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1 | INTRODUCTION

The purpose of this paper is to study a class of Neumann problems involving Choquard-type critical growth exponential
nonlinearities. We consider the following problem:

-

_ F(y,u) .
—Au+alx)u = m dy |f(x,u), in Q,
(P) 1 !
du _ Gy, u)
W + Bu = Xyl v |g(x,u) on dQ,
0Q

L

where Q is a bounded domain of R? having a smooth boundary, a(x) is a bounded measurable function on Q, 8 > 0

is a real number, y; € (0,2), u, € (0,1) and 7n denotes the unit outer normal to Q. Here, the functions f and g have
¢ ¢

exponential critical growth in Q and 8Q respectively and F(x,t) = [ f(x,s)ds and G(x,t) = [ g(x, s)ds are the primitive
0 0

of f and g, respectively. The main interest in studying this kind of problem is the presence of critical exponents both in
the equation and in the nonlinear boundary condition.
A central role in the analysis developed in this paper is played by the fractional integral

(T, $)x) = / W)y o<u<n.

RN |x_y|'u

Weighted L? estimates for T, is a fundamental problem of harmonic analysis, with a wide range of applications. Starting
from the classical one-dimensional case studied by Hardy and Littlewood, an exhaustive analysis has been made on the
admissible classes of weights and ranges of indices. An important contribution is due to Lieb [24], who applied the Riesz
rearrangement inequalities to prove that the best constant for the classical Hardy-Littlewood-Sobolev inequality can be
achieved by some extremals. Lieb also classified the solutions of the integral equation

M
N—
u(x) = / MMy eRN (11)
RN X —yIN-T

as an open problem. In fact, Equation (1.1) arises as an Euler-Lagrange equation for a functional under a constraint in
the context of the Hardy-Littlewood-Sobolev inequality and is closely related to the following Lane-Emden fractional
equation:

T N+u

(-A)2u=uN+, xRN, 1.2)

This area of study has been a focal point for decades, resulting in a substantial body of literature addressing problems with
both sub-critical and critical nonlinearities.

Various aspects of these problems have been explored, including existence, uniqueness, regularity of solutions, quali-
tative behavior, and applications in physics. Among these studies, considerable attention has been given to the Neumann
problems with a homogeneous boundary condition, characterized by Z—u = 0. For instance, Lin et al. [27] established the

existence of least energy solutions for the sub-critical case, while Adirnnurthi and Yadava [3] investigated the existence
results for the critical case. For more details, see [2,22,33,39-41], and references therein.

We now redirect our attention to the consideration of nonhomogeneous boundary conditions. In higher dimensions, for
a bounded domain in RN (N > 3), Adimurthi and Yadava in [5] established the existence of solutions for the Neumann
problem with critical nonlinearity on the boundary. Additionally, Pierotti and Terracini [33] studied the problem with
critical nonlinearity both in the equation and in the nonlinear boundary condition. With the help of the mean curvature of
8Q along with some geometrical condition, they obtained the existence of solutions on a bounded domain Q c RN, where
(N > 4). Adimurthi and Yadava [4] studied these class of problems in N = 2 with exponential critical growth in both the
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equation and in the nonlinear boundary condition, and established the existence of positive solutions by concentrating the
Moser’s function (2.1) at a boundary point. Also see, [15,28,35] for more such results and their subsequent generalizations.

We elaborate more on problems for N = 2 case, where the nonlinearity has an exponential critical growth. It is well
known by now that in this case the critical growth is governed by the Trudinger-Moser inequality, which states that if
Q is a bounded domain in R? then for all « > 0 and u € Hé(Q), we have e?’ € LY(Q). Moreover, there exists a positive
constant C such that the following inequality holds:

sup / el gx < ClQ|, ifa<4r
IVull=1 Jq

where |Q| denotes the Lebesgue measure of Q. This inequality is optimal, in the sense that for any growth el with
a > 47 the corresponding supremum is infinite. For further details, refer to [29,37]. Numerous papers have been devoted
to the study of elliptic problems involving exponential-type nonlinearities, which draw motivation from the Trudinger-
Moser inequality. For more comprehensive information on these topics, refer to [1,4,16-18,34] and for work on whole space
R?, refer to [8, 14], alongside other relevant references.

On the other hand, the study of existence results for Choquard-type equations has attracted a lot of attention in recent
years due to its applications in the study of models in quantum mechanics, Bose-Einstein condensation, and nonlin-
ear optics. This type of problem has numerous applications in physical models. In particular, one of the applications of
Choquard equations was given by Pekar [32]. He proposed the following problem:

2
|Z Ey)2| dy fuin R3 1.3)

—Au+V(xX)u =
/

for the modeling of quantum polaron. Lieb [23] investigated it in the context of an approximation to the Hartree—-Fock
theory of one-component plasma. The author proved the existence and uniqueness of Equation (1.3), up to translations,
of the ground state. For a thorough overview of the subject, readers can refer to [6,11,19-21,30,36,38,42,43], and references
therein. For the study of Choquard nonlinearity with the Trudinger-Moser inequality in the entire domain R", one can
see [7,9,10].

An important question arises in two-dimensional setting ($N=2$) for Choquard nonlinearity with Neumann boundary
conditions. As the critical growth of the nonlinearity in this case is exponential arising from the Trudinger-Moser inequal-
ity, which adds to its significance. However, there is no research addressing the Neumann problem with critical Choquard
nonlinearity.

In this paper, we aim to contribute to the existing literature by investigating the problems with critical Choquard-type
nonlinearities, both in the equation and the nonlinear boundary condition. Specifically, following the approach in [4],
we establish the existence of positive solutions to this class of problems. To the best of our knowledge, this is the first
article to address the existence of a solution for the nonhomogeneous Neumann problem featuring a doubly critical expo-
nential convolution nonlinearity both within the equation and at the boundary. The main contribution of this study is
the identification of the first critical level below which the Palais-Smale sequences are compact. Due to the presence of
convolution-type nonlinearities in the domain and on the boundary, we found that these levels depend on y;. Then, we
use a sequence of Moser functions concentrating on the boundary to perform the blow-up analysis while proving the exis-
tence of min-max sequences below the threshold level. Finally, with the help of the Nehari constraint minimization we
establish the existence result.

We now state our main result:

Theorem 1.1. Let (f, g) be a function of critical growth on (Q, dQ) and the operator —A + a(x) is positive. Further assume
that
(i) lim inf h(x,t)t = lim inf k(y, )t = oo

=00, q t—00 yedQ)

(i) f'(x,0)=g'(y,0) =0, forall (x,y) € Q x3Q.

Then, problem (P) has a positive solution.
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Solutions of (P) correspond to critical points in H'(Q) of the energy functional J : H'(Q) — R defined as
2 B F(x,w)F(y,u)
J(w) = /qul +a(x)u’dx+ = > / // Xy dxdy
axQ
(1.4)
G
L] S0 o,
S lx =yl
6Q><BQ
Observe that the functional J € C!, that is, for any ¢ € H'(Q)
F 9 9
(I'(w),¢) = / VuVe¢dx + / a(x)ug dx +,B/u¢ do — // Sl r;zji();|/1;tl)¢(X) dxdy
Q Q 30 axQ

(L5)

3 // GO, wslx, o) , .

|x — y|r
0QxaQ

A standard methodology to obtain solutions using variational techniques consists of looking for minimizers of the
functional. We employ the technique of the artificial constraint introduced by Nehari [31]. The main idea of the proof is
as follows. Define

0B(Q) = {u € H'(Q)\{0} : (J'(w),u) =0}, (1.6)

a(Q)?

= inf{J(u) : u € IBQ)}, 1.7)

then the minimizer of Equation (1.7) is a solution to the problem (P). Now by considering the optimal constant from Cher-
rier’s work [12,13] and by considering the convolution exponential nonlinearity both in the equation and the boundary, one
expects that J satisfies the Palais-Smale condition within within certain range, which is (—oo, min { %, % } )

2 — —
Therefore, the main objective is to prove that Y < min { (Sl Vi i

B 0 }, to obtain a minimizer of Equation (1.7).

Remark 1.1. The conclusions of the paper can be generalized to establish the existence of positive weak solution for the
following N-Laplacian problem with the co-normal boundary condition

F(y,u)
N-2,, _
Ayu + a(x)|ul¥ *u = /Ix N dy |f(x,u), in Q

G(y,u)

[x — y|#
aQ

V|V~ Z‘Zn T BlulN2u dv lgCe.u) on 90,

where Ay = V- (|Vu|N=2Vu), u; € (0,N), i, € (0,N — 1), Q is a smooth bounded domain of RN with N > 2 and f and

ghasagrowthe " " ast — co.
Throughout the paper, we make use of the following notations:

+ Forany u € H'(Q), we set

IF@llog 1= // HEO Y dxdy, 16z = [ LI dod.

Cx -yl Clx =yl
a0Ox3Q

* the letters C, C; denote various positive constants possibly different in various places.
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The paper is organized as follows. In Section 2, we recall some definitions and provide some technical lemmas that will
help prove our Theorem 1.1. In Section 1.1, we prove the main result of the paper.

2 | PRELIMINARIES

In this section, we will first recall some results that are required to establish the variational framework of the problem (P).
Afterward, we will establish some essential lemmas.
Consider the functional space H'(Q) as the usual Sobolev space defined as

HY (Q)=3ueLl*Q): /|Vu|2dx<oo ,
Q

and

||u||2=/|Vu|2dx+/a(x)u2dx+6/u2da
) o 50

defines an equivalent norm on H'(Q). Thus, Equation (1.4) becomes

lul?>  IF@Ioa  16@llosa
2 2 2 )

J(u) =

The functions f € Cl(ﬁ x R,R) and g € C1(dQ x R, R), we assume that f(x,t) =0 for t <0 and g(x,t) =0 for t < 0.
The functions f and g are said to be functions of critical growth on Q and 0, respectively, if it satisfies the following
hypotheses forall x € Q and y € 0Q:

(hy) f(x,t)>0andg(y,t) > 0forallt> 0;
(hy) f'(x,0)t > f(x,t),and g'(y, )t > g(y,t) forall t > 0;
(h3) There exists constant M > 0 such that F(x,t) < M(1 + f(x,t)),and G(y,t) < M(1 + g(y,1));

There exists functions h € cl(ﬁ x R,R), k € C'(dQ x R, R) and positive constants b, 8 such that for all (x,t) € Qx R,
y,t) e xR

(hy) f(x,0) = h(x, e, g.0) = k(x, 07
) lim sup h(x,t)e " =0, lim sup k(y,t)e " = 0;
(hs) li h(x,t)e™ li k(y, t)e~¢t
t—o00 xeﬁ o0 yeaQ

(hg) lim inf h(x, )€’ = oo, lim inf k(y,0)e’ = oo,
t—o00 xea t—00 yeoQ

t
where }}/ denotes the derivative with respect to t and (F(x, t), G(y, 1)) = [(f(x, ), g(y, s))ds. The class of functions which
0
satisfies assumptions (h;) — (hg) is quite big. For example (f(t), g(t)) = g1 (gbt*+ert® e +ert?
0<a,p<2.

), where m, ¢y, ¢, > 0 and

Remark 2.1. From (h,) we can deduce that for any ¢ > 0, 2F(x, t) < f(x,t)t and 2G(y,t) < g(y, t)t.

For any u € H'(Q), by Sobolev embedding we get that u € LI(Q) for all g € [1, c0). As a result, we get F(x,u) € LI(Q)
for all g > 1. Furthermore, from the classical Sobolev trace embedding of Trudinger-Moser, H'(Q) < LI(6Q) holds for
all g € [1, o0) and thus G(x,u) € L9(3Q) for all g > 1.
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Proposition 2.1 (Hardy-Littlewood—Sobolev inequality). Let t, ¥ > 1and 0 < u < N with % + % +1= 2, f € L'(RV)and
r
h € L' (RN). Then, there exists a sharp constant C(t,r, u, N) independent of f, h such that

/ fGoOh(»)

x— I dxdy < C(t,r, &, NI f Il ey 21l r v

R2N

In particular, the above proposition holds true for N = 2. By taking t =r = ﬁ, where u; € (0,2) and using Sobolev
M1
embedding we see that

ACINIC)
/ mdxdysc(m)llfll2 . - Q1)

=
oxQ L@

Moreover, it is easy to see that Proposition 2.1 remains valid when we are considering boundary conditions dQ C R. For
Uy €(0,1), f € L'(3Q) and h € L'(3Q), the following holds:

/ F(X)h(y)
| — y|
0Qx0Q

dodv < C(t, 1, i) f o 1Pl ra0)-

By taking t =r = ZL and using the Sobolev trace embedding, we get inequality similar to Equation (2.1). Hence, the
—H

functional J(u) is wellz-defined.

Definition 2.1 (Moser functions). Lety € QandR < d(y, 9Q), where d denotes the distance from y to Q. For0 < [l < R,
define

( 1/2
(10g(113)> if 0<|x—y| <!

R
1
og( = )

| )

if I<|x—y| <R

0 if R<|x—yl.

With the help of the Moser functions, we can obtain the following lemma.

Lemma 2.1 [4, Lemma 3.3]. Let dQ is C'" manifold. For every x, € 0Q, we can find a L > 0 such that foreach 0 < [ < L
there exists a function w; € H'(Q) satisfying

(i) w; >0, suppw; C B(xp, L) N €,
@) llwll =1 B
(iii) forall x € B(xy,1) N Q,w; is constant and
wA(x) = = log = +0(1) as 1 0,
T l
where B(xy,L) = {x € R? : |x — xy| <L}
From [4, Lemmas 3.1, 4.2, and 3.2], we have the following result.

Lemma 2.2. Letu € H'(Q)

@) e’ e LP(Q) and = LP(6Q), forany p < o

(ii) sup{ ¢ : sup [ fCx,cuu(x)dx < oo p =sup< ¢ : sup [ el dx < 00 p = n
lull<1 O lul<10 b
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(iii) sup4 ¢®: sup [/ g(x,cu)u(x)dx <oo p =supq c?: sup [ M dx < 00 b = L.
lull<1 60 lull<1 60 6
For the proof of our Theorem 1.1, we need the result similar to Lemma 2.2.
Lemma 2.3. Foranyu € HY(Q)
bczuz(y)ebczuz(x) (4 - ,u1)7r
(i) su c2: su e—dxdy <00 p=——";
b i 94/9 =yl 2b
0c2u?(y) ,0c2u?(x) 2 —
(ii) sups ¢*: sup ff e dodv <o b = M
lul<t soxan XV 20
Proof. (i) Employing Lemma 2.2(i) and Hardy-Littlewood-Sobolev inequality, we have
m
bczuz(y) be?u?(x) 4bc?u?(x) 2
4—
// — oy ey <€) /e - dx
QxQ Q
" e o (a7 ebcPu? () gbeu’(x) S
From Lemma 2.2(ii), we get that if ¢* < — then sup // ST dxdy < oo, which implies that
x=y

[lull <1 axQ

bc uz(y) be2u?(x) (4 —u )71'
sup{c? : su // dxdy < oo § > — 177
P9 al ) iy Y 2b

Assume that

bc2u2(y) be2u?(x) (4 —u )7-[
sup<c? : su // dxdy < 0§ > — 17
2 R =yl Y 2b

(4— #1)”

Let ¢ > 0 be such that for ¢* = (1 + ¢)——=, we have a constant C; such that

bczuz(y) be2u?(x)
su dxdy = C;.
||u||£)1 ..// o x—ylm y=m

In addition, from [7, Equation (2.11)], it is easy to get that, for some positive constant C(u;)

dxdy _ C(u)
|x — y|.u1 = A

[BCxo.D]”

Recall function wy, defined in Lemma 2.1, we get

bczwz(y) bczwz(x)
—  dxd
// Tyl O

[B(xo,DNQT

REEDICEpLE
x —ylm yI*‘1

B(XO l)ﬂQ]

> C(u)l~¢H)E 5 0 asl — 0,
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ebe uz(y) be?u?(x) (4 — )
supsc? @ su // dxdy < cop = ———
o X =yl Y 2b
(ii) From Lemma 2.2(i) and Hardy-Littlewood-Sobolev inequality, we have
22—y
Gczuz(y) 8cu?(x) 20c2u?(x)
2—
// TR ——dodv < C(u,) /e W do
80x0Q 8Q
Now proceeding with the same analysis as in (i), and utilizing Lemma 2.2(iii) and the following inequality:
dody S C(us)
Xyl = P
[B(xo,)n3Q]
we can obtain the desired equality. O
Let us define
F(y, F G(, G(x,
20(w) = // O, wWf (x, wulx) — F(x, u)] dxdy + // (O, wIglx, wWu(x) — G(x,u)] dodv. 22)

|x — y|m
QxQ 8Ox0Q

|x — y|*2

Lemma 2.4. Let (f, g) be a function of critical growth on (Q,0Q). Then, we have
(i) Ifu € H'(Q), then f(x,u) € LP(Q) and g(x,u) € LP(3Q) forall p > 0;
(ii)) Foru € H'(Q)

sup{c? : sup
lull<1
OxQ

F(y, cn)f (x, cupu(x) G-
// |x —yllul dxdy <00gp= T

G(y, , 2—
supqc® @ sup // O c)glx, cuut) dodv < oo = 2 pa)m ,u2)7r;
flull<1 [x — y|#2 26
0QxaQ

(iii) Let{u,}and {v,} be bounded sequences, converging weakly in H'(Q) and for almost every x in Q to u and v, respectively.

Further, assume that

(4_#1)77.

Then for every l > 0,

. F(y, u,) f(X, 1, 05 (x) _ [ FO,wf 0w (x)
e // u,(xX)|x — y|# dudy = // u(x)|x — y|#4 dxdy
QxQ QxQ

(iv) Let{u,}and{v,}bebounded sequences, converging weakly in H'(Q) and for almost every x in dQ to u and v, respectively.

Further, assume that

2- /12)71'.

sup |lu,||> <
np n 26
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Then for every | > 0,
G(y, ,Up)V; : L'
i [ SO o, ] SO0
n—oo U, (X)|x — y|#2 u(x)[x — y|#
aOxoQ 0Qx3Q

(v) Let {u,} be a sequence in H'(Q) converging weakly and for almost every x in Q to u such that

sup [ QS Ctin®) g,
" QxQ

|x — y[#
then

lim [|F(un)llo,0 = IF@)llo,03
n—oo

(vi) Let {u,} be a sequence in H'(Q) converging weakly and for almost every y in dQ to u such that

up [[ SOOI

|x — y|#

0Qx0Q

then

lim 16@llosa = 16@loz0;

(vii) Let I(u) be as defined in Equation (2.2). For all u € HY(Q), I(u) > 0 and I(u) =0 <= u = 0. Further, for all u €
HY(Q)

[x —y|# |x — y|#

// F(y,uw)f(x,wu(x) dxdy + // G(y, u)g(x, uu(x) dodv < 4I(w).
axQ

00Qx3Q

Proof. (i) The proof follows directly from the assumption (h5) and Lemma 2.2(i).
(ii) From Remark 2.1 and assumptions (h,) and (hs), we infer that there exists a constant C;(¢) > 0 such that

2F(x, 1) < f(x, 0t < Cy(e)eb1+1?, (2.3)

Employing the Hardy-Littlewood—-Sobolev inequality and Equation (2.3), we obtain that

// P, )G ) 44y < culFGrewll o 1f G cwull s

|x —yl# LM L*H

QxQ
— (24)

4b(1+6)02u2
< C(m,©) / e m dx

Q

From Lemmas 2.2 (ii) and (2.4), we get that if ¢ > 0 such that

4—u)m

2
(1+¢e)k*< T

then

flufl<1 |x =yl

sup // FQ, c)f (x, cupulx) dxdy < co.
OxQ
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On the other hand, from the assumption (hg), for |¢| large there exist positive constants C,(¢), C3(€) such that

fx,£) > Cy(e)eb@-or*
and
F(x,t) > C3(e)eb(1—e)t2.

Hence, if ¢ > 0 such that

llull<1 |x =yl

sup // F(y,cu)f(x, cu)u(x) dxdy < oo,
axQ

then it implies from Equations (2.5) and (2.6), that for every € > 0

eb(l—e)czuz(y)eb(l—e)czuz(x)
sup // dxdy < oo.
lull<1 |x = y[

Therefore, from Lemma 2.3, we have

1—-e)c?< %

Thus, we get the desired equality

F(y,cu) f(x, cu)u(x) 4— )
sup{c? : su // dxdy <cop=-—""",
P ||u||£1 [x — y|# Y 2b
axQ

Proceeding in similar manner, we can also deduce

G(y, , 2—
supdc? : sup // (y, cu)g(x, cuyu(x) dody < oot = ( ,u2)7'[.
llull<1 |x =yt 26
aQx3Q

(iii) Given that |[u,||> < %

, we deduce from Lemma 2.2(ii) using Remark 2.1

sup [F(x, up)ll s < oo,
n

L4

moreover, we can choose a p > 1 such that

sup [l f(x, up)ll _4p < 0.
n L4—H1

Let i + ; =1 and {v,,} be a bounded sequence, then for every [ > 0

sup [lvhll 4 < oo.
n 4

LA H1
Forany N > 0
// F(y, un) f (X, )0y (%) dxdy = // F(y, un) f (x, w0y (x) dxdy
up(X)|x — y|* up(X)|x — y|#
QxQ [up (X)IEN, Jupy(MISN
! !
N FQ, u,)f (6, un)vp(X) dy + // F(y, un) f (X, uy v, (%)
up(X)|x — y|* up(X)|x — y|#

[t (X) [N, |Jup, ()I>N [t (X)|>N,y€Q

dxdy

(2.5)

(2.6)

2.7)

(2.8)

(2.9

(2.10)
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First, let us consider the case when {(x,y) : |u,(x)| > N, y € Q}. By employing Hardy-Littlewood-Sobolev inequality,
Holder’s inequality, Equations (2.7)-(2.9), we get

F(y, up) f(x, u vk (x) (u )

. nn dxdy < —2 sup [FQnunll s _If(x, u, ok ||
U, (X)|x — y|™ =
|un(-x)|>N’yeQ
(/«t) (211)

< — sup [If . un)n _ap_sup|[Uhll s
4-p1  n L4

< C(M1)'

- N

Next, we consider the case when {(x,y) : |u,(x)] <N, |u,(¥)| > N}. Using Remark 2.1, Hardy-Littlewood-Sobolev
inequality, Holder’s inequality, Equations (2.8) and (2.9), we get

F(, un)f (X, )0y (%)

dxdy
up(x)|x =yl

[t (X)| SN, |Ju, ()I>N

1 SO uDua)f (x, u v (x)
<= dxdy
2N U, (x)|x — y|#
[un(X)I<N, [u, (V>N (2.12)

(u) £, !
! sup||f(y,un>u I sup | == .
L4 #1 1, (X)| <N Un L4m

C(#l).

<
- N

Hence, putting together Equations (2.11) and (2.12) in Equation (2.10), and applying the dominated convergence theorem
by taking n — o0 and N — oo, we obtain the desired equality

. F(y, up,) f (e, )0k (x) I Fo,wf(x, vl (x)
35%9//0 O~y X ‘Q//Q uCox —ypa X

(iv) The desired equality is obtained by following similar reasoning as in (iii).
(v) Forany N > 0

F(y,u,)F(x,u,) “// F(y,u,)F(x,u,)
// Cox—ym dxdy = |x — y|# dxdy
QxQ [up (O)ISN, |u, (»)ISN

FO, w)F(x, ) F, u,)F(x, )
2 —  “dxd — “dxd
* -y T x—yp Y

|u, ()|>N, [u,(Y)|ISN |u, CO)I>N,|u,(»)|>N

(2.13)

As sup [ W dxdy < oo, from (ii) we have |lu,|> < (4_2’; VT This consequently leads to Equation (2.7).
n oxQ Yy

Now, let us consider the case when {(x,y) : |u,(x)| > N, |u,(y)| < N}. From the assumption (h3), Hardy-Littlewood-
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Sobolev inequality and Equation (2.7), we have
F(y, un)F(x,u,)
2 S ol S B 1 4
x— [ dxdy
[y (D)I>N, [u,(MI<N
M FO () + FO, u)f (6, )un ()
=N =yl
|a()[>N, [ (NN (2.14)
2M
< S IFGLu)ll s supllugl o + 0< )
n L4#M n L4K1
< C(/«‘l).
- N
By following similar argument for the case {(x,y) : |u,(x)| > N, |u,(y)| > N}, we get
FO,u)FGou) (1

[, ()I>N, |u, V) |>N

Hence, putting together Equations (2.14) and (2.15) in Equation (2.13), and applying the dominated convergence theorem

by taking n - oo and N — oo, we obtain the desired equality

lim [|F(un)lloo = IF@llo0
n—oo

(vi) The desired equality is obtained by following similar reasoning as in (v). (vii) Using the assumption (h;) — (h,) and

Remark 2.1, fort > 0

i (F(y, tw)(f (x, tu)tu — F(x, tu)) )
ot

|x —y|#

_ fO, tuf (x, twtux) = F(x, tw)] + F(y, tu) f7 Cx, tu)iu(x)

|x —y|#

f (0, twu(y)F(x, tu) + F(y, tu) f(x, tu)u(x)
[x —y|#“

F(y,tu)(f (x,tu)tu—F(x,tu))

This implies for all ¢ > 0,
[x—y[H1

F(y, tu)(f(x, tu)tu — F(x, tu))
|x — ylr

and similarly

G(y, tu)(g(x, tu)tu — G(x, tu))
|x =yl

Therefore, I(u) > 0 for allu € H'(Q) and I(u) = 0 <= u = 0. Further, using Remark 2.1 we have

20(1) = // FOwlf G wul) = FOowl ooy // G, wlglx, wu(x) - Glx, W]

=1 ey
QxQ aOxoQ
> 1 // F(y,u)f(x, u)u(x) dxdy + 1 // GQy, wiglx, wpu(x) dodv.
2 |x_y|H1 2 |x_y|l12
QxQ aOxoQ

Hence, we obtain the desired inequality.

To obtain the compactness result, we require the following theorem by Lions [26] and [4, Lemma 3.5].

is an increasing function. Also, at t = 0, it is zero. Hence, for t > 0
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Lemma 2.5. Let {u,} be a bounded sequence in H*(Q) with ||u,|| = 1 converging weakly to a nonzero u € H'(Q). Then for
1
every p <

1—[ull?’

2 2
sup/eZ”P“n dx < o0, and sup/e”l’”n dx < .
n n
Q L)

3 | PROOF OF THEOREM 1.1

This section is devoted to the proof of Theorem 1.1. To obtain the existence of a positive solution, we deploy the Nehari
constraint method and prove that a(Q)? defined in Equation (1.7) is below the Palais-Smale condition. Subsequently, with
the Lions’ compactness lemma, we establish that the minimizer of a(Q)? is indeed the critical point of our functional J.

Lemma 3.1. Assume that

(i) lim inf h(x,t)t = lim inf k(y, )t = oo
e re) t—00 yedQ)

(i) f'(x,0)=g'(y,0) =0, forall (x,y) € Q x Q.

Then, 0 < a(Q)? < min { %, % }, where a(Q)? is as defined in Equation (1.7).

Proof. We divide the proof into the following steps:
Step 1: We prove that a(Q)? > 0.
Let us suppose that a(Q) = 0. Then, there exists a sequence {u,} € dB(Q) (as defined in Equation (1.6)) such that

I(u,) =J(u,) - 0 asn — oo, (3.1)

From Lemma 2.4(vii) and Equation (3.1), we obtain that

F(y, un)f (x, ty)up(x)
sgp [/ X — [ dxdy < oo, (3.2)
QxQ
G(y, u,)g(x, uy ), (X)
Slip // X =y dodv < o, (3.3)
0Qx0Q

which implies that sup ||u,||* < co. Thus, up to a subsequence there exists a function u € H'(Q) such that u, — u weakly
n
in H'(Q). By Fatou’s lemma and Equation (3.1)
0<I(u)< h_mn_)ool(un) =0.

Hence, from Lemma 2.4(vii), we get that u = 0. Given that we have Equations (3.2) and (3.3), we can consequently infer,
using Lemma 2.4 (v) and (vi) that

Tm flu, | = lim {2@,) + IF@)loq + 1G@)llosa} = 0. (3.4)

Un

llunll

allx € Qand y € 0Q.
With the help of Equation (3.4), we utilize Lemma 2.4(iii)and (iv) and since u,, € dB(Q), we get

2 2
- // FO ) O )0n () // GO U8, U R
QxQ aQxoQ

Letv, = and up to a subsequence there exists a function v € H(Q) such thatv,, — v weakly in H'(Q) and for almost

up(X)|x — y|# up(X)|x =y

which gives us a contradiction. Hence, a(Q) > 0.
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Step 2: We prove that a(Q)?> < min { %, % }

For any u € H'(Q)\{0} and y > 0, define

1 EQ, yw)f(x, ywu(x) Gy, ywg(x, yuju(x)
Y(y) := y // dxdy + // dodv

|x — y|# |x — y|re
QxQ 0OxaQ

AsF(y,t),G(y,t), @ and @ are all increasing functions with respect to t and remain positive for ¢t > 0, we observe
that

lim ¥(y) = co.

y—)OO

Further, by utilizing the hypothesis (ii), we deduce that lin(l) ¥(y) = 0. Thus, for any u € H'(Q)\{0}, there exists y > 0 such
y—)
that

llull® = ()

_ 1| [ FOywf e ywyulx) Gy, yw)g(x, ywlyu(x) (35)
=2 // dxdy + // dodv |,

|x — y|Hm |x — y|*2
QxQ aOxaQ

that is, yu € dB(Q). Moreover, through a contradictory argument, we establish that

if ||ull? < // Fl,wf(x, wu(x) dxdy + // Cly, welx, wu(x) dodv, theny <1. (3.6)

|x — y|* |x =yt
QxQ 0Ox0Q

Now, let w € H*(Q) with [|w|| = 1. Choose y > 0 corresponding to w such that Equations (3.5) and (3.6) hold. Since yw €
0B(Q), we have

a(Q)?
0< —— <J(w) < lywl? =y

Hence,

dody

FOy, a(@w)f(x, a(@u)w(x) 60y, a(@uw)g(x, aQw)w(x)
Q// a@uix—ypa W // A @w()x — I

0QxoQ

xQ
< // F(y,yw)f(x, yw)w?(x) dxdy + // G(y, yw)g(x, yw)w?(x) dody
yw(x)|x — y|# yw(x)|x — y|H
QxQ Q%0

= lwl* =1.

This implies, for any u € H(Q),

F(y, a(@u)f (x, a(Quu(x)
dxd ‘
IIilﬁgl // |x — y|# xdy < a(Q), (.7)
QxQ
and
G(y, a(Qu)g(x, a(@u)u(x)
dod . '
”?‘1'1'219[/9 |x — y|re odv < a(Q) (3.8)

Thus, combining Equations (3.7) and (3.8) with Lemma 2.4(ii), we obtain

A—u)r Q-
2b 26 )

a(Q)? < min {
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Step 3: We will prove that a(Q)?> < min { s

Let us suppose

(d—p)m Q—pm }

(4 —#1)”'

@y = —

Using Equation (3.7) and recalling the function w; defined in Lemma 2.1, we obtain § > 0 such that

a(Q) > [/ F(y, a(Quw)) f(x, a(Qw)w,(x)

X =yl doxdy

B(X() l)ﬁQ

// inf h(x, a(Q)wl)wl(x)eZba(mzwlz(x) dx
X
[B(xo.OnQ’

dxdy
lx =yl

= Cinf h(x, a(Q)wl(xo))wl(xo)e(4—ﬂ1)7rwf(xo) //
X

[B(xo.DNQJ"

>Céo igf h(x, a(Q)w;(xy))w(xg) » 0 as l — 0,

which is a contradiction. Hence, a(Q)? <

@. Similarly, by using Equation (3.8) and the same function w; we can show

that a(Q)? < @ ” 27T Indeed, let us suppose a(Q)? = (2_;; )7

bl

a(@=>C // inf k(x, a(Q)wl)wl(x)ezea(ﬂ)zwlz(x) do
X

[B(xo,DNAQ)

= Cinf k(x, a(Q)wl(xo))wl(xo)e(z_“Z)”wtz(XD) _dodv_ — ooasl—0.
x lx — y|#2
[B(xo,)noQ]”
2 . @—pDm C-p)m }
Hence, a(Q)* < min { > " w S O

%, % }] and {u,} be a bounded sequence in H'(Q) such that u,, = u weakly in

H'(Q) and for almost all x € Q and for almost all y € Q.

Lemma 3.2. Letc € [0, min{

@) lim J(u,) = ¢
n—oo
@) lull>> [ wdxdy b Gumsn) g,

OxQ —yIH soxaq Py
i) sup{  [] PO unf Ctntn@) gy 4 I GO gt un ) 5 -0 U
n | axo b=yl 30%3Q Px—yl

Then

n [[EQE 0 yy ] GO 4o,

[x — y[~ [x — y|+2
QxQ 0OxdQ
F
_ // O, u) f(x, wu(x) dxdy + // G(y,u)g(x, uu(x) dodv.
|x — y|m [x — y|H2
Q Qx40
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Proof. Since u,, — u, with u # 0, we use (ii) and Lemma 2.4 (vii), to establish J(u) > I(u) > 0. Furthermore, applying

Fatou’s lemma, J(u) < lim J(u,) = c. This leads to the existence of an € > 0 such that
n—oo

(1+e)(c—](u))<min{(4_’u1)ﬂ (Z_MZ)H} 1= J

4 7 46
LetK = ||[F(w)llo,q + IG(W)llp so- Then from (iii) and Lemma 2.4(v) and (vi), we have

Tim a1 = lim {27G) + IF @) llo.0 + 16l s0)

=2c+K.

Employing Equations (3.9) and (3.10) such that for large values of n

2(1+¢) 2 2c+K 1
llunll® < = G
é 2(c—J(w)) (1 1] )
2c+K
Now, choose p such that
21 +¢) 2 1
<p< —m——.
2c+K

Applying Lemma 2.5 to the sequence ”u”” and using Equation (3.11), we have

Up

2b5 p( un )2 05 p( un )2
sup/e“*“l lunll 7 dx < o0, and sup/eZ*/‘Z lunll 7 do < oo.
n n
Q E[o)

Hence, from Equations (3.11) and (3.12), we have

4b 20
(14€) —u? A+e)—u’
sup/e 4m "dx <oco, and sup [ e 2 "do< .
n n

Q 30
Let
b2 b2
M, := sup h(x,t)te 2 + sup k(x,t)te 2 ,
(x,H)EQXR (x,t)E0QXR
and for any N > 0, we have
F(y,u X, U, U, (x F(y,u X, Uy U, (x
0, un) f(x, w)u( )dxdy= 0, un) f (%, w)u( )dxdy
|x — y|# |x — y|#
axQ [t () |<N, |u,(0)ISN

+
|x =y~
[tn (X)|<N, [u, (V)|>N [t (X)|>N,y€Q

|x — y|m

FQy, un) f (6, up Ju () FQy, un) f (%, uy)u, (X)
dxdy + //

dxdy

3.9

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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First, let us consider the case when {(x,y) : |u,(x)| > N, y € Q}. By employing Hardy-Littlewood-Sobolev inequality,
Equations (3.13) and (2.3)

/ F(y,u,) f(x, uy)u,(x) dxdy

|x —y|#
[un(X)|>N.yeQ

2

—ebuy, (x)
“c —eI;NZ b+ p(x, u Ju, (x)e 2 eb(+un() e
ste |x — y|m xay (3.15)
[up(X)|>N,yeQ
=
—ebN2 _4b o 2 —ebN?
< CMe : /e(1+€)4—ﬂlu"(x) dx <Ce 2

Q

Next, we consider the case when {(x, y) : |u,(x)| < N, |u,(y)| > N}. From Remark 2.1 and Equation (2.3), we see that the
result follows by same analysis

F(y,u,) f(x, u,)uy(x) —ebN?
lx — y[# dxdy<Ce > . (3.16)

[, (X)| <N, Jup, (V) |I>N

Hence putting together Equations (3.15) and (3.16) in Equation (3.14), and applying the dominated convergence theorem
by taking n — oo and N — oo, we obtain the desired equality

lim // EQ, un)f 6 U Jun() dy = // FO.wfx,wux) dy.

[x — y[Hm |x — y|#
QxQ QxQ

By similar analysis, we get

[ OB gy, ] SO g,

n—oo |x—y|M2 |x—y|M2
0QxoQ 0QxoQ

This proves the lemma. Cl
Lemma 3.3. Let u, € 0B(Q) such that J'(uy) # 0. Then

T(up) > inf{J () : u € 9B(Q)} = a(Q)’

Proof. For a,t € R, define
my(a) = auy — tJ' (ug).
Then

lim i

—_nr 2
im =2 (my (o)) = — " (wo)ll” <.

We can choose €, > Osuch thatforalla € [1—¢,1+¢e¢]and0<t<§

T(my(@) < J(mo(a) = J(a). 3.17)
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Let

[x —y|#

(@) = M@ — // F(y, m(a)) f (x, my(a))m; (a)(x) dxdy

QxQ

odv.

N G(y, my(a))g(x, my(a))m;(a)(x) d
|x — y|+2
0Qx3Q
Since u € dB(Q), by decreasing € and & if necessary, we have for0 < t < &,

>0 ifa=1-¢;
Pt(“)z{

<0 ifa=1+ec¢.

Thus, there exists a; such that p,(a;) = 0 and hence m,(«;) € dB(Q). Using Equation (3.17) and analyzing py(ax) =
a (j—aj(ocuo)>, we get

inf{J(u) : u € dB(Q)} < J(my(a;)) < J(aug) < supJ(aug) = J(ug).
aeR

O

%,%}) and {u,} be a sequence in H'(Q) such that lim J(u,) =c,
n—o0

lim J'(u,) = 0. Then, {u,} has a convergent subsequence.
n—oo

Lemma 3.4. Let c € (—oo,min{

Proof. We claim that

. // FQ, un) f(x, up Jup (X) dxdy + // G un)g0x, Uy () o oL

[x — y[#m |x — |t
QxQ 0QxaQ

Indeed, from Equations (1.4) and (1.5), we get

luall?>  IF@llog  I1Gw)llose
F(, un) f(x, uy Jup (X) Gy, un)g(x, up u (X)
2 _ n n/“n _ n n/“n <
(M // P dxdy // P dody < e,lu,l, (3.19)
QxQ 0QxIQ

where €, — 0, as n —» oo. Now, from Remark 2.1, it is easy to see that

') tn) g2
4 - 47

€nllunll

C+ > J(u,) —

which implies that ||u, || is bounded. As a consequence, we have from Equations (3.18) and (3.19)

sup {[IF(un)llo.o + IG@llosa} < oo,
n

[x — y[" [x — y|H2

sup // FO ) O )n() // GO ungCr un ) |
aQxQ

0Qx9Q

Moreover, there exists a function u, € H'(RN) such thatu,, — u,, weakly in H'(R"), and for almostall x € Qand y € 9Q.
Hence, we have established the claim. Next, let us divide the proof into the following cases:
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Casel:c <0
Employing Lemma 2.4(vii) and Fatou’s lemma, we obtain

OSIWQSQQWWH%)=@%HmJ@ﬂ-%(WmJu@ =c<0.

Hence, when ¢ < 0, there exists no Palais—-Smale sequence, leading to the conclusion that ¢ =0, I(y,) = 0, and
consequently, u, = 0. Further, using Lemma 2.4(v) and (vi), we get

lim (|u,||* = lim {27 (u,) + [IF(u)lloq + IGWe)llosa ) = 2¢ = 0.
n—co n—co

This implies u,, — 0, strongly in H'(Q).
(d—pu)m Q—p)m
4 7 49
We claim that u # 0 and u, € dB(Q). Let if possible, u, = 0. Using Lemma 2.4(v) and (vi), we get

Casell.c e [0, min

lim lu, [I* = lim {27(u,) + IF(u)llo. + IG@)llos0 }
n—oo n—oo

@G—pur Q-
2b 7 20 )

:Zc<min{

Hence, from Lemma 2.4 iii) and (iv), we have

i | ] B ) g ] SOt g,

[x — y[" [x — y|+2
Qx Q) a0OxaQ

Thus, lim I(u,) = 0 and
n—oo

0 <c= lim J(u,) = lim [I(un) + 1(J’(un),un>] =0,
n—oo n—oo 2
which is a contradiction. Hence, u, # 0. For all h € C®(Q),
— i !
0= lim (/). ).

By density this property also extends to any u, € H'(Q),

lluoll? = // F(y, ug) f (X, ug)ug(x) dxdy + // G(y, ug)g(x, ug)ug(x) dody,

|x — y|# |x — y|*2
QxQ a0Ox3Q

which implies that u, € B(Q) and this proves the claim. Given that (u,, u,) fulfills all the hypothesis of Lemma 3.2, we
can conclude that

n—co [x — y[~ [x — y|+2

. FQy, un) f (x, uy)u, (X) G(y, un)g(x, up Jun(x)
lim dxdy + dodv

0QxaQ

|x — y|#m [x — y|+2

_ // F(y,ug) f(x, up)ug(x) dxdy + // G(y,up)g(x, up)ug(x) dodv.
QxQ

0Qx0Q
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Now to prove u,, — u, strongly in H'(Q), it suffices to show that ||u,|| — ||u]|. By Fatou’s lemma and the fact that u, €
0B(Q), we get

lall? < lim a2

= nh_)ngo{ZI(un) + ”F(un)HO,Q + ”G(un)HO,dQ + <J’(un)’ un)}

i [ O ) gy SO ) g,

n—oo |x—y|#1 |x—y|#2
QxQ 0Qx0Q

+ <Jl(un)a Up >}

= lluoll*.

This implies u,, — u, strongly in H!(Q). |

From Lemma 3.4, we have obtained the Palais-Smale condition. Since the critical points of the functional J correspond

2
to the solutions of (P). Thus, considering Lemmas 3.1 and 3.3, it suffices to prove that J(u,) = %
Lemma 3.5. Assume that
() lim inf h(x,t)t = lim inf k(y, )t = oo
t=00 g =00 yedQ
(i) f'(x,0)=¢g'(y,0) =0, forall (x,y) € QX 3Q,
then there exists u, € 0B(Q) such that
_a(@)?
J(uy) = >
Proof. Let {u,,} be any minimizing sequence in dB(Q) such that
Q 2
I(uy,) =J(u,) - a(z) asn — oo, (3.20)
From Lemma 2.4(vii) and Equation (3.20), we obtain that
F > ’ G bl >
up CATAVCATATICI B O, )80 )y ) G2
n lx — y[¥ lx — y|#2
QxQ 0Qx0Q

which implies that sup ||u,||?> < co. Thus, up to a subsequence there exists a function u, € H'(Q) such that u,, = u,
n

weakly in H!(Q). From Equation (3.21), we can consequently infer, using Lemma 2.4(v) and (vi) that
Tim IF@)lloq + lim [1G@)lloaa = IF@)loa + IG@)os0- (3.22)

We claim that u, #Z 0 and

|Iu0“2 < // F(y,uo)f(x, uO)uO(x) dxdy + // G(ya uo)g(x, uO)uO(x) dodv.

|x — y|#m [x — y|+2
QxQ Q%0
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Let us suppose, u, = 0. From Equations (3.20) and (3.22)
lim fluyll? = lim {27u,) + [IE@) o0 + 1600}

@G—pupr Q-
2b 26 )

=a(Q)? < min{

Consequently, from Lemma 2.4(iii) and (iv), we have

n—co |x —y|H |x — y|*2

. F(y,u,) f(x, uy)u,(x) G(y, u,)g(x, uy)u, (x)
lim dxdy + dodv ¢ =0,
/ J

0Qx0Q

which further implies that

a(Q)?

0<
2

= lim J(u,) = lim I(u,) =0,
n—oo n—oo
which is a contradiction. Hence, u # 0. Now suppose that

||u0||2> // F(y,up)f(x, up)ug(x) dxdy + // G(y,up)g(x, up)ug(x) dodv.

|x — y|#m |x — y|r
QxQ 0Qx3Q

Since all the hypotheses of Lemma 3.2 hold, we have

llupll® < Him _ llu,ll®

—n—

— o [x — y[~ [x — y|+2

. FQy, un) f (¢, up)up (X) G(y, un)g(x, up)un(x)
=lim dxdy + dodv

0QxoQ

[x — y[~ |x — y[*2

_ // F(y,up) f(x, up)ug(x) dxdy + // G(y,up)g(x, up)ug(x) dody
QxQ

0Qx0Q
which is a contradiction. This proves the claim. Similar to Lemma 3.1, we construct ¥(y)

W) = % // EQ.ywf G ywulx) dy + // GO, ywglx, ywulx) , .

|x =yl |x — y|re
QxQ 0Qxa0Q

Thus for u, # 0, there exists y > 0 such that W(y) = ||u,|?, consequently implying that yu, € dB(Q). Moreover, from the
previous claim and Equation (3.6), we deduce that 0 < y < 1. Hence,

2 2
WO < 1) = Iyuo) < 1ug) <lim__1at,) =lim () = X2,
2
which implies y = 1. Thus, uy € 0B(Q), and J(uy) = “9" This concludes the proof of the lemma. O

Proof of Theorem 1.1: From Lemmas 3.3 and 3.5, we conclude that u, is a critical point of the functional J and
since J(u) = J(|ul), this implies u, > 0. Hence, u is anonnegative solution of (P). From regularity theory and the strong
maximum principle, it follows that u, € H*(Q) N C(Q) and u, > 0 in Q. This concludes the theorem’s proof.
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