUR)|2 = ||Vuc||§+t2||VUﬁ||§+2t/ Vu, - VUrdz, (3.45)
RN
where where o
7% = |Jue + tUz||2/c = 1 + ?/ uUndz + t2(|Uz||3. (3.46)
N

It follows from (3.40), (3-42)), (3.43), (3.44), (3.45)), and (3.46) that W5, € SN HL ;(RY) for all t > 0,
Wia.0 = Ue, and @, (W5 ) < 2m,,(c) for large ¢t > 0. Thus, there exist ¢ > 0 such that

O, (Wiz) < 2my(c). (3.47)

Let 75 (t) := Wy 4. Then 75 € T defined by (3.10). Hence, it follows from ) and (3.41) that

(3.21)) holds. O

Lemma 3.4. The function ¢ — my(c) is nonincreasing on (0, co).

Proof. For any c1,ca € (0,¢0) and ¢o > ¢1 > 0, it follows that there exists {u,} C V., such that
1
my(c1) < @puluy) <my(er) + e (3.48)

Let ¢ := & > 1 and v, (z) := Cyun@*%x). Then

[onll3 = Cllunll3 = c2, [IVoall3 = [ Vunll3, (3.49)
[ s oalonlras = 2 ), (3.50)
RN RN
and
/(Ia*|vn|%)|vn|%dx:/ (I * [t | M2 )| V=2 dz. (3.51)
RN RN

From (3.49), (3.50), (3.51)), and (3.48)), we have

mu(0)<@ (vn)

N -2 Nta Nta ,u/
Vo, I, * v, | ¥=2)|v, | V—2dx — — 15 * |v,|P) vy, [Pdx
=51Vl = 5oray L U o F)lon oo | s o
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N -2 Nia Nia
=51Vl - gy [ ool ¥, ¥5a
L g / (Ip * funP) [un Pl
2p RN

1 N —2 Nta Nto 12
7vn Ia n| N2 anzd ~ a_ I np npd
5190l =~ 5oy L o a0 P P e = [ (T ) Pt

1
:(I)#(un) < mu(cl) + o
which shows that m,(c2) < m,(c1) by letting n — oo. O

Proof of Theorem [I.2l By Lemma we know that there exists a sequence {u,} C S.N
HL (RY) such that

rad
Py (un) = Myu(c) >0, @5 (un) = 0, Pyu(un) — 0. (3.52)

To show the convergence of {u,} in H. ;(RY), we proceed in three steps.
Step 1: {u,} C H} ;(RY) is bounded.
According to Lemma [2.2] we have

/ (T3 * [un P tn Pz <
RN
It follows from (3.52]) and (| - ) that

2p—2
e ||2p g | V1377 |57 (3.53)
p

M(0) +00(1) =Byi) = Byln) — 0 Pol) + (1)
o+ 2 2 M [Np — (N + B)|(N - 2) p P
s IVl = g (1= FE=GEEE=EN [ (1l P
a+2 2 [Np— (N +B)|(N —2)\ pcP~ P 2p7p
2 sty IVl - 4y (1= R =) B o

Since NZ‘\';B <p< N+]€+2, it is easy to see 2py, < 2, and then {u,} is bounded in H} ;(RY).
Step 2: {u,} C Hrlad(RN) has a non-trivial weak limit.

Since {u,} C HL, (RY) into
L#(RY), there exists a u € HL ;(R") such that, up to a subsequence, u, — u weakly in H} ;(RY),
u, — u strongly in L3 (RY), s € (2,2%).

Let us assume now, by contradiction, that u is trivial. Then, by Lemma [2.1]

(RM) is a bounded sequence, by the compact embedding of H,

rad

/RN (Iﬂ * [ |P) Jup [Pdr < CN,B”“N”E?\[M(N_g.g) = on(1), (3.54)
and since

Nia Nia
Pﬂ(un) = ||Vun||§ - /N(Ia * |tp | N2 ) Jup | V=2 dw — HYp /RN (Ip * |un|?)|un|Pdz = 0,(1),
R

we deduce that

(o3 @ m o [e3
Sa U (I * |un|%*z)|un|%*zdx] < || Vun|2 = / (Lo * [tn| M2 )| V=2 da + 0, (1).  (3.55)
RN RN
We distinguish the two cases
either (i) / (I * |un|%)|un|%dx — 0 or (i) / (I * |un|%)|un\%dx — 41 > 0.
RN RN

If (i) holds then, in view of (3.55]), we have that ||Vu,||3 — 0, which implies that

N -2

1
0 < Myu(c) +on(1) = p(un) :§||Vun|\§ TAN+a)

/ (I * || M2 )| M2 daz
RN
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_ P
2p RN

This is a contradiction. If (ii) holds, we deduce from (3.55)) that

(Ig * |un|?) |uy |Pdz = 0,(1).

Nt

Vu,|? = Ia*un% un%dx—konl > ST 4+ o,(1).
2 .

From (3.54) and (3.56)) we deduce that
1 N -2
o n) —4 n 2 e —
) =51Vl = 5
a+2

S e 2 1) >
507 1y 1Vl - on 1) >

/ (I # [tn| ¥2) | M2 da + 0, (1)
RN

a+2 Nta
_OF2 SEE Lo (1),
SNty Hoall)

But, since m,,(c) < 0, we have

a+2 Nio a—+2 Nio
D, (upn) = Myu(c) +0p(1) <my(c) + 5

(N +a) (N +a)

This is a contradiction.
Step 3: {u,} C HL ,(RY) strongly converges.
Since {uy} is bounded, from Lemma we know that

Culs,(un) =0 & @) (un) + Antn =0,

where )
A = —— (D, (un), un).
c

n
Thus, for any w € H*(RY), we have
on(1) = <(I>;(un) + Anln, w)
:/ (Vuy, - Vw + Auw)de — / (I % |un|%)|un|%72unwdx
RN RN
i [ Pl i
RN

where 0,(1) = 0, n — oo and

Nia Nio
—Ane = [Vug 3 - /N(Ia # [t | V72 ) Jup | V2 do — H/N([B * un|?)|un|Pdz + on(1).
R R

Sa™™ +on(1) < 273;” )

(3.56)

(3.57)

(3.58)

In particular, {\,} C R is bounded and, up to a subsequence, ), — A. From Lemma for any

w € HYRY), we can deduce

lim (Ig * |un |P) |un [P 2upwde = / (Ig * |ulP)|u|P~2uwdz
RN

n—oo RN

and

lim (I * |un|%)|un|%_2unwdx = / (I * |u|%)|u|%_2uwdx.
n—oo RN RN

(3.59)

(3.60)

Now, passing to the limit in (3.57)) by weak convergence and combining (3.59)) with (3.60)), we obtain

that
/ (Vu - Vw + Auw)dz — / (I * |u|%)|u|%_2uwdx
RN RN

—,u/ (Ig * [ulP)|ulP"uwdz = 0, ¥ w € HY(RY).
RN
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Hence, by Lemma we have P, (u) =0 and

N+B8—(N—-2)pu

[
)\ =
2pull3

/RN (Ig * |ul?)|ufPdz > 0. (3.62)

Let vy, := u,, — u. Then v, — 0 weakly in H! ;(R™), v,, — 0 strongly in L*(R"), and v, — 0 a.e.
in RY. Thus

[Vl = [Vull3 + [ Vonl3 + 0n(1). (3.63)

Arguing as in [§, Lemma 2.4.], we can prove that

/ (L [ | 3755 ) | V55 o
RN

:/ (L, + |u|%)|u|%dx+/ (Lo # [m | %55 ) 0| ¥ 2 + 0 (1) (3.64)
RN RN
and
/ (Ig * |un|?)|uy [Pdz :/ (I * ul?)|ulPda +/ (Ig * |vp|P)|vpPda + 0n(1). (3.65)
RN RN RN
In particular,
D, (upn) = P, (u) + @p(vn) + on(l) (3.66)
and
Pu(un) = Pu(u) + Pu(vn) + on(1). (3.67)

Here again we distinguish the two cases
either (i) / (Ia*|vn\%)|vn|%dx—>0 or (i) / (Ia*|vn\%)|vn|%dx—>€2 > 0.
RN RN

Assuming that (ii) holds, and since P, (u) = 0, we deduce from (3.67)) and (1.15) that

N-—2
Nia Nia Nte Nia Nia
S, {/ (I, % |vp | =2) v, | =2 da < ||V = / (I, * || 7=2) v, | =2 dz + 0, (1).
RN RN

Then, reasoning as in Step 2, it follows that

o+ 2 Nito

D, (vy) > S2te + on(1).

~2(N+«)

According to Lemma we know that ¢ — my,(c) is nonincreasing. Using P, (u) = 0 and since, by
property of the weak limit, ||u|3 < ¢, we get that

Thus

B, (1) = () + D, (0,) + 00 (1) > my() +

which contradicts our assumption on M, (c).

It remains to show that if (i) holds then {u,} C HL ;(RY) converges strongly. Since (i) holds, we
get from that [on (Lo * |un\%)|un|%dm = Jan (T * |u|%)|u|%dm Noting that u, — u
in L(RY) for s € (2,2*), and using together with Lemma we can deduce that

lim (Ig * |up|P)|up [Pde = / (Ig * |ul?)|ulPdx.
RN

n—oo RN
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Choosing w = u,, in (3.57) and w = u in (3.61]), we deduce that

iy (170l = [ (Tt )0 55— [ (0 Pl P+ Al )

n—o00 RN RN

Nto  Nia
=0=Vull3 - / (Lo * [u| ¥=2)|u[¥=> dz — u/ (Ig * |ulP) ulPdz + X|u|/3.
RN RN
Since \,, — A, we obtain that
T (V03 4 Alual3) = B (V3 + Anlunl3) = [Vul + M3 (3.68)

By (8.62) and (3.68)), we conclude that u, — u strongly in Hrlad(]RN ).
Since u, — u strongly in H. ,(RY), combining with (3.52] , , and (3.62)), we can deduce that

D, (u) = My(c) >0, @), (u) + A u=0, Pu(u) =0, lull3 =c, A>0.

4 L?-critical and L?-supercritical perturbation cases

In this subsection, we always assume that N Hg 2 < p< N +ﬁ and shall prove Theorems and
L4 Let

1-—¢2 N —2 2(N+a)
ha(t) = - e 41
)= 5 2(N+a)< ) t>0 (4.1)
and [Np— (N +5)]
_INp— (N D) oy B Np (N4B)
ho(t) == i 1=, (1 t ) t>0. (4.2)

It is easy to see that hyi(t) > hq1(1) = 0 and ha(t) > ha(1l) =0 for all ¢ € (0,1) U (1, 400).

Lemma 4.1. Let N > 3,¢> 0, >0, and N+B+2 <p< N+6. Then there holds

2

1 o o
B, (u) =0, (" 2uy) + Ppu(w) + o (t) / (I * Ju] 75 |u| 72 do
]RN

+ hg(t)/ (Is * [ul?)|ulPde, Y u € S., t>0. (4.3)
RN

The above lemma can be proved by a straightforward calculation. From Lemma[4.1] we derive the

following corollary.

Corollary 4.2. Let N > 3,¢>0, u> 0, and W <p< % Then for any u € M., there holds

@, (u) = max &, (tV uy). (4.4)

t>0

Using a standard argument, we can establish the following lemma.

Lemma 4.3. Let N > 3,¢ > 0, u# >0, and N+5+2 <p< N+6. Then for any u € S., there exists a
unique t,, > 0 such that tu utu € M..

By Corollary .2 and Lemma we get the following lemma.

Lemma 4.4. Let N > 3,¢> 0, u> 0, andw <p< % Then

. — N/2
my(c) ug/lélcfb (u) = ulélg r&agc@ Y %uy). (4.5)
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In what follows, we set

Q 2p—2 ) N 2
§(N,p) = !agkvﬁv if p= +]\€+ J

¢(N, p) := 400, if N2 o < B

Lemma 4.5. Let N >3,¢>0, 0 < u < &(N,p), and N+]€+2 <p< N+ﬁ. Then
(i) there exists ¥, > 0 such that ®,(u) > 0 and P,(u) > 0 if u € Agy_, and

0< sup ®,(u) <inf{®,(u):ueS,, ||Vulj=29.} =&, (4.6)
ueA@C
where
Ay, :={u€S.:|Vull3 <9.} and Agy, :={u €S, : ||Vulz < 20.}; (4.7

(i) Lo == {7 € C([0,1),50) = [V1(0)[[3 < U, ®,,(7(1)) < 0} # 0 and

M, (c) := inf max ®,(y(t)) > & > maxmax {®,(v(0)), ®,(v(1))}. (4.8)
~el. t€[0,1] ~vel.

Proof. (i) We distinguish the following two cases on p.
Case 1: M <p< M In this case, 1 < py, = Np (N+5) N+’3 Given that the value of

2p
‘”2 >0 and py, —1 >0, there exists J. > 0 small enough such that

Nto a+2 6/’1’

- 1
Sa VT (200)VF 4 —— o TP (29, )P < (4.9)
Q52 4
By (L3), (T-11), (T-15), (24), and [9), one has
1 N -2 N+ta  Nia iz
O(u) == || Vul3 — =~ I, ~=z)|u|~-2dx — I P)|ulPd
() =51Vl ~ grag [ ot W) ¥ e = 2 [ (155 ) upda
1 N -2 —Nta 2ot4 _ 2 —92
>||Vulls | 5 = 5= ¥ IVulls"? — g TP |V 57
2\2 2N+ o) ? 2|\Qp||21’ 2 ?
1 N -2 _Nta a2
>|Vull2 [ = — =80 ¥ 2(20,) 72 — 70(17%)%219 yPre =l
\2 2V +a) ‘ 2|Qy 5"~ '

>0, Vuc€ AQﬂC,

Nta Nio
P =l = [ o Wl ¥l ¥ =y, [ Tl o
RN RN

2a+4
>||Vull3 (1—8 ¥ |l Wcﬂ—vp)pnvu@m—z)

2p—2
QI
e 1YpP
ATl 1= 8 @005 = g e 20
p
>0, Vuc€ Agﬁc,
1 N —2 _Nia atz M - -
(I)(u) 2 Hqug <2 - m P Wc(l 'Vp)p,lg;g’yp 1) >0, Vue Aﬁc,
p

1 N -2 a a
o) =51 Vulb - 530 / Uae [l ¥ e — / T * [uf?)|ufda

1 1
S§||VUH§ S 5190, V u e Aﬂc,
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and

1 N — 2a+4 1 _ 9 9
B(u) > Vul2 [ £ - 25 MR g T - p gy 2
2\2 7 2(N+a) 2([Q, |22 ’

N —2 —Nta at2 I
=0, (1 - ——=8, V% (20,) -2 (1=70)p (299, )Prr—1
( N+a (20c) (20e)

— ————5C
Q57
2%96, Ve ((u)u €S, [[VulZ = 20.).
Case 2: p = N+]€+2

In this case, 1 = py, = pw

2 2
Since”‘—*z>Oand0<,u<M
there exists ¥, > 0 small enough such that

2¢(B+2)/N >

N+ta

saM(wc)mJ(l . c<ﬂ+2>/N>_

A lo 2p—2
4\2 [1Qpll"

By (3. (C10). (C19). (). and (T, one has

(4.10)

1 N-2 X+ 2044
d(u) > 2l 2 _B+2/N_ % Nz
() >Vl (2 ST S vl

1 7 N -2 _Nta at2
SV ul2 ey - N2 oW g 8
>||Vull3 (2 2T 5C 2(N—|—04)S (20.) N>

>0, Vue Aggc,

2 1% (B+2)/N _ o~ N3 s
P(u) =[Vullz T 5C = 8o " [Vully
p

2||Vu|§< K BN *22)

,%( )a
c - S VT (29,)N
1Q, 1272
N +a  at2
W) > [Vul2 (2 - —#__eran - NZ2 F55%5 ) S vaedy,
\2 2,7 2(N + )

>0, Vu€ Agﬁc,

1 1
O(u) < §||Vu||§ < 5196, Vue Ay,

and

1 2oy 9 N -9 204
P >V 2 o (A=) \v4 PVp 75 N 2 Vu
(w) 2 Vul} (2 T = A e R LT

_ N+
=9, (1= e X2 R (g )7
1Qpll3 N+a

L3 (L # o
2 "1 \2 2p-2¢
1QylI2

(ii) For any given w € S, we have |[tN/?w;||2 = ||w||3, and so tN/?w; € S, for every t > 0. Then
[3) vields

1 N -2
@, (t¥/2u,) = (2||Vw||§—t EN

2(N+a) _, Nto Nto
—3 I N-—2 N—-2(,
2(N +a) /RN( o x W] ¥ )| v de
IUJtQP’Yp*Q

—7/ (I * w|p)|w|pdx) — —00 as t — +o00.
2p RN

—Yc

, Vue{du):ueS., |[Vullz =29.}.
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Thus we can deduce that there exist ¢; > 0 small enough and ¢5 > 0 large enough such that
HV (tiv/zwh) Hz =t1|Vw|3 <9, and @, (tév/thz) < 0.
Let vo(t) == [t1 + (t2 — t1)1]V/?wy, 1 (t—t,)r- Then
19900013 = [V (172w [ < 0 and @001 = 8, (57%0,) <0,

Consequently vy € I, and so I, # 0.

For any v € I, since ®,,(u) > 0 when u € Agg_ and ®,,(v(1)) < 0, we can deduce ||V~(1)|3 > 20...
Now using the intermediate value theorem, for any v € f‘c, there exists tg € (0, 1), depending on ~,
such that [|[V7(to)||3 = 20, and

max @,(+(1)) > 0,(3(t)) = inf {P(w) € S, |Vul = 200}

which, together with the arbitrariness of v € f‘c, implies

M, (c) = inf max ®,(y(t)) >inf {®,(u) : u € S, |Vu3 = 20.}. (4.11)
»yef‘c tE[O,l]

Hence, (4.8) follows directly from (4.6) and (4.11)), and the proof is completed.

Lemma 4.6. Let N > 3,¢>0, u >0, and N+TB+2 <p< ]]\\],—J:g Then
M, (c) = m,(c). (4.12)

Proof. We first prove that Mu(c) < my(c). For any u € M., there exist ¢; > 0 small enough and
to > 0 large enough such that

2
|V (8720 |, = 219l < 0, @, (1570, ) <.
Let 4(t) := [(1 — t)t1 + tta]™/ w14y, +41,- Then

. . N/2 2 . N/2
15613 = ull3 = e IV3(0)13 = ||V (6un, ) ||, < Ver @u(3(D) = @ (8"%us, ) < 0.
Hence 4 € T'.. By (&4) and the definition of M,,(c), we have

t(e) < o @,(3(1)) < mane @, (V) = @, (1),

and so M,,(c) < 1h,(c).
On the other hand, by (4.3) with ¢ — 0, we have P, (u) < 2®,(u) for u € S, which implies
Pu(7(1)) < 2&,,(v(1)) <0, V v € I,

Since ||v(0)]]3 < 9. < 29, by (i) of Lemma we have P,(v(0)) > 0. Hence, for any v € T'., there
exists to € (0,1) such that

PM(’Y(tO)) = 07
that is y(tg) € M.. Therefore

max @,(7(1)) > @,(3(t0)) > inf @, (u) = (c). ¥ € L

and so Mu(c) > my,(c) due to the arbitrariness of . Therefore, Mu(c) = 1my,(c) for any ¢ > 0, and
the proof is completed.
O
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Similar to Lemma [3.2] we can prove the following lemma with Lemmas [£.5] and [£.6]

Lemma 4.7. Let N > 3,¢> 0, 0 < u < &(N,p), and N+5+2 <p< NHj There exists a sequence
{un} C 8¢ such that

D, (up) = My(c) >0, @,ls (un) =0, and Pp(un) — 0. (4.13)

To deal with the lack of compactness of the embedding H!(RY) «— L?(R¥), we next collect some

properties of 7h(c) as follows.

Lemma 4.8. Let N > 3,¢ > 0, 0 < u < &(N,p), and N+TB+2 <p< ]X,—tg Then the function
¢ — my(c) is nonincreasing on (0,400). In particular, if 1, (c1) is achieved, then My, (c1) > 1, (c2)

for any co > 1.

Proof. For any ca > ¢; > 0, it follows from the definition of 7, (c1) that there exists {u,} C M.,
such that
D, (up) <m“(cl)—|—f VneN (4.14)

Let ( := 2 > 1 and v,(2) := C* 7w, (C"22). Then ||v,]|2 = ¢z and ||V, |2 = |[Vua||2. By Lemma
there exists £, > 0 such that 3> (vn)t, € Mc,. Then it follows from (1.3), (4.14), and Corollary
[4.2] that

i (cs) <@, (tN/z(vn)t )

n N -2 20Nto) N+a Nio
219018 = gyt [ o # o Pl P
2p7,
t P
S [ Pl pds
2p RN
t2 N -2 20t Nto Nta
:§||V’un‘|%—mtn1\’ 2 ‘/RN(IQ*|UTL|N72)|U”L|N72dx
217"/17 N
_ &C(NH?) (N2 / (I % |tn P |Pdec
2p RN
1
<, ( N/2(4, ) ) < By (un) < i (e1) + - (4.15)

which shows that i, (c2) < (1) by letting n — oo.

If 7, (c1) is achieved, i.e., there exists @ € M., such that ®, (@) = 7,(c1). By the same argument

as in , we can obtain that 1, (c2) < 1, (c1).
O

Next, we give a precise estimation for the energy level Mu(c) given by (4.8) when N+TB+2 <p<
%—fg. To this end, for any fixed ¢ > 0, we choose 0 < 0 < 1 and R,, > n? to be such that

1o sN-1 n N=2
=NO(N)KZ% { — ———d —
¢ () N{n2/o 1+ s2)N-2 $+(1+n2+20)

2R [N+ (N +2)R; — 2N(N +2)Ryn” + N(N +1)n*7 } (4.16)
N(N +1)(N + 2)(R,, — n°)? ' .
Note that
ntte 2
/0 — 2d5 _ - arctann1+a’ (417)
nlte 3 140
. 1 (1+0)
7 _ds==1log(1l oy - — 41
/0 +s227 72 og(1+n7) 2(1 + n2(1+0))’ s
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and

ntte sN-1 1 1 1
/0 rapn 2B Syty g~ o e oy YV 25 (4.19)

From (4.16)), (4.17), (4.18), and (4.19)), one can deduced that

1
. Ry, [ (NF (N +2)c| ¥
nlirrgo n(N=2)(1+20)/N — [ 20(N) K2, (4.20)
Now, we define function U, (z) := ©,,(|z|), where
N;Q
(m#r?) ; 0<r<n
On(r) = = 4.21)
(")n('r) = KN <1+nn2+ga) R}?:L—_nr(7'7 n® <r< Rna ( .
07 T Z Rn

Computing directly, we have

~ ~ +OO ~
T3 = / |0 dz = NO(N) / 16 (1) 2N "
RN 0

2 "7 n N2 N-1 Fn n N=2 (Rn — 7")2 N-1
= [ — - n —d
NON) K /0 (1 +n2r2) " dr+ /na <1 —|—n2+2”) (Rn — n”)Qr "

2 1o sVt n N=2
=NO(N)K% {nQ/O st + <W>
5 2RN*2 — [(N +1)(N + 2)R? — 2N(N + 2)R,n? + N(N + 1)n*?|n™N7 }
N(N +1)(N +2)(Rn — n?)?
=c, (4.22)

_ ~ foo
HVUn”g :/ |VUn|2d.1: = / |VUn|2NN9(N)T’N_1dr
RN o
n®  N42 N4+1 N-2 R, N1
=NO(N)KR | (N —2)* nor on / BRI
NO(N)KN [( ) /0 (1+n2r2)Ndr+ 1+ n2+20 o (Rn =) r

nlte N+1 N—-2 N No
_ 2 o2 s _n Ry —n77
=NO(N)Ky |:(N 2) /0 (1+52)Nd5+ <1+n2+20) N(R, _n0)2:|

oo N+1 N-2 pN _ _Neo
_o¥ 2 | a7 on2 s n R, —n
=82 + NO(N)Kx [ (N -2) /nHa (1+82)Nd8+ (1+n2+2"> N(Rn_na)2:|

NN-2 N 1
= (.AN,aCN,a) 2(N+a) §2 + O (m) , M — 09, (423)

-~ N+a

/(fa*\ifnﬁf‘z‘)\rfw?dm
RN

z/ (I * U] 35| ¥ da
RN

N+4a N+ta
2 2

2(N+a) ( n72L P 2) ( ng 2)
—2AN oK\ / / ik ;J_ra v dzdy
RN\ B, (0) /B, (0) lz -yl
Mfe Hie
(o) ™ ()
— AN oKV 2 / / el ;4__ v dzdy
RN\ B, (0) JRN\ B, (0) |z —y|N
Nta
= (AyaCna)® 80? — 2Dy — Do, (4.24)

31



N+4a N+4a
2

2
Dy =Ano Ky / / e e dady
RN\ B, (0) / B,o (0) lz -yl

N 4o S
2(]1\7Vj2a) c N@(N)) N;a /oo stl 4 2N /n SNfl d
< oK o —v N
SAwaHy™ Crval e (L 82)N o 1rsN
1
N+ta N+ta
(rtee) (i)
2(N+a) n2lz]2 n2]y2
D2 :AN’QKNN—Q / / 1+ ‘ | ;i’a ‘yl dxdy
RN\ B,,o (0) /RN \ B, (0) |z -yl
A N+ta > sV—1 Ea
Aoty exaon ™ ([ 5 ees)
1
=0 (n(N+a)(1+a)> , M — 00, (4.26)

and

/ (T * [0]9) T
RN

(N—2)t (N=2)s

1 2 1 2
1 (1+|z\2 (1+\w|2)
t+s
>An Ky n(N+B)7(N72)(t+s)/2/B 1+U(O)/B ) Iz — VP dzdw

(N—2)t (N—=2)s
2

1 2 1
1 (1+|z|2) 1+|w\2>
>An s K4 / / dzdw
N B1(0) /B, (0) |z —w|N=F

(N+B)—(N—2)(t+s)/2

2
1 1
t+s
Z-AN,ﬁKN n(N+3)_(N—2)(t+s)/2 2(N—,8)+(N—2)(t+s)/2 </Bl(0) 1dz>

1
=0 <n(N+m_(N_2)(t+s)/2> , VtseR (4.27)

The combination of (4.22) and (&.23) yields that U,, € S. for all n € N. Using the above estimates,

we will prove the following lemma.

Lemma 4.9. Let ¢ > 0 and p > 0. Then there exists n € N such that

My(e) < sup ®, (tV/2(T),) < O _s2%0 (4.28)
S VTN )T .

if one of the following conditions holds:

(i) N =3 witha € (0,3), B€ (0,1), 22 <p<3+8, and p > 0;

(i) N =3 with « € (0,3), B € (1,3), # <p<1+4p,and p > p* >0, with u* sufficiently large;
(iii) N=3 with a € (0,3), € [1,3), 1+ 8<p<3+p, and p > 0;

(iv) N >4 with a, B € (0,N), Y2 < < W8 and > 0.

Proof. From (1.3), (4.23)), (4.24]), (4.25), (4.26)), and (4.27)), we have

~ t2 ~ N —2 2w+ta) N ~  Nita
B (O)0) =5 IV~ ot [ 05510, P e

_ Zﬁth—(NJrﬁ)/ (Is  |Upn|P)|Un|Pda
D RN
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2B ¥ 1
SE |:(AN7QCN,&) 2N+ §2 + O (TLQ(H'QU)(N_Q)/N)]

_ %tw—(}wﬁ) [0 (M)]
=[5 a3 = D22 (e ]
L [0 (W)] o {0 (W)]
_ thf(NJrﬁ)M [O <nN+ﬁl(N2)p>} . (4.29)
It can be easily verified that
2(1+20)(N —2) < (N+a)(1+a)’ Yo e (0,1). (4.30)

N 2
(i) f N=3,a€(0,3),5€(0,1), and # < p < 3+, we then choose o = # in (4.21). Then,
from (4.29)), we have

~ t2 _3 1 3 o 3
O, (tV2(T,))) < | = (A3 0C3.0) 700 — —— 426+0) (4, Cs )7 S2 | S2
p(t5(Un)e) < [2 (A5,0Cs,0) Gt a) (A3,0C3,0)
1 1
2 2(34+a) -
i [O (n<5+5)/3>} i {O <n<3+a><7+5>/8)}
1
_ $3p—(3+8)
£3p [O (ngw_pﬂ . (4.31)
Note that
3+ﬁfp§4+325<¥, ifBG(O,l)and¥§p<3+6. (4.32)

Hence, it follows from ((3.39)), (4.30)), (4.31)), and (4.32)) that there exists 7 € N such that holds
for every p > 0.

(i) I N =3, a€(0,3), 8 €[L3), and # < p <1+ 8, we then choose 0 < o < 1 in ([{.21).
Hence, by and , for any fixed n € N, there exists u* > 0 large enough such that
holds for pu > u*.

(iii) f N =3, € (0,3), 5€[1,3),and 1 + 8 < p < 3+ 3, we then choose w <o<lin
(4.21). Then, from , we have

2

~ t _3 3 _a 3
(bu(tg/Q(Un)t) S |:2 (A3,aCS,a)2(3+a) - t2(3+0‘) (AB,OCC:S,CK)Q So?:| Soc2

23+ a)

1 1
2 2(3+a)
+t |:O (n2(1+20)/3>:| +t |:O <n(3+o¢)(1+o)/2 >:|

1
3p—(3+8)
— %P [O <3 5 p)} . (4.33)

Note that

5+8—p < 2(1+20)
2 - 3
Hence, it follows from (3.39)), (4.30)), (4.33]), and (4.34)) that there exists 7 € N such that (4.28)) holds
for every p > 0.
(iv) If N >4, o,6 € (0,N), and W <p< %, we then choose o = %ﬁ’,]i;f € (0,1) in
(4.21). Then, from (4.29)), we have

3+8-p< ,Vif14+8<p<34+6. (4.34)

t2 N(N-2) N —2 2N+a) N _a N

o N/ZNn <|= [e% am_iﬁ @ a?o? 042
p(E5(Un)t) < 5 (AN,aCN.a) 2(N+a)t (AN.aCN,a) 2 Sd | S
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9 1 W) | 1
+t710 n(12N+28-20)/3N ti n(N+a)(9N+5-16)/12(N—2)

1
_ 4Np—(N+B)
s () .
Note that
28+4 12N +28-20 . N+5+2 N+8
_ (N — > = ere .

N+pg—-(N-2)p< I N , if N >4 and p<N_ (4.36)
Hence, it follows from (3.39)), (4.30)), (4.35]), and (4.36) that there exists 7 € N such that (4.28)) holds
for every p > 0. O

Proof of Theorems [1.3] and [1.4l. In view of Lemmas and there exists {u,} C S.
such that

- 24a  Fte
unll3 = ¢, ®,(un) — My(c) < mSﬁ*“ , @l (un) — 0, and Py (u,) = 0, (4.37)

which, together with (1.3)) and (1.11]) implies that

- N -2 Nto Nito
1,(6) + 0(1) = Bp) =5 Vn I = s [ (Tl ¥ ¥
_ % I * ) e (4.38)

and

0n(1) = Pun) =1Vl = [ (o o ¥ 0] ¥¥5 0

Np— (N
_Np=N+H) / (Is % [tn|P)|un Pda (4.39)
2p RN
It follows from and - ) that
N 1 a+2
W1, (6) + 00(1) =@ (un) — 3 Pulun) = e / (Tl 558 ot | ¥ 2

(N +5+2) / (T Pdz. (4.40)

When Y242 < < 245 e have {fRN (I, * |un|%)|un|%dx} and { [ (Ig * [un |P)|un|Pdz} are
bounded. By -7 one has

o o Np— (N
Hvun”g:/ (]a*|un|%)|un|%dm+w
RN 2p

i [ sl P + 0,
RN

This shows that {u,} is bounded in H'(R") when N+]€+2 <p< N+6 When p = N+B+2 , by (£40),
we have {fRN (Lo % |un|%)|un\%dx} is bounded. From and Lemma one has
e A T T / (L5 Janl? Pz + 04,1
RN 2p RN

N ) || V2 (28-+4
S/RN(IQ*‘U/n|N—2)|’u,n|N—2d$—|— 2p e [ VU [[3 ]| n||2 /N +on(1)

1@pll2

(B+2)/N
Nio Nia e
:/RN(JQ*\un|N,2)|un|N72dx+ o Vuall + on ) (4.41)
p

2p—2
Note that 0 < p < % when p = N+Tﬂ+2 Then from (4.41]) we can deduce that {u,} is bounded
in H'(RY) when p = W
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Let 0 := limsup sup / |, |?dz. We show that 6 > 0. Otherwise, in light of Lions’ concentra-
B1(y)

n—o0 yGRN

tion compactness principle [39, Lemma 1.21], u,, — 0 in L*(R") for s € (2,2*). And then

Nt
b N N N
/ (Ig * |un|?)|unPde < Cy </ |un|fmdm) = o,(1), ]—\’[_ﬁ <p< Ni—’—_g
RN RN
From (4.40)), one can get
o+ 2 Nia Nia -
m /RN(Ia * |Un| N—2 )|Un‘ N-2dx = Mp,(c) + On<1) (442)

Combining with (4.39)), we know that
IV 3 = / (Lo * [t 75 ) | V3 da + 3 / (Ig * [un|?) | [Pda
RN RN
(3 [e3 2 N ~
:/ (I # |tin]| ™) |t | V3 dz + 0 (1) = wz\@@) +o0n(1). (4.43)
RN o+ 2

Hence, it follows from ([1.15)), (4.42)), and (4.43) that

2(N+a) - Nto Nte
THMH(C) + On(l) :/RN(Ia * |u,n| N—2 )|un‘ N—=2dg
N+a
Nto 2N+a) 1 )
2 N—2 =T M,(c
< (IIV?IIQ) _ <a+28“()> +on(1). (4.44)

By (4.44), we have

a4+ 2 Ste ~
T2 S < My(e),
2(N—|—a)8 < M)

. Nta
which contradicts M, (c) < 552877 . Thus ¢ > 0. Without loss of generality, we may assume the

2(N+a)
existence of y,, € R such that

)

/ | |2d > —.

Bi(yn) 2

Let Gy, (z) := up(x + yn). Then we have

. 5
linll3 = ¢, Pul(in) — 0, ®,(t,) — M,(c), and / ( )|ﬁn|2dx > 5
B1(0

Therefore, there exists & € H'(R™)\ {0} such that, passing to a subsequence,
Uy — @ in H'RY), 4, — @ in L (RY) for s € [1,2%), @, — @ a.e. in RY.

By (4.37) and Lemma one has

/ (Vi - Vw + Apitpw)da — / (Lo # [t | V=2 )|t | V22 "2t wde
RN RN
— u/ (Ig * |t |P) |t [P 2 tpwde = 0,(1), ¥V w € HY(RY), (4.45)
]RN
where
1 ;o R
Ap = — 5 (@H(un),un>
[l 3
1 o o
—— L 19l = [ ol ¥ e [ laalinpds . (a0)
C RN RN
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Since {4, } is bounded in H'(RY), it follows from ([4.46]) that {|\,|} is also bounded. Thus, we may
thus assume, passing to a subsequence if necessary, that A, — A.. By (4.45), Lemma and some
standard arguments, we can deduce

/(wrwwmmwm—/(gﬂmﬁ%m%%%mm
RN RN

— u/ (Ig * |a|P)|aP2awds = 0, ¥V w € H (RY). (4.47)
RN

And then, by Lemma [2.3] one has

Puli) = Vil = [ (iP5l ¥ a0 - L=, [y cqamjapac = 0. (448)

RN 2p RN

Combining (4.47) with (4.48)), it is easy to deduce that

(N =2)p— (N +5)
2p

Set ¢ := ||a]|3. Then 0 < ¢ < ¢ and (4.48) shows that @ € M,. From ([4.38)), ([4.39), Lemma and

Fatou’s lemma, one has

u/(@*mmmmn<o (4.49)
RN

- . . 1 .
M, (e) = lim {%(un) - 2%(%)}
24+« Nia Nta
= lim | [ (T # || 5 )i ¥ d
P IR INE S ENE ST
Np—(N+p8+2 . .
AL EEEED, [ il
4p RN
24+« o N+a  Nta Np—(N+ﬂ+2) / N ~
=T | N | N d Iy * |afP)|afPd
>y o s 0¥ ¥ e TS EED [ s i) da

=0, () — 5 Puli) = P, (0)
21, (€) 1 (€) = M, (),

which implies
Dy (@) = 1y (e) = my(c).

This shows m,,(c) is achieved. In view of Lemma ¢ = c. Thus,

lall3 = ¢, ®u(a)=rnu(c), and Py(a)=0. (4.50)
Both (4.47), (4.49), and (4.50) imply the conclusions of Theorems and hold. O

5 ThecasewhenNTJrﬁ<p<%—J_’gand,u§0

Proof of Theorem [I.5l Assume that (u,\) € H'(RN) x (0, +00) is a solution of equation (T.1)).
Then it follows from (1.1)) and the Pohozaev type identity that

o o Np— (N
IVul2 - / (Lo Ju) ¥55 | ¥5 - Y2 =V P / I * u)ulPdz =0 (5.1)
RN 2p RN
and
N+ao N+a
IVul3 - / e ¥ | ¥ e — g / Ty = Jul?)ul?da + Al = 0. (5.2)

Combining (5.1) and (5.2)), we have
(N-=2)p—(N+58)

0> —Ae=—Alul3 =p %

[ s laplulraz o,
RN

which is a contradiction. O
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