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Abstract
We study the existence of positive weak solutions for the following problem:

−Δ𝑢 + 𝛼(𝑥)𝑢 =

⎛⎜⎜⎝∫Ω
𝐹(𝑦, 𝑢)|𝑥 − 𝑦|𝜇1 𝑑𝑦⎞⎟⎟⎠𝑓(𝑥, 𝑢) in Ω,

𝜕𝑢

𝜕𝜂
+ 𝛽𝑢 =

⎛⎜⎜⎝∫𝜕Ω
𝐺(𝑦, 𝑢)|𝑥 − 𝑦|𝜇2 𝑑𝜈⎞⎟⎟⎠𝑔(𝑥, 𝑢) on 𝜕Ω,

where Ω is a bounded domain in ℝ2 with smooth boundary, 𝛼(𝑥) is a bounded
measurable function on Ω, 𝛽 is nonnegative real number, 𝜂 is the unit outer
normal to 𝜕Ω, 𝜇1 ∈ (0, 2), and 𝜇2 ∈ (0, 1). The functions 𝑓 and 𝑔 have critical
exponential growth, while 𝐹 and 𝐺 are their primitives. The proofs combine the
constrained minimization method with energy methods and topological tools.
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1 INTRODUCTION

The purpose of this paper is to study a class of Neumann problems involving Choquard-type critical growth exponential
nonlinearities. We consider the following problem:

(𝑃)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−Δ𝑢 + 𝛼(𝑥)𝑢 =

⎛⎜⎜⎝∫Ω
𝐹(𝑦, 𝑢)|𝑥 − 𝑦|𝜇1 𝑑𝑦⎞⎟⎟⎠𝑓(𝑥, 𝑢), in Ω,

𝜕𝑢

𝜕𝜂
+ 𝛽𝑢 =

⎛⎜⎜⎝∫𝜕Ω
𝐺(𝑦, 𝑢)|𝑥 − 𝑦|𝜇2 𝑑𝜈⎞⎟⎟⎠𝑔(𝑥, 𝑢) on 𝜕Ω,

where Ω is a bounded domain of ℝ2 having a smooth boundary, 𝛼(𝑥) is a bounded measurable function on Ω, 𝛽 ≥ 0

is a real number, 𝜇1 ∈ (0, 2), 𝜇2 ∈ (0, 1) and 𝜂 denotes the unit outer normal to 𝜕Ω. Here, the functions 𝑓 and 𝑔 have

exponential critical growth inΩ and 𝜕Ω respectively and 𝐹(𝑥, 𝑡) =
𝑡∫
0

𝑓(𝑥, 𝑠)𝑑𝑠 and 𝐺(𝑥, 𝑡) =
𝑡∫
0

𝑔(𝑥, 𝑠)𝑑𝑠 are the primitive

of 𝑓 and 𝑔, respectively. The main interest in studying this kind of problem is the presence of critical exponents both in
the equation and in the nonlinear boundary condition.
A central role in the analysis developed in this paper is played by the fractional integral

(𝑇𝜇𝜙)(𝑥) = ∫
ℝ𝑁

𝜙(𝑦)|𝑥 − 𝑦|𝜇 𝑑𝑦, 0 < 𝜇 < 𝑁.

Weighted 𝐿𝑝 estimates for 𝑇𝜇 is a fundamental problem of harmonic analysis, with a wide range of applications. Starting
from the classical one-dimensional case studied by Hardy and Littlewood, an exhaustive analysis has been made on the
admissible classes of weights and ranges of indices. An important contribution is due to Lieb [24], who applied the Riesz
rearrangement inequalities to prove that the best constant for the classical Hardy–Littlewood–Sobolev inequality can be
achieved by some extremals. Lieb also classified the solutions of the integral equation

𝑢(𝑥) = ∫
ℝ𝑁

𝑢(𝑦)
𝑁+𝜇

𝑁−𝜇|𝑥 − 𝑦|𝑁−𝜏 𝑑𝑦, 𝑥 ∈ ℝ𝑁 (1.1)

as an open problem. In fact, Equation (1.1) arises as an Euler–Lagrange equation for a functional under a constraint in
the context of the Hardy–Littlewood–Sobolev inequality and is closely related to the following Lane–Emden fractional
equation:

(−Δ)
𝜏

2 𝑢 = 𝑢
𝑁+𝜇

𝑁−𝜇 , 𝑥 ∈ ℝ𝑁. (1.2)

This area of study has been a focal point for decades, resulting in a substantial body of literature addressing problems with
both sub-critical and critical nonlinearities.
Various aspects of these problems have been explored, including existence, uniqueness, regularity of solutions, quali-

tative behavior, and applications in physics. Among these studies, considerable attention has been given to the Neumann
problems with a homogeneous boundary condition, characterized by 𝜕𝑢

𝜕𝜂
= 0. For instance, Lin et al. [27] established the

existence of least energy solutions for the sub-critical case, while Adimurthi and Yadava [3] investigated the existence
results for the critical case. For more details, see [2,22,33,39-41], and references therein.
We now redirect our attention to the consideration of nonhomogeneous boundary conditions. In higher dimensions, for

a bounded domain in ℝ𝑁 (𝑁 ≥ 3), Adimurthi and Yadava in [5] established the existence of solutions for the Neumann
problem with critical nonlinearity on the boundary. Additionally, Pierotti and Terracini [33] studied the problem with
critical nonlinearity both in the equation and in the nonlinear boundary condition.With the help of themean curvature of
𝜕Ω along with some geometrical condition, they obtained the existence of solutions on a bounded domainΩ ⊂ ℝ𝑁 , where
(𝑁 ≥ 4). Adimurthi and Yadava [4] studied these class of problems in 𝑁 = 2 with exponential critical growth in both the
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equation and in the nonlinear boundary condition, and established the existence of positive solutions by concentrating the
Moser’s function (2.1) at a boundary point. Also see, [15,28,35] for more such results and their subsequent generalizations.
We elaborate more on problems for 𝑁 = 2 case, where the nonlinearity has an exponential critical growth. It is well

known by now that in this case the critical growth is governed by the Trudinger–Moser inequality, which states that if
Ω is a bounded domain in ℝ2 then for all 𝛼 > 0 and 𝑢 ∈ 𝐻1

0
(Ω), we have e𝛼𝑢2 ∈ 𝐿1(Ω). Moreover, there exists a positive

constant 𝐶 such that the following inequality holds:

sup‖∇𝑢‖2=1 ∫
Ω

e𝛼|𝑢|2 𝑑𝑥 ≤ 𝐶|Ω|, if 𝛼 ≤ 4𝜋

where |Ω| denotes the Lebesgue measure of Ω. This inequality is optimal, in the sense that for any growth e𝛼|𝑢|2 with
𝛼 > 4𝜋 the corresponding supremum is infinite. For further details, refer to [29,37]. Numerous papers have been devoted
to the study of elliptic problems involving exponential-type nonlinearities, which draw motivation from the Trudinger–
Moser inequality. Formore comprehensive information on these topics, refer to [1,4,16-18,34] and for work onwhole space
ℝ2, refer to [8, 14], alongside other relevant references.
On the other hand, the study of existence results for Choquard-type equations has attracted a lot of attention in recent

years due to its applications in the study of models in quantum mechanics, Bose–Einstein condensation, and nonlin-
ear optics. This type of problem has numerous applications in physical models. In particular, one of the applications of
Choquard equations was given by Pekar [32]. He proposed the following problem:

−Δ𝑢 + 𝑉(𝑥)𝑢 =

⎛⎜⎜⎝ ∫ℝ3
𝑢2(𝑦)|𝑥 − 𝑦| 𝑑𝑦⎞⎟⎟⎠𝑢 in ℝ3 (1.3)

for the modeling of quantum polaron. Lieb [23] investigated it in the context of an approximation to the Hartree–Fock
theory of one-component plasma. The author proved the existence and uniqueness of Equation (1.3), up to translations,
of the ground state. For a thorough overview of the subject, readers can refer to [6,11,19-21,30,36,38,42,43], and references
therein. For the study of Choquard nonlinearity with the Trudinger-Moser inequality in the entire domain ℝ𝑁 , one can
see [7, 9, 10].
An important question arises in two-dimensional setting ($N=2$) for Choquard nonlinearity with Neumann boundary

conditions. As the critical growth of the nonlinearity in this case is exponential arising from the Trudinger-Moser inequal-
ity, which adds to its significance. However, there is no research addressing the Neumann problemwith critical Choquard
nonlinearity.
In this paper, we aim to contribute to the existing literature by investigating the problems with critical Choquard-type

nonlinearities, both in the equation and the nonlinear boundary condition. Specifically, following the approach in [4],
we establish the existence of positive solutions to this class of problems. To the best of our knowledge, this is the first
article to address the existence of a solution for the nonhomogeneous Neumann problem featuring a doubly critical expo-
nential convolution nonlinearity both within the equation and at the boundary. The main contribution of this study is
the identification of the first critical level below which the Palais–Smale sequences are compact. Due to the presence of
convolution-type nonlinearities in the domain and on the boundary, we found that these levels depend on 𝜇𝑖 . Then, we
use a sequence of Moser functions concentrating on the boundary to perform the blow-up analysis while proving the exis-
tence of min–max sequences below the threshold level. Finally, with the help of the Nehari constraint minimization we
establish the existence result.
We now state our main result:

Theorem 1.1. Let (𝑓, 𝑔) be a function of critical growth on (Ω, 𝜕Ω) and the operator −Δ + 𝛼(𝑥) is positive. Further assume
that

(i) lim
𝑡→∞

inf
𝑥∈Ω

ℎ(𝑥, 𝑡)𝑡 = lim
𝑡→∞

inf
𝑦∈𝜕Ω

𝑘(𝑦, 𝑡)𝑡 = ∞

(ii) 𝑓′(𝑥, 0) = 𝑔′(𝑦, 0) = 0, for all (𝑥, 𝑦) ∈ Ω × 𝜕Ω.

Then, problem (𝑃) has a positive solution.
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Solutions of (𝑃) correspond to critical points in𝐻1(Ω) of the energy functional 𝐽 ∶ 𝐻1(Ω) → ℝ defined as

𝐽(𝑢) =
1

2 ∫
Ω

|∇𝑢|2 + 𝛼(𝑥)𝑢2 𝑑𝑥 + 𝛽

2 ∫
𝜕Ω

𝑢2 𝑑𝜎 −
1

2 ∬
Ω×Ω

𝐹(𝑥, 𝑢)𝐹(𝑦, 𝑢)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

−
1

2 ∬
𝜕Ω×𝜕Ω

𝐺(𝑥, 𝑢)𝐺(𝑦, 𝑢)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈.

(1.4)

Observe that the functional 𝐽 ∈ 𝐶1, that is, for any 𝜙 ∈ 𝐻1(Ω)

⟨
𝐽′(𝑢), 𝜙

⟩
= ∫

Ω

∇𝑢∇𝜙 𝑑𝑥 + ∫
Ω

𝛼(𝑥)𝑢𝜙 𝑑𝑥 + 𝛽 ∫
𝜕Ω

𝑢𝜙 𝑑𝜎 − ∬
Ω×Ω

𝐹(𝑦, 𝑢)𝑓(𝑥, 𝑢)𝜙(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

− ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢)𝑔(𝑥, 𝑢)𝜙(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈.

(1.5)

A standard methodology to obtain solutions using variational techniques consists of looking for minimizers of the
functional. We employ the technique of the artificial constraint introduced by Nehari [31]. The main idea of the proof is
as follows. Define

𝜕𝐵(Ω) = {𝑢 ∈ 𝐻1(Ω)∖{0} ∶
⟨
𝐽′(𝑢), 𝑢

⟩
= 0}, (1.6)

𝑎(Ω)2

2
= inf {𝐽(𝑢) ∶ 𝑢 ∈ 𝜕𝐵(Ω)}, (1.7)

then theminimizer of Equation (1.7) is a solution to the problem (𝑃). Now by considering the optimal constant fromCher-
rier’s work [12,13] and by considering the convolution exponential nonlinearity both in the equation and the boundary, one
expects that 𝐽 satisfies the Palais–Smale condition within within certain range, which is

(
−∞,min

{
(4−𝜇1)𝜋

4𝑏
,
(2−𝜇2)𝜋

4𝜃

})
.

Therefore, the main objective is to prove that 𝑎(Ω)
2

2
< min

{
(4−𝜇1)𝜋

4𝑏
,
(2−𝜇2)𝜋

4𝜃

}
, to obtain a minimizer of Equation (1.7).

Remark 1.1. The conclusions of the paper can be generalized to establish the existence of positive weak solution for the
following 𝑁-Laplacian problem with the co-normal boundary condition

−Δ𝑁𝑢 + 𝛼(𝑥)|𝑢|𝑁−2𝑢 = ⎛⎜⎜⎝∫Ω
𝐹(𝑦, 𝑢)|𝑥 − 𝑦|𝜇1 𝑑𝑦⎞⎟⎟⎠𝑓(𝑥, 𝑢), in Ω,

|∇𝑢|𝑁−2 𝜕𝑢
𝜕𝜂

+ 𝛽|𝑢|𝑁−2𝑢 = ⎛⎜⎜⎝∫𝜕Ω
𝐺(𝑦, 𝑢)|𝑥 − 𝑦|𝜇2 𝑑𝜈⎞⎟⎟⎠𝑔(𝑥, 𝑢) on 𝜕Ω,

where Δ𝑁 = ∇ ⋅
(|∇𝑢|𝑁−2∇𝑢), 𝜇1 ∈ (0,𝑁), 𝜇2 ∈ (0,𝑁 − 1),Ω is a smooth bounded domain ofℝ𝑁 with𝑁 > 2 and 𝑓 and

𝑔 has a growth 𝑒𝑡𝑁∕𝑁−1 as 𝑡 → ∞.

Throughout the paper, we make use of the following notations:

∙ For any 𝑢 ∈ 𝐻1(Ω), we set

‖𝐹(𝑢)‖0,Ω ∶= ∬
Ω×Ω

𝐹(𝑥, 𝑢)𝐹(𝑦, 𝑢)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦, ‖𝐺(𝑢)‖0,𝜕Ω ∶= ∬
𝜕Ω×𝜕Ω

𝐺(𝑥, 𝑢)𝐺(𝑦, 𝑢)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈.

∙ the letters 𝐶, 𝐶𝑖 denote various positive constants possibly different in various places.
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The paper is organized as follows. In Section 2, we recall some definitions and provide some technical lemmas that will
help prove our Theorem 1.1. In Section 1.1, we prove the main result of the paper.

2 PRELIMINARIES

In this section, we will first recall some results that are required to establish the variational framework of the problem (𝑃).
Afterward, we will establish some essential lemmas.
Consider the functional space𝐻1(Ω) as the usual Sobolev space defined as

𝐻1(Ω) =

⎧⎪⎨⎪⎩𝑢 ∈ 𝐿2(Ω) ∶ ∫
Ω

|∇𝑢|2 𝑑𝑥 < ∞

⎫⎪⎬⎪⎭,
and

‖𝑢‖2 = ∫
Ω

|∇𝑢|2 𝑑𝑥 + ∫
Ω

𝛼(𝑥)𝑢2 𝑑𝑥 + 𝛽 ∫
𝜕Ω

𝑢2 𝑑𝜎

defines an equivalent norm on𝐻1(Ω). Thus, Equation (1.4) becomes

𝐽(𝑢) =
‖𝑢‖2
2

−
‖𝐹(𝑢)‖0,Ω

2
−

‖𝐺(𝑢)‖0,𝜕Ω
2

.

The functions 𝑓 ∈ 𝐶1(Ω × ℝ,ℝ) and 𝑔 ∈ 𝐶1(𝜕Ω × ℝ,ℝ), we assume that 𝑓(𝑥, 𝑡) ≡ 0 for 𝑡 ≤ 0 and 𝑔(𝑥, 𝑡) ≡ 0 for 𝑡 ≤ 0.
The functions 𝑓 and 𝑔 are said to be functions of critical growth on Ω and 𝜕Ω, respectively, if it satisfies the following
hypotheses for all 𝑥 ∈ Ω and 𝑦 ∈ 𝜕Ω:

(𝐡𝟏) 𝑓(𝑥, 𝑡) > 0 and 𝑔(𝑦, 𝑡) > 0 for all 𝑡 > 0;
(𝐡𝟐) 𝑓

′(𝑥, 𝑡)𝑡 > 𝑓(𝑥, 𝑡), and 𝑔′(𝑦, 𝑡)𝑡 > 𝑔(𝑦, 𝑡) for all 𝑡 > 0;
(𝐡𝟑) There exists constant𝑀 > 0 such that 𝐹(𝑥, 𝑡) ≤ 𝑀(1 + 𝑓(𝑥, 𝑡)), and 𝐺(𝑦, 𝑡) ≤ 𝑀(1 + 𝑔(𝑦, 𝑡));

There exists functions ℎ ∈ 𝐶1(Ω × ℝ,ℝ), 𝑘 ∈ 𝐶1(𝜕Ω × ℝ,ℝ) and positive constants 𝑏, 𝜃 such that for all (𝑥, 𝑡) ∈ Ω × ℝ,
(𝑦, 𝑡) ∈ 𝜕Ω × ℝ

(𝐡𝟒) 𝑓(𝑥, 𝑡) = ℎ(𝑥, 𝑡)e𝑏𝑡2 , 𝑔(𝑦, 𝑡) = 𝑘(𝑥, 𝑡)e𝜃𝑡2 ;
(𝐡𝟓) lim

𝑡→∞
sup
𝑥∈Ω

ℎ(𝑥, 𝑡)e−𝜖𝑡2 = 0, lim
𝑡→∞

sup
𝑦∈𝜕Ω

𝑘(𝑦, 𝑡)e−𝜖𝑡2 = 0;

(𝐡𝟔) lim
𝑡→∞

inf
𝑥∈Ω

ℎ(𝑥, 𝑡)e𝜖𝑡2 = ∞, lim
𝑡→∞

inf
𝑦∈𝜕Ω

𝑘(𝑦, 𝑡)e𝜖𝑡2 = ∞,

where }}′′′ denotes the derivativewith respect to 𝑡 and (𝐹(𝑥, 𝑡), 𝐺(𝑦, 𝑡)) =
𝑡∫
0

(𝑓(𝑥, 𝑠), 𝑔(𝑦, 𝑠))𝑑𝑠. The class of functionswhich

satisfies assumptions (ℎ1) − (ℎ6) is quite big. For example (𝑓(𝑡), 𝑔(𝑡)) = 𝑡𝑚+1(e𝑏𝑡2+𝑐1𝑡𝛼 , e𝜃𝑡2+𝑐2𝑡𝛽 ), where 𝑚, 𝑐1, 𝑐2 ≥ 0 and
0 ≤ 𝛼, 𝛽 < 2.

Remark 2.1. From (ℎ2) we can deduce that for any 𝑡 > 0, 2𝐹(𝑥, 𝑡) < 𝑓(𝑥, 𝑡)𝑡 and 2𝐺(𝑦, 𝑡) < 𝑔(𝑦, 𝑡)𝑡.

For any 𝑢 ∈ 𝐻1(Ω), by Sobolev embedding we get that 𝑢 ∈ 𝐿𝑞(Ω) for all 𝑞 ∈ [1,∞). As a result, we get 𝐹(𝑥, 𝑢) ∈ 𝐿𝑞(Ω)

for all 𝑞 ≥ 1. Furthermore, from the classical Sobolev trace embedding of Trudinger–Moser, 𝐻1(Ω) ↪ 𝐿𝑞(𝜕Ω) holds for
all 𝑞 ∈ [1,∞) and thus 𝐺(𝑥, 𝑢) ∈ 𝐿𝑞(𝜕Ω) for all 𝑞 ≥ 1.
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Proposition 2.1 (Hardy–Littlewood–Sobolev inequality). Let 𝑡, 𝑟 > 1 and 0 < 𝜇 < 𝑁 with 1

𝑡
+

𝜇

𝑁
+

1

𝑟
= 2, 𝑓 ∈ 𝐿𝑡(ℝ𝑁) and

ℎ ∈ 𝐿𝑟(ℝ𝑁). Then, there exists a sharp constant 𝐶(𝑡, 𝑟, 𝜇,𝑁) independent of 𝑓, ℎ such that

∬
ℝ2𝑁

𝑓(𝑥)ℎ(𝑦)|𝑥 − 𝑦|𝜇 𝑑𝑥𝑑𝑦 ≤ 𝐶(𝑡, 𝑟, 𝜇,𝑁)‖𝑓‖𝐿𝑡(ℝ𝑁)‖ℎ‖𝐿𝑟(ℝ𝑁).
In particular, the above proposition holds true for 𝑁 = 2. By taking 𝑡 = 𝑟 =

4

4−𝜇1
, where 𝜇1 ∈ (0, 2) and using Sobolev

embedding we see that

∬
Ω×Ω

𝑓(𝑥)𝑓(𝑦)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 ≤ 𝐶(𝜇1)‖𝑓‖2
𝐿

4
4−𝜇1 (Ω)

. (2.1)

Moreover, it is easy to see that Proposition 2.1 remains valid when we are considering boundary conditions 𝜕Ω ⊂ ℝ. For
𝜇2 ∈ (0, 1), 𝑓 ∈ 𝐿𝑡(𝜕Ω) and ℎ ∈ 𝐿𝑟(𝜕Ω), the following holds:

∬
𝜕Ω×𝜕Ω

𝑓(𝑥)ℎ(𝑦)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈 ≤ 𝐶(𝑡, 𝑟, 𝜇2)‖𝑓‖𝐿𝑡(𝜕Ω)‖ℎ‖𝐿𝑟(𝜕Ω).
By taking 𝑡 = 𝑟 =

2

2−𝜇2
and using the Sobolev trace embedding, we get inequality similar to Equation (2.1). Hence, the

functional 𝐽(𝑢) is well-defined.

Definition 2.1 (Moser functions). Let 𝑦 ∈ Ω and𝑅 ≤ 𝑑(𝑦, 𝜕Ω), where 𝑑 denotes the distance from 𝑦 to 𝜕Ω. For 0 < 𝑙 < 𝑅,
define

𝑚𝑙(𝑥, 𝑦) =
1√
2𝜋

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
log(

𝑅

𝑙
)
)1∕2

if 0 ≤ |𝑥 − 𝑦| ≤ 𝑙

log(
𝑅|𝑥−𝑦| )(

log(
𝑅

𝑙
)
)1∕2 if 𝑙 ≤ |𝑥 − 𝑦| ≤ 𝑅

0 if 𝑅 ≤ |𝑥 − 𝑦|.
With the help of the Moser functions, we can obtain the following lemma.

Lemma 2.1 [4, Lemma 3.3]. Let 𝜕Ω is 𝐶1,𝑟 manifold. For every 𝑥0 ∈ 𝜕Ω, we can find a 𝐿 > 0 such that for each 0 < 𝑙 < 𝐿

there exists a function 𝑤𝑙 ∈ 𝐻1(Ω) satisfying

(i) 𝑤𝑙 ≥ 0, supp𝑤𝑙 ⊂ 𝐵(𝑥0, 𝐿) ∩ Ω,
(ii) ‖𝑤𝑙‖ = 1,
(iii) for all 𝑥 ∈ 𝐵(𝑥0, 𝑙) ∩ Ω,𝑤𝑙 is constant and

𝑤2
𝑙
(𝑥) =

1

𝜋
log

𝐿

𝑙
+ 𝑂(1) as 𝑙 → 0,

where 𝐵(𝑥0, 𝐿) = {𝑥 ∈ ℝ2 ∶ |𝑥 − 𝑥0| < 𝐿}.

From [4, Lemmas 3.1, 4.2, and 3.2], we have the following result.

Lemma 2.2. Let 𝑢 ∈ 𝐻1(Ω)

(i) 𝑒𝑢2 ∈ 𝐿𝑝(Ω) and 𝑒𝑢2 ∈ 𝐿𝑝(𝜕Ω), for any 𝑝 < ∞

(ii) sup

{
𝑐2 ∶ sup‖𝑢‖≤1 ∫

Ω

𝑓(𝑥, 𝑐𝑢)𝑢(𝑥) 𝑑𝑥 < ∞

}
= sup

{
𝑐2 ∶ sup‖𝑢‖≤1 ∫Ω 𝑒𝑏𝑐

2𝑢2(𝑥) 𝑑𝑥 < ∞

}
=
2𝜋

𝑏
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(iii) sup

{
𝑐2 ∶ sup‖𝑢‖≤1 ∫

𝜕Ω

𝑔(𝑥, 𝑐𝑢)𝑢(𝑥) 𝑑𝑥 < ∞

}
= sup

{
𝑐2 ∶ sup‖𝑢‖≤1 ∫

𝜕Ω

𝑒𝜃𝑐
2𝑢2(𝑥) 𝑑𝑥 < ∞

}
=
𝜋

𝜃
.

For the proof of our Theorem 1.1, we need the result similar to Lemma 2.2.

Lemma 2.3. For any 𝑢 ∈ 𝐻1(Ω)

(i) sup

{
𝑐2 ∶ sup‖𝑢‖≤1 ∬

Ω×Ω

𝑒𝑏𝑐
2𝑢2(𝑦)𝑒𝑏𝑐

2𝑢2(𝑥)|𝑥−𝑦|𝜇1 𝑑𝑥𝑑𝑦 < ∞

}
=
(4 − 𝜇1)𝜋

2𝑏
;

(ii) sup

{
𝑐2 ∶ sup‖𝑢‖≤1 ∬

𝜕Ω×𝜕Ω

𝑒𝜃𝑐
2𝑢2(𝑦)𝑒𝜃𝑐

2𝑢2(𝑥)|𝑥−𝑦|𝜇2 𝑑𝜎𝑑𝜈 < ∞

}
=
(2 − 𝜇2)𝜋

2𝜃
.

Proof. (i) Employing Lemma 2.2(i) and Hardy–Littlewood–Sobolev inequality, we have

∬
Ω×Ω

e𝑏𝑐2𝑢2(𝑦)e𝑏𝑐2𝑢2(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 ≤ 𝐶(𝜇1)

⎛⎜⎜⎝∫Ω e
4𝑏𝑐2𝑢2(𝑥)

4−𝜇1 𝑑𝑥

⎞⎟⎟⎠
4−𝜇1
2

.

From Lemma 2.2(ii), we get that if 𝑐2 ≤ (4−𝜇1)𝜋

2𝑏
, then sup‖𝑢‖≤1 ∬

Ω×Ω

e𝑏𝑐2𝑢2(𝑦)e𝑏𝑐2𝑢2(𝑥)|𝑥−𝑦|𝜇1 𝑑𝑥𝑑𝑦 < ∞, which implies that

sup

⎧⎪⎨⎪⎩𝑐
2 ∶ sup‖𝑢‖≤1 ∬

Ω×Ω

e𝑏𝑐2𝑢2(𝑦)e𝑏𝑐2𝑢2(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 < ∞

⎫⎪⎬⎪⎭ ≥ (4 − 𝜇1)𝜋

2𝑏
.

Assume that

sup

⎧⎪⎨⎪⎩𝑐
2 ∶ sup‖𝑢‖≤1 ∬

Ω×Ω

e𝑏𝑐2𝑢2(𝑦)e𝑏𝑐2𝑢2(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 < ∞

⎫⎪⎬⎪⎭ >
(4 − 𝜇1)𝜋

2𝑏
.

Let 𝜖 > 0 be such that for 𝑐2 = (1 + 𝜖)
(4−𝜇1)𝜋

2𝑏
, we have a constant 𝐶1 such that

sup‖𝑢‖≤1 ∬
Ω×Ω

e𝑏𝑐2𝑢2(𝑦)e𝑏𝑐2𝑢2(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 = 𝐶1.

In addition, from [7, Equation (2.11)], it is easy to get that, for some positive constant 𝐶(𝜇1)

∬
[𝐵(𝑥0,𝑙)]

2

𝑑𝑥𝑑𝑦|𝑥 − 𝑦|𝜇1 ≥ 𝐶(𝜇1)

𝑙4−𝜇1
.

Recall function 𝑤𝑙, defined in Lemma 2.1, we get

𝐶1 ≥ ∬
[𝐵(𝑥0,𝑙)∩Ω]

2

e𝑏𝑐
2𝑤2

𝑙
(𝑦)e𝑏𝑐

2𝑤2
𝑙
(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

= e(1+𝜖)(4−𝜇1)𝜋𝑤
2
𝑙
(𝑥0) ∬

[𝐵(𝑥0,𝑙)∩Ω]
2

1|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦
≥ 𝐶(𝜇1)𝑙

−(4−𝜇1)𝜖 → ∞ as 𝑙 → 0,
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which is a contradiction. Hence,

sup

⎧⎪⎨⎪⎩𝑐
2 ∶ sup‖𝑢‖≤1 ∬

Ω×Ω

e𝑏𝑐2𝑢2(𝑦)e𝑏𝑐2𝑢2(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 < ∞

⎫⎪⎬⎪⎭ =
(4 − 𝜇1)𝜋

2𝑏
.

(ii) From Lemma 2.2(i) and Hardy–Littlewood–Sobolev inequality, we have

∬
𝜕Ω×𝜕Ω

e𝜃𝑐2𝑢2(𝑦)e𝜃𝑐2𝑢2(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈 ≤ 𝐶(𝜇2)

⎛⎜⎜⎝∫𝜕Ω e
2𝜃𝑐2𝑢2(𝑥)

2−𝜇2 𝑑𝜎

⎞⎟⎟⎠
2−𝜇2

.

Now proceeding with the same analysis as in (i), and utilizing Lemma 2.2(iii) and the following inequality:

∬
[𝐵(𝑥0,𝑙)∩𝜕Ω]

2

𝑑𝜎𝑑𝜈|𝑥 − 𝑦|𝜇2 ≥ 𝐶(𝜇2)

𝑙2−𝜇2
,

we can obtain the desired equality. □

Let us define

2𝐼(𝑢) = ∬
Ω×Ω

𝐹(𝑦, 𝑢)[𝑓(𝑥, 𝑢)𝑢(𝑥) − 𝐹(𝑥, 𝑢)]|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢)[𝑔(𝑥, 𝑢)𝑢(𝑥) − 𝐺(𝑥, 𝑢)]|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈. (2.2)

Lemma 2.4. Let (𝑓, 𝑔) be a function of critical growth on (Ω, 𝜕Ω). Then, we have

(i) If 𝑢 ∈ 𝐻1(Ω), then 𝑓(𝑥, 𝑢) ∈ 𝐿𝑝(Ω) and 𝑔(𝑥, 𝑢) ∈ 𝐿𝑝(𝜕Ω) for all 𝑝 ≥ 0;
(ii) For 𝑢 ∈ 𝐻1(Ω)

sup

⎧⎪⎨⎪⎩𝑐
2 ∶ sup‖𝑢‖≤1 ∬

Ω×Ω

𝐹(𝑦, 𝑐𝑢)𝑓(𝑥, 𝑐𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 < ∞

⎫⎪⎬⎪⎭ =
(4 − 𝜇1)𝜋

2𝑏

sup

⎧⎪⎨⎪⎩𝑐
2 ∶ sup‖𝑢‖≤1 ∬

𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑐𝑢)𝑔(𝑥, 𝑐𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈 < ∞

⎫⎪⎬⎪⎭ =
(2 − 𝜇2)𝜋

2𝜃
;

(iii) Let {𝑢𝑛} and {𝑣𝑛} be bounded sequences, converging weakly in𝐻1(Ω) and for almost every 𝑥 inΩ to 𝑢 and 𝑣, respectively.
Further, assume that

sup
𝑛

‖𝑢𝑛‖2 < (4 − 𝜇1)𝜋

2𝑏
.

Then for every 𝑙 ≥ 0,

lim
𝑛→∞ ∬

Ω×Ω

𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑣
𝑙
𝑛(𝑥)

𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 = ∬
Ω×Ω

𝐹(𝑦, 𝑢)𝑓(𝑥, 𝑢)𝑣𝑙(𝑥)

𝑢(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦.

(iv) Let {𝑢𝑛} and {𝑣𝑛} be bounded sequences, convergingweakly in𝐻1(Ω) and for almost every𝑥 in 𝜕Ω to𝑢 and 𝑣, respectively.
Further, assume that

sup
𝑛

‖𝑢𝑛‖2 < (2 − 𝜇2)𝜋

2𝜃
.
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Then for every 𝑙 ≥ 0,

lim
𝑛→∞ ∬

𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢𝑛)𝑔(𝑥, 𝑢𝑛)𝑣
𝑙
𝑛(𝑥)

𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈 = ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢)𝑔(𝑥, 𝑢)𝑣𝑙(𝑥)

𝑢(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈;

(v) Let {𝑢𝑛} be a sequence in𝐻1(Ω) converging weakly and for almost every 𝑥 inΩ to 𝑢 such that

sup
𝑛 ∬
Ω×Ω

𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 < ∞

then

lim
𝑛→∞

‖𝐹(𝑢𝑛)‖0,Ω = ‖𝐹(𝑢)‖0,Ω;
(vi) Let {𝑢𝑛} be a sequence in𝐻1(Ω) converging weakly and for almost every 𝑦 in 𝜕Ω to 𝑢 such that

sup
𝑛 ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢𝑛)𝑔(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈 < ∞

then

lim
𝑛→∞

‖𝐺(𝑢𝑛)‖0,𝜕Ω = ‖𝐺(𝑢)‖0,𝜕Ω;
(vii) Let 𝐼(𝑢) be as defined in Equation (2.2). For all 𝑢 ∈ 𝐻1(Ω), 𝐼(𝑢) ≥ 0 and 𝐼(𝑢) = 0 ⟺ 𝑢 ≡ 0. Further, for all 𝑢 ∈

𝐻1(Ω)

∬
Ω×Ω

𝐹(𝑦, 𝑢)𝑓(𝑥, 𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢)𝑔(𝑥, 𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈 ≤ 4𝐼(𝑢).

Proof. (i) The proof follows directly from the assumption (ℎ5) and Lemma 2.2(i).
(ii) From Remark 2.1 and assumptions (ℎ4) and (ℎ5), we infer that there exists a constant 𝐶1(𝜖) > 0 such that

2𝐹(𝑥, 𝑡) < 𝑓(𝑥, 𝑡)𝑡 ≤ 𝐶1(𝜖)e𝑏(1+𝜖)𝑡
2
. (2.3)

Employing the Hardy–Littlewood–Sobolev inequality and Equation (2.3), we obtain that

∬
Ω×Ω

𝐹(𝑦, 𝑐𝑢)𝑓(𝑥, 𝑐𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 ≤ 𝐶(𝜇1)‖𝐹(𝑦, 𝑐𝑢)‖
𝐿

4
4−𝜇1

‖𝑓(𝑥, 𝑐𝑢)𝑢‖
𝐿

4
4−𝜇1

≤ 𝐶(𝜇1, 𝜖)

⎡⎢⎢⎣∫Ω e
4𝑏(1+𝜖)𝑐2𝑢2

4−𝜇1 𝑑𝑥

⎤⎥⎥⎦
4−𝜇1
2

.

(2.4)

From Lemmas 2.2 (ii) and (2.4), we get that if 𝑐 > 0 such that

(1 + 𝜖)𝑐2 <
(4 − 𝜇1)𝜋

2𝑏
,

then

sup‖𝑢‖≤1 ∬
Ω×Ω

𝐹(𝑦, 𝑐𝑢)𝑓(𝑥, 𝑐𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 < ∞.
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On the other hand, from the assumption (ℎ6), for |𝑡| large there exist positive constants 𝐶2(𝜖), 𝐶3(𝜖) such that
𝑓(𝑥, 𝑡) ≥ 𝐶2(𝜖)e𝑏(1−𝜖)𝑡

2
, (2.5)

and

𝐹(𝑥, 𝑡) ≥ 𝐶3(𝜖)e𝑏(1−𝜖)𝑡
2
. (2.6)

Hence, if 𝑐 > 0 such that

sup‖𝑢‖≤1 ∬
Ω×Ω

𝐹(𝑦, 𝑐𝑢)𝑓(𝑥, 𝑐𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 < ∞,

then it implies from Equations (2.5) and (2.6), that for every 𝜖 > 0

sup‖𝑢‖≤1 ∬
Ω×Ω

e𝑏(1−𝜖)𝑐2𝑢2(𝑦)e𝑏(1−𝜖)𝑐2𝑢2(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 < ∞.

Therefore, from Lemma 2.3, we have

(1 − 𝜖)𝑐2 ≤ (4 − 𝜇1)𝜋

2𝑏
.

Thus, we get the desired equality

sup

⎧⎪⎨⎪⎩𝑐
2 ∶ sup‖𝑢‖≤1 ∬

Ω×Ω

𝐹(𝑦, 𝑐𝑢)𝑓(𝑥, 𝑐𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 < ∞

⎫⎪⎬⎪⎭ =
(4 − 𝜇1)𝜋

2𝑏
.

Proceeding in similar manner, we can also deduce

sup

⎧⎪⎨⎪⎩𝑐
2 ∶ sup‖𝑢‖≤1 ∬

𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑐𝑢)𝑔(𝑥, 𝑐𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈 < ∞

⎫⎪⎬⎪⎭ =
(2 − 𝜇2)𝜋

2𝜃
.

(iii) Given that ‖𝑢𝑛‖2 < (4−𝜇1)𝜋

2𝑏
, we deduce from Lemma 2.2(ii) using Remark 2.1

sup
𝑛

‖𝐹(𝑥, 𝑢𝑛)‖
𝐿

4
4−𝜇1

< ∞, (2.7)

moreover, we can choose a 𝑝 > 1 such that

sup
𝑛

‖𝑓(𝑥, 𝑢𝑛)‖
𝐿

4𝑝
4−𝜇1

< ∞. (2.8)

Let 1
𝑝
+

1

𝑞
= 1 and {𝑣𝑛} be a bounded sequence, then for every 𝑙 ≥ 0

sup
𝑛

‖𝑣𝑙𝑛‖
𝐿

4𝑞
4−𝜇1

< ∞. (2.9)

For any 𝑁 > 0

∬
Ω×Ω

𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑣
𝑙
𝑛(𝑥)

𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 = ∬|𝑢𝑛(𝑥)|≤𝑁,|𝑢𝑛(𝑦)|≤𝑁
𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑣

𝑙
𝑛(𝑥)

𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

+ ∬|𝑢𝑛(𝑥)|≤𝑁,|𝑢𝑛(𝑦)|>𝑁
𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑣

𝑙
𝑛(𝑥)

𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬|𝑢𝑛(𝑥)|>𝑁,𝑦∈Ω
𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑣

𝑙
𝑛(𝑥)

𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

(2.10)
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First, let us consider the case when {(𝑥, 𝑦) ∶ |𝑢𝑛(𝑥)| > 𝑁, 𝑦 ∈ Ω}. By employing Hardy–Littlewood–Sobolev inequality,
Hölder’s inequality, Equations (2.7)–(2.9), we get

∬|𝑢𝑛(𝑥)|>𝑁,𝑦∈Ω
𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑣

𝑙
𝑛(𝑥)

𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 ≤ 𝐶(𝜇1)

𝑁
sup
𝑛

‖𝐹(𝑦, 𝑢𝑛)‖
𝐿

4
4−𝜇1

‖𝑓(𝑥, 𝑢𝑛)𝑣𝑙𝑛‖
𝐿

4
4−𝜇1

≤ 𝐶(𝜇1)

𝑁
sup
𝑛

‖𝑓(𝑥, 𝑢𝑛)‖
𝐿

4𝑝
4−𝜇1

sup
𝑛

‖𝑣𝑙𝑛‖
𝐿

4𝑞
4−𝜇1

≤ 𝐶(𝜇1)

𝑁
.

(2.11)

Next, we consider the case when {(𝑥, 𝑦) ∶ |𝑢𝑛(𝑥)| ≤ 𝑁, |𝑢𝑛(𝑦)| > 𝑁}. Using Remark 2.1, Hardy–Littlewood–Sobolev
inequality, Hölder’s inequality, Equations (2.8) and (2.9), we get

∬|𝑢𝑛(𝑥)|≤𝑁,|𝑢𝑛(𝑦)|>𝑁
𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑣

𝑙
𝑛(𝑥)

𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

<
1

2𝑁 ∬|𝑢𝑛(𝑥)|≤𝑁,|𝑢𝑛(𝑦)|>𝑁
𝑓(𝑦, 𝑢𝑛)𝑢

2
𝑛(𝑦)𝑓(𝑥, 𝑢𝑛)𝑣

𝑙
𝑛(𝑥)

𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

≤ 𝐶(𝜇1)

𝑁
sup
𝑛

‖𝑓(𝑦, 𝑢𝑛)𝑢2𝑛‖
𝐿

4
4−𝜇1

sup|𝑢𝑛(𝑥)|≤𝑁 ‖𝑓(𝑥, 𝑢𝑛)𝑣𝑙𝑛
𝑢𝑛

‖
𝐿

4
4−𝜇1

≤ 𝐶(𝜇1)

𝑁
.

(2.12)

Hence, putting together Equations (2.11) and (2.12) in Equation (2.10), and applying the dominated convergence theorem
by taking 𝑛 → ∞ and 𝑁 → ∞, we obtain the desired equality

lim
𝑛→∞ ∬

Ω×Ω

𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑣
𝑙
𝑛(𝑥)

𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 = ∬
Ω×Ω

𝐹(𝑦, 𝑢)𝑓(𝑥, 𝑢)𝑣𝑙(𝑥)

𝑢(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦.

(iv) The desired equality is obtained by following similar reasoning as in (iii).
(v) For any 𝑁 > 0

∬
Ω×Ω

𝐹(𝑦, 𝑢𝑛)𝐹(𝑥, 𝑢𝑛)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 = ∬|𝑢𝑛(𝑥)|≤𝑁,|𝑢𝑛(𝑦)|≤𝑁
𝐹(𝑦, 𝑢𝑛)𝐹(𝑥, 𝑢𝑛)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

+ 2 ∬|𝑢𝑛(𝑥)|>𝑁, |𝑢𝑛(𝑦)|≤𝑁
𝐹(𝑦, 𝑢𝑛)𝐹(𝑥, 𝑢𝑛)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬|𝑢𝑛(𝑥)|>𝑁,|𝑢𝑛(𝑦)|>𝑁

𝐹(𝑦, 𝑢𝑛)𝐹(𝑥, 𝑢𝑛)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

(2.13)

As sup
𝑛

∬
Ω×Ω

𝐹(𝑦,𝑢𝑛)𝑓(𝑥,𝑢𝑛)𝑢𝑛(𝑥)|𝑥−𝑦|𝜇1 𝑑𝑥𝑑𝑦 < ∞, from (ii) we have ‖𝑢𝑛‖2 ≤ (4−𝜇1)𝜋

2𝑏
. This consequently leads to Equation (2.7).

Now, let us consider the case when {(𝑥, 𝑦) ∶ |𝑢𝑛(𝑥)| > 𝑁, |𝑢𝑛(𝑦)| ≤ 𝑁}. From the assumption (ℎ3), Hardy–Littlewood–
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Sobolev inequality and Equation (2.7), we have

2 ∬|𝑢𝑛(𝑥)|>𝑁, |𝑢𝑛(𝑦)|≤𝑁
𝐹(𝑦, 𝑢𝑛)𝐹(𝑥, 𝑢𝑛)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

≤ 2𝑀

𝑁 ∬|𝑢𝑛(𝑥)|>𝑁, |𝑢𝑛(𝑦)|≤𝑁
𝐹(𝑦, 𝑢𝑛)𝑢𝑛(𝑥) + 𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

≤ 2𝑀

𝑁
sup
𝑛

‖𝐹(𝑦, 𝑢𝑛)‖
𝐿

4
4−𝜇1

sup
𝑛

‖𝑢𝑛‖
𝐿

4
4−𝜇1

+ 𝑂

(
1

𝑁

)
≤ 𝐶(𝜇1)

𝑁
.

(2.14)

By following similar argument for the case {(𝑥, 𝑦) ∶ |𝑢𝑛(𝑥)| > 𝑁, |𝑢𝑛(𝑦)| > 𝑁}, we get

∬|𝑢𝑛(𝑥)|>𝑁,|𝑢𝑛(𝑦)|>𝑁
𝐹(𝑦, 𝑢𝑛)𝐹(𝑥, 𝑢𝑛)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 = 𝑂

(
1

𝑁

)
. (2.15)

Hence, putting together Equations (2.14) and (2.15) in Equation (2.13), and applying the dominated convergence theorem
by taking 𝑛 → ∞ and 𝑁 → ∞, we obtain the desired equality

lim
𝑛→∞

‖𝐹(𝑢𝑛)‖0,Ω = ‖𝐹(𝑢)‖0,Ω
(vi) The desired equality is obtained by following similar reasoning as in (v). (vii) Using the assumption (ℎ1) − (ℎ2) and
Remark 2.1, for 𝑡 > 0

𝜕

𝜕𝑡

(
𝐹(𝑦, 𝑡𝑢)(𝑓(𝑥, 𝑡𝑢)𝑡𝑢 − 𝐹(𝑥, 𝑡𝑢))|𝑥 − 𝑦|𝜇1

)
=
𝑓(𝑦, 𝑡𝑢)𝑢(𝑦)[𝑓(𝑥, 𝑡𝑢)𝑡𝑢(𝑥) − 𝐹(𝑥, 𝑡𝑢)] + 𝐹(𝑦, 𝑡𝑢)𝑓′(𝑥, 𝑡𝑢)𝑡𝑢2(𝑥)|𝑥 − 𝑦|𝜇1

>
𝑓(𝑦, 𝑡𝑢)𝑢(𝑦)𝐹(𝑥, 𝑡𝑢) + 𝐹(𝑦, 𝑡𝑢)𝑓(𝑥, 𝑡𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇1 ≥ 0.

This implies for all 𝑡 > 0, 𝐹(𝑦,𝑡𝑢)(𝑓(𝑥,𝑡𝑢)𝑡𝑢−𝐹(𝑥,𝑡𝑢))|𝑥−𝑦|𝜇1 is an increasing function. Also, at 𝑡 = 0, it is zero. Hence, for 𝑡 > 0

𝐹(𝑦, 𝑡𝑢)(𝑓(𝑥, 𝑡𝑢)𝑡𝑢 − 𝐹(𝑥, 𝑡𝑢))|𝑥 − 𝑦|𝜇1 > 0,

and similarly

𝐺(𝑦, 𝑡𝑢)(𝑔(𝑥, 𝑡𝑢)𝑡𝑢 − 𝐺(𝑥, 𝑡𝑢))|𝑥 − 𝑦|𝜇2 > 0.

Therefore, 𝐼(𝑢) ≥ 0 for all 𝑢 ∈ 𝐻1(Ω) and 𝐼(𝑢) = 0 ⟺ 𝑢 ≡ 0. Further, using Remark 2.1 we have

2𝐼(𝑢) = ∬
Ω×Ω

𝐹(𝑦, 𝑢)[𝑓(𝑥, 𝑢)𝑢(𝑥) − 𝐹(𝑥, 𝑢)]|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢)[𝑔(𝑥, 𝑢)𝑢(𝑥) − 𝐺(𝑥, 𝑢)]|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈

≥ 1

2 ∬
Ω×Ω

𝐹(𝑦, 𝑢)𝑓(𝑥, 𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 +
1

2 ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢)𝑔(𝑥, 𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈.

Hence, we obtain the desired inequality. □

To obtain the compactness result, we require the following theorem by Lions [26] and [4, Lemma 3.5].
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Lemma 2.5. Let {𝑢𝑛} be a bounded sequence in𝐻1(Ω) with ‖𝑢𝑛‖ = 1 converging weakly to a nonzero 𝑢 ∈ 𝐻1(Ω). Then for
every 𝑝 < 1

1−‖𝑢‖2 ,
sup
𝑛 ∫

Ω

𝑒2𝜋𝑝𝑢
2
𝑛 𝑑𝑥 < ∞, and sup

𝑛 ∫
𝜕Ω

𝑒𝜋𝑝𝑢
2
𝑛 𝑑𝑥 < ∞.

3 PROOF OF THEOREM 1.1

This section is devoted to the proof of Theorem 1.1. To obtain the existence of a positive solution, we deploy the Nehari
constraint method and prove that 𝑎(Ω)2 defined in Equation (1.7) is below the Palais–Smale condition. Subsequently, with
the Lions’ compactness lemma, we establish that the minimizer of 𝑎(Ω)2 is indeed the critical point of our functional 𝐽.

Lemma 3.1. Assume that

(i) lim
𝑡→∞

inf
𝑥∈Ω

ℎ(𝑥, 𝑡)𝑡 = lim
𝑡→∞

inf
𝑦∈𝜕Ω

𝑘(𝑦, 𝑡)𝑡 = ∞

(ii) 𝑓′(𝑥, 0) = 𝑔′(𝑦, 0) = 0, for all (𝑥, 𝑦) ∈ Ω × 𝜕Ω.

Then, 0 < 𝑎(Ω)2 < min
{
(4−𝜇1)𝜋

2𝑏
,
(2−𝜇2)𝜋

2𝜃

}
, where 𝑎(Ω)2 is as defined in Equation (1.7).

Proof. We divide the proof into the following steps:
Step 1: We prove that 𝑎(Ω)2 > 0.
Let us suppose that 𝑎(Ω) = 0. Then, there exists a sequence {𝑢𝑛} ∈ 𝜕𝐵(Ω) (as defined in Equation (1.6)) such that

𝐼(𝑢𝑛) = 𝐽(𝑢𝑛) → 0 as 𝑛 → ∞, (3.1)

From Lemma 2.4(vii) and Equation (3.1), we obtain that

sup
𝑛 ∬
Ω×Ω

𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 < ∞, (3.2)

sup
𝑛 ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢𝑛)𝑔(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈 < ∞, (3.3)

which implies that sup
𝑛

‖𝑢𝑛‖2 < ∞. Thus, up to a subsequence there exists a function 𝑢 ∈ 𝐻1(Ω) such that 𝑢𝑛 ⇀ 𝑢weakly

in 𝐻1(Ω). By Fatou’s lemma and Equation (3.1)

0 ≤ 𝐼(𝑢) ≤ lim
𝑛→∞

𝐼(𝑢𝑛) = 0.

Hence, from Lemma 2.4(vii), we get that 𝑢 ≡ 0. Given that we have Equations (3.2) and (3.3), we can consequently infer,
using Lemma 2.4 (v) and (vi) that

lim
𝑛→∞

‖𝑢𝑛‖2 = lim
𝑛→∞

{
2𝐽(𝑢𝑛) + ‖𝐹(𝑢𝑛)‖0,Ω + ‖𝐺(𝑢𝑛)‖0,𝜕Ω} = 0. (3.4)

Let 𝑣𝑛 =
𝑢𝑛‖𝑢𝑛‖ and up to a subsequence there exists a function 𝑣 ∈ 𝐻1(Ω) such that 𝑣𝑛 ⇀ 𝑣weakly in𝐻1(Ω) and for almost

all 𝑥 ∈ Ω and 𝑦 ∈ 𝜕Ω.
With the help of Equation (3.4), we utilize Lemma 2.4(iii)and (iv) and since 𝑢𝑛 ∈ 𝜕𝐵(Ω), we get

1 = ∬
Ω×Ω

𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑣
2
𝑛(𝑥)

𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢𝑛)𝑔(𝑥, 𝑢𝑛)𝑣
2
𝑛(𝑥)

𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈 → 0, as 𝑛 → ∞,

which gives us a contradiction. Hence, 𝑎(Ω) > 0.
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Step 2: We prove that 𝑎(Ω)2 ≤ min
{
(4−𝜇1)𝜋

2𝑏
,
(2−𝜇2)𝜋

2𝜃

}
.

For any 𝑢 ∈ 𝐻1(Ω)∖{0} and 𝛾 > 0, define

Ψ(𝛾) ∶=
1

𝛾

⎡⎢⎢⎣ ∬
Ω×Ω

𝐹(𝑦, 𝛾𝑢)𝑓(𝑥, 𝛾𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝛾𝑢)𝑔(𝑥, 𝛾𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈

⎤⎥⎥⎦.
As 𝐹(𝑦, 𝑡), 𝐺(𝑦, 𝑡), 𝑓(𝑥,𝑡)

𝑡
and 𝑔(𝑥,𝑡)

𝑡
are all increasing functions with respect to 𝑡 and remain positive for 𝑡 > 0, we observe

that

lim
𝛾→∞

Ψ(𝛾) = ∞.

Further, by utilizing the hypothesis (ii), we deduce that lim
𝛾→0

Ψ(𝛾) = 0. Thus, for any 𝑢 ∈ 𝐻1(Ω)∖{0}, there exists 𝛾 > 0 such

that

‖𝑢‖2 = Ψ(𝛾)

=
1

𝛾2

⎡⎢⎢⎣ ∬
Ω×Ω

𝐹(𝑦, 𝛾𝑢)𝑓(𝑥, 𝛾𝑢)𝛾𝑢(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝛾𝑢)𝑔(𝑥, 𝛾𝑢)𝛾𝑢(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈

⎤⎥⎥⎦,
(3.5)

that is, 𝛾𝑢 ∈ 𝜕𝐵(Ω). Moreover, through a contradictory argument, we establish that

if ‖𝑢‖2 ≤ ∬
Ω×Ω

𝐹(𝑦, 𝑢)𝑓(𝑥, 𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢)𝑔(𝑥, 𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈, then 𝛾 ≤ 1. (3.6)

Now, let𝑤 ∈ 𝐻1(Ω)with ‖𝑤‖ = 1. Choose 𝛾 > 0 corresponding to𝑤 such that Equations (3.5) and (3.6) hold. Since 𝛾𝑤 ∈

𝜕𝐵(Ω), we have

0 <
𝑎(Ω)2

2
≤ 𝐽(𝛾𝑤) ≤ ‖𝛾𝑤‖2 = 𝛾2.

Hence,

∬
Ω×Ω

𝐹(𝑦, 𝑎(Ω)𝑤)𝑓(𝑥, 𝑎(Ω)𝑤)𝑤2(𝑥)

𝑎(Ω)𝑤(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑎(Ω)𝑤)𝑔(𝑥, 𝑎(Ω)𝑤)𝑤2(𝑥)

𝑎(Ω)𝑤(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈

≤ ∬
Ω×Ω

𝐹(𝑦, 𝛾𝑤)𝑓(𝑥, 𝛾𝑤)𝑤2(𝑥)

𝛾𝑤(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝛾𝑤)𝑔(𝑥, 𝛾𝑤)𝑤2(𝑥)

𝛾𝑤(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈

= ‖𝑤‖2 = 1.

This implies, for any 𝑢 ∈ 𝐻1(Ω),

sup‖𝑢‖≤1 ∬
Ω×Ω

𝐹(𝑦, 𝑎(Ω)𝑢)𝑓(𝑥, 𝑎(Ω)𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 ≤ 𝑎(Ω), (3.7)

and

sup‖𝑢‖≤1 ∬
Ω×Ω

𝐺(𝑦, 𝑎(Ω)𝑢)𝑔(𝑥, 𝑎(Ω)𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈 ≤ 𝑎(Ω). (3.8)

Thus, combining Equations (3.7) and (3.8) with Lemma 2.4(ii), we obtain

𝑎(Ω)2 ≤ min

{
(4 − 𝜇1)𝜋

2𝑏
,
(2 − 𝜇2)𝜋

2𝜃

}
.



RAWAT et al. 15

Step 3: We will prove that 𝑎(Ω)2 < min
{
(4−𝜇1)𝜋

2𝑏
,
(2−𝜇2)𝜋

2𝜃

}
.

Let us suppose

𝑎(Ω)2 =
(4 − 𝜇1)𝜋

2𝑏
.

Using Equation (3.7) and recalling the function 𝑤𝑙 defined in Lemma 2.1, we obtain 𝛿 > 0 such that

𝑎(Ω) ≥ ∬
[𝐵(𝑥0,𝑙)∩Ω]

2

𝐹(𝑦, 𝑎(Ω)𝑤𝑙)𝑓(𝑥, 𝑎(Ω)𝑤𝑙)𝑤𝑙(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

≥ 𝐶 ∬
[𝐵(𝑥0,𝑙)∩Ω]

2

inf
𝑥
ℎ(𝑥, 𝑎(Ω)𝑤𝑙)𝑤𝑙(𝑥)𝑒

2𝑏𝑎(Ω)2𝑤2
𝑙
(𝑥) 𝑑𝑥

= 𝐶 inf
𝑥
ℎ(𝑥, 𝑎(Ω)𝑤𝑙(𝑥0))𝑤𝑙(𝑥0)𝑒

(4−𝜇1)𝜋𝑤
2
𝑙
(𝑥0) ∬

[𝐵(𝑥0,𝑙)∩Ω]
2

𝑑𝑥𝑑𝑦|𝑥 − 𝑦|𝜇1
≥ 𝐶𝛿 inf

𝑥
ℎ(𝑥, 𝑎(Ω)𝑤𝑙(𝑥0))𝑤𝑙(𝑥0) → ∞ as 𝑙 → 0,

which is a contradiction. Hence, 𝑎(Ω)2 < (4−𝜇1)𝜋

2𝑏
. Similarly, by using Equation (3.8) and the same function𝑤𝑙 we can show

that 𝑎(Ω)2 < (2−𝜇2)𝜋

2𝜃
. Indeed, let us suppose 𝑎(Ω)2 = (2−𝜇2)𝜋

2𝜃
,

𝑎(Ω) ≥ 𝐶 ∬
[𝐵(𝑥0,𝑙)∩𝜕Ω]

2

inf
𝑥
𝑘(𝑥, 𝑎(Ω)𝑤𝑙)𝑤𝑙(𝑥)e

2𝜃𝑎(Ω)2𝑤2
𝑙
(𝑥) 𝑑𝜎

= 𝐶 inf
𝑥
𝑘(𝑥, 𝑎(Ω)𝑤𝑙(𝑥0))𝑤𝑙(𝑥0)e(2−𝜇2)𝜋𝑤

2
𝑙
(𝑥0) ∬

[𝐵(𝑥0,𝑙)∩𝜕Ω]
2

𝑑𝜎𝑑𝜈|𝑥 − 𝑦|𝜇2 → ∞ as 𝑙 → 0.

Hence, 𝑎(Ω)2 < min
{
(4−𝜇1)𝜋

2𝑏
,
(2−𝜇2)𝜋

2𝜃

}
. □

Lemma 3.2. Let 𝑐 ∈
[
0, min

{
(4−𝜇1)𝜋

4𝑏
,
(2−𝜇2)𝜋

4𝜃

}]
and {𝑢𝑛} be a bounded sequence in 𝐻1(Ω) such that 𝑢𝑛 ⇀ 𝑢 weakly in

𝐻1(Ω) and for almost all 𝑥 ∈ Ω and for almost all 𝑦 ∈ 𝜕Ω.

(i) lim
𝑛→∞

𝐽(𝑢𝑛) = 𝑐

(ii) ‖𝑢‖2 ≥ ∬
Ω×Ω

𝐹(𝑦,𝑢)𝑓(𝑥,𝑢)𝑢(𝑥)|𝑥−𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦,𝑢)𝑔(𝑥,𝑢)𝑢(𝑥)|𝑥−𝑦|𝜇2 𝑑𝜎𝑑𝜈

(iii) sup
𝑛

{
∬
Ω×Ω

𝐹(𝑦,𝑢𝑛)𝑓(𝑥,𝑢𝑛)𝑢𝑛(𝑥)|𝑥−𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦,𝑢𝑛)𝑔(𝑥,𝑢𝑛)𝑢𝑛(𝑥)|𝑥−𝑦|𝜇2 𝑑𝜎𝑑𝜈

}
< ∞.

Then

lim
𝑛→∞

⎧⎪⎨⎪⎩ ∬
Ω×Ω

𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢𝑛)𝑔(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈

⎫⎪⎬⎪⎭
= ∬
Ω×Ω

𝐹(𝑦, 𝑢)𝑓(𝑥, 𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢)𝑔(𝑥, 𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈.
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Proof. Since 𝑢𝑛 ⇀ 𝑢, with 𝑢 ≢ 0, we use (ii) and Lemma 2.4 (vii), to establish 𝐽(𝑢) ≥ 𝐼(𝑢) > 0. Furthermore, applying
Fatou’s lemma, 𝐽(𝑢) ≤ lim

𝑛→∞
𝐽(𝑢𝑛) = 𝑐. This leads to the existence of an 𝜖 > 0 such that

(1 + 𝜖)(𝑐 − 𝐽(𝑢)) < min

{
(4 − 𝜇1)𝜋

4𝑏
,
(2 − 𝜇2)𝜋

4𝜃

}
∶=

𝛿

4
(3.9)

Let 𝐾 = ‖𝐹(𝑢)‖0,Ω + ‖𝐺(𝑢)‖0,𝜕Ω. Then from (iii) and Lemma 2.4(v) and (vi), we have

lim
𝑛→∞

‖𝑢𝑛‖2 = lim
𝑛→∞

{
2𝐽(𝑢𝑛) + ‖𝐹(𝑢𝑛)‖0,Ω + ‖𝐺(𝑢𝑛)‖0,𝜕Ω}

= 2𝑐 + 𝐾.

(3.10)

Employing Equations (3.9) and (3.10) such that for large values of 𝑛

2(1 + 𝜖)

𝛿
‖𝑢𝑛‖2 < 2𝑐 + 𝐾

2(𝑐 − 𝐽(𝑢))
=

1(
1 −

‖𝑢‖2
2𝑐+𝐾

) .
Now, choose 𝑝 such that

2(1 + 𝜖)

𝛿
‖𝑢𝑛‖2 ≤ 𝑝 <

1(
1 −

‖𝑢‖2
2𝑐+𝐾

) . (3.11)

Applying Lemma 2.5 to the sequence 𝑢𝑛‖𝑢𝑛‖ and using Equation (3.11), we have

sup
𝑛 ∫

Ω

e
2𝑏𝛿

4−𝜇1
𝑝
(

𝑢𝑛‖𝑢𝑛‖
)2
𝑑𝑥 < ∞, and sup

𝑛 ∫
𝜕Ω

e
𝜃𝛿

2−𝜇2
𝑝
(

𝑢𝑛‖𝑢𝑛‖
)2
𝑑𝜎 < ∞. (3.12)

Hence, from Equations (3.11) and (3.12), we have

sup
𝑛 ∫

Ω

e
(1+𝜖)

4𝑏

4−𝜇1
𝑢2𝑛
𝑑𝑥 < ∞, and sup

𝑛 ∫
𝜕Ω

e
(1+𝜖)

2𝜃

2−𝜇2
𝑢2𝑛
𝑑𝜎 < ∞. (3.13)

Let

𝑀1 ∶= sup
(𝑥,𝑡)∈Ω×ℝ

ℎ(𝑥, 𝑡)𝑡e
−𝜖𝑏𝑡2

2 + sup
(𝑥,𝑡)∈𝜕Ω×ℝ

𝑘(𝑥, 𝑡)𝑡e
−𝜖𝜃𝑡2

2 ,

and for any 𝑁 > 0, we have

∬
Ω×Ω

𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 = ∬|𝑢𝑛(𝑥)|≤𝑁,|𝑢𝑛(𝑦)|≤𝑁
𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

+ ∬|𝑢𝑛(𝑥)|≤𝑁,|𝑢𝑛(𝑦)|>𝑁
𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬|𝑢𝑛(𝑥)|>𝑁,𝑦∈Ω

𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

(3.14)
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First, let us consider the case when {(𝑥, 𝑦) ∶ |𝑢𝑛(𝑥)| > 𝑁, 𝑦 ∈ Ω}. By employing Hardy–Littlewood–Sobolev inequality,
Equations (3.13) and (2.3)

∬|𝑢𝑛(𝑥)|>𝑁,𝑦∈Ω
𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

≤ 𝐶e
−𝜖𝑏𝑁2

2 ∬|𝑢𝑛(𝑥)|>𝑁,𝑦∈Ω
e𝑏(1+𝜖)𝑢2𝑛(𝑦)ℎ(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)e

−𝜖𝑏𝑢2𝑛(𝑥)

2 e𝑏(1+𝜖)𝑢2𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

≤ 𝐶𝑀1e
−𝜖𝑏𝑁2

2

⎛⎜⎜⎝∫Ω e
(1+𝜖)

4𝑏

4−𝜇1
𝑢2𝑛(𝑥)

𝑑𝑥

⎞⎟⎟⎠
4−𝜇1
2

≤ 𝐶e
−𝜖𝑏𝑁2

2 .

(3.15)

Next, we consider the case when {(𝑥, 𝑦) ∶ |𝑢𝑛(𝑥)| ≤ 𝑁, |𝑢𝑛(𝑦)| > 𝑁}. From Remark 2.1 and Equation (2.3), we see that the
result follows by same analysis

∬|𝑢𝑛(𝑥)|≤𝑁,|𝑢𝑛(𝑦)|>𝑁
𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 ≤ 𝐶e

−𝜖𝑏𝑁2

2 . (3.16)

Hence putting together Equations (3.15) and (3.16) in Equation (3.14), and applying the dominated convergence theorem
by taking 𝑛 → ∞ and 𝑁 → ∞, we obtain the desired equality

lim
𝑛→∞ ∬

Ω×Ω

𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 = ∬
Ω×Ω

𝐹(𝑦, 𝑢)𝑓(𝑥, 𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦.

By similar analysis, we get

lim
𝑛→∞ ∬

𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢𝑛)𝑔(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈 = ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢)𝑔(𝑥, 𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈.

This proves the lemma. □

Lemma 3.3. Let 𝑢0 ∈ 𝜕𝐵(Ω) such that 𝐽′(𝑢0) ≠ 0. Then

𝐽(𝑢0) > inf {𝐽(𝑢) ∶ 𝑢 ∈ 𝜕𝐵(Ω)} =
𝑎(Ω)2

2
.

Proof. For 𝛼, 𝑡 ∈ ℝ, define

𝑚𝑡(𝛼) = 𝛼𝑢0 − 𝑡𝐽
′(𝑢0).

Then

lim
𝑡→0,𝛼→1

𝑑

𝑑𝑡
𝐽(𝑚𝑡(𝛼)) = −‖𝐽′(𝑢0)‖2 < 0.

We can choose 𝜖, 𝛿 > 0 such that for all 𝛼 ∈ [1 − 𝜖, 1 + 𝜖] and 0 < 𝑡 < 𝛿

𝐽(𝑚𝑡(𝛼)) < 𝐽(𝑚0(𝛼)) = 𝐽(𝛼𝑢0). (3.17)
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Let

𝜌𝑡(𝛼) = ‖𝑚𝑡(𝛼)‖2 − ∬
Ω×Ω

𝐹(𝑦,𝑚𝑡(𝛼))𝑓(𝑥,𝑚𝑡(𝛼))𝑚𝑡(𝛼)(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦

+ ∬
𝜕Ω×𝜕Ω

𝐺(𝑦,𝑚𝑡(𝛼))𝑔(𝑥,𝑚𝑡(𝛼))𝑚𝑡(𝛼)(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈.

Since 𝑢 ∈ 𝜕𝐵(Ω), by decreasing 𝜖 and 𝛿 if necessary, we have for 0 < 𝑡 < 𝛿,

𝜌𝑡(𝛼) =

{
>0 if 𝛼 = 1 − 𝜖;

< 0 if 𝛼 = 1 + 𝜖.

Thus, there exists 𝛼𝑡 such that 𝜌𝑡(𝛼𝑡) = 0 and hence 𝑚𝑡(𝛼𝑡) ∈ 𝜕𝐵(Ω). Using Equation (3.17) and analyzing 𝜌0(𝛼) =
𝛼
(
𝑑

𝑑𝛼
𝐽(𝛼𝑢0)

)
, we get

inf {𝐽(𝑢) ∶ 𝑢 ∈ 𝜕𝐵(Ω)} ≤ 𝐽(𝑚𝑡(𝛼𝑡)) < 𝐽(𝛼𝑡𝑢0) ≤ sup
𝛼∈ℝ

𝐽(𝛼𝑢0) = 𝐽(𝑢0).

□

Lemma 3.4. Let 𝑐 ∈
(
−∞,min

{
(4−𝜇1)𝜋

4𝑏
,
(2−𝜇2)𝜋

4𝜃

})
and {𝑢𝑛} be a sequence in 𝐻1(Ω) such that lim

𝑛→∞
𝐽(𝑢𝑛) = 𝑐,

lim
𝑛→∞

𝐽′(𝑢𝑛) = 0. Then, {𝑢𝑛} has a convergent subsequence.

Proof. We claim that

sup
𝑛

⎧⎪⎨⎪⎩‖𝑢𝑛‖ + ∬
Ω×Ω

𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢𝑛)𝑔(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈

⎫⎪⎬⎪⎭ < ∞.

Indeed, from Equations (1.4) and (1.5), we get

‖𝑢𝑛‖2
2

−
‖𝐹(𝑢𝑛)‖0,Ω

2
−

‖𝐺(𝑢𝑛)‖0,𝜕Ω
2

→ 𝑐. (3.18)

‖𝑢𝑛‖2 − ∬
Ω×Ω

𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 − ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢𝑛)𝑔(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈 ≤ 𝜖𝑛‖𝑢𝑛‖, (3.19)

where 𝜖𝑛 → 0, as 𝑛 → ∞. Now, from Remark 2.1, it is easy to see that

𝐶 +
𝜖𝑛‖𝑢𝑛‖
4

≥ 𝐽(𝑢𝑛) −

⟨
𝐽′(𝑢𝑛), 𝑢𝑛

⟩
4

≥ ‖𝑢𝑛‖2
4

,

which implies that ‖𝑢𝑛‖ is bounded. As a consequence, we have from Equations (3.18) and (3.19)

sup
𝑛

{‖𝐹(𝑢𝑛)‖0,Ω + ‖𝐺(𝑢𝑛)‖0,𝜕Ω} < ∞,

sup
𝑛

⎧⎪⎨⎪⎩ ∬
Ω×Ω

𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢𝑛)𝑔(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈

⎫⎪⎬⎪⎭ < ∞.

Moreover, there exists a function𝑢0 ∈ 𝐻1(ℝ𝑁) such that𝑢𝑛 ⇀ 𝑢0, weakly in𝐻1(ℝ𝑁), and for almost all𝑥 ∈ Ω and 𝑦 ∈ 𝜕Ω.
Hence, we have established the claim. Next, let us divide the proof into the following cases:
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Case I: 𝑐 ≤ 0

Employing Lemma 2.4(vii) and Fatou’s lemma, we obtain

0 ≤ 𝐼(𝑢0) ≤ lim
𝑛→∞

𝐼(𝑢𝑛) = lim
𝑛→∞

[
𝐽(𝑢𝑛) −

1

2

⟨
𝐽′(𝑢𝑛), 𝑢𝑛

⟩]
= 𝑐 ≤ 0.

Hence, when 𝑐 < 0, there exists no Palais–Smale sequence, leading to the conclusion that 𝑐 = 0, 𝐼(𝑢0) = 0, and
consequently, 𝑢0 ≡ 0. Further, using Lemma 2.4(v) and (vi), we get

lim
𝑛→∞

‖𝑢𝑛‖2 = lim
𝑛→∞

{
2𝐽(𝑢𝑛) + ‖𝐹(𝑢𝑛)‖0,Ω + ‖𝐺(𝑢𝑛)‖0,𝜕Ω} = 2𝑐 = 0.

This implies 𝑢𝑛 → 0, strongly in𝐻1(Ω).
Case II: 𝑐 ∈

[
0,min

{
(4−𝜇1)𝜋

4𝑏
,
(2−𝜇2)𝜋

4𝜃

})
We claim that 𝑢0 ≢ 0 and 𝑢0 ∈ 𝜕𝐵(Ω). Let if possible, 𝑢0 ≡ 0. Using Lemma 2.4(v) and (vi), we get

lim
𝑛→∞

‖𝑢𝑛‖2 = lim
𝑛→∞

{
2𝐽(𝑢𝑛) + ‖𝐹(𝑢𝑛)‖0,Ω + ‖𝐺(𝑢𝑛)‖0,𝜕Ω}

= 2𝑐 < min

{
(4 − 𝜇1)𝜋

2𝑏
,
(2 − 𝜇2)𝜋

2𝜃

}
.

Hence, from Lemma 2.4 iii) and (iv), we have

lim
𝑛→∞

⎧⎪⎨⎪⎩∬Ω×Ω
𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬

𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢𝑛)𝑔(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈

⎫⎪⎬⎪⎭ = 0.

Thus, lim
𝑛→∞

𝐼(𝑢𝑛) = 0 and

0 < 𝑐 = lim
𝑛→∞

𝐽(𝑢𝑛) = lim
𝑛→∞

[
𝐼(𝑢𝑛) +

1

2

⟨
𝐽′(𝑢𝑛), 𝑢𝑛

⟩]
= 0,

which is a contradiction. Hence, 𝑢0 ≢ 0. For all ℎ ∈ 𝐶∞(Ω),

0 = lim
𝑛→∞

⟨
𝐽′(𝑢𝑛), ℎ

⟩
.

By density this property also extends to any 𝑢0 ∈ 𝐻1(Ω),

‖𝑢0‖2 = ∬
Ω×Ω

𝐹(𝑦, 𝑢0)𝑓(𝑥, 𝑢0)𝑢0(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢0)𝑔(𝑥, 𝑢0)𝑢0(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈,

which implies that 𝑢0 ∈ 𝜕𝐵(Ω) and this proves the claim. Given that (𝑢𝑛, 𝑢0) fulfills all the hypothesis of Lemma 3.2, we
can conclude that

lim
𝑛→∞

⎧⎪⎨⎪⎩ ∬
Ω×Ω

𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢𝑛)𝑔(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈

⎫⎪⎬⎪⎭
= ∬
Ω×Ω

𝐹(𝑦, 𝑢0)𝑓(𝑥, 𝑢0)𝑢0(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢0)𝑔(𝑥, 𝑢0)𝑢0(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈.
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Now to prove 𝑢𝑛 → 𝑢0 strongly in 𝐻1(Ω), it suffices to show that ‖𝑢𝑛‖ → ‖𝑢0‖. By Fatou’s lemma and the fact that 𝑢0 ∈
𝜕𝐵(Ω), we get

‖𝑢0‖2 ≤ lim
𝑛→∞

‖𝑢𝑛‖2
= lim

𝑛→∞

{
2𝐼(𝑢𝑛) + ‖𝐹(𝑢𝑛)‖0,Ω + ‖𝐺(𝑢𝑛)‖0,𝜕Ω + ⟨

𝐽′(𝑢𝑛), 𝑢𝑛
⟩}

= lim
𝑛→∞

⎧⎪⎨⎪⎩∬Ω×Ω
𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬

𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢𝑛)𝑔(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈

+
⟨
𝐽′(𝑢𝑛), 𝑢𝑛

⟩}
= ‖𝑢0‖2.

This implies 𝑢𝑛 → 𝑢0, strongly in𝐻1(Ω). □

From Lemma 3.4, we have obtained the Palais–Smale condition. Since the critical points of the functional 𝐽 correspond
to the solutions of (𝑃). Thus, considering Lemmas 3.1 and 3.3, it suffices to prove that 𝐽(𝑢0) =

𝑎(Ω)2

2
.

Lemma 3.5. Assume that

(i) lim
𝑡→∞

inf
𝑥∈Ω

ℎ(𝑥, 𝑡)𝑡 = lim
𝑡→∞

inf
𝑦∈𝜕Ω

𝑘(𝑦, 𝑡)𝑡 = ∞

(ii) 𝑓′(𝑥, 0) = 𝑔′(𝑦, 0) = 0, for all (𝑥, 𝑦) ∈ Ω × 𝜕Ω,

then there exists 𝑢0 ∈ 𝜕𝐵(Ω) such that

𝐽(𝑢0) =
𝑎(Ω)2

2
.

Proof. Let {𝑢𝑛} be any minimizing sequence in 𝜕𝐵(Ω) such that

𝐼(𝑢𝑛) = 𝐽(𝑢𝑛) →
𝑎(Ω)2

2
as 𝑛 → ∞, (3.20)

From Lemma 2.4(vii) and Equation (3.20), we obtain that

sup
𝑛

⎧⎪⎨⎪⎩ ∬
Ω×Ω

𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢𝑛)𝑔(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈

⎫⎪⎬⎪⎭ < ∞, (3.21)

which implies that sup
𝑛

‖𝑢𝑛‖2 < ∞. Thus, up to a subsequence there exists a function 𝑢0 ∈ 𝐻1(Ω) such that 𝑢𝑛 ⇀ 𝑢0

weakly in𝐻1(Ω). From Equation (3.21), we can consequently infer, using Lemma 2.4(v) and (vi) that

lim
𝑛→∞

‖𝐹(𝑢𝑛)‖0,Ω + lim
𝑛→∞

‖𝐺(𝑢𝑛)‖0,𝜕Ω = ‖𝐹(𝑢0)‖0,Ω + ‖𝐺(𝑢0)‖0,𝜕Ω. (3.22)

We claim that 𝑢0 ≢ 0 and

‖𝑢0‖2 ≤ ∬
Ω×Ω

𝐹(𝑦, 𝑢0)𝑓(𝑥, 𝑢0)𝑢0(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢0)𝑔(𝑥, 𝑢0)𝑢0(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈.
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Let us suppose, 𝑢0 ≡ 0. From Equations (3.20) and (3.22)

lim
𝑛→∞

‖𝑢𝑛‖2 = lim
𝑛→∞

{
2𝐽(𝑢𝑛) + ‖𝐹(𝑢𝑛)‖0,Ω + ‖𝐺(𝑢𝑛)‖0,𝜕Ω}

= 𝑎(Ω)2 < min

{
(4 − 𝜇1)𝜋

2𝑏
,
(2 − 𝜇2)𝜋

2𝜃

}
.

Consequently, from Lemma 2.4(iii) and (iv), we have

lim
𝑛→∞

⎧⎪⎨⎪⎩∬Ω×Ω
𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬

𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢𝑛)𝑔(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈

⎫⎪⎬⎪⎭ = 0,

which further implies that

0 <
𝑎(Ω)2

2
= lim

𝑛→∞
𝐽(𝑢𝑛) = lim

𝑛→∞
𝐼(𝑢𝑛) = 0,

which is a contradiction. Hence, 𝑢 ≢ 0. Now suppose that

‖𝑢0‖2 > ∬
Ω×Ω

𝐹(𝑦, 𝑢0)𝑓(𝑥, 𝑢0)𝑢0(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢0)𝑔(𝑥, 𝑢0)𝑢0(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈.

Since all the hypotheses of Lemma 3.2 hold, we have

‖𝑢0‖2 ≤ lim
𝑛→∞

‖𝑢𝑛‖2
= lim

𝑛→∞

⎧⎪⎨⎪⎩∬Ω×Ω
𝐹(𝑦, 𝑢𝑛)𝑓(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬

𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢𝑛)𝑔(𝑥, 𝑢𝑛)𝑢𝑛(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈

= ∬
Ω×Ω

𝐹(𝑦, 𝑢0)𝑓(𝑥, 𝑢0)𝑢0(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝑢0)𝑔(𝑥, 𝑢0)𝑢0(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈

which is a contradiction. This proves the claim. Similar to Lemma 3.1, we construct Ψ(𝛾)

Ψ(𝛾) ∶=
1

𝛾

⎡⎢⎢⎣ ∬
Ω×Ω

𝐹(𝑦, 𝛾𝑢)𝑓(𝑥, 𝛾𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇1 𝑑𝑥𝑑𝑦 + ∬
𝜕Ω×𝜕Ω

𝐺(𝑦, 𝛾𝑢)𝑔(𝑥, 𝛾𝑢)𝑢(𝑥)|𝑥 − 𝑦|𝜇2 𝑑𝜎𝑑𝜈

⎤⎥⎥⎦.
Thus for 𝑢0 ≢ 0, there exists 𝛾 > 0 such that Ψ(𝛾) = ‖𝑢0‖2, consequently implying that 𝛾𝑢0 ∈ 𝜕𝐵(Ω). Moreover, from the
previous claim and Equation (3.6), we deduce that 0 < 𝛾 ≤ 1. Hence,

𝑎(Ω)2

2
≤ 𝐽(𝛾𝑢0) = 𝐼(𝛾𝑢0) ≤ 𝐼(𝑢0) ≤ lim

𝑛→∞
𝐼(𝑢𝑛) = lim

𝑛→∞
𝐽(𝑢𝑛) =

𝑎(Ω)2

2
,

which implies 𝛾 = 1. Thus, 𝑢0 ∈ 𝜕𝐵(Ω), and 𝐽(𝑢0) =
𝑎(Ω)2

2
. This concludes the proof of the lemma. □

Proof of Theorem 1.1: From Lemmas 3.3 and 3.5, we conclude that 𝑢0 is a critical point of the functional 𝐽 and
since 𝐽(𝑢) = 𝐽(|𝑢|), this implies 𝑢0 ≥ 0. Hence, 𝑢0 is a nonnegative solution of (𝑃). From regularity theory and the strong
maximum principle, it follows that 𝑢0 ∈ 𝐻2(Ω) ∩ 𝐶(Ω) and 𝑢0 > 0 in Ω. This concludes the theorem’s proof.
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