
manuscripta math. (2025) 176:52
© The Author(s) 2025

Anouar Bahrouni · Hlel Missaoui · Hichem Ounaies ·
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Abstract. We establish regularity results for weak solutions of Robin problems driven by
the well-known Orlicz g-Laplacian operator given by

{−�gu = f (x, u), x ∈ �

a(|∇u|) ∂u

dν
+ b(x)|u|p−2u = 0, x ∈ ∂�,

(P)

where �gu := div(a(|∇u|)∇u), � ⊂ R
N , N ≥ 3, is a bounded domain with C2-boundary

∂�, ∂u
dν

= ∇u·ν, ν is the unit exterior vector on ∂�, p > 0,b ∈ C1,θ (∂�) with θ ∈ (0, 1) and
infx∈∂� b(x) > 0. Specifically, using a suitable variation of the Moser iteration technique,
we prove that every weak solution of the problem (P) is bounded. Moreover, we combine
this result with the Lieberman regularity theorem, to show that everyC1(�)-local minimizer
is also a W 1,G(�)-local minimizer for the corresponding energy functional of problem (P).

1. Introduction

In this paper, we study the boundedness regularity for a weak solution and the
relationship between the Hölder local minimizer and the Orlicz-Sobolev local min-
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imizer for the corresponding energy functional of the following Robin problem:{−�gu = f (x, u), on �

a(|∇u|) ∂u

dν
+ b(x)|u|p−2u = 0, on ∂�,

(P)

where � is a bounded open subset of RN (N ≥ 3) with C2-boundary ∂�, �gu :=
div(a(|∇u|)∇u) is the Orlicz g-Laplacian operator, ∂u

dν
= ∇u.ν, ν is the unit

exterior vector on ∂�, p > 0, b ∈ C1,θ (∂�) with θ ∈ (0, 1) and inf
x∈∂�

b(x) > 0

and the function a(|t |)t is an increasing homeomorphism from R onto R. In the
right side of problem (P) there is a Carathéodory function f : � × R −→ R, that
is x �−→ f (x, s) is measurable for all s ∈ R and s �−→ f (x, s) continuous for a.e.
x ∈ �.

Due to the nature of the non-homogeneous differential operator g-Laplacian,
we shall work in the framework of Orlicz and Orlicz-Sobolev spaces. The study
of variational problems in the classical Sobolev and Orlicz-Sobolev spaces is an
interesting topic of research due to its significant role in many fields of mathe-
matics, such as approximation theory, partial differential equations, calculus of
variations, non-linear potential theory, the theory of quasi-conformal mappings,
non-Newtonian fluids, image processing, differential geometry, geometric func-
tion theory, and probability theory (see [4–7,11]).

It is worthwhile to mention that the Orlicz-Sobolev space is a generalization
of the classical Sobolev space. Hence, several properties of the Sobolev spaces
have been extended to the Orlicz-Sobolev spaces. To the best of our knowledge,
there is a lack of some regularity results concerning the problem (P). Precisely, the
boundedness of a weak solution and the relationship between the Orlicz-Sobolev
and Hölder local minimizers for the corresponding energy functional of (P). Those
results are crucial in some methods of the existence and multiplicity of solutions
for the problem (P).

The question of the boundedness, regularity, and the relationship between
the Sobolev and Hölder local minimizers for certain C1-functionals have been
treated by many authors [3,8,9,11,13,15,16,18–20,25–27,29,31–33] and refer-
ences therein. In [25], G. M. Lieberman treated the regularity result up to the
boundary for the weak solutions of the following problem

−�pu = f (x, u), x ∈ � (E)

where � is a bounded domain in R
N with C1,α-boundary. Precisely, under some

assumptions on the structure of the p-Laplacian operator and on the non-linear
term f , he proved that every bounded (i.e. u ∈ L∞(�)) weak solution of the
problem (E) (with Dirichlet or Neumann boundary conditions) belongs toC1,β(�).
In [26], G. M. Lieberman, extended the results obtained in [25] to the Orlicz g-
Laplacian operator. In [9], X. L. Fan, established the same results gave in [25] for the
variable exponent Sobolev spaces (p being variable). Note that all the results cited
in [9,25,26] require that the weak solution belongs to L∞(�). The boundedness
result for weak solutions in the Dirichlet case can be deduced from Theorem 7.1
of Ladyzhenskaya-Uraltseva [24] (problems with standard growth conditions) and
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Theorem 4.1 of Fan-Zhao [10] (problems with non-standard growth conditions).
For the Neumann case, the boundedness result is deduced from Proposition 3.1 of
Gasiǹski-Papageorgiou [13] (problems with sub-critical growth conditions).

To the best of our knowledge, there is only one paper (see [11]) devoted to
the boundedness result of weak solutions to problems driven by the Orlicz g-
Laplacian operator. Precisely, in [11], F. Fang and Z. Tan, with sub-critical growth
conditions, proved that every weak solution of problems with Dirichlet boundary
conditions belongs to L∞(�). The approaches used by Fang and Tan in [11] for
the boundedness result don’t work in our case (Robin boundary condition) since
they require that u|∂�

is bounded (u being the weak solution). To overcome this
difficulty, we apply a suitable variation of the Moser iteration technique.

The question of the relationship between the Sobolev and Hölder local minimiz-
ers for certain functionals has taken the attention of many authors [3,8,11,13,15–
17,19,20,22,28,32,33] and references therein. In [8], Brezis and Nirenberg have
proved a famous theorem which asserts that the local minimizers in the space C1

are also local minimizers in the space H1 for certain variational functionals. A
result of this type was later extended to the space W 1,p

0 (�) ( Dirichlet boundary
condition), with 1 < p < ∞, by Garcia Azorera-Manfredi-Peral Alonso [16] (see
also Guo-Zhang [19], where 2 ≤ p). The W 1,p

n (�)-version (Neumann boundary
condition) of the result can be found in Motreanu-Motreanu-Papageorgiou [28].
Moreover, this theorem has been extended to the p(x)-Laplacian equations (see
[13]), non-smooth functionals (see [3,22,32]), and singular equations with critical
terms (see [17]).

As far as we know, there is only one paper (see [11]) devoted to the result of
Brezis and Nirenberg in the Orlicz case. Precisely, in [11], F. Fang and Z. Tan proved
a boundedness regularity result and established the relation between theC1(�) and
W 1,G

0 (�) minimizers for an Orlicz problem with Dirichlet boundary condition.
Since our problem (P) is with Robin boundary condition, many approaches used in
[11] don’t work.

The main novelty of our work is the study of the boundedness regularity for
weak solutions of problem (P) and the relationship between the Orlicz-Sobolev
and Hölder local minimizers for the energy functional of problem (P). The non-
homogeneity of the g-Laplacian operator brings us several difficulties in order to
get the boundedness of a weak solution to the Robin Problem (P).

This paper is organized as follows. In Section 2, we recall the basic properties
of the Orlicz Sobolev spaces and the Orlicz Laplacian operator, and we state the
main hypotheses on the data of our problem. Section 3 deals with two regularity
results. In the first we prove that every weak solution of problem (P) belongs to
Ls(�), for all 1 ≤ s < ∞. In the second we show that every solution of problem
(P) is bounded. In the last Section, we establish the relationship between the local
C1(�)-minimizer and the local W 1,G(�)-minimizer for the corresponding energy
functional.
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2. Preliminaries

To deal with problem (P), we use the theory of Orlicz-Sobolev spaces since problem
(P) contains a non-homogeneous function a(.) in the differential operator. There-
fore, we start with some basic concepts of Orlicz-Sobolev spaces, and we set the
hypotheses on the non-linear term f . For more details on the Orlicz-Sobolev spaces
see [1,2,11,12,23,30] and the references therein.

The function a : (0,+∞) → (0,+∞) is a function such that the mapping,
defined by

g(t) :=
⎧⎨
⎩
a(|t |)t, if t 
= 0,

0, if t = 0,

is an odd, increasing homeomorphism from R onto itself. Let

G(t) :=
∫ t

0
g(s) ds, ∀ t ∈ R,

G is an N -function, i.e. Young function satisfying: G is even, positive, continuous
and convex function. Moreover, G(0) = 0, G(t)

t → 0 as t → 0 and G(t)
t → +∞

as t → +∞ (see [23, Lemma 3.2.2, p. 128]).
In order to construct an Orlicz-Sobolev space setting for problem (P), we impose

the following class of assumptions on G, a and g:

(G) (g1) : a(t) ∈ C1(0,+∞), a(t) > 0 and a(t) is an increasing function for t > 0.

(g2) : 1 < p < g− := inf
t>0

g(t)t
G(t) ≤ g+ := sup

t>0

g(t)t
G(t) < N .

(g3) : 0 < g− − 1 = a− := inf
t>0

g
′
(t)t

g(t) ≤ g+ − 1 = a+ := sup
t>0

g
′
(t)t

g(t) .

(g4) :
∫ +∞

1

G−1(t)

t
N+1
N

dt = ∞ and
∫ 1

0

G−1(t)

t
N+1
N

dt < ∞.

The conjugate N -function of G, is defined by

G̃(t) =
∫ t

0
g̃(s) ds,

where g̃ : R → R is given by g̃(t) = sup{s : g(s) ≤ t}. If g is continuous on R,
then g̃(t) = g−1(t) for all t ∈ R. Moreover, we have

st ≤ G(s) + G̃(t), (2.1)

which is known as the Young inequality. Equality in (2.1) holds if and only if either
t = g(s) or s = g̃(t). In our case, since g is continuous, we have

G̃(t) =
∫ t

0
g−1(s) ds.

The functions G and G̃ are complementary N -functions.
We say that G satisfies the �2-condition, if there exists C > 0, such that

G(2t) ≤ CG(t), for all t > 0. (2.2)
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We want to remark that assumption (g2) and (2.2) are equivalent (see [23, Theorem
3.4.4, p. 138] and [12]).

If G1 and G2 are two N -functions, we say that G1 grow essentially more slowly
than G2 (G1 ≺≺ G2 in symbols), if and only if for every positive constant k, we
have

lim
t→+∞

G1(kt)

G2(t)
= 0. (2.3)

Another important function related to the N -function G, is the Sobolev conju-
gate function G∗ defined by

G−1∗ (t) =
∫ t

0

G−1(s)

s
N+1
N

ds, t > 0

(see [23, Definition 7.2.1, p. 352]).
IfG satisfies the �2-condition, thenG∗ also satisfies the �2-condition. Namely,

there exist g−∗ = Ng−
N−g− and g+∗ = Ng+

N−g+ such that

g+ < g−∗ := inf
t>0

g∗(t)t
G∗(t)

≤ g∗(t)t
G∗(t)

≤ g+∗ := sup
t>0

g∗(t)t
G∗(t)

< +∞, for all t > 0

(2.4)
(see [12, Lemma 2.4, p. 240]).

The Orlicz space LG(�) is the vectorial space of measurable functions u :
� → R such that

ρ(u) =
∫

�

G(|u(x)|) dx < ∞.

LG(�) is a Banach space under the Luxemburg norm

‖u‖(G) = inf
{
λ > 0 : ρ(

u

λ
) ≤ 1

}
.

For Orlicz spaces, the Hölder inequality reads as follows∫
�

uvdx ≤ ‖u‖(G)‖v‖
(G̃)

, for all u ∈ LG(�) and u ∈ LG̃(�).

Next, we introduce the Orlicz-Sobolev space. We denote by W 1,G(�) the
Orlicz-Sobolev space defined by

W 1,G(�) :=
{
u ∈ LG(�) : ∂u

∂xi
∈ LG(�), i = 1, ..., N

}
.

W 1,G(�) is a Banach space with respect to the norm

‖u‖G = ‖u‖(G) + ‖∇u‖(G).

Another equivalent norm is

‖u‖ = inf
{
λ > 0 : K(

u

λ
) ≤ 1

}
,
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where

K(u) =
∫

�

G(|∇u(x)|)dx +
∫

�

G(|u(x)|) dx . (2.5)

If G and its complementary function G̃ satisfied the �2-condition, then
W 1,G(�) is Banach, separable and reflexive space. For that, in our work, we also
assume that G̃ satisfies the �2-condition.

In the sequel, we give general results related to the N -function and the Orlicz,
Orlicz-Sobolev spaces.

Lemma 2.1. (see [30]). Let G and H be N-functions, such that H grows essentially
more slowly than G∗ (where G∗ is the Sobolev conjugate function of G).

(1) If
∫ +∞

1

G−1(t)

t
N+1
N

dt = ∞and
∫ 1

0

G−1(t)

t
N+1
N

dt < ∞, then the embeddingW 1,G(�)

↪→ LH (�) is compact and the embedding W 1,G(�) ↪→ LG∗(�) is continuous.

(2) If
∫ +∞

1

G−1(t)

t
N+1
N dt

< ∞, then the embedding W 1,G(�) ↪→ LH (�) is compact

and the embedding W 1,G(�) ↪→ L∞(�) is continuous.

Lemma 2.2. (see [12])

Let G be an N-function satisfying (g1) − (g3) such that G(t) =
∫ t

0
g(s) ds =∫ t

0
a(|s|)s ds. Then

(1) min{t g−
, t g

+}G(1) ≤ G(t) ≤ max{t g−
, t g

+}G(1), for all 0 < t;
(2) min{t g−−1, t g

+−1}g(1) ≤ g(t) ≤ max{t g−−1, t g
+−1}g(1), for all 0 < t;

(3) min{t g−−2, t g
+−2}a(1) ≤ a(t) ≤ max{t g−−2, t g

+−2}a(1), for all 0 < t;
(4) min{t g−

, t g
+}G(z) ≤ G(t z) ≤ max{t g−

, t g
+}G(z), for all 0 < t and z ∈ R;

(5) min{t g−−1, t g
+−1}g(z) ≤ g(t z) ≤ max{t g−−1, t g

+−1}g(z), for all 0 < t and
z ∈ R;

(6) min{t g−−2, t g
+−2}a(|η|) ≤ a(|tη|) ≤ max{t g−−2, t g

+−2}a(|η|), for all 0 < t
and η ∈ R

N .

Lemma 2.3. (See [12]). Let G be an N-function satisfying (g2) such that

G(t) =
∫ t

0
g(s) ds. Then

(1) if ‖u‖(G) < 1 then ‖u‖g+
(G) ≤ ρ(u) ≤ ‖u‖g−

(G);

(2) if ‖u‖(G) ≥ 1 then ‖u‖g−
(G) ≤ ρ(u) ≤ ‖u‖g+

(G);

(3) if ‖u‖ < 1 then ‖u‖g+ ≤ K(u) ≤ ‖u‖g−
;

(4) if ‖u‖ ≥ 1 then ‖u‖g− ≤ K(u) ≤ ‖u‖g+
.

Lemma 2.4. Assume that � is a bounded domain with smooth boundary ∂�. Then
the embedding W 1,p(�) ↪→ Lr (�) is compact provided 1 ≤ r < p∗, where
p∗ = Np

N−p if p < N and p∗ := +∞ otherwise.
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Lemma 2.5. Assume that � is a bounded domain and has a Lipschitz boundary
∂�. Then the embedding W 1,p(�) ↪→ Lr (∂�) is compact provided 1 ≤ r < p∗.

Theorem 2.6. The Orlicz-Sobolev space W 1,G(�) is continuously and compactly
embedded in the classical Lebesgue spaces Lr (�) and Lr (∂�) for all 1 ≤ r < g−∗ .

Proof. By help of the assumption (g2), the Orlicz-Sobolev space W 1,G(�) is con-
tinuously embedded in the classical Sobolev space W 1,g−

(�). In light of Lemmas
2.4 and 2.5, we deduce thatW 1,g−

(�) is compactly embedded in Lr (�) and Lr (∂�)

for all 1 ≤ r < g−∗ . Hence, W 1,G(�) is continuously and compactly embedded in
the classical Lebesgue space Lr (�) and Lr (∂�) for all 1 ≤ r < g−∗ . ��
Lemma 2.7. [11, Lemma 3.2, p. 354]

(1) If a(t) is increasing for t > 0, there exists constant d1 depending on g−, g+,
such that

|a(|η|)η − a(|ξ |)ξ | ≤ d1|η − ξ |a(|η| + |ξ |), (2.6)

for all η, ξ ∈ R
N .

(2) If a(t) is decreasing for t > 0, there exists constant d2 depending on g−, g+,
such that

|a(|η|)η − a(|ξ |)ξ | ≤ d2g(|η − ξ |), (2.7)

for all η, ξ ∈ R
N .

Lemma 2.8. LetG bean N-function satisfying (g1)−(g3) such thatG(t) =
∫ t

0
g(s)

ds =
∫ t

0
a(|s|)s ds. Then for every ξ, η ∈ R

N , we have

〈a(|η|)η − a(|ξ |)ξ, η − ξ 〉RN ≥ 0

where 〈.〉RN is the inner product on R
N .

Proof. Let η, ξ ∈ R
N . Since G is convex, we have

G(|η|) ≤ G

(∣∣∣∣η + ξ

2

∣∣∣∣
)

+ 〈a(|η|)η,
η − ξ

2
〉RN

and

G(|ξ |) ≤ G

(∣∣∣∣η + ξ

2

∣∣∣∣
)

+ 〈a(|ξ |)ξ,
ξ − η

2
〉RN .

Adding the above two relations, we find that

1

2
〈a(|η|)η − a(|ξ |)ξ, η − ξ 〉RN ≥ G(|η|) + G(|ξ |) − 2G

(∣∣∣∣η + ξ

2

∣∣∣∣
)

for all η, ξ ∈ R
N . (2.8)

On the other hand, the convexity and the monotonicity of G give

G

(∣∣∣∣η + ξ

2

∣∣∣∣
)

≤ 1

2
[G (|η|) + G (|ξ |)] for all η, ξ ∈ R

N . (2.9)
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From (2.8) and (2.9), we get

〈a(|η|)η − a(|ξ |)ξ, η − ξ 〉RN ≥ 0, for all η, ξ ∈ R
N .

The proof is now complete. ��
Definitions 2.9. (See [2])

We say that u ∈ W 1,G(�) is a weak solution for problem (P) if∫
�

a(|∇u|)∇u.∇vdx +
∫

∂�

b(x)|u|p−2uvdγ =
∫

�

f (x, u)vdx, ∀v ∈ W 1,G(�)

(2.10)

where dγ is the measure on the boundary ∂�.
The energy functional corresponding to problem (P) is the C1-functional J :

W 1,G(�) → R defined by

J (u) =
∫

�

G(|∇u|)dx + 1

p

∫
∂�

b(x)|u|pdγ −
∫

�

F(x, u)dx, (2.11)

for all u ∈ W 1,G(�). Where F(x, t) =
∫ t

0
f (x, s)ds.

Definitions 2.10. (1) We say that u0 ∈ W 1,G(�) is a local C1(�)-minimizer of J ,
if we can find r0 > 0 such that

J (u0) ≤ J (u0 + v), for all v ∈ C1(�) with ‖v‖C1(�) ≤ r0.

(2) We say that u0 ∈ W 1,G(�) is a local W 1,G(�)-minimizer of J , if we can find
r1 > 0 such that

J (u0) ≤ J (u0 + v), for all v ∈ W 1,G(�) with ‖v‖ ≤ r1.

Now, we set the assumption on the non-linear term f as follows.

(H) f (x, 0) = 0 and there exist an odd increasing homomorphism h ∈ C1(R,R),
and a positive function â(t) ∈ L∞(�) such that

| f (x, t)| ≤ â(x)(1 + h(|t |)), ∀ t ∈ R, ∀x ∈ �

and
G ≺≺ H ≺≺ G∗,

1 < g+ < h− := inf
t>0

h(t)t

H(t)
≤ h+ := sup

t>0

h(t)t

H(t)
≤ g−∗

g− ,

1 < h− − 1 := inf
t>0

h
′
(t)t

h(t)
≤ h+ − 1 := sup

t>0

h
′
(t)t

h(t)
,

where

H(t) :=
∫ t

0
h(s) ds,

is an N -function.
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Remark 2.11. Some assertions in Lemma 2.2 are remain valid for the N -function
H and the function h

(1) min{th−
, th

+}H(1) ≤ H(t) ≤ max{th−
, th

+}H(1), for all 0 < t ;
(2) min{th−−1, th

+−1}h(1) ≤ h(t) ≤ max{th−−1, th
+−1}h(1), for all 0 < t ;

(3) min{th−
, th

+}H(z) ≤ H(t z) ≤ max{th−
, th

+}H(z), for all 0 < t and z ∈ R;
(4) min{th−−1, th

+−1}h(z) ≤ h(t z) ≤ max{th−−1, th
+−1}h(z), for all 0 < t and

z ∈ R.

The main results of this paper are:

Theorem 2.12. Under the assumptions (G) and (H), if u ∈ W 1,G(�) is a non-
trivial weak solution of problem (P), then u ∈ L∞(�) and ‖u‖∞ ≤ M =
M(‖̂a‖∞, h(1), g−, |�|, ‖u‖h+).

Theorem 2.13. Under the assumptions (G) and (H), if u0 ∈ W 1,G(�) is a local
C1(�)-minimizer of J , then u0 ∈ C1,α(�) for some α ∈ (0, 1) and u0 is also a
local W 1,G(�)-minimizer of J .

3. Boundedness results for weak solutions of problem (P)

In this section, by using the Moser iteration technique, we prove a result concerning
the boundedness regularity for the problem (P). Our method, inspired by the work
of Gasiǹski and Papageorgiou [13]. Considering the following problem⎧⎨

⎩
−div(A(x,∇u)) = B(x, u), in �

A(x,∇u).ν + ψ(x, u) = 0, in ∂�

(A)

where � is a bounded subset ofRN (N ≥ 3) withC2-boundary,A : �×R
N → R

N ,
B : � × R → R and ψ : ∂� × R → R. We assume that problem (A) satisfies the
following growth conditions:

A(x, η)η ≥ G(|η|), for all x ∈ � and η ∈ R
N , (3.12)

A(x, η) ≤ c0g(|η|) + c1, for all x ∈ � and η ∈ R
N , (3.13)

B(x, t) ≤ c2(1 + h(|t |)), for all x ∈ � and t ∈ R, (3.14)

ψ(x, t) ≥ 0, for all x ∈ ∂� and t ∈ R+, (3.15)

where c0, c1, c2 are positive constant and h is defined in assumption (H).
We say that u ∈ W 1,G(�) is a weak solution of problem (A) if∫

�

A(x,∇u)∇vdx +
∫

∂�

ψ(x, u)vdγ =
∫

�

B(x, u)vdx, for all v ∈ W 1,G(�).

(3.16)
Let us state the following useful result

Proposition 3.1. Suppose that (G), (H) and (3.12)-(3.15) are satisfied. Then, if
u ∈ W 1,G(�) is a non-trivial weak solution of problem (A), u belongs to Ls(�)

for every 1 ≤ s < ∞.
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Proof. Let u ∈ W 1,G(�) be a non-trivial weak solution of problem (A), u+ :=
max{u, 0} ∈ W 1,G(�) and u− := max{−u, 0} ∈ W 1,G(�). Since u = u+ − u−,
without loss of generality we may assume that u ≥ 0.

We set, recursively

pn+1 = ĝ + ĝ

g−

(
pn − h+

h+

)
, for all n ≥ 0,

such that

p0 = ĝ = g−∗ = Ng−

N − g− (recall that g− ≤ g+ < N ).

It is clear that the sequence {pn}n≥0 ⊆ R+ is increasing. Put θn = pn − h+

h+ > 0,

{θn}n≥0 is an increasing sequence.
Let

uk = min{u, k} ∈ W 1,G(�)∩L∞(�), for all k ≥ 1 (since uk ≤ k, for all k ≥ 1).

In (3.16), we act with uθn+1
k ∈ W 1,G(�), to obtain∫

�

A(x,∇u).∇uθn+1
k dx +

∫
∂�

ψ(x, u)uθn+1
k dγ =

∫
�

B(x, u)uθn+1
k dx .

It follows, by conditions (3.12), (3.15) and Lemma 2.2, that

(θn + 1)

∫
{|∇uk |≤1}

uθn
k G(|∇uk |)dx + (θn + 1)G(1)

∫
{|∇uk |>1}

uθn
k |∇uk |g−

dx

≤ (θn + 1)

∫
�

uθn
k G(|∇uk |)dx

≤ (θn + 1)

∫
�

uθn
k [A(x,∇u).∇uk] dx

≤
∫

�

A(x,∇u).∇uθn+1
k dx

≤
∫

�

B(x, u)uθn+1
k dx . (3.17)

Therefore

(θn + 1)G(1)

∫
{|∇uk |>1}

uθn
k |∇uk |g−

dx ≤
∫

�

B(x, u)uθn+1
k dx, (3.18)

this gives,

(θn + 1)G(1)

∫
�

uθn
k |∇uk |g−

dx

= (θn + 1)G(1)

[∫
{|∇uk |>1}

uθn
k |∇uk |g−

dx +
∫

{|∇uk |≤1}
uθn
k |∇uk |g−

dx

]

≤
∫

�

B(x, u)uθn+1
k dx + (θn + 1)G(1)

∫
{|∇uk |≤1}

uθn
k |∇uk |g−

dx
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≤
∫

�

B(x, u)uθn+1
k dx + (θn + 1)G(1)

∫
�

uθn
k dx . (3.19)

Thus ∫
�

uθn
k |∇uk |g−

dx ≤ 1

(θn + 1)G(1)

∫
�

B(x, u)uθn+1
k dx

+
∫

�

uθn
k dx . (3.20)

Since θn ≤ pn , and by the continuous embedding L pn (�) ↪→ Lθn (�), then∫
�

uθn
k dx ≤ |�|1− θn

pn ‖uk‖θn
pn , for all k ≥ 1. (3.21)

Combining (3.20) and (3.21), we infer that∫
�

uθn
k |∇uk |g−

dx ≤ 1

(θn + 1)G(1)

∫
�

B(x, u)uθn+1
k dx + |�|1− θn

pn ‖uk‖θn
pn .

(3.22)

Let us observe that

∇u
θn+g−
g−

k = ∇u
(

θn
g− +1)

k = (
θn

g− + 1)u
θn
g−
k ∇uk

and ∣∣∣∣∣∇u
θn+g−
g−

k

∣∣∣∣∣
g−

=
(

θn

g− + 1

)g−

uθn
k |∇uk |g−

.

Integrating over �, we get

∫
�

∣∣∣∣∣∇u
θn+g−
g−

k

∣∣∣∣∣
g−

dx =
(

θn

g− + 1

)g− ∫
�

uθn
k |∇uk |g−

dx . (3.23)

Putting together (3.22) and (3.23), we conclude that

∫
�

∣∣∣∣∣∇u
θn+g−
g−

k

∣∣∣∣∣
g−

dx

≤
(

θn

g− + 1

)g− [
1

(θn + 1)G(1)

∫
�

B(x, u)uθn+1
k dx + |�|1− θn

pn ‖uk‖θn
pn

]

≤ (θn + 1)g
−
[

1

(θn + 1)G(1)

∫
�

B(x, u)uθn+1
k dx + |�|1− θn

pn ‖uk‖θn
pn

]

≤ C0

(∫
�

B(x, u)uθn+1
k dx + (

1 + ‖uk‖pn
pn

))
, (3.24)
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where C0 = (θn + 1)g
−
(

1

(θn + 1)G(1)
+ |�|1− θn

pn

)
> 0.

On the other side, using the condition (3.14) and Remark 2.11, we see that∫
�

B(x, u)uθn+1
k dx

≤ c2

∫
�

(1 + h(|u|)) uθn+1
k dx

≤ c2

∫
�

(
1 + h(1) max{|u|h−−1, |u|h+−1}

)
uθn+1
k dx

≤ c2

(
‖uk‖θn+1

θn+1 + h(1)

∫
�

max{|u|h−−1, |u|h+−1}uθn+1
k dx

)

≤ c2

[
‖uk‖θn+1

θn+1 + h(1)

(∫
{u≤1}

uh
−−1uθn+1

k dx +
∫

{u>1}
uh

+−1uθn+1
k dx

)]

≤ c2

[
(1 + h(1)) ‖uk‖θn+1

θn+1 + h(1)

∫
�

uh
+−1uθn+1

k dx

]

≤ c2

[
(1 + h(1)) ‖uk‖θn+1

θn+1 + h(1)‖u‖h+−1
h+ ‖uk‖θn+1

(θn+1)h+
]

(Hölder with h+ and (h+)
′ = h+

h+ − 1
)

= c2

[
(1 + h(1)) ‖uk‖θn+1

θn+1 + h(1)‖u‖h+−1
h+ ‖uk‖θn+1

pn

]
≤ c2

[
(1 + h(1)) |�|1− θn+1

pn ‖uk‖θn+1
pn + h(1)‖u‖h+−1

h+ ‖uk‖θn+1
pn

]
(since L pn (�) ↪→ Lθn+1(�))

≤ c2

[
(1 + h(1)) |�|1− 1

h+ + h(1)‖u‖h+−1
h+

]
‖uk‖θn+1

pn

(since
θn + 1

pn
= 1

h+ )

≤ C1
(
1 + ‖uk‖pn

pn

)
, (3.25)

where C1 = c2

[
(1 + h(1)) |�|1− 1

h+ + h(1)‖u‖h+−1
h+

]
> 0. In (3.25), we used the

fact that θn + 1 < (θn + 1)h+ = pn .
Using (3.24) and (3.25), we find

∫
�

∣∣∣∣∣∣∇u
θn+g−
g−

k

∣∣∣∣∣∣
g−

dx +
∫
�

∣∣∣∣∣∣u
θn+g−
g−

k

∣∣∣∣∣∣
g−

dx ≤ C2

(
1 + ‖uk‖pnpn

)
+
∫
�

∣∣∣∣∣∣u
θn+g−
g−

k

∣∣∣∣∣∣
g−

dx

≤ C2

(
1 + ‖uk‖pnpn

)
+ |�|1− θn+g−

pn ‖uk‖θn+g−
pn

≤
(
C2 + |�|1− θn+g−

pn

)(
1 + ‖uk‖pnpn

)

= C3

(
1 + ‖uk‖pnpn

)
, (3.26)
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where C2 = C0(C1 + 1) and C3 = C2 + |�|1− θn+g−
pn .

The inequality (3.26) gives

∥∥∥∥∥u
θn+g−
g−

k

∥∥∥∥∥
g−

W 1,g− (�)

≤ C3
(
1 + ‖uk‖pn

pn

)
. (3.27)

Recall that pn+1 = ĝ + ĝ
g− θn and so

θn + g−

g− = pn+1

ĝ
. (3.28)

Since g− < ĝ = Ng−
N−g− = g−∗ , then the embedding W 1,g−

(�) ↪→ Lĝ(�) is
continuous.

Hence, there is C4 > 0 such that

∥∥∥∥∥u
θn+g−
g−

k

∥∥∥∥∥
g−

ĝ

≤ C4

∥∥∥∥∥u
θn+g−
g−

k

∥∥∥∥∥
g−

W 1,g− (�)

. (3.29)

Combining (3.27), (3.28) and (3.29), we obtain

‖uk‖
pn+1
ĝ g−

pn+1 ≤ C5
(
1 + ‖uk‖pn

pn

)
, (3.30)

where C5 = C4C3. Next, let k → +∞ in (3.30) and applying the monotone
convergence theorem, we find that

‖u‖
pn+1
ĝ g−

pn+1 ≤ C5
(
1 + ‖u‖pn

pn

)
. (3.31)

Since p0 = ĝ and the embeddings W 1,G(�) ↪→ W 1,g−
(�) ↪→ Lĝ(�) are contin-

uous, from (3.31), we get

u ∈ L pn (�), for all n ≥ 0. (3.32)

Note that pn → +∞ as n → +∞. Indeed, suppose that the sequence {pn}n≥0 ⊆
[̂g,+∞) is bounded. Then we have pn −→ p̂ ≥ ĝ as n → +∞. By definition we
have

pn+1 = ĝ + ĝ

g−

(
pn − h+

h+

)
for all n ≥ 0,

with p0 = ĝ, so

p̂ = ĝ + ĝ

g−

(
p̂ − h+

h+

)
,

thus

0 ≤ p̂

(
ĝ

g−h+ − 1

)
= ĝ

(
1

g− − 1

)
< 0
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which gives us a contradiction since g−h+ ≤ ĝ = g−∗ (see assumption (H)). Recall
that for any measurable function u : � −→ R, the set

Su = {
p ≥ 1 : ‖u‖p < +∞}

is an interval. Hence, Su = [1,+∞) (see (3.32)) and

u ∈ Ls(�), for all s ≥ 1. (3.33)

This ends the proof. ��
In the following, we prove that, if u ∈ W 1,G(�) is a weak solution of problem (A)
such that u ∈ Ls(�) for all 1 ≤ s < ∞, then u is a bounded function.

Proposition 3.2. Assume that (G), (H) and (3.12)-(3.15) hold. Let u ∈ W 1,G(�)

be a non-trivial weak solution of problem (A) such that u ∈ Ls(�) for all 1 ≤ s <

∞, then u ∈ L∞(�) and ‖u‖∞ ≤ M = M(c2, h(1), g−, |�|, ‖u‖h+).

Proof. Let u ∈ W 1,G(�) be a non-trivial weak solution of problem (A), u+ :=
max{u, 0} ∈ W 1,G(�) and u− := max{−u, 0} ∈ W 1,G(�). Since u = u+ − u−,
we may assume without loss of generality that u ≥ 0.

Let σ0 = ĝ = g−∗ = Ng−
N−g− and we define by a recursively way

σn+1 =
( σn

h+ − 1 + g−) ĝ

g− , for all n ≥ 0.

We have that the sequence {σn}n≥0 ⊆ [̂g,+∞) is increasing and σn −→ +∞ as
n → +∞. Arguing as in the proof of Proposition 3.1, with θn = σn

h+ − 1 and

uθn+1
k ∈ W 1,G(�) ∩ L∞(�) as a test function in (3.16). So, we find the following

estimation

∫
�

∣∣∣∣∣∇u
θn+g−
g−

k

∣∣∣∣∣
g−

dx≤(θn+1)g
−
[

1

(θn+1)G(1)

∫
�

B(x, u)uθn+1
k dx+

∫
�

uθn
k dx

]
(3.34)

Using the assumption (3.14), (3.33), Remark 2.11 and Hölder inequality (with
h+ and (h+)

′ = h+
h+−1 ), we deduce that

∫
�
B(x, u)uθn+1

k dx =
∫
�
B(x, u)u

σn
h+
k dx

≤ c2

∫
�

(
1 + h(1) max

{
uh

−−1, uh
+−1

})
u

σn
h+
k dx

≤ c2

∫
�

(
(1 + h(1)) + h(1)uh

+−1
)
u

σn
h+
k dx ( since h− ≤ h+)

≤ c2

[
(1 + h(1))

∫
�
u

σn
h+
k dx + h(1)

∫
�
uh

+−1u
σn
h+
k dx

]

≤ c2

⎡
⎣(1 + h(1))‖uk‖

σn
h+
σn
h+

+ h(1)

(∫
�
uh

+
dx

) h+−1
h+ (∫

�
uσn
k dx

) 1
h+
⎤
⎦
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≤ c2

(
(1 + h(1))|�|1− 1

h+ ‖uk‖
σn
h+
σn + h(1)‖u‖h+−1

h+ ‖uk‖
σn
h+
σn

)

( since Lσn (�) ↪→ L
σn
h+ (�) )

≤ c2

(
(1 + h(1))|�|1− 1

h+ + h(1)‖u‖h+−1
h+

)
‖uk‖

σn
h+
σn

≤ C6‖uk‖
σn
h+
σn (3.35)

for all n ∈ N, where C6 = c2

(
(1 + h(1))|�|1− 1

h+ + h(1)‖u‖h+−1
h+

)
.

Using the fact that Lσn (�) ↪→ L
σn
h+ −1

(�), we obtain∫
�

uθn
k dx =

∫
�

u
σn
h+ −1

k dx

≤ |�|1− 1
h+ + 1

σn ‖uk‖
σn
h+ −1
σn

= C7‖uk‖
σn
h+ −1
σn , for all n ∈ N, (3.36)

where C7(n) = |�|1− 1
h+ + 1

σn .
By Hölder’s inequality (with exponents h+ and (h+)

′ = h+/(h+ − 1)) and the

embedding Lh+
(�) ↪→ L

h+(g−−1)

h+−1 (�) (since g− < h+), we infer that

∫
�

∣∣∣∣∣u
θn+g−
g−

k

∣∣∣∣∣
g−

dx =
∫

�

uθn+1
k ug

−−1
k dx

≤
∫

�

uθn+1
k ug

−−1dx (since uk ≤ u, for all k ≥ 1)

≤
(∫

�

u
h+(g−−1)

h+−1 dx

) h+−1
h+ (∫

�

u(θn+1)h+
k dx

) 1
h+

≤ |�| h
+−g−
h+ ‖u‖g−−1

h+ ‖uk‖
σn
h+
σn

= C8‖uk‖
σn
h+
σn , for all n ∈ N, (3.37)

where C8 = |�| h
+−g−
h+ ‖u‖g−−1

h+ .
Putting together (3.34), (3.35), (3.36) and (3.37), we find that

∫
�

∣∣∣∣∣∇u
θn+g−
g−

k

∣∣∣∣∣
g−

dx +
∫

�

∣∣∣∣∣u
θn+g−
g−

k

∣∣∣∣∣
g−

dx

≤ (θn + 1)g
−
[(

C6

(θn + 1)G(1)
+ C8

)
‖uk‖

σn
h+
σn + C7‖uk‖

σn
h+ −1
σn

]

≤ (θn + 1)g
−
[
(C6 + C8) ‖uk‖

σn
h+
σn + C7‖uk‖

σn
h+ −1
σn

]
, (since (θn + 1)G(1) ≥ 1)

(3.38)
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for all n ∈ N. Since g− < ĝ = Ng−
N−g− = g−∗ , then the embedding W 1,G(�) ↪→

W 1,g−
(�) ↪→ Lĝ(�) are continuous. Moreover, there is C9 > 0 such that

∥∥∥∥∥u
θn+g−
g−

k

∥∥∥∥∥
g−

ĝ

≤ C9

∥∥∥∥∥u
θn+g−
g−

k

∥∥∥∥∥
g−

W 1,g− (�)

, for all n ∈ N. (3.39)

From (3.38) and (3.39), we obtain

∥∥∥∥∥u
θn+g−
g−

k

∥∥∥∥∥
g−

ĝ

≤ C9 (θn + 1)g
−
[
(C6 + C8) ‖uk‖

σn
h+
σn + C7‖uk‖

σn
h+ −1
σn

]
(3.40)

for alln ∈ N. From the definition of the sequence {σn}n∈N, we have
σn+1

ĝ
= θn + g−

g− .

It follows, by (3.40), that

‖uk‖σn+1
g−
ĝ

σn+1 ≤ (θn + 1)g
−
C9

[
(C6 + C8) ‖uk‖

σn
h+
σn + C7‖uk‖

σn
h+ −1
σn

]
(3.41)

for all n ∈ N.
Let k −→ +∞ in (3.41), and using the monotone convergence theorem , we

get

‖u‖σn+1
g−
ĝ

σn+1 ≤ (θn + 1)g
−
C9

[
(C6 + C8) ‖u‖

σn
h+
σn + C7‖u‖

σn
h+ −1
σn

]
(3.42)

We distinguish two cases.
Case 1: If

{
n ∈ N, ‖u‖σn ≤ 1

}
is unbounded. Then, without loss of generality,

we may assume that
‖u‖σn ≤ 1, for all n ∈ N. (3.43)

Hence,
‖u‖∞ ≤ 1

since, σn −→ +∞ as n −→ +∞ and u ∈ Ls(�) for all s ≥ 1. So, we are done
with M = 1.

Case 2: If
{
n ∈ N, ‖u‖σn ≤ 1

}
is bounded. Then, without loss of generality,

we can suppose that
‖u‖σn > 1, for all n ∈ N. (3.44)

From (3.42) and (3.44), we find that

‖u‖σn+1
g−
ĝ

σn+1 ≤ C10‖u‖
σn
h+
σn , for all n ∈ N (3.45)

where C10(n) = (θn + 1)g
−
C9 (C6 + C7 + C8).

We want to remark that

C9 (C6 + C7 + C8)
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= C9

[
c2

(
(1 + h(1))|�|1− 1

h+ + h(1)‖u‖h+−1
h+

)
+ |�|

h+−g−
h+ ‖u‖g−−1

h+ + |�|1− 1
h+ + 1

σn

]

≤ C9

[
c2

(
(1 + h(1))|�|1− 1

h+ + h(1)‖u‖h+−1
h+

)
+ |�|

h+−g−
h+ ‖u‖g−−1

h+ + |�| + 1

]

= C11, for all n ∈ N. (3.46)

Hence C11 > 0 is independent of n. Moreover, we have that

(θn + 1)g
− = (

σn

h+ )g
− ≤ (σn)

g− ≤ (σn+1)
g−

, for all n ∈ N. (3.47)

From (3.45), (3.46) and (3.47), we obtain

‖u‖σn+1
g−
ĝ

σn+1 ≤ (σn+1)
g−
C11‖u‖

σn
h+
σn , for all n ∈ N. (3.48)

Therefore, from [14, Theorem 6.2.6, p. 737], we find that

‖u‖σn+1 ≤ M, for all n ∈ N (3.49)

for some M
(
c2, h(1), g−, |�|, ‖u‖h+

) ≥ 0.
On the other hand, by the hypotheses of the proposition, we have that

u ∈ Ls(�), for all 1 ≤ s < ∞. (3.50)

Exploiting (3.49),(3.50) and the fact that σn −→ +∞ as n −→ +∞, we deduce
that

‖u‖∞ ≤ M.

This ends the proof. ��

Proof of Theorem 2.12. Let

A(x, η) = a(|η|)η, for all x ∈ � and η ∈ R
N

B(x, t) = f (x, t), for all x ∈ � and t ∈ R

ψ(x, t) = b(x)|t |p−2t, for all x ∈ ∂� and t ∈ R

in problem (A). Then, A,B and ψ satisfy the growth conditions (3.12)-(3.15)
and the problem (A) turns to (P). By the Propositions 3.1 and 3.2, we conclude
that every weak solution u ∈ W 1,G(�) of problem (P) belongs to L∞(�) and
‖u‖∞ ≤ M = M(c2 = ‖̂a‖∞, h(1), g−, |�|, ‖u‖h+). This ends the proof. ��
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4. W1,G(�) versus C1(�) local minimizers

In this section, using the regularity theory of Lieberman [26], we extend the result
of Brezis and Nirenberg’s [8] to the problem (P).

Proposition 4.1. let u0 ∈ W 1,G(�) be a local C1(�)-minimizer of J (see Defini-
tion 2.10), then u0 is a weak solution for problem (P) and u0 ∈ C1,α(�), for some
α ∈ (0, 1).

Proof. By hypothesis u0 is a local C1(�)-minimizer of J , for every v ∈ C1(�)

and t > 0 small enough, we have J (u0) ≤ J (u0 + tv). Hence,

0 ≤ 〈J ′
(u0), v〉 for all v ∈ C1(�). (4.51)

Since C1(�) is dense in W 1,G(�), from (4.51) we infer that J
′
(u0) = 0. Namely,∫

�

a(|∇u0|)∇u0.∇vdx +
∫

∂�

b(x)|u0|p−2u0vdγ

=
∫

�

f (x, u0)vdx, for all v ∈ W 1,G(�). (4.52)

By the nonlinear Green’s identity, we get∫
�

a(|∇u0|)∇u0.∇vdx =−
∫

�

div(a(|∇u0|)∇u0).vdx+
∫

∂�

a(|∇u0|)∇u0.ν vdγ,

(4.53)

for all v ∈ W 1,G(�). It follows that,∫
�

a(|∇u0|)∇u0.∇vdx = −
∫

�

div(a(|∇u0|)∇u0).vdx, for all v ∈ W 1,G
0 (�).

(4.54)

Hence, by (4.52)

−
∫

�

div(a(|∇u0|)∇u0).vdx =
∫

�

f (x, u0)vdx, for all v ∈ W 1,G
0 (�),

which gives,

− div(a(|∇u0(x)|)∇u0(x)) = f (x, u0(x)), for almost x ∈ �. (4.55)

From (4.52), (4.53) and (4.55), we obtain〈
a(|∇u0|)∂u0

∂ν
+ b(x)|u0|p−2u0, v

〉
∂�

= 0 for all v ∈ W 1,G(�). (4.56)

It follows that

a(|∇u0|)∂u0

∂ν
+ b(x)|u0|p−2u0 = 0 on ∂�.

So, u0 ∈ W 1,G(�) is a weak solution for the problem (P). From Theorem 2.12, we
have that u0 ∈ L∞(�).
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We define A : � × R
N → R

N , B : � × R → R and φ : ∂� × R → R by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(x, η) = a(|η|)η;

B(x, t) = f (x, t);

φ(x, t) = b(x)|t |p−2t.

(4.57)

It is easy to show that, for x, y ∈ �, η ∈ R
N \ {0}, ξ ∈ R

N , t ∈ R, the following
estimations hold:

A(x, 0) = 0, (4.58)
N∑

i, j=1

∂(A) j

∂ηi
(x, η)ξiξ j ≥ g(|η|)

|η| |ξ |2, (4.59)

N∑
i, j=1

∣∣∣∣∂(A) j

∂ηi
(x, η)

∣∣∣∣ |η| ≤ c(1 + g(|η|)), (4.60)

|A(x, η) − A(y, η)| ≤ c(1 + g(|η|))(|x − y|θ ), for some θ ∈ (0, 1),(4.61)

|B(x, t)| ≤ c (1 + h(|t |)) . (4.62)

Indeed: inequalities (4.58) , (4.61) and (4.62) are evident.
For x ∈ �, η ∈ R

N\{0}, ξ ∈ R
N , we have

Dη(A(x, η))ξ = a(|η|)ξ + a
′
(|η|) 〈η, ξ 〉RN

|η| η (4.63)

and

〈Dη(A(x, η))ξ, ξ 〉RN = a(|η|)〈ξ, ξ 〉RN + a
′
(|η|)

[〈η, ξ 〉RN

]2
|η| (4.64)

where 〈, 〉RN is the inner product in R
N . Hence, we have the following derivative

Dη(a(|η|)η) = a
′
(|η|)
|η| ηηT + a(|η|)IN = a(|η|)

(
IN + a

′
(|η|)|η|
a(|η|)

1

|η|2 MN (η, η)

)

(4.65)

for all η ∈ R
N\{0}, where ηT is the transpose of η, IN is the unit matrix in MN (R)

and

MN (η, η) = ηηT =

⎛
⎜⎜⎜⎝

η2
1 η1η2 · · · η1ηN

η2η1 η2
2 · · · η2ηN

...
...

. . .
...

ηNη1 ηNη2 · · · η2
N

⎞
⎟⎟⎟⎠ (4.66)

for all η ∈ R
N .
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Note that, for all η ∈ R
N , we have

‖MN (η, η)‖RN =
N∑

i, j=1

|ηiη j | =
(

N∑
i=1

|ηi |
)2

≤ N
N∑
i=1

|ηi |2 = N |η|2 (4.67)

where ‖.‖RN is a norm on MN (R).
From (4.64) and assumption (g3), we have

N∑
i, j=1

∂(A) j

∂ηi
(x, η)ξiξ j = 〈Dη(A(x, η))ξ, ξ 〉

= a(|η|)〈ξ, ξ 〉RN + a
′
(|η|)

[〈η, ξ 〉RN

]2
|η|

= a(|η|)
[
〈ξ, ξ 〉RN + a

′
(|η|)|η|
a(|η|)

[〈η, ξ 〉RN

]2
|η|2

]

≥ g(|η|)
|η| |ξ |2 (4.68)

for all x ∈ �, η ∈ R
N\{0}, ξ ∈ R

N .
Moreover, from (4.65), (4.67) and assumption (g3), we find that

N∑
i, j=1

∣∣∣∣∂(A) j

∂ηi
(x, η)

∣∣∣∣ |η| = ‖Dη(A(x, η))‖RN |η|

≤
(

‖IN‖RN + a
′
(|η|)|η|
a(|η|)

1

|η|2 ‖MN (η, η)‖RN

)
g(|η|)

≤
(

1 + a
′
(|η|)|η|
a(|η|)

)
Ng(|η|)

≤ a+Ng(|η|)
≤ a+N (1 + g(|η|)) (4.69)

for all x ∈ �, η ∈ R
N\{0}.

The non-linear regularity result of Lieberman [26, p. 320] implies the existence
of α ∈ (0, 1) and M0 ≥ 0 such that

u0 ∈ C1,α(�) and ‖u0‖C1,α(�) ≤ M0.

This ends the proof. ��
Proposition 4.2. Under the assumptions (G) and (H), if u0 ∈ W 1,G(�) is a local
C1(�)-minimizer of J (see Definition 2.10), then u0 ∈ W 1,G(�) is also a local
W 1,G(�)-minimizer of J (see Definition 2.10).
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Proof. Let u0 be a local C1(�)-minimizer of J , then, by Proposition 4.1, we have

u0 ∈ L∞(�) and u0 ∈ C1,α(�) for some α ∈ (0, 1). (4.70)

To prove that u0 is a local W 1,G(�)-minimizer of J , we argue by contradiction.
Suppose that u0 is not a local W 1,G(�)-minimizer of J . Let ε ∈ (0, 1) and define

B(u0, ε) =
{
v ∈ W 1,G(�) : K(v − u0) ≤ ε

}
,

recall that K(v − u0) =
∫

�

G(|∇(v − u0)|)dx +
∫

�

G(|v − u0|)dx .

We consider the following minimization problem:

mε = inf {J (v) : v ∈ B(u0, ε)} . (4.71)

By the hypothesis of contradiction and assumption (H), we have

−∞ < mε < J (u0). (4.72)

The set B(u0, ε) is bounded, closed and convex subset of W 1,G(�) and is a neigh-
bourhood of u0 ∈ W 1,G(�). Since f (x, t) satisfies the assumption (H), the func-
tional J : W 1,G(�) → R is weakly lower semicontinuous. So, From the Weier-
strass theorem there exist vε ∈ B(u0, ε) such that mε = J (vε). Moreover, by
(4.72), we deduce that vε 
= 0.

Now, using the Lagrange multiplier rule [21, p. 35], we can find λε ≥ 0 such
that

〈J ′
(vε), v〉 + λε〈K′

(vε − u0), v〉 = 0 for all v ∈ W 1,G(�),

which implies

〈J ′
(vε), v〉 + λε〈K′

(vε − u0), v〉
=
∫

�

a(|∇vε|)∇vε.∇vdx +
∫

∂�

b(x)|vε|p−2vεvdγ

+ λε

∫
�

a(|∇(vε − u0)|)∇(vε − u0).∇vdx −
∫

�

f (x, vε)vdx

+ λε

∫
�

a(|vε − u0|)(vε − u0)vdx

= 0 (4.73)

for all v ∈ W 1,G(�).
In the other side, from Proposition 4.1, we see that u0 ∈ W 1,G(�) is a weak

solution for the problem (P). Hence,∫
�

a(|∇u0|)∇u0.∇vdx +
∫

∂�

b(x)|u0|p−2u0vdγ −
∫

�

f (x, u0)vdx = 0

(4.74)

for all v ∈ W 1,G(�).
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Next, we have to show that vε belongs to L∞(�) and hence to C1,α(�). We
distinguish three cases.

Case 1: If λε = 0 with ε ∈ (0, 1], we find that vε solves the Robin boundary
value problem (P). As in Proposition 4.1, we prove that vε ∈ C1,α(�) for some
α ∈ (0, 1) and there is M1 ≥ 0 (independent of ε) such that

‖vε‖C1,α(�) ≤ M1.

Case 2: If 0 < λε ≤ 1 with ε ∈ (0, 1]. Multiplying (4.74) by λε > 0 and adding
(4.73), we get∫

�

a(|∇vε|)∇vε.∇vdx

+ λε

∫
�

a(|∇u0|)∇u0.∇vdx + λε

∫
�

a(|∇(vε − u0)|)∇(vε − u0).∇vdx

+ λε

∫
∂�

b(x)|u0|p−2u0vdγ +
∫

∂�

b(x)|vε|p−2vεvdγ

= λε

∫
�

f (x, u0)vdx +
∫

�

f (x, vε)vdx − λε

∫
�

a(|vε − u0|)(vε − u0)vdx

(4.75)

for all v ∈ W 1,G(�).
Let Aε : � ×R

N → R
N , Bε : � ×R → R and φε : ∂� ×R → R defined by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Aε(x, η) = a(|η|)η + λεa(|η − ∇u0|)(η − ∇u0) + λεa(|∇u0|)∇u0;

Bε(x, t) = f (x, t) + λε f (x, u0) − λεa(|t − u0|)(t − u0);

φε(x, t) = b(x)
(|t |p−2t + λε|u0|p−2u0

)
.

(4.76)

It is clear that Aε ∈ C(� × R
N ,RN ). Hence, the equation (4.75) is the weak

formulation of the following Robin boundary value problem⎧⎨
⎩

−div(Aε(x,∇vε)) = Bε(x, vε) on �,

Aε(x,∇vε).ν + φε(x, vε) = 0 on ∂�,

where ν is the inner normal to ∂�.
From Lemma 2.8 and assumption (G), for η ∈ R

n and x ∈ � , we have

〈Aε(x, η), η〉RN = 〈a(|η|)η, η〉RN + λε〈a(|η − ∇u0|)(η − ∇u0), η − ∇u0

− (−∇u0)〉RN − λε〈a(| − ∇u0|)(−∇u0), η − ∇u0 − (−∇u0)〉RN

≥ g(|η|)|η|
≥ G(|η|) (4.77)

and

|Aε(x, η)| ≤ a(|η|)|η| + λεa(|η − ∇u0|)|η − ∇u0| + λεa(|∇u0|)|∇u0|
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≤ g(|η|) + g(|η − ∇u0|) + g(|∇u0|) (since 0 < λε ≤ 1)

≤ g(|η|) + g(|η| + |∇u0|) + g(|∇u0|)
≤ c0g(|η|) + c1 (using Lemma 2.2 and the monotonicity of g).

(4.78)

Then, Aε, Bε and φε satisfy the corresponding growth conditions (3.12)-(3.15). So,
using the Propositions 3.1 and 3.2, we obtain that vε ∈ L∞(�).

It remains, using the regularity theorem of Lieberman, to show that vε ∈
C1,α(�) for some α ∈ (0, 1). So, we need to prove that Aε and Bε satisfy the
corresponding (4.58)-(4.62). The inequalities (4.58) and (4.62) are evident. The
inequality (4.61) follows from Lemma 2.7 and the fact that ∇u0 is Hölder contin-
uous.

As in (4.63) and (4.64), we have

Dη(a(|η − ∇u0|)(η − ∇u0))ξ

= a(|η − ∇u0|)ξ + a
′
(|η − ∇u0|) 〈η − ∇u0, ξ 〉RN

|η − ∇u0| (η − ∇u0) (4.79)

and

〈Dη(a(|η − ∇u0|)(η − ∇u0))ξ, ξ 〉RN

= a(|η − ∇u0|)〈ξ, ξ 〉RN + a
′
(|η − ∇u0|)

[〈η − ∇u0, ξ 〉RN

]2
|η − ∇u0| (4.80)

for all x ∈ �, η ∈ R
N\{∇u0}, ξ ∈ R

N .
Exploiting (4.68), (4.80) and assumption (g3), we infer that

N∑
i, j=1

∂(Aε) j

∂ηi
(x, η)ξiξ j = 〈Dη(A)(x, η)ξ, ξ 〉RN

+ λεa(|η − ∇u0|)
(

〈ξ, ξ 〉RN + a
′
(|η − ∇u0|)|η − ∇u0|

a(|η − ∇u0|)
[〈η − ∇u0, ξ 〉RN

]2
|η − ∇u0|2

)

≥ 〈Dη(A)(x, η)ξ, ξ 〉RN

≥ g(|η|)
|η| |ξ |2 (4.81)

for all x ∈ �, η ∈ R
N\{∇u0}, ξ ∈ R

N .
Note that the derivative of Aε has the form

Dη(Aε(x, η)) = Dη(A(x, η)) + λεa(|η − ∇u0|)(
IN + a

′
(|η − ∇u0|)|η − ∇u0|

a(|η − ∇u0|)
1

|η − ∇u0|2 MN (η − ∇u0, η − ∇u0)

)

(4.82)
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for all x ∈ �, η ∈ R
N\{∇u0}, where MN (η −∇u0, η −∇u0) is defined in (4.66).

As in (4.67), we have

‖MN (η − ∇u0, η − ∇u0)‖RN ≤ N |η − ∇u0|2. (4.83)

In light of (4.69), (4.82), (4.83) and assumption (g3), we see that

N∑
i, j=1

∣∣∣∣∂(Aε) j

∂ηi
(x, η)

∣∣∣∣ |η| = ‖Dη(Aε(x, η))‖RN |η|

≤ a+Na(|η|)|η| + λεa(|η − ∇u0|)|η|‖IN‖RN

+ λεa(|η − ∇u0|)|η|(
a

′
(|η − ∇u0|)|η − ∇u0|

a(|η − ∇u0|)
‖MN (η − ∇u0, η − ∇u0)‖RN

|η − ∇u0|2
)

≤ a+Na(|η|)|η| + λεa
+Na(|η − ∇u0|)|η|

≤ a+N |η| (a(|η|) + a(|η − ∇u0|))
≤ c(1 + g(|η|)) (4.84)

for all x ∈ �, η ∈ R
N\{∇u0}.

So, from the regularity theorem of Lieberman [26, p. 320], we can findα ∈ (0, 1)

and M2 > 0, both independent from ε, such that

vε ∈ C1,α(�), ‖vε‖C1,α(�) ≤ M2 for all ε ∈ (0, 1]. (4.85)

Case 3: If 1 < λε with ε ∈ (0, 1]. Multiplying (4.74) with −1, setting yε = vε −u0
in (4.73) and adding, we get∫

�

a(|∇(yε + u0)|)∇(yε + u0).∇vdx

−
∫

�

a(|∇u0|)∇u0.∇vdx + λε

∫
�

a(|∇ yε|)∇ yε.∇vdx

−
∫

∂�

b(x)|u0|p−2u0vdγ +
∫

∂�

b(x)|yε + u0|p−2(yε + u0)vdγ

=
∫

�

f (x, yε + u0)vdx −
∫

�

f (x, u0)vdx − λε

∫
�

a(|yε|)yεvdx (4.86)

for all v ∈ W 1,G(�).
Defining again Ãε : � ×R

N → R
N , B̃ε : � ×R → R and φ̃ε : ∂� ×R → R

by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ãε(x, η) = a(|η|)η + 1
λε
a(|η + ∇u0|)(η + ∇u0) − 1

λε
a(|∇u0|)∇u0;

B̃ε(x, t) = 1
λε

[ f (x, t + u0) − f (x, u0)] − a(|t |)t;

φ̃ε(x, t) = 1
λε
b(x)

(|t + u0|p−2(t + u0) − |u0|p−2u0
)
.

(4.87)



Orlicz-Sobolev versus Hölder local minimizers… Page 25 of 27 52

It is clear that Aε ∈ C(� × R
N ,RN ). Rewriting (4.86), we find the following

equation ⎧⎨
⎩

−div( Ãε(x,∇ yε)) = B̃ε(x, yε) on �,

Ãε(x,∇ yε).ν + φ̃ε(x, yε) = 0 on ∂�,

where ν is the inner normal to ∂�.
Again, from Propositions 3.1 and 3.2, we conclude that yε ∈ L∞(�). By the

same arguments used in case 2, we prove that Ãε and B̃ε satisfy the corresponding
inequalities (4.58)-(4.62). So, the regularity theorem of Lieberman [26, p. 320]
implies the existence of α ∈ (0, 1) and M3 ≥ 0 both independent of ε such that

yε ∈ C1,α(�), and ‖yε‖C1,α(�) ≤ M3.

Since yε = vε − u0 and u0 ∈ C1,α(�), we infer that

vε ∈ C1,α(�), and ‖vε‖C1,α(�) ≤ M3.

Let εn ↘ 0 as n −→ +∞. Therefore, in the three cases, we have the same
uniformC1,α(�)bounds for the sequence {vεn }n≥1 ⊆ W 1,G(�). Hence, the Arzelà-
Ascoli theorem guarantees that, up to a subsequence,

vεn → v in C1(�) (4.88)

for some v ∈ C1(�).
Recalling that ‖vεn − u0‖g+ ≤ εn , for all n ∈ N. So,

vεn −→ u0 in W 1,G(�). (4.89)

Therefore, from (4.88) and (4.89), we obtain vεn → u0 in C1(�). So, for n
sufficiently large, say n ≥ n0, we have ‖vεn − u0‖C1(�) ≤ r0 (where r0 > 0 is
defined in Definition 2.10), which provides

J (u0) ≤ J (vεn ) for all n ≥ n0. (4.90)

On the other hand, we have

J (vεn ) < J (u0) for all n ∈ N. (4.91)

Comparing (4.90) and (4.91), we reach a contradiction. This proves that u0 is a
local W 1,G(�)-minimizer of J . This ends the proof. ��
Proof of Theorem 2.13:. The proof follows by applying Propositions 4.1 and
4.2. ��

Acknowledgements The research of V. D. Rădulescu is supported by the grant “Nonlinear
Differential Systems in Applied Sciences" of the Romanian Ministry of Research, Innovation
and Digitization, within PNRR-III-C9-2022-I8/22. This research turned into supported by
the AGH University of Kraków under grant no. 16.16.420.054, funded by the Polish Ministry
of Science and Higher Education.



52 Page 26 of 27 A. Bahrouni et al.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

Declarations

Data availability statement Data sharing not applicable to this article as no data sets were
generated or analysed during the current study.

Ethical Approval Not applicable.

Competing interests The authors read and approved the final manuscript. The authors have
no relevant financial or non-financial interests to disclose.

References

[1] Adams, R.: Sobolev Spaces. Academic Press, New York (1975)
[2] Avci, M., Suslu, K.: On a Robin problem in Orlicz-Sobolev spaces. TWMS J. App.

Eng. Math. 9, 246–256 (2019)
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[13] Gasiǹski, L., Papageorgiou, N.S.: Anisotropic nonlinear Neumann problems. Calc. Var.
Partial Differential Equations 42, 323–354 (2011)
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