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Abstract
We study the following singularly perturbed (N , q)-equation of Choquard type

−εN�Nu − εq�qu = εμ−N
(∫

RN

K (y)F(u(y))

|x − y|μ dy

)
K (x) f (u), x ∈ R

N ,

where �r u = div(|∇u|r−2∇u) denotes the usual r -Laplacian operator with r ∈ {q, N } and
1 < q < N , ε > 0 is a sufficiently small parameter, K ∈ C0(RN ) satisfies some technical
assumptions, 0 < μ < N and F is the primitive of f that fulfills a supercritical exponential
growth in the Trudinger–Moser sense. Due to the new version of Trudinger–Moser type
inequality introduced in Shen and Rădulescu (Zero-mass (N , q)-Laplacian equation with
Stein-Weiss convolution part in R

N : supercritical exponential case. submitted), we aim to
derive the existence and concentration of ground state solutions for the given equation using
variational method, where the concentrating phenomenon appears at the maximum point set
of K as ε → 0+.
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1 Introduction andmain results

In this article, we are concernedwith the existence and concentration of ground state solutions
for the following singularly perturbed (N , q)-Laplacian equation of Choquard type

− εN�Nu − εq�qu = εμ−N
(∫

RN

K (y)F(u(y))

|x − y|μ dy

)
K (x) f (u), x ∈ R

N , (1.1)

where �r u = div(|∇u|r−2∇u) denotes the usual r -Laplacian operator with r ∈ {q, N } and
1 < q < N , ε > 0 is a sufficiently small parameter, K ∈ C0(RN ) satisfies some technical
assumptions, 0 < μ < N and F is the primitive of f that fulfills a supercritical exponential
growth in the Trudinger–Moser sense at infinity.

The problems like Eq. (1.1) are usually utilized to look for stationary solutions of time-
dependent reaction-diffusion systems

∂t u = div[D(u)∇u] + g(x, u), t > 0 and x ∈ R
N , (1.2)

where D(u) � div(|∇u|p−2 + |∇u|q−2). There are wide range of applications on the sys-
tems in physics and its related sciences, such as biophysics, plasma physics and chemical
reaction (see [18]). In fact, in the applications, the function u denotes a state variable and
describes density or concentration of multi-component substances, div[D(u)∇u] represents
the diffusion with a coefficient D(u) and g(x, u) is the reaction term related to source and
loss mechanisms. Especially, g(x, u) has a polynomial form associated with the unknown
concentration symbolized by u.

An interesting phenomenon is that the operator involved in Eq. (1.1) is the so-called
double phase operator behavior switches between two different elliptic situations. According
to the pioneered work [67] considering such operators, the author introduced these classes to
provide models of strongly anisotropic materials; see also the monograph of Zhikov, Kozlov
and Olĕinik [68]. Meanwhile, Eq. (1.1) also known as double phase problem can be inspired
by numerous models arising in mathematical physics. For example, it is closely related to
the study of the well-known Born–Infeld equation

div

( ∇u√
1 − 2|∇u|2

)
= g(x, u), x ∈ R

N ,

that appears in electromagnetism, electrostatics and electrodynamics as a model based on
a modification of Maxwell’s Lagrangian density, see e.g. [14, 15]. Indeed, by means of the
Taylor expansion formula, that is,

1√
1 − x

= 1 + x

2
+ 3

2 · 22 x
2 + 5!!

3! · 22 x
3 + · · · + (2n − 3)!!

(n − 1)! · 2n−1 x
n−1 + · · · for |x | < 1.

One immediately derives Eq. (1.1) for q = 2 and N = 4 if taking x = 2|∇u|2 and adopting
the first order approximation. Furthermore, the following multi-phase differential operator

−�u −�4u − 3

2
�6u − · · · − (2n − 3)!!

(n − 1)! �2nu

is driven by the n-th order approximation above.
For the convenience of the interested reader to acquaint more about the double phase

problem, we prefer to suggest Mugnai and Papageorgiou [49], Liu and Dai [41], Ambrosio
andRădulescu [12], Papageorgiou, Rădulescu andRepovs̆ [50], Zhang, Zhang andRădulescu
[65] and their references therein even if these references are far to be exhaustive. In fact,
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among the cited papers, the authors contemplated the existence of nontrivial solutions for
the following elliptic equation

−�pu −�qu + V (x)|u|p−2u + W (x)|u|q−2u = g(x, u), x ∈ R
N , (1.3)

where 1 < q < p < N and V , W : R
N → R are external potentials. Very recently,

Pomponio and Watanabe [53] considered Eq. (1.3) with V ≡ 0 and W ≡ 0 which can
be called by the zero-mass case, where N ≥ 3, 1 < q < p and q < N . Subsequently,
Carvalho et al. [17] proposed a Trudinger–Moser inequality and established the existence of
nontrivial solutions for a related work in the context of zero-mass (N , q)-Laplacian equation
with 1 < q < N of the form

−�Nu −�qu = g(u), x ∈ R
N .

By introducing a singular version of Trudinger–Moser inequality corresponding to [17], the
authors in [57] obtained the existence of ground state solutions for the following zero-mass
(N , q)-Laplacian equation with 1 < q < N involving supercritical exponential growth

−�Nu −�qu = 1

|x |β
(∫

RN

G(u)

|y|β |x − y|μ dy
)
g(u), x ∈ R

N ,

where β > 0, 0 < μ < N with 2β + μ < N and G is the primitive of g.
Throughout this paper, inspired by [17, 53, 57], we shall define the work space below

E �
{
u ∈ L1

loc(R
N ) :

∫
RN

|∇u|Ndx < +∞ and
∫
RN

|∇u|qdx < +∞
}

which is the completion of C∞
0 (R

N ) under the norm

‖u‖ = |∇u|N + |∇u|q , ∀u ∈ E,

where | · |p stands for the usual norm associated with the Lebesgue space L p(RN ) with
1 ≤ p ≤ ∞. By means of the Gagliardo–Nirenberg inequality and interpolation, one could
deduce that the imbedding E ↪→ L p(RN ) is continuous for all p ∈ [q∗,+∞), where
q∗ = Nq/(N − q).

Indeed, without considering the q-Laplacian operator −�qu in Eq. (1.1), it belongs to a
class of Choquard equations

−�u + u = (|x |−μ ∗ |u|p)|u|p−2u, x ∈ R
N . (1.4)

arising from the study of Bose–Einstein condensation. In the relevant physical case, by
supposing N = 3, μ = 1 and p = 2 in (1.4), Pekar [51] used it which is called by
Choquard–Pekar equation to describe a polaron at rest in the quantum field theory. Choquard
exploited it to characterization an electron trapped in its own hole as an approximation to the
Hartree-Fock theory for a one component plasma [37]. Afterwards, Lieb [35] and Lions [39]
obtained the existence and uniqueness of positive solutions to (1.4) by variational methods.
The authors in [42, 45] verified the regularity, positivity and radial symmetry of the ground
state solutions and established the decay property at infinity. We refer the reader to [1, 5, 7,
33, 44, 56, 59, 66] and particularly [46] for a very abundant and meaningful works of the
Choquard equations.

Because of the appearance of convolution operator in (1.4), we would like to recall the
Hardy–Littlewood–Sobolev (HLS in short) inequality as follows.
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Proposition 1.1 (Hardy–Littlewood–Sobolev inequality [36, Theorem 4.3]). Suppose that
m, r > 1 and 0 < μ < N with 1/m + μ/N + 1/r = 2, ϕ ∈ Lm(RN ) and ψ ∈ Lr (RN ).
Then, there is a sharp constant C = C(m, N , μ, r) > 0, independent of ϕ and ψ , such that∫

RN
[|x |−μ ∗ ϕ(x)]ψ(x)dx ≤ C |ψ |m |ψ |r . (1.5)

Applying theHLS inequality (1.5), one knows that
∫
RN [|x |−μ∗(K (x)F(u))]K (x)F(u)dx

is well-defined provided that K (x)F(u) ∈ Lm(RN ) for all m > 1 which is determined by
2
m + μ

N = 2. This means that we must make sure that

K (x)F(u) ∈ L
2N

2N−μ (RN )

Let us suppose particularly that K ≡ 1 and F(u) = |u|r for every u ∈ E , preserving the
variational structure, by the continuous imbedding E ↪→ L p(RN ) with p ∈ [q∗,+∞), it
must have that

r ≥ (2N − μ)q∗

2N
.

However, in view of the nonlinearity f dealing with in the present paper is of supercritical
growth, it would be far from enough since the spatial dimension of Eq. (1.1) is very special
which prompts us to contemplate it carefully. Briefly speaking, we couldn’t conclude that
the imbedding E ↪→ L∞(RN ) is continuous. To handle it in the limiting case, the celebrated
Trudinger–Moser inequality [48, 52, 60] may be a good candidate as suitable substitute of
the above imbedding inequality.

Inspired by the Trudinger–Moser type inequality, it says that a function f (s) has critical
exponential growth if there exists a constant α0 > 0 such that

lim|s|→+∞
| f (s)|
eαs

N
N−1

=
{
0, ∀α > α0,
+∞, ∀α < α0. (1.6)

It should be pointed out that the definition above was extensively considered in the
literatures, see e.g. [2–4, 16, 19, 26, 32, 34, 55, 64] for example.

In light of the work space E here, the classic version of Trudinger–Moser inequality are
unapplicable. So, we shall introduce the particular case of [57, Theorem 1.2] (see e.g. [17,
Theorem 1.1]) as follows.

Proposition 1.2 Suppose that 1 < q < N, then for every α > 0 and u ∈ E, there holds

∫
RN

(
eα|u| N

N−1 −
j0−1∑
j=0

α j

j ! |u| N j
N−1

)
dx < +∞, (1.7)

where j0 � inf{ j ∈ N
+ : j ≥ q(N − 1)/(N − q)}. Moreover, it holds that

S(α) � sup
u∈E,‖u‖≤1

∫
RN

(
eα|u| N

N−1 −
j0−1∑
j=0

α j

j ! |u| N j
N−1

)
dx < +∞ (1.8)

for all α ≤ αN = Nω
1

N−1
N−1 and S(α) = +∞ if α > αN , where ωN−1 stands for the volume

of the unit sphere SN−1.
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As one can observe that if u is a solution of zero-mass (N , q)-Laplacian equation (1.1)
and x∗ ∈ R

N , then the function v = u(εx + x∗) solves

−�Nu −�qu =
(∫

RN

K (εy + x∗)F(u(y))
|x − y|μ dy

)
K (εx + x∗) f (u), x ∈ R

N .

It infers that there is a convergence, as ε → 0+ of the family of solutions of Eq. (1.1), to the
solution of its associated limiting equation

−�Nu −�qu = [K (x∗)]2
(∫

RN

F(u(y))

|x − y|μ dy
)
f (u), x ∈ R

N . (1.9)

This phenomenon is regarded as the so-called semi-classical limiting for semilinear elliptic
equations

− ε2�u + V (x)u = g(u), x ∈ R
N . (1.10)

The reader could refer to [11, 13] for a detailed survey on such topic which should date back
to the pioneering research work by Foler and Weinstein in [28]. Soon afterwards, Eq. (1.10)
and its variants have been investigated extensively under different hypotheses on the potential
and the nonlinearity, see e.g. [10, 21–24, 28, 29, 31, 54, 61] and the references therein.

Let us mention here that the Lyapunov-Schmidt reduction argument has been proved to be
one of the most effective tools in the study of semiclassical problems for local Schrödinger
equations likeEq. (1.10).Whereas, to our best knowledge, little is knownabout the uniqueness
and non-degeneracy of the ground states of the limiting problem

−�u + u = [|x |−μ ∗ G(u)]g(u), x ∈ R
N .

As a consequence, it is quite natural to ask whether the existence and concentration results
for local Schrödinger equations still hold for the nonlocal equation with supercritical growth
in the sense of Trudinger–Moser inequality. We anticipate that our problem exhibits three
conspicuously interesting features:

(1) There are two distinct operators which generate a double phase associated energy;
(2) Due to the unboundedness of the whole space R

N and the supercritical exponential
growth, there is a lack of the compactness property of the corresponding variational
functional;

(3) The presences of convolution type term and the nonlinearity involving supercritical
exponential growth together with the potential, the proofs combine dedicated analysis
techniques including regular theory and topological tools.

Now, let us begin defining the supercritical exponential growth on f . Suppose that the
nonlinearity f carries the form of type

f (t) = h(t)eα|t |τ , ∀t ∈ R (1.11)

for α > 0 and τ ≥ N
N−1 . Hereafter, we assume that h : R → R is a continuous function

satisfying:

(h1) h ∈ C0(R) with h(t) ≡ 0 for all t ≤ 0 and h(t) = o(tσ−1) as t → 0+, where
σ > max{N , q∗};

(h2) There exists a θ > N
2 such that 0 < θH(t) ≤ h(t)t for all t > 0, where H(t) =∫ t

0 h(s) ds;

(h3) There exist some δ ∈ (0, N
N−1 ) and γ,M > 0 such that 0 ≤ h(t) ≤ Meγ t

δ
for all

t ≥ 0.
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Recalling the previousworks in [8, 9], there are twoways to understand that the function h,
defined in (1.11) together with (h2), satisfies the so-called supercritical exponential growth
in the following sense:

(I) τ > N is arbitrary and α > 0 is fixed; (II) α > 0 is arbitrary and τ ≥ N is fixed. (1.12)

Moreover, one could call Cases (I) and (II) in (1.12) to be the subcritical-supercritical
exponential growth and critical-supercritical exponential growth, respectively.

We study the existence of nontrivial solutions for the supercritical nonlocal equation with
periodic potential, namely we consider the equation

−�Nu −�qu =
(∫

RN

Q(y)F(u(y))

|x − y|μ dy

)
Q(x) f (u), x ∈ R

N . (1.13)

Assume that the potential Q satisfies the conditions

(Q1) Q ∈ C0(RN ) and Q(x) ≥ Q0 for all x ∈ R
N for some Q0 > 0;

(Q2) Q is Z
N -periodic, that is, Q(x) = Q(x + y) for all x ∈ R

N and y ∈ Z
N .

The first main result can be stated as follows.

Theorem 1.3 Let 1 < q < N and 0 < μ < N. Suppose that the nonlinearity f defined
in (1.12) satisfies (h1) − (h3) and the potential Q requires (Q1) − (Q2), then for each
τ ≥ N/(N − 1), there is a α∗ = α∗(τ ) > 0 such that Eq. (1.13) has a nontrivial solution in
E for all α ∈ (0, α∗). Moreover, if in addition we suppose that

(h4) there are constants ξ > 0 and p > N
2 such that H(t) ≥ ξ t p for all t ∈ [0, 1],

then for each α > 0, there exists a τ∗ = τ∗(α) > N/(N − 1) and ξ0 > 0 such that Eq. (1.1)
possesses a nontrivial solution in E for every τ ∈ [N/(N − 1), τ∗) and ξ > ξ0.

To treat Eq. (1.13) variationally, wemust assure that the variational functional J : E → R

defined by

J (u) = 1

N

∫
RN

|∇u|Ndx + 1

q

∫
RN

|∇u|qdx − 1

2

∫
RN

∫
RN

Q(x)F(u(x))Q(y)F(u(y))

|x − y|μ dxdy

is well-defined in E and of class C1. Unfortunately, it seems impossible because f has
the supercritical exponential growth at infinity. So, we cannot look for critical points of J
directly to consider Theorem 1.3 via Propositions 1.1 and 1.2. Motivated by [8, 9], given a
fixed constant R > 0, we shall study an auxiliary equation which possesses a (sub)critical
exponential growth. Speaking it clearly, introducing a cutoff function f R,δ̄ which is

f R,δ̄(t) =

⎧⎪⎨
⎪⎩
0, t ≤ 0,
h(t)eαt

τ
, 0 ≤ t ≤ R,

h(t)eαR
τ−δ̄ t δ̄ , t ≥ R,

(1.14)

where

δ̄ �
{
δ, if the Case I in (1.12) is considered,
N/(N − 1), if the Case II in (1.12) is considered,

then we would consider the following auxiliary equation

−�Nu −�qu =
(∫

R2

Q(y)FR,δ̄(u(y))

|x − y|μ dy

)
Q(x) f R,δ̄(u), x ∈ R

N , (1.15)
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where and in the sequel FR,δ̄(t) = ∫ t
0 f R,δ̄(s)ds. Using (h3), it is ready to observe that f R,δ̄

admits a subcritical or critical exponential growth at infinity for all fixed R > 0. So, the
variational functional J R,δ̄ : E → R below

J R,δ̄(u) = 1

N

∫
RN

|∇u|Ndx + 1

q

∫
RN

|∇u|qdx

−1

2

∫
RN

∫
RN

Q(x)FR,δ̄(u(x))Q(y)FR,δ̄(u(y))

|x − y|μ dxdy

associatedwith Eq. (1.15) is well-defined and belongs toC1(E).Moreover, we should deduce
that each critical point of it is a (weak) solution of Eq. (1.15). It could obviously conclude that
if every mountain-pass type solution uR ∈ E of Eq. (1.15) satisfying |uR |∞ ≤ R, then uR is
a mountain-pass type solution of Eq. (1.13). Have it in mind, the reader is invited to acquaint
that we shall establish such a solution uR to derive the proof of Theorem 1.3. Thereby, it is
necessary to prove the following result.

Theorem 1.4 Let 1 < q < N and 0 < μ < N. Suppose that the nonlinearity f defined in
(1.12) satisfies (h1) − (h3) and the potential Q requires (Q1) − (Q2), then for each fixed
R > 0, Eq. (1.15) with δ̄ = δ admits a nontrivial solution in E. Moreover, if we suppose
additionally that (h4), then for each fixed R > 0, there is a ξ0 = ξ0(R) > 0 dependent of R
such that Eq. (1.15) with δ̄ = N/(N − 1) possesses a nontrivial solution in E for all ξ > ξ0.

Let Q(x) = |x |−β with 0 < β < N and 2β + μ < N for every x ∈ R
N in Eq. (1.13),

the authors in [57] investigated the existence of ground state solutions under the assumptions
(h1)− (h4) and
(h5) The function h ∈ C1 satisfies t 
→ h(t)/t

N−2
2 is increasing on t ∈ (0,+∞).

Alternatively, we can never repeat the calculations in the cited paper to finish the proofs
of Theorems 1.3 and 1.4. On the one hand, thanks to the fact that the imbedding E ↪→
L p(RN ; |x |−sdx) � {u ∈ L p(RN ) : ∫

RN |x |−s |u|pdx < +∞} for all s ∈ (0, N ) and
p ∈ [q∗,+∞) is compact in [57, Lemma 2.1], one could easily recover the compactness of
J R,δ̄ . On the other hand, if the condition (h5) is absence, it could just show that the energy of
nontrivial critical point of J R,δ̄ is smaller than (or equal to) the mountain-pass level whence
(Q1) − (Q2) are satisfied. Considering these facts, we will establish the concentration-
compactness principle with respect to the Trudinger–Moser inequality in Proposition 1.2 and
it should be consistent with the space E .

Theorem 1.5 Suppose that 1 < q < N and let {un} ⊂ E be a sequence satisfying ‖un‖ ≡ 1
and un⇀u �= 0 in E, then

sup
n∈N

∫
RN

(
e p̄αN |un |

N
N−1 −

j0−1∑
j=0

( p̄αN ) j

j ! |un |
N j
N−1

)
dx < +∞, ∀0 < p̄ < P̄(u), (1.16)

where the sharp constant P̄(u) is defined by

P̄(u) =
{( 1

1−‖u‖N
) 1
N−1 , if ‖u‖ < 1,

+∞, if ‖u‖ = 1.

Remark 1.6 We emphasize that Theorem 1.5 should be viewed as the counterpart of [20, 27,
40, 58], but it is still new in our settings. Moreover, in contrast to [17, Theorem 1.2], even
if we only consider Theorem 1.4 instead of Theorem 1.3, as far as we are concerned, there
exist three main contributions:

123
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• As one shall see later, we do not depend on the compact imbedding Er ↪→ L p(RN )

for every q∗ < p < +∞, where Er = {u ∈ E : u(x) = u(|x |)}. Conversely, this fact
plays an extremely crucial role in [17]. Indeed, in order to circumvent the difficulty, we
establish a new type of Lion’s Vanishing lemma (see Lemma 2.5 below) corresponding
to the work space E and then get the nontrivial solution by the periodicity of Q. Besides,
we are trying our best to remove the periodic assumption on Q and replace it with a more
general restriction, but it would be postponed in a further work;

• We conclude a unified approach to investigate the existence of nontrivial solutions for a
class of zero-mass (N , q)-Laplacian equations, like (1.13), with subcritical and critical
exponential growth with the help of mountain-pass theorem. Moreover, one could derive
that the energy of such obtained nontrivial solution equals to the mountain-pass level due
to Theorem 1.5 if the work space E is radially symmetric and (h4) can be weakened to
some extent;

• Because of the appearance of the convolution operator in Eq. (1.13), the considered
problem can be seen as a nonlocal type of zero-mass (N , q)-Laplacian equation, which
is an extension of the local problem studied in [17].

As a supplement of [57], whose detailed proof shall be left to the reader, we could follow
Theorem 1.5 jointly with [57, Theorem 1.1] to derive the theorem below.

Corollary 1.7 Suppose that 1 < q < N and 0 < s < N. Let {un} ⊂ E be a sequence
satisfying ‖un‖ ≡ 1 and un⇀u �= 0 in E, then for the sharp constant P̄(u) appearing in
Theorem 1.5, it holds that

sup
n∈N

∫
RN

|x |−s

⎛
⎝e p̄αN |un |

N
N−1 −

j0−1∑
j=0

α j

j ! |un |
N j
N−1

⎞
⎠ dx < +∞, ∀0 < p̄ < P̄(u).

Next, we focus on the existence and concentration results for Eq. (1.1). Let us suppose
that the potential K satisfies the conditions

(K1) K ∈ C0(RN ) and max
x∈RN

K (x) � K0 ∈ (0,+∞) achieves its maximum at some point

x ∈ R
N ;

(K2) lim sup
|x |→∞

K (x) � K∞ ∈ (0, K0) with K (x) ≥ K∞, and the inequality is strict in a

subset of positive Lebesgue measure.

It should be pointed out that the condition (K2) comes essentially form [54]. Starting from
here, we shall denote by

� = {
x ∈ R

N : K (x) = K0
}

the maximum points set of K in R
N . Without loss of generality, we always suppose that the

original point 0 belongs to �, namely K (0) = K0. Thus, we can establish the following
result.

Theorem 1.8 Let 1 < q < N and 0 < μ < N. Suppose that the nonlinearity f defined in
(1.12) satisfies (h1) − (h3) with (h5) and the potential K requires (K1) − (K2), then for
each τ ≥ N/(N − 1), there is a ᾱ∗ = ᾱ∗(τ ) > 0 such that Eq. (1.1) admits a ground state
solution uε ∈ E for all α ∈ (0, ᾱ∗) and ε > 0 small enough. Furthermore, we obtain the
following conclusions:

123
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(a) uε possesses amaximum point γε ∈ R
N such that, going to a subsequence if necessary,

lim
ε→0+ K (γε) = K0,

and γε → x∗ ∈ � as ε → 0+;
(b) If we set ũε(x) = uε(εx + γε), going to a subsequence if necessary, we have ũε → ũ

in E as ε → 0+ and ũ is a ground state solution of Eq. (1.9).

Moreover, if in addition we suppose (h4), then for each α > 0, there exists a τ̄∗ = τ̄∗(α) >
N/(N −1) and ξ̄0 > 0 such that Eq. (1.1) possesses a ground state solution uε ∈ E for every
τ̄ ∈ [N/(N − 1), τ̄∗), ξ > ξ̄0 and ε > 0 small enough as well as the properties (a) − (b)
remain true in this situation.

Recalling the discussions as before, to contemplate Theorem 1.8, we have to first take into
account its auxiliary equation

− εN�Nu − εq�qu = εμ−N
(∫

RN

K (y)FR,δ̄(u(y))

|x − y|μ dy

)
K (x) f R,δ̄(u), x ∈ R

N , (1.17)

where f R,δ̄ is defined in (1.14).
So, we are going to conclude the results below.

Theorem 1.9 Let 1 < q < N and 0 < μ < N. Suppose that the nonlinearity f defined in
(1.12) satisfies (h1)− (h3) with (h5) and the potential K requires (K1)− (K2), then for each
R > 0, Eq. (1.17) with δ̄ = δ has a ground state solution uε ∈ E for all ε > 0 small enough.
Furthermore, we obtain the following conclusions:

(a) uε possesses amaximum point γε ∈ R
N such that, going to a subsequence if necessary,

lim
ε→0+ K (γε) = K0,

and γε → x∗ ∈ � for all fixed R > 0 as ε → 0+;
(b) If we set ũε(x) = uε(εx + γε), going to a subsequence if necessary, we have ũε → ũ

for all fixed R > 0 in E as ε → 0+ and ũ is a ground state solution of

−�Nu −�qu = [K (x∗)]2
(∫

RN

F R,δ(u(y))

|x − y|μ dy

)
f R,δ(u), x ∈ R

N . (1.18)

Moreover, if we suppose additionally (h4), then for each R > 0, there exists a ξ̄0(R) > 0
such that Eq. (1.17) with δ̄ = N/(N − 1) admits a ground state solution uR

ε ∈ E for all
ξ > ξ̄0(R) and ε > 0 small enough. In addition, we still have the properties (a)− (b) above
by replacing δ with N/(N − 1).

Performing the scaling u(x) = v(εx), one could observe that, to study Eq. (1.17), it is
equivalent to consider the problem

−�Nu −�qu =
(∫

RN

K (εy)FR,δ̄(u(y))

|x − y|μ dy

)
K (εx) f R,δ̄(u), x ∈ R

N , (1.19)

whose variational functional J R,δ̄
ε : E → R is defined by

J R,δ̄
ε (u) = 1

N

∫
RN

|∇u|Ndx + 1

q

∫
RN

|∇u|qdx
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−1

2

∫
RN

∫
RN

K (εx)FR,δ̄(u(x))K (εy)FR,δ̄(u(y))

|x − y|μ dxdy.

A solution u ∈ E of Eq. (1.19) is called by the ground state if it satisfies J R,δ̄
ε (u) = mR,δ̄

ε ,
where

mR,δ̄
ε � inf

v∈N R,δ̄
ε

J R,δ̄
ε (v) (1.20)

with N R,δ̄
ε denoting the Nehari manifold

N R,δ̄
ε = {

u ∈ E\{0} : (J R,δ̄
ε )′(u)[u] = 0

}
.

We note that, up to our best knowledge, it is the first time to deal with the semiclassical
ground state solutions under the zero-mass (N , q)-Laplacian setting in the supercritical expo-
nential case, even in the critical exponential case. Although it is standard to contemplate the
singularly perturbed problems by the arguments introduced in [11, 13, 28], we should empha-
size here that there exist two essential difficulties arising in Theorems 1.8 and 1.9. On the one
hand, because of the appearance of critical-supercritical exponential case in Theorem 1.8,
or critical exponential case in Theorem 1.9, we are confronted with the lack of compactness
of J R,δ̄

ε . To overcome it, we would follow [65, Lemma 4.4] to establish a compact lemma,
see e.g. Lemma 4.6 below. On the other hand, since the operator −�Nu − �qu is nonho-
mogeneous and there is a competition interaction between it and the nonlocal nonlinearity
having (super)critical exponential growth, we cannot apply directly the methods used in [30]
to explore the regular result in our problem. Hence, we prefer to regard it as the most striking
highlight in the present paper. In fact, we proceed as [57, Lemma 4.4] to deduce that every
nontrivial solution of Eq. (1.19) belongs to L∞(RN ) and then derive its smoothness. Alter-
natively, the reader would discover some additional and unpleasant barriers in the proofs of
Theorems 1.8 and 1.9.

The outline of the paper is organized as follows. In Sect. 2, we mainly present some
preliminary results and obtain the proof of Theorem 1.5. Sections3 and 4 are devoted to the
proofs of Theorems 1.3–1.4 and 1.8–1.9, respectively.
Notations: From now on in the present paper, otherwise mentioned particularly, we shall
adopt the following notations:

• C,C1,C2, . . . denote any positive constant, whose value is not relevant and R
+ �

(0,+∞).
• Let (Z , ‖ · ‖Z ) be a Banach space with dual space (Z−1, ‖ · ‖Z−1), and � be functional

on Z .
• The (C) sequence at a level c ∈ R ((C)c sequence in short) corresponding to � means

that�(xn) → c and (1+‖� ′(xn)‖X−1)‖xn‖X → 0 in X−1 as n → ∞, where {xn} ⊂ Z .
• For any � > 0 and every x ∈ R

N , B�(x) � {y ∈ R
N : |y − x | < �}.

• For each Lebesgue measurable set � ⊂ R
N , |�| stands for the Lebesgue measure of �.

• Given a mensurable function u, we shall denote by u+ and u− its positive and negative
parts respectively, given by

u+(x) = max{u(x), 0} and u−(x) = min{u(x), 0}.
• on(1) denotes the real sequences with on(1) → 0 as n → +∞.
• “ → " and “⇀" stand for the strong and weak convergence in the related function spaces,

respectively.
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2 Variational framework and preliminaries

In this section, we shall formulate the variational structure and present some preliminary
results for our problems. To begin it, let us show the following imbedding result.

Lemma 2.1 Let 1 < q < N, then the imbedding E ↪→ L p(RN ) is continuous for all
q∗ ≤ p < +∞.

Proof The proof is standard and we refer the reader to [18, 57]. ��

For every fixed R > 0 and the cutoff function in (1.14), define the functional�R,δ̄ : E →
R by

�R,δ̄(u) = 1

2

∫
RN

∫
RN

F R,δ̄(u(x))FR,δ̄(u(y))

|x − y|μ dxdy. (2.1)

With the help of Lemma 2.1, we can establish the lemmas below.

Lemma 2.2 Let 1 < q < N and suppose that the nonlinearity f in (1.11) satisfies (h1) and
(h3), then the functional�R,δ̄ is well-defined in E and of class C1 whose derivative is given
by

(�R,δ̄(u))′[v] =
∫
RN

∫
RN

f R,δ̄(u(x))v(x)FR,δ̄(u(y))

|x − y|μ dxdy, ∀u, v ∈ E .

Moreover, if un⇀u in E as n → ∞, up to a subsequence if necessary, it holds that

(�R,δ̄)′(un)[ψ] → (�R,δ̄)′(u)[ψ] as n → ∞, ∀ψ ∈ C∞
0 (R

N ). (2.2)

If δ̄ = N
N−1 in (2.2), we should suppose in addition that sup

n∈N
‖un‖ N

N−1 ≤
αN

2(γ+αRτ− N
N−1 )

min{ σ−1
σ
,
N−μ
N+μ }, where αN , γ, α, σ, N and μ are positive constants inde-

pendent of R > 0.

Proof By (1.14), one sees that f R,δ̄ admits the subcritical and critical exponential growth at
infinity for δ̄ = δ and δ̄ = N

N−1 , respectively. Thanks to (1.5) and (1.8), one could easily

conclude the first part of this lemma and the details are left. If δ̄ = δ ∈ (0, N
N−1 ) in (2.2), as

explained before, it is the subcritical exponential case, thus the conclusion is immediate. Let
us just consider the case δ̄ = N

N−1 in (2.2). Applying (h1) and (h3) to (1.14), we could argue
as in the proof of [57, Lemma 2.2] to find a constant C(R) > 0 (that depends on R > 0)
such that

| f R, N
N−1 (t)| ≤ |t |σ−1 + C(R)|t |ν−1�

γ+αRτ− N
N−1 , j0

(t), ∀t ∈ R, (2.3)

where ν > 1 is arbitrary. We denote � by the support of ψ , then |�| < ∞ and so there is

a sufficiently large � > 0 such that � ⊂ B�/2(0). Setting ξn � |x |−μ ∗ FR, N
N−1 (un) and

ξ0 � |x |−μ ∗ FR, N
N−1 (u), to get (2.2), we firstly claim that

Claim. ξn is uniformly bounded in n ∈ N and ξn → ξ0 a.e. in R
N .

Verification. After some simple calculations, there holds

∫
RN

F R, N
N−1 (un(y))

|x − y|μ dy ≤
∫
B�(0)

F(un(y))

|x − y|μ dy +
(
2

�

)μ ∫
Bc
�(0)

F(un(y))dy
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≤
∫
B�(0)

FR, N
N−1 (un(y))dy +

∫
B�(0)∩{|x−y|<1}

FR, N
N−1 (un(y))

|x − y|μ dy

+
(
2

�

)μ ∫
Bc
�(0)

F(un(y))dy. (2.4)

Letting ν = σ+1
2 in (2.3), by (1.8), we have

∫
RN

|un | σ+1
2 �

γ+αRτ− N
N−1 , j0

(un)dx ≤ |un |
σ+1
2
σ

(∫
RN
�

2σ
σ−1 (γ+αRτ− N

N−1 ), j0
(un)dx

) σ−1
2σ

= |un |
σ+1
2
σ

(∫
RN
�

2σ
σ−1

(
γ+αRτ− N

N−1
)
‖un‖

N
N−1 , j0

(un/‖un‖)dx
) σ−1

2σ ≤ C |un |
σ+1
2
σ .

(2.5)

Here and in the sequel �α, j0(t) � eα|u| N
N−1 −

j0−1∑
j=0

α j

j ! |u| N j
N−1 for all t ∈ R as well as the

inequality (see e.g. [63, Lemma 2.1]):

(�α, j0(t))
m ≤ �mα, j0(t), ∀t ∈ R, α > 0 and m > 1.

It follows from the Hölder’s inequality that

∫
B�(0)∩{|x−y|<1}

FR, N
N−1 (un(y))

|x − y|μ dy ≤ C

(∫
B�(0)

[FR, N
N−1 (un)]

N+μ
N−μ dy

) N−μ
N+μ

.

From this inequality, we choose ν = σ
2 in (2.3) and exploit (1.8) to get∫

RN
|un |

σ(N+μ)
2(N−μ) �

N+μ
N−μ (γ+αRτ− N

N−1 ), j0
(un)dx

≤ |un |
σ(N+μ)
2(N−μ)
σ(N+μ)
N−μ

(∫
RN
�

2(N+μ)
N−μ (γ+αRτ− N

N−1 ), j0
(un)dx

) 1
2

= |un |
σ(N+μ)
2(N−μ)
σ(N+μ)
N−μ

(∫
RN
�

2(N+μ)
N−μ

(
γ+αRτ− N

N−1
)
‖un‖

N
N−1 , j0

(un/‖un‖)dx
) 1

2 ≤ C |un |
σ(N+μ)
2(N−μ)
σ(N+μ)
N−μ

.

(2.6)

Combining (2.3), (2.4), (2.5), (2.6) and Lemma 2.1, we would easily see that ξn is uniformly
bounded in n ∈ N. Since un → u in L p(B�(0)) for every p > q∗, with (2.5) and (2.6) in
hands, we tend n → ∞ by the generalized Vatali’s Convergence Dominated theorem and
then � → +∞ in (2.4) to reach the Claim. With the help of the Claim above,

∣∣(�R, N
N−1 (un))

′[ψ]∣∣ ≤
∫
RN

∣∣ξn f R, N
N−1 (un)ψ

∣∣dx =
∫
�

∣∣ξn f R, N
N−1 (un)ψ

∣∣dx

≤ C
∫
�

∣∣ f R, N
N−1 (un)

∣∣∣∣ψ∣∣dx ≤ C

(∫
�

∣∣ f R, N
N−1 (un)

∣∣2dx
) 1

2
(∫

�

|ψ |2dx
) 1

2

which together with (2.3) and (2.6) indicates that {ξn f R, N
N−1 (un)ψ} is uniformly integrable.

Adopting the Claim again, we can derive the proof of (2.2). The proof of this lemma is
completed. ��

In the following, we establish a nonlocal version of the Brézis–Lieb type lemma in E for
nonlinearities of (sub)critical exponential growth.
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Lemma 2.3 Let 1 < q < N and suppose that the nonlinearity f in (1.11) satisfies (h1) and
(h3). If un⇀u in E as n → ∞, up to a subsequence if necessary, there holds

�R,δ(un)−�R,δ(un − u)−�R,δ(u) → 0 as n → ∞. (2.7)

Moreover, if in addition we assume that sup
n∈N

‖un‖ N
N−1 ≤ αN

18(γ+αRτ− N
N−1 )

min{ σ−1
σ
,
N−μ
N+μ },

there holds

�R, N
N−1 (un)−�R, N

N−1 (un − u)−�R, N
N−1 (u) → 0 as n → ∞. (2.8)

Proof Since the proof of (2.7) is simple, we show (2.8) in detail. Obviously,

2
[
�R, N

N−1 (un)−�R, N
N−1 (un − u)

]
� �1 +�2 +�3

=
∫
RN

[|x |−μ ∗ FR, N
N−1 (u)

]
FR, N

N−1 (un − u)dx

+
∫
RN

[|x |−μ ∗ FR, N
N−1 (u)

]
FR, N

N−1 (un)dx

+
∫
RN

[|x |−μ ∗ FR, N
N−1 (un)

][
FR, N

N−1 (un)− FR, N
N−1 (un − u)− FR, N

N−1 (u)
]
dx

+
∫
RN

[|x |−μ ∗ FR, N
N−1 (un − u)

][
FR, N

N−1 (un)− FR, N
N−1 (un − u)− FR, N

N−1 (u)
]
dx .

We claim that {FR, N
N−1 (un)} is uniformly bounded in L

2N
2N−μ (RN ). In fact, exploiting ν =

2N−μ
2N σ > 1 in (2.3) and arguing as (2.6), it suffices to show that

∫
RN

|un |σ� 2N
2N−μ

(
γ+αRτ− N

N−1
)
, j0
(un)dx

≤ |un |σ(N+μ)σ
μ

(∫
RN
�

2(N+μ)
2N−μ

(
γ+αRτ− N

N−1
)
, j0
(un)dx

) N
N+μ

≤ |un |σ(N+μ)σ
μ

(∫
RN
�

2(N+μ)
N−μ

(
γ+αRτ− N

N−1
)
‖un‖

N
N−1 , j0

(un/‖un‖)dx
) N

N+μ

≤ C |un |σ(N+μ)σ
μ

≤ C .

In view of (1.5), one has |x |−μ ∗ FR, N
N−1 (u) ∈ L

2N
μ (RN ) jointly with FR, N

N−1 ∈ C0 implies
that

�1 →
∫
RN

[|x |−μ ∗ FR, N
N−1 (u)

]
FR, N

N−1 (u)dx = 2�R, N
N−1 (u) as n → ∞.

From it and the claim, to get (2.8), it is enough to verify that

FR, N
N−1 (un)− FR, N

N−1 (un − u)− FR, N
N−1 (u) → 0 in L

2N
2N−μ (RN ) as n → ∞, (2.9)

whose proof has been left in the Appendix. The proof is completed. ��

As a byproduct of Lemma 2.3, we immediately have the following results whose proof
are omitted.
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Lemma 2.4 Let 1 < q < N and suppose that the nonlinearity f in (1.11) satisfies (h1) and
(h3). If un → u in L p(RN ) for some p ∈ (q∗,+∞) as n → ∞, up to a subsequence if
necessary, there holds

�R,δ(un) → �R,δ(u) as n → ∞. (2.10)

Moreover, if we assume additionally that sup
n∈N

‖un‖ N
N−1 ≤ αN

18(γ+αRτ− N
N−1 )

min{ σ−1
σ
,
N−μ
N+μ },

then
�R, N

N−1 (un) → �R, N
N−1 (u) as n → ∞. (2.11)

The following lemma which is crucial in the proofs of Theorems 1.3 and 1.4 is an another
type of Vanishing lemma in [40].

Lemma 2.5 Let 1 < q < N and r > 0. If {un} is bounded in E and suppose that

lim sup
n→∞

sup
y∈RN

∫
Br (y)

|un |q∗
dx = 0,

then un → 0 in L p(RN ) for all q∗ < p < +∞.

Proof For all p ∈ (q∗,+∞), there exists a s ∈ (q, N ) which is very close to N so that
p < s∗, where s∗ = Ns

N−s . Thus, we have q < s < N and q∗ < p < s∗. Applying the
Hölder’s inequality to get

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∫
Br (y)

|∇un |sdx
) 1

s ≤
(∫

Br (y)
|∇un |qdx

) 1−ω
q
(∫

Br (y)
|∇un |Ndx

) ω
N

,

(∫
Br (y)

|un |pdx
) 1

p ≤
(∫

Br (y)
|un |q∗

dx

) 1−�
q∗ (∫

Br (y)
|un |s∗dx

) �
s∗
,

(2.12)

where ω = s−q
N−q · N

s and � = p−q∗
s∗−q∗ · s∗

p . Combining (2.12) and the Sobolev’s imbedding
inequality, we have that

∫
Br (y)

|un |pdx ≤ C

(∫
Br (y)

|un |q∗
dx

) p(1−�)
q∗ (∫

Br (y)
|∇un |qdx

) p(1−ω)�
q

(∫
Br (y)

|∇un |N dx
) pω�

N

≤ C

(∫
Br (y)

|un |q∗
dx

) p(1−�)
q∗ ‖un‖p�−q

∫
Br (y)

|∇un |qdx .

Let us contemplate that p ≥ q(s∗−q∗)
s∗ + q∗, namely q(s∗−q∗)

s∗ + q∗ ≤ p < s∗ and so
p� − q ≥ 0. Covering R

N by balls of radius r in such a way that each point of R
N is

contained in at most N + 1 balls, we obtian

∫
RN

|un |pdx ≤ C(N + 1) sup
y∈RN

(∫
Br (y)

|un |q∗
dx

) p(1−�)
q∗

‖un‖p� .

Under the assumption of the lemma, it holds that un → 0 in L p(RN ) for each q(s∗−q∗)
s∗ +q∗ ≤

p < s∗. The remaining part is un → 0 in L p(RN ) for all q∗ < p < q(s∗−q∗)
s∗ + q∗, but it is

trivial by means of the Hölder’s inequality again. So, the proof is completed. ��

We conclude this section by showing the proof of Theorem 1.5.

123



Concentration of ground state… Page 15 of 46    66 

Proof of Theorem 1.5 Due to ‖u‖ ≤ lim inf
n→∞ ‖un‖ ≡ 1, we can split the proof into two cases.

Case 1: ‖u‖ < 1. Arguing it by contradiction that for some 0 < p1 < P̄(u), where P̄(u)
is given by (1.16), there holds

sup
n∈N

∫
RN
�αN p1, j0(un)dx = +∞. (2.13)

In light of a constant L ∈ (0,+∞) which is determined later and v ∈ E , set

GL(v) =
⎧⎨
⎩

L, if v > L,
−L, if v < −L,
v, if |v| ≤ L,

and TL(v) = v − GL(v).

Plainly, there exists a constant ε ∈ (0, 1) such that
(
p1(1 + ε)2)N−1

< 1
1−‖u‖N . Obviously,

‖GL(u)‖ → ‖u‖ as L → +∞, then one can choose a sufficiently large L > 0 such that

(
p1(1 + ε)2)N−1

<
1

1 − ‖GL(u)‖N . (2.14)

We claim that

lim sup
n→∞

[(∫
RN

|∇TL(un)|Ndx
) 1

N +
(∫

RN
|∇TL(un)|qdx

) 1
q
]N

<

(
1

p1(1 + ε)2
)N−1

.

(2.15)
Otherwise, going to a subsequence of {TL(un)} if necessary, we have

‖TL(un)‖N =
[(∫

RN
|∇TL(un)|Ndx

) 1
N +

(∫
RN

|∇TL(un)|qdx
) 1

q
]N

≥
(

1

p1(1 + ε)2
)N−1

, ∀n ∈ N
+

which together with the fact ∇TL(un)∇GL(un) ≡ 0 yields that

1 = ‖un‖N ≥ ‖TL(un)‖N + ‖GL(un)‖N ≥
(

1

p1(1 + ε)2
)N−1

+ ‖GL(un)‖N .

Since {GL(un)} is bounded in E and GL(un)⇀GL(u) in E , by using the above formula, we
derive

(
p1(1 + ε)2)N−1 ≥ 1

1 − ‖GL(un)‖N
which is in contradiction with (2.14). Thus, (2.15) holds true. Up to a subsequence if neces-

sary, we can suppose that αN p1(1 + ε)2‖TL(un)‖ N
N−1 < αN for all n ∈ N. In view of (1.8),

we obtain

sup
n∈N

∫
�n,L

(
eαN p1(1+ε)2|un−L|N/(N−1) −

j0−1∑
j=0

(αN p1(1 + ε)2) j
j ! |un − L|(N−1) j/N

)
dx

≤ sup
n∈N

∫
RN
�αN p1(1+ε)2‖TL (un)‖N/(N−1), j0

(|TL(un)|/‖TL(un)‖)dx < +∞,

(2.16)
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where �n,L � {x ∈ R
N : |un(x)| ≥ L}. By means of Lemma 2.1, we derive

|�n,L | �
∫
�n,L

dx ≤ 1

L p∗

∫
�n,L

|un |p∗
dx ≤ C‖un‖p∗

L p∗ = C

L p∗ < +∞, (2.17)

where C > 0 is a constant independent of n by the imbedding of E ↪→ L2(Rp∗
). To get a

contradiction, let us write∫
RN
�αN p1, j0(un)dx =

∫
�n,L

�αN p1, j0(un)dx +
∫
�c
n,L

�αN p1, j0(un)dx .

Combining (2.16) and (2.17), we apply the following two type Young’s inequalities

|un |N/(N−1) ≤ (1 + ε)|un − L|N/(N−1) +�(ε)|L|N/(N−1)

with �(ε) = (1 + ε)((1 + ε)N−1 − 1)−1/(N−1) and

ea+b ≤ (1 + ε)−1e(1+ε)a + ε(1 + ε)−1e(1+ε−1)b, ∀a, b > 0

to conclude that for all n ∈ N
+

∫
�n,L

�αN p1, j0(un)dx ≤
∫
�n,L

eαN p1(1+ε)|un−L|N/(N−1)+αN p1�(ε)|L|N/(N−1)
dx

≤ 1

1 + ε
∫
�n,L

eαN p1(1+ε)2|un−L|N/(N−1)
dx + ε

1 + ε
∫
�n,L

eαN p1(1+ε−1)�(ε)|L|N/(N−1)
dx

≤ C

1 + ε
∫
�n,L

�αN p1(1+ε)2, j0(|un − L|)dx + ε|�n,L |
1 + ε eαN p1(1+ε−1)�(ε)|L|N/(N−1)

≤ C < +∞.

On the other hand, since N j0/(N − 1) ≥ p∗, we apply Lemma 2.1 to get∫
�c
n,L

�αN p1, j0(un)dx =
∫

{|un(x)|<L}
�αN p1, j0(un)dx

=
∫

{|un(x)|<L}

∞∑
j= j0

(αN p1LN/(N−1)) j

j !
∣∣∣∣unL

∣∣∣∣
N j/(N−1)

dx

≤
∞∑
j= j0

(αN p1LN/(N−1)) j

j !
∫
RN

∣∣∣∣unL
∣∣∣∣
p∗

dx

≤ C

∥∥∥∥unL
∥∥∥∥
p∗ ∞∑

j= j0

(αN p1LN/(N−1)) j

j !

≤ CL−p∗
∞∑
j= j0

(αN p1LN/(N−1)) j

j ! ≤ C < +∞.

The above two formulas reveal a contradiction to (2.13). So, the theorem in this case holds
true.

Case 2: ‖u‖ = 1. Since un⇀u in E , using the lower semicontinuity of norm, we can
derive that un → u in E . Recalling that the Lebesgue theorem, there is a function v ∈ E
such that |un | ≤ v a.e. in R

2 which together with (1.7) yields (1.16).
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Next, we turn to focus on the sharpness of P̄(u), that is, there is a sequence {un} ⊂ E
satisfying ‖un‖ ≡ 1 and un⇀u �= 0 in E such that the supremum given by (1.16) is infinite
for each p′ ≥ P̄(u). To this aim, for some constants r > 0 and � = 3r , we define wn(x) as

wn(x) � 1

ω
1/N
N−1

⎧⎪⎨
⎪⎩

N− N−1
N n

N−1
N , if 0 ≤ |x | ≤ re− n

N ,

N
1
N log(r/|x |)n− 1

N , if re− n
N < |x | ≤ r ,

0, if |x | > r ,

and u ∈ E as

u �

⎧⎪⎨
⎪⎩

A, if 0 ≤ |x | ≤ 2
3�,

3A
(
1 − |x |

�

)
, if 2

3� < |x | ≤ �,

0, if |x | > �,

respectively. Here, the constant A > 0 is chosen in such a way that ‖u‖ = σ < 1. We set

un = N
√
1 − σ Nwn + u ∈ E .

It is simple to calculate that

∫
RN

|∇wn |Ndx = N

ωN−1n

∫
re− n

N <|x |≤r

1

|x |N dx = N

n

∫ r

re−n/N

1

ρ
dρ = 1,

0 ≤
∫
RN

|∇wn |qdx = Nq/Nr N−q

ω
(q−N )/N
N−1 nq/N (N − q)

(1 − e−(N−q)n/N ) � δn → 0 as n → ∞.

(2.18)
Since Br (0) ∩ Bc

2�/3(0) = ∅ by � = 3r , one has ∇wn∇u ≡ 0 for all x ∈ R
N and then

∫
RN

|∇un |Ndx = (1 − σ N )

∫
RN

|∇wn |Ndx +
∫
RN

|∇u|Ndx

= (1 − σ N )+
∫
RN

|∇u|Ndx (2.19)

By using (2.18), there is a constant C̃q > 0 such that

(∫
RN

|∇un |qdx
) N

q ≤ C̃q(1 − σ N )

(∫
RN

|∇wn |qdx
) N

q +
(∫

RN
|∇u|qdxx

) N
q

= C̃q(1 − σ N )δ
N
q
n +

(∫
RN

|∇u|qdx
) N

q

. (2.20)

Thereby, it indicates that ‖un‖N ≤ 1 + C̃ p(1 − σ N )δ
N/q
n � 1 + τ n with τ n → 0 by (2.18).

Actually, one could also verify that ‖un‖ → 1 via (2.19) and (2.20). So, without loss of
generality, we could suppose that ‖un‖ = 1 + τ n . Now, we define un � un/(1 + τ n)

1/N .
Clearly,

‖un‖ ≡ 1 and un⇀u �= 0 as n → ∞.
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Thereby, for all ε0 ≥ 0 and pε0 = (1 + ε0)P̄(u) = (1 + ε0)/(1 − σ N )1/(N−1) ≥ P̄(u), we
obtain∫

RN
�αN pε0 , j0

(un)dx =
∫
RN
�αN (1+ε0)/(1−σ N )1/(N−1), j0(un)dx

≥
∫
Bre−n/N (0)

eαN (1+ε0)(1−σ N )−1/(N−1)(A+(1−σ N )1/Nwn)
N/(N−1)

dx

≥
∫
Bre−n/N (0)

eαNCσ,A(1+ε0)(1−σ N )−1/(N−1)(1+wn)
N/(N−1)

dx

≥ eαNCσ,A(1+ε0)(1−σ N )−1/(N−1)(1+n(N−1)/N )N/(N−1) |Bre−n/N (0)|
= ωN−1

N
rNeαNCσ,A(1+ε0)(1−σ N )−1/(N−1)(1+n(N−1)/N )N/(N−1)

e−n → +∞ as n → ∞,

where Cσ,A = min{(1 − σ N )1/(N−1), AN/(N−1)} > 0. The proof is completed. ��
Remark 2.6 When verifying the sharpness of P̄(u) in the proof of Theorem 1.5, we contem-

plate the space E with norm ‖ · ‖∗ = N
√

|∇ · |NN + |∇ · |Nq instead of ‖ · ‖ = |∇ · |N + |∇ · |q .
It would never cause an essential impact on the results since they are equivalent. Indeed,

‖ · ‖∗ ≤ ‖ · ‖ ≤ 2
N−1
N ‖ · ‖∗.

3 The periodic problem (1.13): proofs of Theorems 1.3–1.4

In this section, we show the detailed proof of Theorems 1.3–1.4. When there is no misun-
derstanding, we shall always suppose that 1 < q < N , 0 < μ < N , (Q1) − (Q2) and
(h1)− (h4) throughout this section. Firstly, let us give some observations on the shape of the
functional J R,δ̄ .

Lemma 3.1 Let 1 < q < N and R > 0 be fixed, then there exists a constant ζ > 0 such that

mρ � inf
{
J R,δ̄(u) : u ∈ E, ‖u‖ = ρ

}
> 0, ∀ρ ∈ (0, ζ ], (3.1)

and
nρ � inf

{
(J R,δ̄)′(u)[u] : u ∈ E, ‖u‖ = ρ

}
> 0, ∀ρ ∈ (0, ζ ]. (3.2)

Proof In view of Remark 2.6, we show that (3.1) and (3.2) hold under the norm ‖ · ‖∗.
Using (1.5), (1.8) and arguing as calculations in the proof of Lemma 2.2, there is a constant
ζ ∈ (0, 1) such that

J R,δ̄(u) ≥ 1

N
‖u‖N∗ − C

(∫
RN

|un |
2Nσ
2N−μ dx

) 2N−μ
N

−C

(∫
RN

|un |
4Nν
2N−μ dx

) 2N−μ
2N

whenever ‖u‖ ≤ ς.

Here, we are aware of the fact that ‖u‖N∗ = |∇u|NN + |∇u|Nq ≤ |∇u|NN + |∇u|qq provided
‖u‖∗ < 1. In view of σ > max{q∗, N } in (h1), choosing ν = σ in (2.3), then we apply
Lemma 2.1 to get

J R,δ̄(u) ≥ 1

N
‖u‖N∗ − C‖u‖2σ∗ whenever ‖u‖ ≤ ς.
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So, there is a constant ς ∈ (0, ς) such that (3.1) holds true. Since

(J R,δ̄)′(u)[u] = |∇u|NN + |∇u|qq −
∫
RN

∫
RN

Q(x) f R,δ̄(u(x))u(x)Q(y)FR,δ̄(u(y))

|x − y|μ dxdy,

we can obtain (3.2) as before. The proof is completed. ��
Lemma 3.2 Let 1 < q < N and R > 0 be fixed. Suppose that u ∈ E\{0} and consider
t > 0, then we have

J R,δ̄(tu) → −∞ as t → +∞.

In particular, the functional J R,δ̄ is not bounded from below.

Proof For any fixed positive function u ∈ E\{0} and t > 1, we have that

J (tu)

t N
≤ 1

N
|∇u|NN + 1

q
|∇u|qq − 1

t N

∫
RN

∫
RN

Q(x)FR,δ̄(tu(x))Q(y)FR,δ̄(tu(y))

|x − y|μ dxdy.

Due to (h3) and Lemma 3.4 below, FR,δ̄(t) ≥ Ctθ with θ > N
2 for all sufficiently large

t > 0. Hence, using the Fatou’s lemma, we derive J R,δ̄(tu)/t N → −∞ as t → +∞, and
the claim follows. ��

Relying on Lemmas 3.1 and 3.2, we shall exploit the following critical point theorem
without the (C) condition introduced in [30, 43] to find a (C) sequence for J R,δ̄ .

Proposition 3.3 Let X be a Banach space and ϕ ∈ C1(X ,R) Gateaux differentiable for all
v ∈ X, with G-derivative ϕ′(v) ∈ X−1 continuous from the norm topology of X to the weak
∗ topology of X−1 and ϕ(0) = 0. Let S be a closed subset of X which disconnects (archwise)
X. Let v0 = 0 and v1 ∈ X be points belonging to distinct connected components of X̄\X.
Suppose that

inf
S
ϕ ≥ � > 0 and ϕ(v1) ≤ 0

and let � = {γ ∈ C([0, 1], X) : γ (0) and γ (1) = v1}. Then
c = inf

γ∈� max
t∈[0,1]ϕ(γ (t)) ≥ � > 0

and there is a (C)c sequence for ϕ.

Combining Lemmas 3.1 and 3.2 as well as Proposition 3.3, there is a sequence {un} ⊂ E
such that

J R,δ̄(un) → cR,δ̄ and (1 + ‖un‖)‖(J R,δ̄(un))
′‖E−1 → 0, (3.3)

where
cR,δ̄ � inf

γ∈�R,δ̄
max
t∈[0,1] J

R,δ̄(γ (t)) > 0 (3.4)

with �R,δ̄ = {γ ∈ C([0, 1], E) : γ (0) = 0 and J R,δ̄(γ (1)) < 0}.
Lemma 3.4 The function f R,δ̄ defined in (1.14) satisfies the Ambrosetti-Rabinowits condition
with the constant θ > N

2 appearing in (h3), that is,

0 < θFR,δ̄(t) ≤ f R,δ̄(t)t, ∀t > 0.
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Proof We refer to reader to [8, 9] and omit the deatils. ��
Lemma 3.5 Let 1 < q < N and R > 0 be fixed, then every sequence {‖un‖} satisfying (3.3)
is uniformly bounded in n ∈ N. Moreover, it holds that

‖un‖ N
N−1 ≤ max

{(
2qθ

2θ − q

) 1
N−1

,

(
2qθ

2θ − q

) N
q(N−1)

}

(
N
√
cR,δ̄ + on(1)+ q

√
cR,δ̄ + on(1)

) N
N−1

. (3.5)

Proof Firstly, we can invoke from (3.3) and Lemma 3.4 as well as (Q1) that

cR,δ̄ + on(1) = J R,δ̄(un)− 1

2θ
(J R,δ̄)′(un)[un]

= 2θ − N

2Nθ
|∇un |NN + 2θ − q

2qθ
|∇un |qq

+ Q2
0

2θ

∫
RN

∫
RN

[
f R,δ̄(un(x))un(x)− θFR,δ̄(un(x))

]
FR,δ̄(un(y))

|x − y|μ dxdy

≥ 2θ − N

2Nθ
|∇un |NN + 2θ − q

2qθ
|∇un |qq ≥ 2θ − q

2qθ

(|∇un |NN + |∇un |qq
)

which reveals that |∇un |N ≤ N
√

2qθ
2θ−q c

R,δ̄ + on(1) and |∇un |q ≤ q
√

2qθ
2θ−q c

R,δ̄ + on(1).
Taking ‖ · ‖ = | · |N + | · |q into account, we obtain

‖un‖ ≤ N

√
2qθ

2θ − q
cR,δ̄ + on(1)+ q

√
2qθ

2θ − q
cR,δ̄ + on(1)

which yields the desired result. ��
Before presenting the proof of Theorem 1.4, we need the following result.

Lemma 3.6 Let 1 < q < N and R > 0 be fixed. Suppose, in addition, that (h5), then there
exists a ξ0 = ξ0(R) > 0 such that for all ξ > ξ0

N
√
cR,

N
N−1 + 1 + q

√
cR,

N
N−1 + 1 ≤

(
αN min

{
σ−1
σ
,
N−μ
N+μ

}
2(γ + αRτ− N

N−1 )

) N−1
N

min

{
N

√
2θ − q

2qθ
, q

√
2θ − q

2qθ

}
.

Proof Choosing a cutoff function ϕ0 ∈ C∞
0 (B1(0)) satisfying 0 ≤ ϕ0 ≤ 1; ϕ0(x) ≡ 1 if

|x | ≤ 1/2; ϕ0(x) ≡ 0 if |x | ≥ 1; and |∇ϕ0| ≤ 1 for every x ∈ R
N . Recalling the definition

of f R,
N

N−1 and (h4), F
R, N

N−1 (t) ≥ ξ t p with p > N
2 for all t ∈ [0, 1]. Thus,

J R, N
N−1 (ϕ0) = 1

N

∫
B1(0)

|∇ϕ0|Ndx + 1

q

∫
B1(0)

|∇ϕ0|qdx

− 1

2

∫
B1(0)

∫
B1(0)

Q(x)FR, N
N−1 (ϕ0(x))Q(y)F

R, N
N−1 (ϕ0(y))

|x − y|μ dxdy

<
2ωN−1

Nq
− ξ2Q2

0

4

(∫
B1/2(0)

|ϕ0|pdx
)2

≤ 2ωN−1

Nq
− ξ21 Q

2
0ω

2
N−1

4N+1N 2 = 0 (3.6)
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if ξ ≥ ξ1, where ξ1 = Q−1
0

√
2N

qωN−1
2N+1. In particular, invoking from (3.6) that

1

N

∫
B1(0)

|∇ϕ0|Ndx + 1

q

∫
B1(0)

|∇ϕ0|qdx < ξ21 Q
2
0

4

(∫
B1/2(0)

|ϕ0|pdx
)2

. (3.7)

Setting γ
R, N

N−1
0 (t) = tϕ0, one has that γ

R, N
N−1

0 ∈ �R, N
N−1 = {γ ∈ C([0, 1], E) : γ (0) =

0, J R, N
N−1 (γ (1)) < 0} by (3.7). Therefore, we have that

max
t∈[0,1] J

R, N
N−1 (tϕ0) ≤ max

t∈[0,1]

{
2ωN−1

Nq
tq − ξ2Q2

0ω
2
N−1

4N+1N 2 t2p
}

≤ max
t≥0

{
2ωN−1

Nq
tq − ξ2Q2

0ω
2
N−1

4N+1N 2 t2p
}

= (2p − q)ωN−1

Nqp

[
4N+1N

pωN−1ξ2Q2
0

] q
2p−q

.

Due to the definition of cR,
N

N−1 , we let the constant ξ0 = ξ0(R) > ξ1 be such that

maxt∈[0,1] J R, N
N−1 (tϕ0) satisfies the desired inequality for all ξ > ξ0. The proof is

completed. ��

Proof of Theorem 1.4 Due to Lemmas 3.1 and 3.2 as well as Proposition 3.3, there is a
sequence {un} ⊂ E satisfying (3.3). Using Lemma 3.5, {‖un‖} is uniformly bounded in
n ∈ N. Going to a subsequence if necessary, by adopting Lemma 2.1, there exists a u ∈ E
such that un⇀u, un → u in L p

loc(R
N ) for all p ∈ [q∗,+∞) and un → u a.e. in R

N . We

claim that (J R,δ̄)′(u) = 0 which is obvious when δ̄ = δ by (2.2). Now, we shall contemplate
the case δ̄ = N

N−1 . Combining Lemmas 3.5 and 3.6, we could conclude that the additional

assumption in Lemma 2.2 is satisfied, so (J R, N
N−1 )′(u) = 0. Finally, we finish the proof by

showing u �= 0. Arguing it indirectly, since {‖un‖} is uniformly bounded, we have either
{un} is vanishing, that is, for any r > 0, it holds that

lim
n→∞ sup

y∈RN

∫
Br (y)

|un |p∗
dx = 0

or it is non-vanishing, i.e. there exist r , r0 > 0 and a sequence {zn} ⊂ Z
N such that

lim
n→∞

∫
Br (zn)

|un |p∗
dx ≥ r0. (3.8)

If {un} is vanishing, thanks to Lemma 2.5, we can derive that un → 0 in L p(RN ) for all
q∗ < p < +∞. Since the additional assumption in Lemma 2.2 holds true, using (1.5), (1.8)
and (2.3), we obtain

lim
n→∞

∫
RN

[|x |−μ ∗ (Q(x)FR, N
N−1 (un))

]
Q(x)FR, N

N−1 (un)dx = 0

and

lim
n→∞

∫
RN

[|x |−μ ∗ (Q(x)FR, N
N−1 (un))

]
Q(x) f R,

N
N−1 (un)undx = 0
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which together with J R, N
N−1 (un) → cR,

N
N−1 and (J R, N

N−1 )′(un)[un] → 0 indicate that

cR,
N

N−1 ≡ 0. It contradicts with (3.4). So, (3.8) holds true and we can define vn = un(·− zn).
Thus ∫

Br (0)
|vn |p∗

dx ≥ r0
2
. (3.9)

Due to (Q2), both J R,δ̄ and (J R,δ̄)′ are translation-invariant in Z
N and so {vn} is again a

(C)cR,δ̄ sequence of J
R,δ̄ . Then, up to a subsequence if necessary, vn⇀v in E with v �= 0 by

(3.9). Repeating the arguments above, one knows that (J R,δ̄)′(v) = 0 finishing the proof. ��
Next, we shall present the proof of Theorem 1.3. According to the discussions as before,

we must take the uniform L∞-estimate for the nontrivial solution obtained in Theorem 1.4.
Let uR ∈ E be a nontrivial solution associated with Eq. (1.15), with the help of the definition
of f R,δ̄ which is defined as in (1.12), then it is a nontrivial solution for Eq. (1.13) provided
|uR |∞ ≤ R. So, the key idea is to find a constant C0 > 0 which is independent of R > 0
satisfying |uR |∞ ≤ C0. To this aim. we must firstly verify that the constant cR,δ̄ and ξ0(R)
appearing in Theorem 1.4 do not depend on R. Let us recall the two cases in Theorem 1.4, to
proceed it clearly, we would split it by two subsections: (I) δ̄ = δ ∈ (0, N

N−1 ); (II) δ̄ = N
N−1 .

In the Cases (I) and (II), we shall choose α∗ = 1
Rτ−δ > 0 and τ∗ = N

N−1 + 1
R > 0,

respectively.

3.1 The case (I) in (1.12): ı̄ = ı ∈ (0, N
N−1 )

In this Subsection, we suppose that the nonlinearity f defined in (1.11) requires (h1)− (h3).
Firstly, we have the following result.

Lemma 3.7 If 1 < q < N and let {un} ⊂ E be a (C) sequence of J R,δ at the level cR,δ ,
then {‖un‖} is uniformly bounded in n ∈ N and R > 0, that is, there is a constant K > 0
independent of n ∈ N and R > 0 such that

sup
n∈N

‖un‖ N
N−1 ≤ K < +∞. (3.10)

Proof We claim that there are constants A0 > 0 and c > 0 independent of R > 0 such that

A0 < cR,δ ≤ c < +∞, ∀R > 0. (3.11)

Indeed, recalling the definition of f R,δ , one has that FR,δ(t) ≥ H(t) for all t ∈ R and so
J R,δ(u) ≥ I (u) for all u ∈ E , where the variational functional I : E → R is defined by

I (u) = 1

N

∫
RN

|∇u|Ndx + 1

q

∫
RN

|∇u|qdx − 1

2

∫
RN

H(u(x))H(u(y))

|x |β |x − y|μ|y|β dx . (3.12)

Choosing the constant d > 0 to be a mountain-pass level associated with I , the existence
of such number follows from Lemmas 3.1 and 3.2. So cR,δ ≤ c. Similarly, one can derive a
constant A0 > 0 satisfying cR,δ ≥ A0. Combining (3.5) and (3.11), we can get the desired
result (3.10). The proof is completed. ��

With the choice ofα∗ = 1
Rτ−δ > 0 in this subsection, there is a constantC > 0 independent

of R > 0 such that

| f R,δ(t)| ≤ |t |σ−1 + C |t |ν−1�αNϒ
K , j0

(t) with ϒ � min

{
N − μ
4N

,
σ − N

σ

}
, ∀t ∈ R,

(3.13)
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where ν > 1 is arbitrary and K > 0 independent of R > 0 appearing in (3.10). In fact,
motivated by [57, Lemma 2.2], for every α ∈ (0, α∗) and |t | ≥ 1, there are M2 ≥ M1 ≥ M
independent of R > 0 such that

| f R,δ(t)| ≤ Meγ |t |δeα∗Rτ−δ |t |δ ≤ Me(γ+1)|t |δ ≤ M1e
αNϒ
K |t | N

N−1

≤ M2�αNϒ
K , j0

(t) ≤ M2|t |ν−1�αNϒ
K , j0

(t)

jointly with f R,δ(t) = o(tσ−1) uniformly in R as t → 0 by (h1), we have (3.13) at once.

Remark 3.8 From now on, one could observe that both (3.10) and (3.13) are independent
of R > 0. Moreover, by using (3.13) and (3.10), one sees that (2.2) with δ̄ = δ holds true
independently with respect to R > 0.

Lemma 3.9 If 1 < q < N and let uR ∈ E be a nonnegative ground state solution of Eq.
(1.17) with δ̄ = δ established by Theorem 1.4 for all fixed R > 0, if α∗ = 1

Rτ−δ > 0, then

for all α ∈ (0, α∗) and τ ≥ N
N−1 , we have

0 ≤ !R(x) � |x |−μ ∗ (Q(y)FR,δ(uR)) ≤ C1, ∀R > 0.

for some C1 > 0 independent of R > 0.

Proof Recalling the proof of Theorem1.4, we deduce that the nonnegative solution uR �= 0 of
Eq. (1.15) is established by looking for the weak limit of {un} ⊂ E which is a (C) sequence of

J R,δ at the level cR,δ . Thereby, combining the Fatou’s lemma and (3.10), ‖uR‖ N
N−1 ≤ K for

all R > 0, where K > 0 is a constant independent of R > 0. From (3.13) and (Q1)− (Q2),
there is a C2 > 0 independent of R > 0 such that

!R(x)=
∫
RN

Q(y)FR,δ(uR(y))

|x − y|μ dy≤|Q|∞
∫
RN

|uR(y)|σ + C1|uR(y)|ν�αNϒ
K , j0

(uR(y))

|x − y|μ dy

= |Q|∞
∫
RN

|uR(y)|σ
|x − y|μ dy + C2|Q|∞

∫
RN

|uR(y)|ν�αNϒ
K , j0

(uR(y))

|x − y|μ dy

= |Q|∞!1 + C2|Q|∞!2.

The next goal of accomplishing the proof is, therefore, to verify that both !1 and !2 are
uniformly bounded with respect to R > 0.

For !1, since 0 < μ < N , we can pick t > 1 such that βt < N and μt ′ < N , where
1
t + 1

t ′ = 1. By means of the Holder’s inequality and σ ≥ q∗ by (h1),

!1 =
∫
RN

|uR(y)|σ
|x − y|μ dy ≤

(∫
RN

|uR(y)|tσ dy
) 1

t
(∫

RN

1

|x − y|μt ′ dy
) 1

t ′

≤ C‖uR‖σ ≤ CK
(N−1)σ

N ,

where C > 0 depends on the imbedding constant in Lemma 2.1.
For !2, we rewrite it as !2 = !2,1 +!2,2. We continue to choose ν = σ ≥ q∗ by (h1)

and then

!2,1 =
∫

|x−y|>1

|uR(y)|ν�αNϒ
K , j0

(uR(y))

|x − y|μ dy ≤
∫
RN

|uR(y)|ν�αNϒ
K , j0

(uR(y))dy
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≤
(∫

RN
|uR(y)|2νdy

) 1
2
(∫

RN
� 2αNϒ

K ‖un‖
N

N−1 , j0
(uR(y)/‖uR‖)dy

) 1
2

≤ C‖uR‖σS
1
2
(1
2
αN

) ≤ C̃,

where the constant C̃ > 0 is independent of R > 0 by exploiting (1.8) and Lemma 2.1. It

follows some elementary calculations that
( ∫

|x−y|≤1 |x− y|− 2Nμ
N+μ dy)

N+μ
2N ≤ C for a constant

C > 0 which is independent of R > 0. Using (1.8) and Lemma 2.1 again,

!2,2 =
∫
|x−y|≤1

|uR(y)|ν�αNϒ
K , j0

(uR(y))

|x − y|μ dy ≤ C

(∫
RN

|uR(y)|
2Nν
N−μ � 2NαNϒ

K (N−μ) , j0
(uR(y))dy

) N−μ
2N

≤ C

(∫
RN

|uR(y)|
4Nν
N−μ dy

) N−μ
4N

(∫
RN

�
4NαNϒ
K (N−μ) ‖uR‖

N
N−1 , j0

(uR(y)/‖uR‖)dy
) N−μ

4N

≤ C̄‖uR‖σ S

N−μ
4N

(
αN

) ≤ Ĉ,

where Ĉ > 0 is independent of R > 0. So, we can finish the proof of this lemma. ��

Now, we shall exploit the Nash–Moser iteration procedure [47] to conclude the uniform
L∞-estimate of uR which is a key point is this paper.

Lemma 3.10 Under the assumptions of Lemma 3.9, for the nontrivial nonnegative solution
of Eq. (1.15), there is a constant C0 > 0 independent of R > 0 such that |uR |∞ ≤ C0.

Proof Let L > 0 and ϑ > 1 determined later, we shall contemplate uR,L � (uR)L ∈ E

and zR,L � uRu
r(ϑ−1)
R,L ∈ E , where (uR)L = min{uR, L} and r ∈ {q, N }. Obviously,

∇uR∇zR,L ≥ ur(ϑ−1)
R,L |∇uR |2 in R

N . Therefore, taking zR,L as a test function of Eq. (1.17),
there holds

∫
RN

(|∇uR |N + |∇uR |q)ur(ϑ−1)
R,L dx ≤

∫
RN
(|∇uR |N−2 + |∇uR |q−2)∇uR∇zR,Ldx

=
∫
RN
!R(x)

f R,δ(uR(x))zR,L(x)

|x |β dx

≤ C1

∫
RN

f R,δ(uR(x))zR,L(x)

|x |β dx,

(3.14)
where C1 > 0 is a constant (appearing in Lemma 3.9) which is independent of R > 0. Then,
let us define wR,L = uRu

ϑ−1
R,L which indicates that |∇wR,L | ≤ ϑ |∇uR |uϑ−1

R,L . Using (3.14),
it holds that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
RN

|∇wR,L |qdx ≤ ϑq
∫
RN

|∇uR |quq(ϑ−1)
R,L dx ≤ C1ϑ

q
∫
RN

f R,δ(uR)uRu
q(ϑ−1)
R,L

|x |β dx,

∫
RN

|∇wR,L |Ndx ≤ ϑN
∫
RN

|∇uR |NuN (ϑ−1)
R,L dx ≤ C1ϑ

N
∫
RN

f R,δ(uR)uRu
N (ϑ−1)
R,L

|x |β dx .
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For all σ ∗ > σ , combining the above formulas and Lemma 2.1, we obtain

(∫
RN

|wR,L |σ ∗
dx

) N
σ∗

≤ C2
(|∇wR,L |q + |∇wR,L |N

)N ≤ C3(|∇wR,L |Nq + |∇wR,L |NN )

≤ C4ϑ
N
[(∫

RN
f R,δ(uR)uRu

q(ϑ−1)
R,L dx

) N
q

+
∫
RN

f R,δ(uR)uRu
N (ϑ−1)
R,L dx

]
.

(3.15)
With (3.15) in hands, we are left the detailed calculations in the Appendix to conclude that

(∫
RN

|uR |χσϑdx
) 1
χσϑ ≤ C

1
ϑ

5 ϑ
1
ϑ

(∫
RN

|uR |σϑdx
) 1
σϑ

(3.16)

where C5 > 0 is independent of R > 0 and χ = σ ∗/σ > 1. As a special case of (3.16),
there holds

(∫
RN

|uR |χσ dx
) 1
χσ ≤ C5

(∫
RN

|uR |σ dx
) 1
σ

.

For ϑ = χm with m ∈ N
+ in (3.16), we derive

(∫
RN

|uR |χm+1σ dx

) 1
χm+1σ ≤ C

1
χm

5 χ
m
χm

(∫
RN

|uR |χmσ dx

) 1
χmσ

.

From it, proceeding this iteration procedure m times and multiplying these m + 1 formulas,

(∫
RN

|uR |χm+1σ dx

) 1
χm+1σ ≤ C

∑m
j=0

1
χ j

5 χ

∑m
j=1

j
χ j

(∫
RN

|uR |σ dx
) 1
σ

.

Since
∑∞

j=0
1
χ j = χ

χ−1 and
∑∞

j=1
j
χ j = χ

(χ−1)2
, we could take the limit as m → +∞ to get

the desired result. The proof is completed. ��

3.2 The case (II) in (1.12): ı̄ = N
N−1

In this Subsection, we always suppose that the nonlinearity f defined in (1.11) requires
(h1)− (h3) and (h4).

With the choice of τ∗ = N
N−1 + 1

R > 0 in this subsection, we improve (2.3) in the sense:
there is a constant C ′ > 0 independent of R > e such that

| f R, N
N−1 (t)| ≤ |t |σ−1 + C ′|t |ν−1�

γ+αee−1
, j0
(t), ∀t ∈ R. (3.17)

Firstly, one can observe that lim
R→+∞ R

1
R = 1 and the function R

1
R is strictly decreasing in

R ∈ (e,+∞), then 0 < R
1
R ≤ e

1
e for each R ∈ (e,+∞). For all |t | ≥ 1, by means of (h4),

there are M2 > M1 > M independent of R > e such that

| f R, N
N−1 (t)| ≤ Meγ |t |δeαR

τ∗− N
N−1 |t | N

N−1 = Meγ |t |δeαR
1
R |t | N

N−1 ≤ Meγ |t |δeαe
1
e |t | N

N−1

≤ M1e
γ |t | N

N−1
eαe

1
e |t | N

N−1 = M1e

(
γ+αe 1

e
)
|t | N

N−1 ≤ M2�γ+αee−1
, j0
(t)
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≤ M1|t |ν−1�
γ+αee−1

, j0
(t)

which together with f R,
N

N−1 (t) = o(tσ−1) uniformly in R > 0 as t → 0.

Lemma 3.11 Let 1 < q < N and suppose additionally that (h4), then there are some
constants Ā0 > 0 and ξ0 > 0 independent of R > e such that for all ξ > ξ0, there holds

Ā0 ≤ cR,
N

N−1 and

N
√
cR,

N
N−1 + on(1)+ q

√
cR,

N
N−1 + on(1) ≤

(
αN min{ σ−1

σ
,
N−μ
N+μ }

2(γ + αe 1
e )

) N−1
N

min

{
N

√
2θ − q

2qθ
, q

√
2θ − q

2qθ

}
. (3.18)

Proof Applying (3.17) to Lemma 3.1, one can find such a Ā0 > 0 and the details are left. By

the definition of f R,
N

N−1 , then cR,
N

N−1 ≤ c, where c is a mountain-pass level corresponding
to the variational functional I defined by (3.12). Let ϕ0 be as in Lemma 3.6,

J R, N
N−1 (ϕ0) = 1

N

∫
B1(0)

|∇ϕ0|Ndx + 1

q

∫
B1(0)

|∇ϕ0|qdx

− 1

2

∫
B1(0)

∫
B1(0)

Q(x)FR, N
N−1 (ϕ0(x))Q(y)F

R, N
N−1 (ϕ0(y))

|x − y|μ dxdy

<
2ωN−1

Nq
− ξ2Q2

0

4

(∫
B1/2(0)

|ϕ0|pdx
)2

≤ 2ωN−1

Nq
− ξ21 Q

2
0ω

2
N−1

4N+1N 2 = 0

(3.19)

if ξ ≥ ξ1, where ξ1 = Q−1
0

√
2N

qωN−1
2N+1. In particular, invoking from (3.19) that

1

N

∫
B1(0)

|∇ϕ0|Ndx + 1

q

∫
B1(0)

|∇ϕ0|qdx < ξ21 Q
2
0

4

(∫
B1/2(0)

|ϕ0|pdx
)2

. (3.20)

Setting γ
R, N

N−1
0 (t) = tϕ0, one has that γ

R, N
N−1

0 ∈ �R, N
N−1 = {γ ∈ C([0, 1], E) : γ (0) =

0, J R, N
N−1 (γ (1)) < 0} by (3.20). Therefore, we have that

max
t∈[0,1] J

R, N
N−1 (tϕ0) ≤ max

t∈[0,1]

{
2ωN−1

Nq
tq − ξ2ω2

N−1

4N+1N 2 t
2p
}

≤ max
t≥0

{
2ωN−1

Nq
tq − ξ2ω2

N−1

4N+1N 2 t
2p
}

= (2p − q)ωN−1

Nqp

[
4N+1N

pωN−1ξ2

] q
2p−q

.

In view of the definition of cR,
N

N−1 , there exists a constant ξ0 > ξ1 independent of R > e

such that maxt∈[0,1] J R, N
N−1 (tϕ0) satisfies the desired inequality for all ξ > ξ0. The proof is

completed. ��
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Remark 3.12 With Lemma 3.11 in hands, it holds that

sup
n∈N

‖un‖ N
N−1 ≤ αN

2
(
γ + αe 1

e
) min

{
σ − 1

σ
,
N − μ
N + μ

}
, ∀R > e, (3.21)

where {un} ⊂ E is a (C) sequence of J R, N−1
N at the level cR,

N−1
N . Indeed, using (3.5) and

(3.18), it is obvious.Moreover, it follows from (3.17) and (3.21) that (2.2) holds independently
with respect to R > e.

Lemma 3.13 If 1 < q < N and let uR ∈ E be a nonnegative nontrivial solution of Eq. (1.15)
with δ̄ = N

N−1 established by Theorem 1.4 for all fixed R > e, if τ∗ = N
N−1 + 1

R > 0, then

for all α > 0 and τ ∈ [ N
N−1 , τ∗), we have

0 ≤ !̄R(x) � |x |−μ ∗ (Q(y)FR, N
N−1 (uR)) ≤ C ′

1, ∀R > e.

for some C ′
1 > 0 independent of R > e.

Proof In light of Lemma 3.9, it suffices to prove that
∫
RN

Q(y)|uR(y)|ν�γ+αee−1
, j0
(uR(y))

|x − y|μ dy ≤ C ′
2 (3.22)

for some C ′
2 > 0 independent of R > e. Firstly, due to the Fatou’s lemma, ‖uR‖ N

N−1 ≤
αN (σ−1)

2σ(γ+αe 1
e )

and ‖uR‖ N
N−1 ≤ αN (N−μ)

2(N+μ)(γ+αe 1
e )

by (3.21) for every R > e. On the one hand,

choosing ν = σ+1
2 and then adopting (1.8) as well as Lemma 2.1,

∫
|x−y|>1

Q(y)|uR(y)|ν�γ+αee−1
, j0
(uR(y))

|x − y|μ dy ≤ |Q|∞
∫
RN

|uR(y)|ν�γ+αee−1
, j0
(uR(y))dy

≤ |Q|∞
(∫

RN
|uR(y)|σ dy

) σ+1
2σ

(∫
RN
�

2σ
σ−1 (γ+αee−1

)‖un‖
N

N−1 , j0
(uR(y)/‖un‖)dy

) σ−1
2σ

≤ C |Q|∞||un‖σS
σ−1
2σ

(
αN

) ≤ C̃ ′
2

for C̃ ′
2 > 0 independent of R > e. On the one hand, since

∫
|x−y|≤1 |x − y|− N+μ

2 dy ≤ C , we
derive ∫

|x−y|≤1

Q(y)|uR(y)|ν�γ+αee−1
, j0
(uR(y))

|x − y|μ dy

≤ C |Q|∞
(∫

RN
|uR(y)|

(N+μ)ν
N−μ �

(N+μ)(γ+αee−1
)

N−μ , j0
(uR(y))dy

) N−μ
N+μ

≤ C |Q|∞
(∫

RN
|uR(y)|

2(N+μ)ν
N−μ dy

) N−μ
2(N+μ)

(∫
RN
�

2(N+μ)(γ+αee−1
)

N−μ ‖un‖
N

N−1 , j0
(uR(y)/‖un‖)dy

) N−μ
2(N+μ)

≤ C |Q|∞||un‖σS

N−μ
2(N+μ)

(
αN

) ≤ Ĉ ′
2

for some Ĉ ′
2 > 0 independent of R > e, where ν = σ . Thus, we can finish the proof of this

lemma. ��
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Arguing as a very similar calculations in Lemma 3.10, we could follow Lemma 3.13 to
conclude the following L∞-estimate with respect to uR .

Lemma 3.14 Under the assumptions of Lemma 3.13, for the nontrivial nonnegative solution
of Eq. (1.15), there is a constant C ′

0 > 0 independent of R > e such that |uR |∞ ≤ C ′
0.

Now, we are in a position to present the proof of Theorem 1.3.

Proof of Theorem 1.3 Due to Theorem 1.4, we have established a nonnegative nontrivial solu-
tion for Eq. (1.15) under the suitable assumptions. Let us denote the obtained nontrivial
solution by uR . According to the explanations in Remarks 3.8 and 3.12, it follows from Lem-
mas 3.10 and 3.14 that we could choose R = C0 and R = max{C ′

0, e} for δ̄ = δ ∈ (0, N
N−1 )

and δ̄ = N
N−1 , respectively. In this situation, α∗ = 1

Cτ−δ0
and τ∗ = N

N−1 + 1
max{C ′

0,e} . So, uR

is a nonnegative nontrivial solution of Eq. (1.13). The proof is completed. ��

4 Existence and concentration for Eq. (1.1): proofs of Theorems 1.8
and 1.9

In this section, we mainly contemplate the existence and concentrating behavior of ground
state solutions of Eq. (1.1). As explained in the previous section, we first pay our attention
to Eq. (1.17). Actually, according to the classic theory in [11, 13, 28], we shall focus on Eq.
(1.19). Before proceeding it, we introduce the following equation

−�Nu −�qu =
(∫

RN

BFR,δ̄(u(y))

|x − y|μ dy

)
B f R,δ̄(u), x ∈ R

N , (4.1)

where B > 0 is an arbitrary constant. Let us denote J R,δ̄
B : E → R by the variational

functional corresponding to Eq. (4.1)

J R,δ̄
B (u) = 1

N

∫
RN

|∇u|Ndx + 1

q

∫
RN

|∇u|qdx

− B2

2

∫
RN

∫
RN

F R,δ̄(u(x))FR,δ̄(u(y))

|x − y|μ dxdy.

and mR,δ̄
B � inf

v∈N R,δ̄
B

J R,δ̄
B (v) by its ground state energy with N R,δ̄

B = {
u ∈ E\{0} :

(J R,δ̄
B )′(u)[u] = 0

}
, respectively. In the sequel, we shall replace B with K∞ and K0 directly

just for simplicity.
Repeating the arguments in the proof of Theorem 1.4, one could conclude that Eq. (4.1)

admits a ground state solution if the assumption (h5) is additionally satisfied. Indeed, we
obtain the following result.

Lemma 4.1 Let 1 < q < N and 0 < μ < N. Suppose that the nonlinearity f defined in
(1.12) satisfies (h1)− (h3) and (h5), then for each fixed R > 0, Eq. (4.1) with δ̄ = δ admits a
ground state solution in E. Moreover, if in addition we suppose that (h4), then for each fixed
R > 0, there is a ξ̃0 = ξ̃0(R) > 0 dependent of R such that Eq. (4.1) with δ̄ = N/(N − 1)
possesses a ground state solution in E for all ξ > ξ̃0.

Proof Since the constant B > 0 trivially satisfies (Q1) − (Q2) in Sect. 3, we could follow
Theorem 1.4 to prove that Eq. (4.1) has a nontrivial solution uR ∈ E for all R > 0 under the
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assumptions above and so uR ∈ N R,δ̄
B implying that J R,δ̄

B (uR) ≥ mR,δ̄
B . The remainder is to

verify J R,δ̄
B (uR) ≤ mR,δ̄

B .

On the one hand, we know that uR is a weak limit of a (C) sequence {un} ⊂ E of J R,δ̄
B

at the level
cR,δ̄B � inf

γ∈�R,δ̄
B

max
t∈[0,1]J

R,δ̄
B (γ (t)) > 0

with �R,δ̄
B = {γ ∈ C([0, 1], E) : γ (0) = 0 and J R,δ̄

B (γ (1)) < 0}. In view of Lemma 3.4
and the Fatou’s lemma,

cR,δ̄B = lim inf
n→∞ J R,δ̄

B (un) = lim inf
n→∞

[J R,δ̄
B (un)− 1

2θ
(J R,δ̄

B )′(un)[un]
]

≥ J R,δ̄
B (uR)− 1

2θ
(J R,δ̄

B )′(uR)[uR] = J R,δ̄
B (uR). (4.2)

On the other hand, we show that cR,δ̄B ≤ mR,δ̄
B . In fact, thanks to (h5), we can verify that

cR,δ̄B = mR,δ̄
B = inf

v∈E\{0}max
t≥0

J R,δ̄
B (tv) > 0, (4.3)

whose detailed proof is omitted and we should refer the interested reader to [56, 57]. As a
consequence of (4.2) and (4.3), the desired result is obvious. The proof is completed. ��

Lemma 4.2 Let 1 < q < N and 0 < μ < N. Suppose that the nonlinearity f defined in
(1.12) satisfies (h1)−(h3) and (h5), then for each fixed R > 0, we could derive the following

properties on the Nehair manifold N R,δ̄
B below.

(i) Given a function u ∈ E\{0}, there exists a unique constant tu > 0 such that tuu ∈ N R,δ̄
B

and J R,δ̄
B (tuu) = maxt≥0 J R,δ̄

B (tu);

(ii) For any u ∈ N R,δ̄
B , there exists C R,δ̄ > 0 independent of u such that ‖u‖ ≥ CR,δ̄ > 0;

(iii) The functional J R,δ̄
B is coercive on N R,δ̄

B , namely J R,δ̄
B (u) → ∞ as ‖u‖ → ∞ if

u ∈ N R,δ̄
B ;

(iv) If sup
n∈N

‖un‖ N
N−1 ≤ αN

18(γ+αRτ− N
N−1 )

min{ σ−1
σ
,
N−μ
N+μ }, (J R,δ̄

B )′(un)[un] → 0 and

‖un‖ → a0 > 0, then, passing to a subsequence if necessary, there exists a constant
tn > 0 such that

(J R,δ̄
B )′(tnun)[tnun] = 0 and tn → 1.

Proof (i). Proceeding as the proofs of Lemmas 3.1 and 3.2, one can easily find such a number

tu > 0 such that tuu ∈ N R,δ̄
B and J R,δ̄

B (tuu) = maxt≥0 J R,δ̄
B (tu). To get the uniqueness of

such tu , we argue it indirectly and suppose that there is ti > 0 such that ti u ∈ N R,δ̄
B for

i ∈ {1, 2}. By [57, (3.8)],

J R,δ̄
B (u)− J R,δ̄

B (tu)− 1 − t N

N
(J R,δ̄

B )′(u)[u] ≥ qt N − Ntq + N − q

Nq
|∇u|qq ,

∀t > 0 and u ∈ E . (4.4)

123



   66 Page 30 of 46 L. Shen, V. D. R˘ adulescu

As a consequence of (4.4) and ti u ∈ N R,δ̄
B for i ∈ {1, 2}, we obtain

⎧⎨
⎩

J R,δ̄
B (t1u)− J R,δ̄

B (t2u) ≥ tq1
Nq

[
q
( t2
t1

)N − N
( t2
t1

)q + N − q
]|∇u|qq ,

J R,δ̄
B (t2u)− J R,δ̄

B (t1u) ≥ tq2
Nq

[
q
( t1
t2

)N − N
( t1
t2

)q + N − q
]|∇u|qq .

We would derive a contradiction by adding the above two formulas., which gives the desired
result.

(ii). Supposing it by a contradiction, i.e. there exists a sequence {un} ⊂ N R,δ̄
B such that

‖un‖ → 0 as n → ∞. Because f R,δ̄ in (1.14) is of subcritical exponential growth if
δ̄ = δ ∈ (0, N

N−1 ), the proof would be very simple and we should omit it here. Let us

consider the case δ̄ = N
N−1 . Choosing ν = σ in (2.3), then we apply (1.5) and Lemma 2.1 as

well as the Höldser’s inequality to derive

∫
RN

∫
RN

BFR, N
N−1 (un)B f R,

N
N−1 (un)un

|x − y|μ dxdy ≤ C

(∫
RN

| f R,δ̄(un)un |
2N

2N−μ dx

) 2N−μ
N

≤ C |un |2σ2Nσ
2N−μ

+ C(R)|un |2σ2Nσ
2N−μ

(∫
RN
�

4N
2N−μ

(
γ+αRτ− N

N−1
)
‖un‖

N
N−1 , j0

(un/‖un‖)dx
) 2N−μ

2N

≤ C(R)|un |2σ2Nσ
2N−μ

≤ C(R)‖un‖2σ ,
(4.5)

where the last second inequality holds since ‖un‖ → 0 infers (1.8) is workable. Moreover,
we can assume that ‖un‖ ≤ 1 which implies that |∇un |Nq ≤ |∇un |qq , thus

‖un‖N = (|∇un |N + |∇un |q
)N ≤ 2N−1(|∇un |NN + |∇un |Nq

)
≤ 2N−1(|∇un |NN + |∇un |qq

)
(4.6)

Recalling {un} ⊂ N R, N
N−1

B , we could get a contradiction by (4.5) and (4.6) since 2σ > N .
(iii). The proof is standard, see Lemma 3.5 for example.

(iv). By Point-(i), there exists a constant tn > 0 such that tnun ∈ N R,δ̄
B , that is,

∫
RN

|∇un |Ndx + 1

t N−q
n

∫
RN

|∇un |qdx

= B2

t N

∫
RN

∫
RN

F R,δ̄(tnun(y)) f R,δ̄(tnun(x))tnun(x)

|x − y|μ dxdy

We claim that {tn} is uniformly bounded. Otherwise, passing to a subsequence if necessary,

we can assume tn → +∞ and tn ≥ 1 for all n ∈ N. Since (J R,δ̄
B )′(un)[un] = on(1), using

(h5), we obtain

0 ≥ B2
∫
RN

[(
|x |−μ ∗ FR,δ̄(un)

|un | N2
)

f R,δ̄(un)un

|un | N2

−
(

|x |−μ ∗ FR,δ̄(tnun)

|tnun | N2
)

f R,δ̄(tnun)tnun

|tnun | N2
]
|un |Ndx

=
(
1 − 1

t N−q
n

)
|∇un |qq + on(1) = |∇un |qq + on(1) ≥ on(1)
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yielding that |∇un |qq → 0. Due to the Sobolev inequality, one gets |un |q∗ → 0. Hence, all

assumptions in Lemma 2.4 are satisfied, Combining (2.10)–(2.11) and (J R,δ̄
B )′(un)[un] =

on(1), we could conclude that |∇un |NN → 0, which is impossible since ‖un‖ → a0 > 0. By

tnun ∈ N R,δ̄
B , then ‖tnun‖ ≥ CR,δ̄ > 0 and so {tn} is uniformly bounded from below by a

positive constant. Up to a subsequence if necessary, there is a t0 ∈ (0,+∞) such that tn → t0
as n → ∞. If 0 < t0 < 1, without loss of generality, we can suppose that 0 < tn < 1 for all

n ∈ N. So, by adopting (h5) and (J R,δ̄
B )′(un)[un] = on(1) again, there holds

0 ≤ B2
∫
RN

[(
|x |−μ ∗ FR,δ̄(un)

|un | N2
)

f R,δ̄(un)un

|un | N2

−
(

|x |−μ ∗ FR,δ̄(tnun)

|tnun | N2
)

f R,δ̄(tnun)tnun

|tnun | N2
]
|un |Ndx

=
(
1 − 1

t N−q
0

)
|∇un |qq + on(1) ≤ on(1),

a contradiction as before. Alternatively, if 1 < t0 < +∞, we can also suppose that 1 <
tn < +∞ for all n ∈ N which infers a contradiction. Consequently, it must hold that t0 ≡ 1
showing the proof. ��
Lemma 4.3 Let 1 < q < N and 0 < μ < N. Suppose that the nonlinearity f defined

in (1.12) satisfies (h1) − (h3) and (h5), let {un} be a sequence such that {un} ⊂ N R,δ̄
B and

J R,δ̄
B (un) → mR,δ̄

B , thenwe can assume that {un} is a (PS) sequence ofJ R,δ̄
B at the level mR,δ̄

B

((PS)
mR,δ̄

B
for short) for each fixed R > 0, namely J R,δ̄

B (un) → mR,δ̄
B and (J R,δ̄

B (un))′ → 0

in E−1.

Proof Exploiting the Ekeland’s variational principle in [62, Theorem 8.5], there exists {λn} ⊂
R such that

(J R,δ̄
B (un))

′ = λn(J̄ R,δ̄
B )′(un)+ on(1), (4.7)

where J̄ R,δ̄
B : E → R is given by

J̄ R,δ̄
B (u) = |∇u|NN + |∇u|qq − B2

∫
RN

[|x |−μ ∗ FR,δ̄(un)] f R,δ̄(un)undx .

Since J R,δ̄
B (un)[un] = 0, we use (h5) and Lemma 3.4 to derive

(J̄ R,δ̄
B (un))

′[un ] = N |∇un |NN + q|∇un |qq − B2
∫
RN

[|x |−μ ∗ ( f R,δ̄ (un)un)
]
f R,δ̄ (un)undx

− B2
∫
RN

[|x |−μ ∗ FR,δ̄ (un)
][
( f R,δ̄ (un))

′u2n + f R,δ̄ (un)un
]
dx

≤ N |∇un |NN + q|∇un |qq − 1

2
(2θ + N )B2

∫
RN

[|x |−μ ∗ FR,δ̄ (un)
]
f R,δ̄ (un)undx

= N − 2θ

2
|∇un |NN + 2q − N − 2θ

2
|∇un |qq ≤ 0. (4.8)

Let us suppose that lim sup
n→∞

J̄ R,δ̄
B (un)[un] = l ≤ 0 and so l < 0. Otherwise, one knows that

‖un‖ → 0 since q < N < 2θ in (4.8). Combining l < 0 and (4.7), we accomplish the proof
of the lemma. ��
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Remark 4.4 We note that, by adopting (K1) − (K2), the same conclusions in Lemmas 4.2
and4.3 remain true for theNeharimanifoldN R,δ̄

ε associatedwithJ R,δ̄
ε defined in (1.20). From

nowon,we shall employLemmas4.2 and4.3 forJ R,δ̄
ε directly if there is nomisunderstanding.

Now, let us concentrate ourself on the compactness of (PS) sequence ofJ R,δ̄
ε . Proceeding

as the proofs of Lemmas 3.1 and 3.2, there is a (PS) sequence {un} of J R,δ̄
ε at the level cR,δ̄ε .

Moreover, it is similar to (4.3) that

cR,δ̄ε = mR,δ̄
ε = inf

v∈E\{0}max
t≥0

J R,δ̄
ε (tv) > 0, (4.9)

In view of (K1) − (K2), we can argue as Lemmas 3.5 and 3.6 to derive the following
result which is crucial in our problems.

Lemma 4.5 Let 1 < q < N and 0 < μ < N. Suppose that the nonlinearity f defined in
(1.12) satisfies (h1)− (h3) and (h5) as well as (K1)− (K2). Let {un} be a (PS)cR,δ̄ε sequence

for each fixed R > 0, then {un} is uniformly bounded in n ∈ N. If in addition we assume that
(h4), there exists a ξ̄0 = ξ̄0(R) such that

sup
n∈N

‖un‖ N
N−1 ≤ αN

18
(
γ + αRτ− N

N−1
) min

{
σ − 1

σ
,
N − μ
N + μ

}
(4.10)

for all ξ > ξ̄0.

Next, we start verifying the (PS)
cR,δ̄ε

condition of J R,δ̄
ε , that is, each sequence (PS)

cR,δ̄ε
sequence {un} admits a strongly convergent subsequence.

Lemma 4.6 Let 1 < q < N and 0 < μ < N. Suppose that the nonlinearity f defined in
(1.12) satisfies (h1)− (h3) and (h5) as well as (K1)− (K2). Let {un} be a (PS)cR,δ̄ε sequence

with un⇀u in E for each fixed R > 0, then one of the alternative holds: either un → u in E

along a subsequence, or cR,δ̄ε − J R,δ̄
ε (u) ≥ mR,δ̄

K∞ . Moreover, we shall suppose additionally

that (4.10) if δ̄ = N
N−1 .

Proof Denoting vn � un − u and assume that vn � 0 in E . Without loss of generality, we
could suppose that vn �= 0 for all n ∈ N. According to Lemma 4.2-(i), there exists a unique

tn > 0 such that tnvn ∈ N R,δ̄
K∞ . Because the case δ̄ = δ ∈ (0, N

N−1 ) is much simpler, we just

show the case δ̄ = N
N−1 . Let us divide the proof into intermediate steps.

Step 1. {tn} is uniformly bounded in R. Indeed, we derive it trivially by following the
calculations in the proof of Lemma 4.2-(iv).

Step 2. {�R, N
N−1 (vn)} given by (2.1) is uniformly bounded inR and�|R,

N
N−1

|x |<� (vn) = on(1).
For each fixed � > 0, passing to a subsequence if necessary, we can suppose that vn → 0

in L p(B�(0)) for all p > p∗. By (4.10), after very similar calculations in (4.5), we obatin

�|R,
N

N−1
|x |<� (vn) =

∫
|x |<ρ

FR, N
N−1 (vn(x))FR,δ̄(vn(y))

|x − y|μ dxdy ≤ C(R)|un |2σ2Nσ
2N−μ

→ 0 as n → ∞.

Step 3. Conclusion.
Firstly, adopting the definition of K∞, for all ε > 0, there is a � = �(ε) > 0 such that

K (εx) ≤ K∞ + ε, ∀|x | ≥ �.
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From this inequality, using the Step 2 to obtain

∫
RN

K∞FR, N
N−1 (vn(x))K∞FR, N

N−1 (vn(y))− K (εx)FR, N
N−1 (vn(x))K (εy)F

R, N
N−1 (vn(y))

|x − y|μ dx

≥ 2
∫
RN

[K∞ − K (εx)]FR, N
N−1 (vn(x))K0F

R, N
N−1 (vn(y))

|x − y|μ dxdy

= 2
∫
|x |<ρ

[K∞ − K (εx)]FR, N
N−1 (vn(x))K0F

R, N
N−1 (vn(y))

|x − y|μ dxdy − 4K0�
R, N

N−1 (vn)ε

≥ on(1)− C(R)ε.

Similarly, we can conclude that

∫
RN

K∞ f R,
N

N−1 (vn(x))vn(x)K∞FR, N
N−1 (vn(y))

|x − y|μ dx

≥
∫
RN

K (εx) f R,
N

N−1 (vn(x))vn(x)K (εy)F
R, N

N−1 (vn(y))

|x − y|μ dx + on(1)− C(R)ε.

In view of (4.4), we apply the above two formulas as well as Step 1 and Lemma 2.3 to get

m
R, N

N−1
K∞ ≤ J R, N

N−1
K∞ (tnvn) ≤ J R, N

N−1
K∞ (vn)− 1 − t Nn

N

(J R, N
N−1

K∞
)′
(vn)[vn]

≤ J R, N
N−1

ε (vn)+ on(1)− C(R)ε = c
R, N

N−1
ε − J R,δ̄

ε (u)+ on(1)− C(R)ε.

Letting n → ∞ and then ε → 0+, we would accomplish the proof of this lemma. ��
Due to the appearances of critical exponential growth and convolution operator in the

variational functional J R,δ̄
ε , the proof of Lemma 4.6 seems much more complicated than the

counterpart in [65], but the reader could find that our method is definitely comprehensible and
delicate. It depends on the significant inequality (4.4) which enables us to avoid considering
the relation between lim sup

n→∞
tn and 1. So, it is a powerful tool when the monotone assumption

(h5) is satisfied
Asweknow, if {un} is a (PS)cR,δε sequencewithun⇀u in E , it deduces that (J R,δ

ε )′(u) = 0

by (2.2). Suppose additionally that (4.10) if δ̄ = N
N−1 , then (J

R, N−1
N

ε )′(u) = 0 by (2.2) again.
Therefore, under the assumption of Lemma 4.6 and Lemma 3.4, we have

J R,δ̄
ε (u) = J R,δ̄

ε (u)− 1

2θ
(J R,δ̄)′(u)[u] ≥ 0. (4.11)

With (4.11) in hands, to derive un → u in E by Lemma 4.6, it suffices to conclude that

cR,δ̄ε ≤ mR,δ̄
K∞ . To reach it, we prove the following lemma.

Lemma 4.7 Let 1 < q < N and 0 < μ < N. Under the assumptions of Lemma 4.6, then we

have that lim
ε→0

cR,δ̄ε = mR,δ̄
K0

for each fixed R > 0.

Proof By (K1) and (4.3) with B = K0, we derive cR,δ̄ε ≥ cR,δ̄K0
= mR,δ̄

K0
for all ε > 0 which

indicates that lim inf
ε→0

cR,δ̄ε ≥ mR,δ̄
K0

. So, we end the proof by showing lim sup
ε→0

cR,δ̄ε ≤ mR,δ̄
K0

.

In view of Lemma 4.1, there exists a v0 ∈ N R,δ̄
K0

such that J R,δ̄
K0
(v0) = mR,δ̄

K0
. Let ϕ(x) :

R
N → [0, 1] be a cut-off function satisfying ϕ(x) ≡ 1when |x | ≤ 1, ϕ(x) ≡ 0 when |x | ≥ 2
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and |ϕ′(x)| ≤ 2 on R
N . For each � > 0, we define v�(x) � ϕ(x/�)v0(x). By the definition

of ϕ and the Lebesgue theorem, one has v� → v0 in E as � → ∞. Using Lemma 4.2-(i),

there exists a tε,� > 0 such that tε,�v� ∈ N R,δ̄
ε and

J R,δ̄
ε (tε,�v�) = max

t≥0
J R,δ̄
ε (t tε,�v�) = max

t≥0
J R,δ̄
ε (tv�). (4.12)

Employing a very similar calculations in the proof of Lemma 4.2-(iv), {tε,�} is uniformly
bounded from above and below in ε > 0, up to a subsequence if necessary, we may suppose
that lim

ε→0+ tε,� = t� ∈ (0,+∞). Recalling the facts supp v� ⊂ B2�(0) and lim
ε→0+ K (εx) =

K (0) = K0 for all x ∈ B2�(0), we proceed as the proof of Step 2 in the proof of Lemma 4.6
to derive

J R,δ̄
ε (tε,�v�) = t Nε,�

N

∫
B2�(0)

|∇v�|N dx + tqε,�
q

∫
B2�(0)

|∇v�|qdx

− 1

2

∫
B2�(0)

∫
B2�(0)

K (εy)FR,δ̄ (tε,�v�)K (εx) f R,δ̄ (tε,�v�)tε,�v�
|x − y|μ dxdy

→ t N�
N

∫
B2�(0)

|∇v�|N dx + tq�
q

∫
B2�(0)

|∇v�|qdx

− 1

2

∫
B2�(0)

∫
B2�(0)

K (0)FR,δ̄ (t�v�)K (0) f R,δ̄ (t�v�)tε,�v�
|x − y|μ dxdy (as ε → 0+)

= J R,δ̄
K0

(t�v�). (4.13)

Similar to (4.13) and by using tε,�v� ∈ N R,δ̄
ε , there holds

t N�

∫
RN

|∇v�|Ndx + tq�

∫
RN

|∇v�|qdx =
∫
RN

∫
RN

K0FR,δ̄(t�v�)K0 f R,δ̄(t�v�)tε,�v�
|x − y|μ dxdy

which implies that t�v� ∈ N R,δ̄
K0

and hence J R,δ̄
K0
(t�v�) = maxt≥0 J R,δ̄

K0
(t t�v�) =

maxt≥0 J R,δ̄
K0
(tv�). On the other hand, because the facts v0 ∈ N R,δ̄

K0
, t�v� ∈ N R,δ̄

K0
and

v� → v0 in E as � → ∞ are clear, we have that t� → 1 as � → ∞ by Lemma 4.2-(iv). As
a consequence, it holds that

‖t�v� − v0‖ ≤ |t� − 1| · ‖v�‖ + ‖v� − v0‖ → 0 as � → ∞.

It follows from (4.9) and (4.12)–(4.13) that

lim sup
ε→0+

cR,δ̄ε = lim sup
ε→0+

inf
v∈E\{0}max

t≥0
J R,δ̄
ε (tv) ≤ lim sup

ε→0+
max
t≥0

J R,δ̄
ε (tv�)

= lim sup
ε→0+

J R,δ̄
ε (tε,�v�) = J R,δ̄

K0
(t�v�).

Letting � → ∞ and adopting the above two formulas, we have lim supε→0+ cR,δ̄ε ≤ mR,δ̄
K0

finishing the proof of this lemma. ��
Proposition 4.8 Let 1 < q < N and 0 < μ < N. Suppose that the nonlinearity f defined in
(1.12) satisfies (h1)− (h3) and (h5) as well as (K1)− (K2). For each fixed R > 0, there is
a sufficiently small ε1 > 0 such that Eq. (1.19) with δ̄ = δ ∈ (0, N

N−1 ) admits a nonnegative

ground state solution for all ε ∈ (0, ε1). If in addition (h4), there exists a ξ̄0 > 0 such that
Eq. (1.19) with δ̄ = N

N−1 has a nonnegative ground state solution for all ε ∈ (0, ε1) and
ξ > ξ̄0.
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Proof For simplicity, we shall take into account the cases δ̄ = δ ∈ (0, N
N−1 ) and δ̄ = N

N−1

in a unified way. Let {un} be a (PS)
cR,δ̄ε

sequence of J R,δ̄
ε . Due to Lemma 4.5, up to a

subsequence if necessary, there exists a u ∈ E such that un⇀u. Combining (2.2) and (4.10),
there holds (J R,δ̄

ε )′(u) = 0. By means of (4.11), thanks to Lemma 4.6 and (4.9), we are

done provided cR,δ̄ε < mR,δ̄
K∞ . It follows from Lemma 4.7 that for all ε > 0, there is a ε1 > 0

such that cR,δ̄ε < mR,δ̄
K0

+ ε for all ε ∈ (0, ε1). We claim that mR,δ̄
K0
< mR,δ̄

K∞ . Indeed, there is a

u0 ∈ N R,δ̄
K0

such that J R,δ̄
K0
(u0) = mR,δ̄

K0
> 0 by Lemma 4.1. Via Lemma 4.2-(i), there exists

a t0 > 0 such that t0u0 ∈ N R,δ̄
K∞ satisfying J R,δ̄

K∞ (t0u0) = maxt≥0 J R,δ̄
K∞ (tu0). Therefore,

mR,δ̄
K∞ ≥ J R,δ̄

K∞ (t0u0) ≥ J R,δ̄
K∞ (u0) = J R,δ̄

K0
(u0)+ K 2

0 − K 2∞
2

�R,δ̄(u0) > J R,δ̄
K0
(u0) = mR,δ̄

K0

showing the claim. The proof is completed by choosing ε = mR,δ̄
K∞ − mR,δ̄

K0
> 0. ��

Afterwards, we shall investigate the concentrating behavior of nonnegative ground state
solution obtained in Proposition 4.8. For short, from now on until the end of this article, all
of the assumptions in Theorem 1.9 would not exhibit any longer.

As a consequence of Proposition 4.8, there exists ε1 > 0 such that for any ε ∈ (0, ε1),
Eq. (1.17) possesses a nonnegative ground state solution uε(x) = vε(ε/x) ∈ E satisfying
J R,δ̄
ε (vε) = cR,δ̄ε > 0, where vε is a nonnegative ground state solution of Eq. (1.19). Before

contemplating the concentrating behavior of ũε , we need the following key lemma.

Lemma 4.9 If {un} ⊂ N R,δ̄
K0

satisfies J R,δ̄
K0
(un) → mR,δ̄

K0
and un⇀u0 �= 0 in E as n →

∞, then un → u0 in E along a subsequence. In particular, (J R,δ̄
K0
)′(u0) = 0 in E and

J R,δ̄
K0
(u0) = mR,δ̄

K0
.

Proof Employing Lemma 4.3, we could suppose that {un} is a (PS) sequence of J R,δ̄
K0

at the

level mR,δ̄
K0

. Thanks to (h4), we are able to make sure that Lemma 4.5 holds true. Using (2.2)

and (4.10), we obtain that (J R,δ̄
K0
)′(u0) = 0.

On the other hand, one has u0 ∈ N R,δ̄
K0

since u0 �= 0 and so

mR,δ̄
K0

≤ J R,δ̄
K0
(u0)− 1

2θ
(J R,δ̄

K0
)′(u0)[u0]

≤ lim inf
n→∞

[
J R,δ̄
K0
(un)− 1

2θ
(J R,δ̄

K0
)′(un)[un]

]
= mR,δ̄

K0

yielding that un → u0 in E and then J R,δ̄
K0
(u0) = mR,δ̄

K0
. The proof is completed. ��

Recalling the definition of vε , that is,J R,δ̄
ε (vε) = cR,δ̄ε > 0 and (J R,δ̄

ε )′(vε) = 0.With the
help of (4.10), we can follow the proof of (3.8) to find a a family {ȳε} ⊂ R

N and r̄ , r̄0 > 0
such that ∫

Br̄ (ȳε)
|vε|p∗

dx ≥ r̄0 > 0. (4.14)

Lemma 4.10 The family {ε ȳε} constructed in (4.14) is uniformly bounded in ε. Furthermore
if we take x∗ as the limit of the sequence of {εn ȳεn }, then one has x∗ ∈ �, where {εn ȳεn } is
a subsequence of {ε ȳε}.
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Proof Arguing it by contradiction, we suppose that εn → 0 and |εn ȳεn | → +∞ as n → ∞.
Let us take ȳn � ȳεn and vn � vεn for simplicity and define wn(·) � vn(· + ȳn) ≥ 0, then

−�Nwn−�qwn =
(∫

RN

K (εn y + εn ȳn)FR,δ̄ (wn(y))

|x − y|μ dy

)
K (εnx+εn ȳn) f R,δ̄ (wn), x ∈ R

N , (4.15)

and from (4.14), one has ∫
Br̄ (0)

|wn |p∗
dx ≥ r̄0 > 0. (4.16)

Obviously, ‖wn‖ = ‖vn‖, thereby {wn} is uniformly bounded in n ∈ N and wn⇀w0 in E
along a subsequence. Moreover w0 ≥ 0 and we can see that w0 �= 0 from (4.16). According

to Lemma 4.2-(i), there exists a tn > 0 such that tnwn ∈ N R,δ̄
K0

and so lim inf
n→∞ J R,δ̄

K0
(tnwn) ≥

mR,δ̄
K0

. On the other hand, as a consequence of (K1) and Lemma 4.7,

J R,δ̄
K0
(tnwn) ≤ t Nn

N
|∇wn |NN + tqn

q
|∇wn |qq

−
∫
R2N

K (εnx + εn ȳn)FR,δ̄(tnwn)K (εnx + εn ȳn)FR,δ̄(tnwn)

|x − y|μ dxdy

= J R,δ̄
εn
(tnvn) ≤ max

t≥0
J R,δ̄
εn
(tvn) = J R,δ̄

εn
(vn) = cR,δ̄εn = mR,δ̄

K0
+ on(1),

which indicates that lim sup
n→∞

J R,δ̄
K0
(tnwn) = mR,δ̄

K0
and so lim

n→∞J R,δ̄
K0
(tnwn) = mR,δ̄

K0
. Proceed-

ing as the proof of Lemma 4.2-(iv), there is a t0 > 0 such that lim
n→∞ tn = t0 > 0 along

a subsequence. Adopting the uniqueness of the weak limit, we derive tnwn⇀t0w0 �= 0 in

E . In summary, we have concluded that tnwn ∈ N R,δ̄
K0

, limn→∞J R,δ̄
K0
(tnwn) = mR,δ̄

K0
and

tnwn⇀t0w0 �= 0. By means of Lemma 4.9, one gets tnwn → t0w0 �= 0 in E which implies

that t0w0 ∈ N R,δ̄
K0

. Using Fatou’s lemma and (h5), one has

mR,δ̄
K0

≤ J R,δ̄
K0
(t0w0) < J R,δ̄

K∞ (t0w0) = J R,δ̄
K∞ (t0w0)− 1

N
(J R,δ̄

K0
)′(t0w0)[t0w0]

= N − q

qN
t N0

∫
RN

|∇w0|qdx

+ 1

N

∫
RN

∫
RN

K0 f R,δ̄(t0w0(x))t0w0(x)K0FR,δ̄(t0w0(y))

|x − y|μ dxdy

− 1

2

∫
RN

∫
RN

K∞FR,δ̄(t0w0(x))K∞FR,δ̄(t0w0(y))

|x − y|μ dxdy

≤ lim inf
n→∞

{
N − q

qN
t Nn

∫
RN

|∇wn |qdx

+ 1

N

∫
RN

∫
RN

K0 f R,δ̄(tnwn(x))tnwn(x)K0FR,δ̄(tnwn(y))

|x − y|μ dxdy

− 1

2

∫
RN

∫
RN

K (εnx + εn ȳn)FR,δ̄(tnwn(x))K (εn y + εn ȳn)FR,δ̄(tnwn(y))

|x − y|μ dxdy

}

= lim inf
n→∞

[J R,δ̄
εn
(tnvn)− 1

N
(J R,δ̄

K0
)′(tnwn)[tnwn]

] = lim inf
n→∞ J R,δ̄

εn
(tnvn)
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≤ lim inf
n→∞ max

t≥0
J R,δ̄
εn
(tvn) = lim inf

n→∞ J R,δ̄
εn
(vn) = lim inf

n→∞ cR,δ̄εn = mR,δ̄
K0
,

which is impossible, where we have used the formula whose detailed proof is left in the
Appendix

lim
n→∞

∫
RN

∫
RN

K (εnx + εn ȳn)FR,δ̄(tnwn(x))K (εn y + εn ȳn)FR,δ̄(tnwn(y))

|x − y|μ dxdy

=
∫
RN

∫
RN

K∞FR,δ̄(t0w0(x))K∞FR,δ̄(t0w0(y))

|x − y|μ dxdy.

(4.17)

So, {ε ȳε} is bounded in R
N . Passing to a subsequence if necessary, we could suppose that

εn ȳεn → x∗ in R
N as n → ∞. Finally, we verify that x∗ ∈ �. To the end, let us denote the

variational functional J R,δ̄
x∗ by J R,δ̄

B with B = K (x∗) > 0. If x∗ /∈ �, then K (x∗) < K0 by
the definition of � in (K2). In this situation, arguing as before,

mR,δ̄
K0

≤ J R,δ̄
K0
(t0w0) < J R,δ̄

x∗ (t0w0) ≤ J R,δ̄
K∞ (t0w0)− 1

N
(J R,δ̄

K0
)′(t0w0)[t0w0]

≤ lim inf
n→∞ max

t≥0
J R,δ̄
εn
(tvn) = lim inf

n→∞ J R,δ̄
εn
(vn) = lim inf

n→∞ cR,δ̄εn = mR,δ̄
K0
,

a contradiction. The proof is completed. ��
Lemma 4.11 Up to a subsequence if necessary, wn → w0 in E as n → ∞, where {wn} and
w0 are given by Lemma 4.10. Furthermore, there exists a ε2 > 0 such that lim|x |→∞wε(x) =
0 uniformly in ε ∈ (0, ε2).
Proof In view of the proof of Lemma 4.10, that is, tnwn → t0w0 �= 0 in E and tn → t0 with
t0 > 0, then we can conclude that

t0‖wn−w0‖ = ‖t0wn−tnwn+tnwn−t0w0‖ ≤ |tn−t0|·‖wn‖+‖tnwn−t0w0‖ → 0 (4.18)

which implies that wn → w0 in E as n → ∞. By (4.15), one has

−�Nw0 −�qw0 =
(∫

RN

K (x∗)FR,δ̄(wn(y))

|x − y|μ dy

)
K (x∗) f R,δ̄(w0), x ∈ R

N ,

shaoing that w0 ∈ N R,δ̄
K0

. Recalling t0w0 ∈ N R,δ̄
K0

by Lemma 4.10 and using Lemma 4.2-

(i), we have t0 ≡ 1. Again Lemma 4.10 exhibits us that lim
n→∞J R,δ̄

K0
(tnwn) = mR,δ̄

K0
, then

J R,δ̄
K0
(w0) = J R,δ̄

K0
(t0w0) = mR,δ̄

K0
which reveals that w0 is a ground state solution of Eq.

(4.18). We claim that |wn |∞ is uniformly bounded in n ∈ N. Indedd, due to (4.15), {wn} is
a sequence of solutions of

−�Nu −�qu =
(∫

RN

K (εn y + εn ȳn)FR,δ̄(u(y))

|x − y|μ dy

)
K (εnx + εn ȳn) f R,δ̄(u), x ∈ R

N ,

(4.19)
Since K∞ ≤ K (εnx+εn ȳn) ≤ K0 for any x ∈ R

N and f R,δ̄(t) ≥ 0 for all t ∈ R, proceeding
as the very similar calculations in Lemmas 3.10 and 3.14 to look for a constant C(R) > 0
independent of n ∈ N such that |wn |χm+1σ ≤ C(R)|wn |σ for everym ∈ N

+. Thus, we derive
the claim by m → +∞. Moreover, thanks to the results found in the works of DiBenedetto
[25] and Lieberman [38], there holds that wε ∈ C1,γ̄ (RN ) for some γ̄ ∈ (0, 1). Finally, we
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shall focus on verifying the decay property at infinity ofwε when ε > 0 is sufficiently small.
For simplicity, we continue to use the notation wn .

Let x0 ∈ R
N , �0 > 1, 0 < t < s < 1 < �0 and η ∈ C∞

0 (R
N ) such that

0 ≤ η ≤ 1, suppη ⊂ Bs(x0), η ≡ 1 on Bt (x0) and |∇η| ≤ 2

s − t
.

For all ζ ≥ 1, we define An,ζ,� = {x ∈ B�(x0) : wn(x) > ζ } and

Qn =
∫
An,ζ,s

(|∇un |q + |∇un |N )ηNdx .

Therefore, taking ηn = ηN (wn − ζ )+ as a test function of Eq. (4.19), there holds

N
∫
An,ζ,s

(|∇wn |N−2 + |∇wn |q−2)ηN−1(wn − ζ )+∇wn∇ηdx

+
∫
An,ζ,s

(|∇wn |N + |∇wn |q)ηNdx

≤ K 2
0

∫
An,ζ,s

[|x |−μ ∗ FR,δ̄(wn)] f R,δ̄(wn)η
N (wn − ζ )+dx

≤ C(R)
∫
An,ζ,s

f R,δ̄(wn)η
N (wn − ζ )+dx,

where we have adopted (5.3) below and argue as the Claim in Lemma 2.2. Because |wn |∞
is uniformly bounded, letting ν = σ in (2.3), we obtain∫

An,ζ,s

f R,δ̄(wn)η
N (wn − ζ )+dx ≤ C(R)

(∫
An,ζ,s

|(wn − ζ )+|σ dx + ζ σ |An,ζ,s |
)

which implies that

Qn ≤ N
∫
An,ζ,s

(|∇wn |N−2 + |∇wn |q−2)ηN−1(wn − ζ )+|∇wn ||∇η|dx

+ C(R)

(∫
An,ζ,s

|(wn − ζ )+|σ dx + ζ σ |An,ζ,s |
)
.

Exploiting the definition of η and Young’s inequality, we can infer that∫
An,ζ,t

|∇wn |Ndx ≤ Qn ≤ C(R)

(∫
An,ζ,s

∣∣∣∣wn − ζ
s − t

∣∣∣∣
σ

dx,+ζ σ |An,ζ,s |
)
.

where C(R) does not depend on η and ζ ≥ 1. So far, we could argue as [6, Lemma 3.5] step
by step to accomplish the proof of this lemma. ��

We are in a position to present the proof of Theorem 1.9.

Proof of Theorem 1.9 Setting ε∗ = min{ε1, ε2, ε3}, then it follows from Proposition 4.8 that
Eq. (1.19) admits at least a nonnegative ground state solution vε for every ε ∈ (0, ε∗), and so
uε = vε(·/ε) is nonnegative ground state solution to Eq. (1.17) for each ε ∈ (0, ε∗). Next,
we shall complete the proof one by one:

(a) Due to the proof of Lemma 4.11 and wε(x) = vε(x + ȳε), there exists a � > 0 such
that wε(x) has a global maximum point kε ∈ B�(0) and hence we can deduce that the global
maximum point of vε is given by zε � ȳε+kε . Notice that uε(x) = vε(x/ε), one could easily
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derive that uε(x) possesses a global maximum point γε = εzε. Since kε ∈ B�(0) has been
chosen and Lemma 4.10 tells us that ε ȳε → x∗ as ε → 0+, it holds that γε = εzε → x∗.
Recalling K (x) ∈ C(RN ) and x∗ ∈ �, we have

lim
ε→0+ K (γε) = K (x∗) = K0.

(b) It follows from the above facts that

ũε(x) = uε(εx + γε) = uε(εx + εzε) = vε(x + zε) = vε(x + ȳε + kε) = wε(x + kε).

Since |kε| ≤ �, we may suppose that kε → k0 along a subsequence as ε → 0+. In view of
the proof of Lemma 4.11, there holds ũε → w0(x + k0) � ũ in E . Thanks to the translation-

invariance of J R,δ̄
K0

and (J R,δ̄
K0
)′, we could conclude that ũ is a ground state solution of Eq.

(1.18). The proof is completed. ��
With Theorem 1.9 in hands, now we can give the proof of Theorem 1.8.

Proof of Theorem 1.8 Inspired by the proof of Theorem 1.3, it suffices show that the solution
vε of Eq. (1.19) obtained in Theorem 1.9 is uniformly bounded in R > 0. To reach it,
by choosing some suitable ᾱ∗ and τ̄∗, we could verify that f R,δ̄ admits the similar growth
condition to (3.13) and (3.17), respectively. Then, the remaining parts would be trivial and
we omit the details. ��

As one can find that Theorems 1.8 and 1.9 only exhibit the existence of ground state
solutions, it is natural to wonder that whether Eqs. (1.1) and (1.17) always have ground state
solutions. Actually, it would not be true if we slightly modify the conditions (K1) − (K2).
More precisely, let us replace them with the assumption below

(K ) K ∈ C0(RN ) satisfies 0 < K (x) ≤ K∞ for every x ∈ R
N and the strict inequality

holds true on a positive measure subset.

Firstly, we derive the following surprising result.

Lemma 4.12 Let 1 < q < N and 0 < μ < N. Suppose that the nonlinearity f defined in

(1.12) satisfies (h1)−(h3) and (h5), then for each fixed R > 0, mR,δ̄
K∞ = cR,δ̄ε for every ε > 0.

Moreover, if δ̄ = N/(N − 1), we should suppose in addition (h4) with ξ > 0 sufficiently
large.

Proof For all ε > 0, there exists uε ∈ N R,δ̄
ε such that cR,δ̄ε ≤ J R,δ̄

ε (uε) < cR,δ̄ε + ε. In

particular, one deducesJ R,δ̄
ε (uε) = maxt≥0 J R,δ̄

ε (tuε) by Lemma 4.2-(i). Using Lemma 4.2-

(i) again, there is tε > 0 such that tεuε ∈ N R,δ̄
K∞ and J R,δ̄

K∞ (tεuε) = maxt≥0 J R,δ̄
K∞ (t tεuε) =

maxt≥0 J R,δ̄
K∞ (tuε). By (K ),

mR,δ̄
K∞ ≤ J R,δ̄

K∞ (tεuε) = max
t≥0

J R,δ̄
K∞ (tuε) ≤ max

t≥0
J R,δ̄
ε (tuε) = J R,δ̄

ε (uε) < cR,δ̄ε + ε

indicating that mR,δ̄
K∞ ≤ cR,δ̄ε by tending n → ∞. Next, we show that cR,δ̄ε ≤ mR,δ̄

K∞ for all
ε > 0.

By Lemma 4.1, the problem (4.1) with B = K∞ has a ground state solution u∞ ∈ N R,δ̄
K∞

verifying J R,δ̄
K∞ (u∞) = mR,δ̄

K∞ . Let {x̄n} ⊂ R
N satisfy |x̄n | → ∞ as n → ∞ and set

un(x) � u∞(x− x̄n). Thanks to the translation-invariance ofJ R,δ̄
K∞ and (J R,δ̄

K∞ )
′, we conclude
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that un ∈ N R,δ̄
K∞ and J R,δ̄

K∞ (un) = mR,δ̄
K∞ . By means of Lemma 4.2-(i), there exists tn > 0 such

that tnun ∈ N R,δ̄
ε . In view of Lemma 4.5, we can show that {un} satisfies (4.10). So, up to

a subsequence if necessary, it holds that limn→∞ tn = 1 by Lemma 4.2-(iv). Arguing as the
calculations in Subsect. 5.3 in the Appendix, we have that

lim
n→∞

∫
RN

∫
RN

K∞FR,δ̄(tnv∞(x))K∞FR,δ̄(tnv∞(y))
|x − y|μ dxdy

lim
n→∞

∫
RN

∫
RN

K (εx + εx̄n)FR,δ̄(tnv∞(x))(εy + εx̄n)FR,δ̄(tnv∞(y))
|x − y|μ dxdy.

It follows from all the discussions above that

J R,δ̄
ε (tnvn) = J R,δ̄

K∞ (tnv∞)+
1

2

∫
RN

∫
RN

K∞FR,δ̄(tnv∞(x))K∞FR,δ̄(tnv∞(y))
|x − y|μ dxdy

−
∫
RN

∫
RN

K (εx + εx̄n)FR,δ̄(tnv∞(x))(εy + εx̄n)FR,δ̄(tnv∞(y))
|x − y|μ dxdy

→ J∞(v∞) = m∞,

showing that cR,δ̄ε ≤ mR,δ̄
K∞ . Therefore, we can derive cR,δ̄ε = mR,δ̄

K∞ . The proof is completed.
��

Proposition 4.13 Let 1 < q < N and 0 < μ < N. Suppose that the nonlinearity f defined
in (1.12) satisfies (h1) − (h3) and (h5), then for each fixed R > 0, Eq. (1.19) with δ̄ = δ

does not admit ground state solution for all ε > 0 in E. Moreover, if we suppose additionally
that (h4), then for each fixed R > 0, there is a ξ0 = ξ0(R) > 0 dependent of R such that Eq.
(1.19) with δ̄ = N/(N − 1) does not possess ground state solution in E for all ξ > ξ0 and
ε > 0.

Proof Arguing it by contradiction, we could suppose that there exist ε0 > 0 and u0 ∈ E such
that J R,δ̄

ε0
(v0) = cR,δ̄ε0 and (J R,δ̄

ε0
)′(v0) = 0. Using Lemma 4.2-(i), one knows J R,δ̄

ε0
(v0) =

maxt≥0 J R,δ̄
ε0
(tv0). Taking Lemma 4.2-(i) into account again, there is a constant t0 > 0 such

that t0v0 ∈ N R,δ̄
K∞ . Recalling Lemma 4.12, that is, mR,δ̄

K∞ = cR,δ̄ε0 , one has

mR,δ̄
K∞ ≤ J R,δ̄

K∞ (t0v0) ≤ J R,δ̄
ε0
(t0v0) ≤ max

t≥0
J R,δ̄
ε0
(tv0)

= J R,δ̄
ε0
(v0) = cR,δ̄ε0 = mR,δ̄

K∞

showing that J R,δ̄
K∞ (t0v0) ≤ J R,δ̄

ε0
(t0v0). While, we shall exploit (K ) to get

J R,δ̄
K∞ (t0v0) = J R,δ̄

ε0
(t0v0)− 1

2

∫
RN

∫
RN

K∞FR,δ̄(t0v0(x))K∞FR,δ̄(t0v0(y))

|x − y|μ dxdy

+ 1

2

∫
RN

∫
RN

K (ε0x)FR,δ̄(t0v0(x))K (ε0y)FR,δ̄(t0w0(y))

|x − y|μ dxdy

< J R,δ̄
ε0
(t0v0) = J R,δ̄

K∞ (t0v0),

a contradiction. The proof is completed. ��
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Remark 4.14 As one can find in Proposition 4.13, we have showed that Eq. (1.17) does not
have ground state solution. However, one cannot demonstrate that there is no ground state
solution for Eq. (1.1). As far as we are concerned, it is interesting to consider it further.

5 Appendix

In this section, we mainly accomplish the detailed proofs of some facts that are left in the
previous sections.

5.1 The validity of (2.9)

Define vn � un − u and wn = |vn | + |u|, then we have that
∫
RN
(|vn |σ−1|u| + |u|σ ) 2N

2N−μ dx ≤ C1

(∫
RN

|vn |
2N (σ−1)
2N−μ |u| 2N

2N−μ dx +
∫
RN

|u| 2Nσ
2N−μ dx

)

≤ C1

[(∫
RN

|vn |
2Nσ
2N−μ dx

) σ−1
σ
(∫

RN
|u| 2Nσ

2N−μ dx

) 1
σ +

∫
RN

|u| 2Nσ
2N−μ dx

]

≤ C1

[(
2 sup
n∈N

‖un‖
) 2N (σ−1)

2N−μ
(∫

RN
|u| 2Nσ

2N−μ dx

) 1
σ +

∫
RN

|u| 2Nσ
2N−μ dx

]

and supn∈N ‖wn‖ N
N−1 ≤ 3

N
N−1 supn∈N ‖un‖ N

N−1 which is appled in (1.8) to get
∫
RN
(|vn |σ−1|u| + |u|σ )

2N
2N−μ �

2N
2N−μ (γ+αRτ−

N
N−1 ), j0

(|wn |)dx

≤
(∫

RN
(|vn |σ−1|u| + |u|σ )

2N
N−μ dx

) N−μ
2N−μ (∫

RN
�
2(γ+αRτ−

N
N−1 )‖wn‖

N
N−1 , j0

(|wn |/‖wn‖)dx
) N

2N−μ

≤ C2

[(∫
RN

|vn |
2Nσ
N−μ dx

) (N−μ)(σ−1)
(2N−μ)σ (∫

RN
|u|

2Nσ
N−μ dx

) N−μ
(2N−μ)σ +

(∫
RN

|u|
2Nσ
N−μ dx

) N−μ
2N−μ ]

≤ C2

[(
sup
n∈N

‖vn‖) 2N (σ−1)
2N−μ

(∫
RN

|u|
2Nσ
N−μ dx

) N−μ
(2N−μ)σ +

(∫
RN

|u|
2Nσ
N−μ dx

) N−μ
2N−μ ]

.

Letting ν = σ in (2.3), one has

∣∣∣FR, N
N−1 (un)− FR, N

N−1 (vn)

∣∣∣ ≤
∫ 1

0
| f R, N

N−1 (vn + tu)u|dt
≤ C(|vn |σ−1|u| + |u|σ )

+ C(R)(|vn |ν−1|u| + |u|ν)�
γ+αRτ− N

N−1 , j0
(|wn |)

which together with the above two formulas implies that∫
RN

|FR, N
N−1 (un)− FR, N

N−1 (vn)|
2N

2N−μ dx

≤ C3

[(∫
RN

|u| 2Nσ
2N−μ dx

) 1
σ +

∫
RN

|u| 2Nσ
2N−μ dx +

(∫
RN

|u| 2Nσ
N−μ dx

) N−μ
(2N−μ)σ
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+
(∫

RN
|u| 2Nσ

N−μ dx

) N−μ
2N−μ ]

From this inequality, we could exploit the generalized Vitali’s Dominated Convergence
theorem to finish the proof of (2.9).

5.2 The validity of (3.16)

We begin verifying the validity of (3.16) which is a crucial gradient in the L∞-estimate of
nontrivial solution. It infers from the Hölder’s inequality that

(∫
RN

uσRu
q(ϑ−1)
R,L dx

) N
q ≤

(∫
RN

|uR |σϑdx
) N
σ
(∫

RN
|uR |σ dx

) (σ−q)N
σq

and we apply the constant ϒ > 0 in (3.13) together with (1.8) to deduce that

(∫
RN

|uR |q�αNϒ
K , j0

(uR)u
q(ϑ−1)
R,L dx

) N
q ≤

(∫
RN

|uR |σϑdx
) N
σ
(∫

RN
� αNϒσ

K (σ−q) , j0
(uR)dx

) (σ−q)N
σq

=
(∫

RN
|uR |σϑdx

) N
σ
(∫

RN
�

αNϒσ
K (σ−q) ‖un‖

N
N−1 , j0

(uR/‖uR‖)dx
) (σ−q)N

σq
.

Letting ν = q in (3.13), by the above two formulas as well as Lemma 2.1 and (3.10), we
obtain (∫

RN
f R,δ(uR)uRu

q(ϑ−1)
R,L dx

) N
q ≤ C

(∫
RN

|uR |σϑdx
) N
σ

(5.1)

for some C > 0 independent of R > 0. Similarly, we can derive

∫
RN

uσRu
N (ϑ−1)
R,L dx ≤

(∫
RN

|uR |σϑdx
) N
σ
(∫

RN
|uR |σ dx

) σ−N
σ

and
∫
RN

|uR |ν�αNϒ
K , j0

(uR)u
N (ϑ−1)
R,L dxdx ≤

(∫
RN

|uR |σϑdx
) N
σ
(∫

RN
� αNϒσ

K (σ−N ) , j0
(uR)dx

) σ−N
σ

=
(∫

RN
|uR |σϑdx

) N
σ
(∫

RN
�

αNϒσ
K (σ−N ) ‖un‖

N
N−1 , j0

(uR/‖un‖)dx
) σ−N

σ

which together with ν = N in (3.13) indicate that

∫
RN

f R,δ(uR)uRu
N (ϑ−1)
R,L dx ≤ C

(∫
RN

|uR |σϑdx
) N
σ

(5.2)

for some C > 0 independent of R > 0. With the help of (5.1) and (5.2), we immediately get
(3.16) by tending L → +∞ in (3.15).

Remark 5.1 The estimate which is vear similar to (3.16) in the proof of Lemma 3.14 would
occur, thanks to ξ0 > 0 which is independent of R > e in Lemma 3.11, we could make
sure that ‖un‖ is sufficiently small. In other words, by means of some trivial adjustments in
Remark 3.12, all of the calculations in Subsection 3.2 are true and we can still get the desired
estimate.
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5.3 The validity of (4.17)

Let us denote w̄n = tnwn and w̄0 = t0w0 for short. In view of the proof of Lemma 4.10, we

deduce that {w̄n} is a minimizing sequence of mR,δ̄
K0

and w̄n → w̄0 �= 0 in E . Because the

case δ̄ = δ ∈ (0, N
N−1 ) is simple, we only consider the case δ̄ = N

N−1 . Exploiting Lemma 4.5,
there holds

sup
n∈N

‖w̄n‖ N
N−1 ≤ αN

18(γ + αRτ− N
N−1 )

min

{
σ − 1

σ
,
N − μ
N + μ

}
. (5.3)

So, we can apply it jointly with (1.8) and (2.3) with ν = σ in (1.5) to get

∫
RN

(∫
RN

F R, N
N−1 (w̄n(y))

|x − y|μ dy

)
FR, N

N−1 (w̄n(x))dx ≤
(∫

RN
|w̄n |

2Nσ
2N−μ dx

) 2N−μ
N

.

Recalling w̄n → w̄0 in L
2Nσ
2N−μ (RN ), for all ε > 0, there is a sufficiently large � > 0 such

that

∫
|x |≥�

(∫
RN

F R, N
N−1 (w̄n(y))

|x − y|μ dy

)
FR, N

N−1 (w̄n(x))dx ≤ C(R)ε

Given ε > 0, for all y ∈ B�(0), there is n0 ∈ N
+ such that K (εn y + εn ȳn) − K∞ ≤ ε for

n ≥ n0, thus

∫
|x |<�

(∫
RN

[K (εn y + εn ȳn)− K∞]FR, N
N−1 (w̄n(y))

|x − y|μ dy

)
K0F

R, N
N−1 (w̄n(x))dx ≤ C(R)ε.

As a consequence, there holds

∫
R2N

K (εnx + εn ȳn)FR,δ̄ (w̄n(x))K (εn y + εn ȳn)FR,δ̄ (w̄n(y))− K∞FR,δ̄ (w̄n(x))K∞FR,δ̄ (w̄n(y))

|x − y|μ dxdy

≤ 2
∫
R2N

[K (εnx + εn ȳn)− K∞]FR, N
N−1 (w̄n(x))K0F

R, N
N−1 (w̄n(y))

|x − y|μ dxdy ≤ C(R)ε.

On the other hand, w̃n = w̄n − w̄0 → 0 in L p(RN ) for all p > q∗, using a very similar
arguments in Step 2 of Lemma 4.6, we obtain

lim
n→∞

∫
RN

∫
RN

K∞FR,δ̄(w̃n(x))K∞FR,δ̄(w̃n(y))

|x − y|μ dxdy = 0.

From them, letting n → ∞ and then ε → 0+, it must have that

lim
n→∞

∫
RN

∫
RN

K (εnx + εn ȳn)FR,δ̄(w̄n(x))K (εn y + εn ȳn)FR,δ̄(w̄n(y))

|x − y|μ dxdy

= lim
n→∞

∫
RN

∫
RN

K∞FR,δ̄(w̄n(x))K∞FR,δ̄(w̄n(y))

|x − y|μ dxdy

=
∫
RN

∫
RN

K∞FR,δ̄(w̄0(x))K∞FR,δ̄(w̄0(y))

|x − y|μ dxdy

showing the desired result.
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