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Abstract
In this paper, we are concerned with the study of the following 2-D Schrödinger–Poisson
equation with critical exponential growth

−ε2�u + V (x)u + ε−α(Iα ∗ |u|q)|u|q−2u = f (u),

where ε > 0 is a parameter, Iα is the Riesz potential, 0 < α < 2, V ∈ C(R2, R), and
f ∈ C(R, R) satisfies the critical exponential growth. By variational methods, we first prove
the existence of ground state solutions for the above system with the periodic potential. Then
weobtain that there exists a positive ground state solution of the above systemconcentrating at
a globalminimumofV in the semi-classical limit under some suitable conditions.Meanwhile,
the exponential decay of this ground state solution is detected. Finally, we establish the
multiplicity of positive solutions by using the Ljusternik–Schnirelmann theory.
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1 Introduction andmain results

In this paper, we consider the existence and concentration properties of solutions to the
following 2-D Schrödinger–Poisson problem:{−ε2�v + V (x)v + ε−α(Iα ∗ |v|q)|v|q−2v = f (v) in R

2,

v ∈ H1(R2),
(1.1)

where ε > 0 is a parameter, V : R
2 → R and f : R → R are continuous functions,

1 < q < ∞, while Iα is the Riesz potential with 0 < α < 2, defined as

Iα(x) = Aα

|x |2−α
, Aα = �( 2−α

2 )

π2α�(α
2 )

. (1.2)

In fact, problem (1.1) is equivalent to the following system{−ε2�v + V (x)v + φ|v|q−2v = f (v) in R
2,

εα(−�)
α
2 φ = |v|q in R

2.
(1.3)

This is due to the fact that Iα is the Green function of the fractional Laplace operator (−�)
α
2

(see for instance [40, Section 5.1.1]). This is a Hartree-type model with the fractional Poisson
equation. From a physical viewpoint, fractional powers of the Laplace operator play an
important role in many situations in which one may need to consider nonlocal interaction
and anomalous diffusion, see [18, 33] and references therein.

For the nonperturbed case ε = 1, let α → 2−, then problem (1.3) reduces to the planar
Schrödinger–Poisson system:{−�v + V (x)v + φ|v|q−2v = f (v) in R

2,

−�φ = |v|q in R
2.

(1.4)

This type of system like (1.4) appearing in the physical literature can been seen as an approx-
imation of the Hartree–Fock model about quantum many-body system of electrons, for
example, see [25] for a mathematical presentation of Hartree–Fock approach. Under this
context, problem (1.1) is known as a Schrödinger–Poisson type system. We refer to [6, 29,
30, 36] for more physical backgrounds. Furthermore, since Iα ∗ψ → ψ as α → 0+, for any
ψ ∈ C∞

0 (R2), the following local Schrödinger equations can be viewed as the formal limit
of (1.4):

−�v + V (x)v + |v|2q−2v = f (v) in R
2.

Similar equations have been investigated in [1, 10–12, 15, 16, 19, 22–24, 26, 31, 37, 42] and
further references therein.

Especially, in the two dimensional case, we exhibit some related results. Chen and Tang
in [12] considered the following Schrödinger–Poisson system{−�u + V (x)u + γφu = f (u) in R

2,

�φ = u2 in R
2,

(1.5)

under the axially symmetric potential, they developed some new variational technique to
verify the existence of nontrivial solution and ground state solution for system (1.5) with
γ = 1. Liu et al. in [31] focused on the system (1.5) with V = 1, and proved the existence of
positive solutions by introducing a new variational method. Du and Weth in [19] concerned
the Schrödinger–Poisson system as above with V = 1, f (u) = |u|p−2u, where p > 2.
Based on variational approach, they proved the existence of ground state and high energy
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solutions. Cingolani and Jeanjean in [14] dealt with the Schrödinger–Poisson system with
prescribed mass as follows

{−�u + γ
(
log | · | ∗ |u|2) u = a|u|p−2u in R

2,∫
R2 |u|2dx = c,

(1.6)

here c > 0, γ, a ∈ R, p > 2. They investigated the existence of standing wave solutions
for system (1.6) by variational arguments. Shen et al. in [39] studied the Choquard-type
Schrödinger equation

−�u + V (x)u = (|x |−μ ∗ (Q(x)F(u))
)

Q(x)F(u) x ∈ R
2,

here V and Q decay to 0 at infinity. Under the critical exponential growth on nonlinearity, the
authors obtained the existence of nontrivial solutions andbound state solutions by establishing
a weighted Trudinger–Moser inequality.

Before the formal statements, we show the critical exponential growth condition here. In
dimension two, we call f has critical exponential growth if the following assumption holds:
( f1) For any α0 > 0,

lim
t→+∞

f (t)

eα0t2
=
{
0, ∀α0 > 4π,

+∞, ∀α0 < 4π.

The above critical exponential growth in dimension two was established under the
Trudinger–Moser inequality sense in Sobolev space, and describes the sharp maximal expo-
nential integrability of the functions. Furthermore, the Trudinger–Moser inequality can be
used as substitute for the Sobolev inequality, which proposed by J. Moser [35]. Indeed, Cao
gave the first version of the Trudinger–Moser inequality in R

2 in [9], one can see as follows:

Lemma 1.1 (Trudinger–Moser inequality [9])

(i) If α0 > 0and u ∈ H1(R2),then∫
R2

(
eα0u2 − 1

)
dx < ∞;

(ii) If u ∈ H1(R2), ‖∇u‖22 � 1, ‖u‖2 � G < ∞, and α0 < 4π , then there exists a constant
C(G, α0), which depends only on G and α0, such that∫

R2

(
eα0u2 − 1

)
dx � C(G, α0).

Now we recall some achievements about the concentration behavior of solutions when the
nonlocal term is on the right-hand side of equation which is called Charquard type equation.
Moroz and Schaftingen in [34] consider the following nonlocal equation

−ε2�u + V u = ε−α(Iα ∗ |u|p)|u|p−2u in R
N .

Using variational methods and nonlocal penalization technique, the authors obtained that
there exist a family of solutions concentrating to the local minimum of V . In [7], Bonheure,
Cingolani and Secchi performed a semiclassical analysis for the planar Schrödinger–Poisson
system

{−ε2�u + V (x)u = E(x)u in R
2,

−�E = |u|2 in R
2,
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where E(x) = ∫
R2 log 1

|x−y| |u(y)|2dy, V is a bounded external potential. By adapting a
perturbation method [3, 4] and a nondegeneracy result [8], they proved the existence of
solution pairs as ε → 0. In [2], Alves et al. investigated the following critical nonlocal
Schrödinger equation with singularly perturbation:

−ε2�u + V (x)u = εμ−2
[

1

|x |μ ∗ F(u)

]
f (u) in R

2,

where 0 < μ < 2. They obtained two results by variational methods. Specifically, the first
one they established is the existence of ground state solutions for above equationwith periodic
potential and ε = 1 under the assumptions as follows:

(V1) V (x) � V0 > 0 for some V0 > 0;
(V2) V (x) ∈ C(R2, R) is a 1-periodic function;
( f̃1) (i) f (t) = 0 for all t � 0, and 0 � f (t) � Ce4π t2 for all t � 0;

(ii) there exist t1 > 0, M1 > 0, q̄ ∈ (0, 1] such that 0 < t q̄ F(t) � M1 f (t), for any
|t | � t1, where F(s) = ∫ s

0 f (t)dt ;
( f̃2) there exist p̄ > (2 − μ)/2 and C p̄ > 0 satisfying f (t) ∼ C p̄t p̄ , when t → 0;
( f̃3) there is K1 > 1 such that f (t)t > K1F(t), ∀t > 0;

( f̃4) limt→∞
t f (t)F(t)

e8π t2
� β̄, here β̄ > infρ0>0

e
4−μ
4 V0ρ

2
0

16π2ρ
4−μ
0

(4 − μ)2

(2 − μ)(3 − μ)
.

The second one they proved is about the existence and concentration behavior of ground
state solutions with positive and bounded below potential when ε → 0, in which they used
the hypotheses ( f̃1)–( f̃4) and the following assumptions:

(V ) V ∈ C(R2, R) and 0 < V0 := infR2 V (x) < V∞ = lim|x |→∞ V (x) < ∞;
( f̃5) t → f (t) is strictly increasing on (0,∞).

There is a result of Schrödinger–Poisson type involving the Riesz potential in R
2. As a

particular case, Mercuri et al. in [32] studied the nonlocal equation of Schrödinger–Poisson–
Slater type:

−�u + (Iα ∗ |u|p)|u|p−2u = |u|q−2u in R
2,

where p > 1, q > 1. They considered the Coulomb-Sobolev function space, and obtained
the existence of solutions to the above equation by proving a family of optimal interpolation
inequalities. The authors also established some qualitative properties of solutions, such as
regularity, positivity, radially symmetry and so on. A natural question is whether there exists
the concentration behavior of ground state solutions. A goal of this paper is to gives an
affirmative answer in the two dimensional case.

In the paper mentioned above, authors always used the Hardy–Littlewood–Sobolev
inequality to handle the convolution term, here we would like to demonstrate as follows.

Lemma 1.2 (Hardy–Littlewood–Sobolev inequality [28]) Let α ∈ (0, 2) and s ∈ (1, 2/α).

Then for any φ ∈ Ls(R2), Iα ∗ φ ∈ L
2 s

2−αs (R2), and

∫
R2

|Iα ∗ φ| 2s
2−αs dx � C(α, s)

(∫
R2

|φ|sdx

) 2
2−αs

.
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Remark 1.1 The normalisation constant Aα of (1.2) guarantee following property of Iα holds:
Is+t = Is ∗ It , where s, t ∈ (0, 2), s + t < 2, see [20]. Then, one can read the Hardy–
Littlewood–Sobolev inequality as follows:

∫
R2

(Iα ∗ |u|q)|u|qdx =
∫

R2

∣∣∣I α
2

∗ |u|q
∣∣∣2 dx � C

(∫
R2

|u| 4q
2+α dx

) 2+α
2

.

Furthermore, by using the Sobolev embedding inequality, we have
∫

R2
(Iα ∗ |u|q)|u|qdx � C(α, q)

[∫
R2

(|∇u|2 + u2)dx

]2q

. (1.7)

In the present paper, we study the existence, multiplicity and concentration behavior of
positive solutions for the Schrödinger–Poisson problem (1.1). Meanwhile, we give some
properties of positive solutions. Firstly, performing the scaling u(x) = v(εx) in (1.1), we
obtain the following rescaled problem

− �u + V (εx)u + (Iα ∗ |u|q)|u|q−2u = f (u) in R
2, (1.8)

One can easily get the corresponding functional as follows:

Iε(u) = 1

2

∫
R2

|∇u|2dx + 1

2

∫
R2

V (εx)u2dx + 1

2q

∫
R2

(Iα ∗ |u|q)|u|qdx −
∫

R2
F(u)dx .

(1.9)

Let H1(R2) denote the Sobolev space endowed with the standard norm

‖u‖ :=
(∫

R2
(|∇u|2 + u2)dx

) 1
2

.

Denote by E the Sobolev space endowed with the norm

‖u‖E :=
(∫

R2
(|∇u|2 + V (εx)u2)dx

) 1
2

.

It is obvious that ‖u‖E is equivalent to the standard norm under the assumption (V ). Also,
let

‖u‖V0 :=
(∫

R2
(|∇u|2 + V0u2)dx

) 1
2

, ‖u‖V∞ :=
(∫

R2
(|∇u|2 + V∞u2)dx

) 1
2

.

It is standard to verify that Iε ∈ C1(E, R) and the critical points of Iε correspond to the weak
solutions of problem (1.1).

Inspired by the approach of [2, 32], in this paper we prove the existence and concentration
behavior of positive solutions for problem (1.1). Precisely, by using variational method, we
obtain the existence of ground state solution of (1.1) with ε = 1 under periodic potential
hypotheses (V1) and (V2). And, compared with the constant potential problem, we get the
existence of ground state solutions for problem (1.1) under bounded potential assumption
(V ), and then the concentration behavior of the corresponding ground state solution is proved
by Moser iteration argument. Besides, the exponential decay of this ground state solution is
investigated by maximum principle. Finally, we shows the multiplicity of positive solutions
based on the Ljusternik–Schnirelmann theory. Similar to the case of ground state solutions,
concentration behavior and exponential decay of positive solutions are obtained.
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More specifically, themain resultswe obtained in this paper are three-fold. The first onewe
establish the existence of nontrivial solution for (1.8) under the periodic potential hypotheses
(V1) and (V2). In addition, we suppose ( f1) and the following assumptions about nonlinear
term hold:

( f2) limt→0+
f (t)

t
= 0, f (t) = 0 for t � 0 and f (t) � 0 for t > 0;

( f3) there exists ρ > 0 such that β0 >
[1 + C(α, q)]e 1

2 V (ρ)ρ2

πρ2 and

lim|t |→∞
t f (t)

e4π t2
� β0,

where C(α, q) > 0 is a constant comes from (1.7), V (ρ) = sup|x |�ρ V (x).

( f4) t 
→ f (t)t + 2F(t)

t2q+3 is strictly increasing on (0,∞).

There is a simple example of function f satisfying ( f1)–( f4):

f (t) =
{
0, t � 0,

tae4π t2 + ta−2, t > 0,

where a > 2q + 4.
Now we can demonstrate the first main result as follows.

Theorem 1.1 Assume that (V1), (V2) and ( f1)–( f4) hold. Then problem (1.1) with ε = 1 has
a nonnegative ground state solution in E.

The second part of paper is about the existence and concentration behavior of positive
ground state solutions for (1.8) under the assumption (V ). It is worth mentioning that there
are only three papers [2, 7, 34] considering the concentration behavior of solutions for
Schrödinger–Poisson problem in R

2, to the best of our knowledge. In fact, since the nonlocal
term is fractional, it is difficult to get the upper bound of mountain pass value for semi-
classical limit about problem (1.1). Moreover, we concern the problem with more general
convolution term and nonlinear term. Here is the second main result.

Theorem 1.2 Suppose that (V ) and ( f1)–( f4) hold. Then, for ε > 0, problem (1.1) has at
least a positive ground state solution vε(εx) in H1(R2). Moreover, the following statements
hold:

(i) let ηε ∈ R
2 be a global maximum point of this positive ground state solution vε(εx) to

(1.1), then

lim
ε→0

V (ηε) = V0.

Meanwhile, for all εn → 0, vεn (εn x + ηεn ) converges to a positive ground state solution
of the following equation{−�u + V0u + (Iα ∗ |u|q)|u|q−2u = f (u), in R

2,

u ∈ H1(R2).
(1.10)

(ii) there exists C > 0, κ > 0 independent of ηε such that

|vε(x)| � Ce− κ
ε
|x−ηε |, ∀x ∈ R

2.
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In the third part, we concern the multiplicity and concentration behavior of positive solutions
for problem (1.8) under the assumption (V ). In order to correlate the number of solutions
with the topology of the set of minima of the potential V , we present the sets

� := {x ∈ R
2 : V (x) = V0}

and

�δ := {x ∈ R
2 : dist(x,�) � δ} for δ > 0.

Note condition (V ) introduced by Rabinowitz in [38] guaranteers that the set � is compact.
In addition, we recall that, if Y is a closed subset of a topological space X , catX (Y ) is the
Ljusternik–Schnirelmann category, that is, the number of closed and contractible set in X
which cover Y . The third main result can be stated as follows.

Theorem 1.3 Suppose that (V ) and ( f1)–( f4) hold. Then, for any δ > 0, there exists εδ > 0
such that problem (1.1) has at least cat�δ (�) positive solutions for ε ∈ (0, εδ). Moreover,
the following statements hold:

(i) let η̄ε ∈ R
2 be a global maximum point of v̄ε(εx) which is one of these positive solutions

to problem (1.1), then

lim
ε→0

V (η̄ε) = V0.

(ii) for all εn → 0, v̄εn (εn x + η̄εn ) converges to a positive solution of Eq. (1.10). Moreover,
there exists C̄ > 0, κ̄ > 0 independent of η̄ε such that

|v̄ε(x)| � C̄e− κ̄
ε
|x−η̄ε |, ∀x ∈ R

2.

Compared with [2], we impose mild hypotheses on nonlinear term f , such as, we do not
suppose ( f̃1)(ii) and ( f̃3) hold. In addition, Alves et al. in [2] considered the problem with
the convolution term on the right-hand side, that is, this type of equation is a Choquard-type
problem which has been investigated extensively in recent years. In this paper, we consider
the convolution term on the left-hand side, which makes the problem more delicate.

This paper is organized as follows. Section1 provesTheorem1.1. Section1 andSect. 4 give
the proof of Theorem 1.2, exactly, Sect. 1 illustrates the existence of ground state solutions
for problem (1.8), Sect. 4 explains the concentration behavior and exponential decay of the
ground state solution for problem (1.1). Section5 shows the proof of Theorem 1.3.

Here we state some notations used in this paper:

• Ls(RN )denotes theLebesgue space equippedwith thenorm‖u‖s = (∫
RN |u|sdx

)1/s
, 2 �

s < +∞;
• BR(y) denotes the open ball centered at y with radius R > 0;
• C, C̄ and C̃ denote different positive constants in different places.

2 Proof of Theorem 1.1

In this section, we are dedicated to the proof of Theorem 1.1. First of all, we investigate
some technical lemmas which will be used later.
Lemma 2.1 Assume that ( f1)–( f3) hold. Then

(i) there exists ρ > 0 such that Iε|Sρ (u) > 0, ∀u ∈ Sρ = {u ∈ H1(R2) : ‖u‖E = ρ};
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(ii) there is e ∈ H1(R2) with ‖e‖E > ρ such that Iε(e) < 0.

Proof (i) From ( f1) and ( f2), for any ε > 0, p > 2 and β > 1, there exists Cε > 0 such
that

|F(t)| � ε|t |2 + Cε |t |p
[
e4πβt2 − 1

]
, ∀t ∈ R. (2.1)

As in [13, Lemma 2.1], let ξ ∈ (0, 1) and 2β‖u‖2E = ξ < 1, for some C(ε) > 0, one
has

∫
R2

F(u)dx � ε‖u‖22 + C(ε)‖u‖p
2p, for ‖u‖E =

(
ξ

2β

) 1
2

.

Then, using Sobolev embedding inequality, we have

Iε(u) = 1

2

∫
R2

|∇u|2dx + 1

2

∫
R2

V (εx)u2dx + 1

2q

∫
R2

(Iα ∗ |u|q)|u|qdx −
∫

R2
F(u)dx

� 1

2
‖u‖2E − ε‖u‖22 − C(ε)‖u‖p

2p

� 1

2
‖u‖2E − εC‖u‖2E − C(ε)‖u‖p

E ,

where constant C > 0. We can choose ρ =
(

ξ
2β

) 1
2
with ξ ≈ 0+ such that (i) holds.

(ii) From ( f3), for any ε̄ > 0, there exists Rε̄ > 0 such that

F(s) � (β0 − ε̄)e4πs2 , ∀s � Rε̄ . (2.2)

By ( f2) and the Taylor’s expansion, we obtain∫
R2

F(tu)dx �
∫

R2
(β0 − ε̄)e4π(tu)2dx

=
∫

R2
(β0 − ε̄)

∞∑
n=1

(4π t2u2)n

n! dx . (2.3)

Note that

Iε(tu) = t2

2

∫
R2

|∇u|2dx + t2

2

∫
R2

V (εx)u2dx + t2q

2q

∫
R2

(Iα ∗ |u|q)|u|qdx

−
∫

R2
F(tu)dx .

It follows from ( f2), ( f3) and (2.3) that limt→∞ Iε(tu) = −∞. Then we can choose
T > 0 such that e = T u ∈ {u ∈ H1(R2) : ‖u‖E > ρ} and Iε(e) < 0. �
Now we verify that the nontrivial weak solution of (1.8) is nonnegative.

Lemma 2.2 Assume that (V ) (or (V1)) and ( f2) hold. Then any nontrivial critical point of
Iε is nonnegative.

Proof Set u ∈ H1(R2)\{0} is the critical point of Iε , u+ = max{u, 0}, u− = max{−u, 0}.
Since 〈I ′

ε(u),−u−〉 = 0, we know
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∫
R2

|∇u| · |∇(−u−)|dx +
∫

R2
V (εx)u(−u−)dx

+
∫

R2
(Iα ∗ |u|q)|u|q−1(−u−)dx =

∫
R2

f (u)(−u−)dx .

From ( f2), one has f (u)(−u−) = 0 a.e. in R
2. Moreover,∫

R2
V (εx)u(−u−)dx =

∫
R2

V (εx)|u−|2dx,

∫
R2

(Iα ∗ |u|q)|u|q−1(−u−)dx =
∫

R2
(Iα ∗ |u|q)|u−|qdx .

From above equations, we conclude that∫
R2

|∇(u−)|2dx +
∫

R2
V (εx)|u−|2dx +

∫
R2

(Iα ∗ |u|q)|u−|qdx = 0.

Using the fact that V (εx) > 0, one has u− ≡ 0, which implies that u � 0 a.e. in R
2. �

From Lemma 2.1, there exists a Palais–Smale sequence {un} ⊂ H1(R2) such that

Iε(un) → c, I ′
ε(un) → 0,

where c is characterized by

0 < c := inf
γ∈�

max
t∈[0,1] Iε(γ (t)) (2.4)

with

� := {γ ∈ C1([0, 1], H1(R2)) : γ (0) = 0, Iε(γ (1)) < 0}.
Lemma 2.3 Suppose that ( f1)–( f3) hold. Then

c <
1

2
.

Proof Define V (ρ) = sup|x |�ρ V (x) for any ρ > 0, then V (ρ) is a positive continuous
function. By ( f3), fixed ρ > 0 satisfying

β0 >
[1 + C(α, q)]e 1

2 V (ρ)ρ2

πρ2 , (2.5)

where C(α, q) from (1.7). Now we consider the following Moser type functions

w̄n = 1√
2π

⎧⎪⎪⎨
⎪⎪⎩

√
log n, 0 � |x | � ρ

n ,
log(ρ/|x |)√

log n
,

ρ
n � |x | � ρ,

0, |x | � ρ.

By direct calculation, one has

‖w̄n‖2E =
∫

Bρ

|∇w̄n |2dx +
∫

Bρ

V (x)|w̄n |2dx

�
∫ ρ

ρ
n

dr

r log n
+ V (ρ)

∫ ρ
n

0
r log ndr + V (ρ)

∫ ρ

ρ
n

r
log2(ρ/r)

log n
dr

= 1 + δn,
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where

δn = V (ρ)ρ2
[

1

4 log n
− 1

4n2 log n
− 1

2n2

]
> 0.

Let wn = w̄n/‖w̄n‖E , we can easily get that ‖wn‖E = 1. Now, we just need to prove that
there is n ∈ N such that maxt�0 Iε(twn) < 1

2 . With the reduction to absurdity, we assume
that there exists tn > 0 such that for all n ∈ N, maxt�0 Iε(twn) = Iε(tnwn) � 1

2 . From ( f3),
there exists Rε̄ > 0 such that

s f (s) � (β0 − ε̄)e4πs2 , ∀s � Rε̄ . (2.6)

Since d
dt Iε(twn) |t=tn = 0, using Hardy–Littlewood–Sobolev inequality and Sobolev embed-

ding inequality, one has

t2n =
∫

R2
f (tnwn)tnwndx − t2q

n

∫
R2

(Iα ∗ |wn |q)|wn |qdx

�
∫

B ρ
n

f (tnwn)tnwndx − Ct2q
n ‖wn‖2q

4q
2+α

�
∫

B ρ
n

(β0 − ε̄)e2t2n (1+δn)−1 log ndx − C(α, q)t2q
n

= πρ2(β0 − ε̄)

n2 e2t2n (1+δn)−1 log n − C(α, q)t2q
n

= πρ2(β0 − ε̄)elog n[2t2n (1+δn)−1−2] − C(α, q)t2q
n ,

thus, by means of taylor’s expansion, tn is bounded and

log n[2t2n (1 + δn)−1 − 2] � C̃, (2.7)

also, lim supn→∞ tn � 1.
Define

An = {y ∈ Bρ : tnwn(y) > Rε̄

}
, Bn = Bρ\An .

Applying (2.2), we have

t2n =
∫

R2
f (tnwn)tnwndx − t2q

n

∫
R2

(Iα ∗ |wn |q)|wn |qdx

=
∫

Bρ

f (tnwn)tnwndx − t2q
n

∫
R2

(Iα ∗ |wn |q)|wn |qdx

=
∫

An+Bn

f (tnwn)tnwndx − t2q
n

∫
R2

(Iα ∗ |wn |q)|wn |qdx .

From ( f1) and ( f2), for any ε > 0, p > 2 and β > 1, there exists Cε > 0 such that

|s f (s)| � ε|s|2 + Cε |s|p
[
e4πβs2 − 1

]
, ∀s ∈ R. (2.8)

Then, using Hölder’s inequality, we know

∫
R2

f (tnwn)tnwndx � ε‖tnwn‖22 + Cε‖tnwn‖p
2p

[∫
R2

(e8πβt2n w2
n − 1)dx

] 1
2

. (2.9)
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From Lemma 1.1 and (2.7), note that ‖∇w̄n‖2 = 1, w̄2
n � 2π log n, one has∫

R2
(e8πβt2n w2

n − 1)dx �
∫

Bρ

e8πβt2n w2
ndx �

∫
Bρ

e8πβ(1+ C
log n )w̄2

ndx �
∫

Bρ

Ce8πβw̄2
ndx � C .

(2.10)

Due to tnwn → 0 a.e. inR
2, and tnwn is bounded in Bn , it follows fromLebesgue’s dominated

convergence theorem that ∫
Bn

f (tnwn)tnwndx = o(1).

Consequently, by theHardy–Littlewood–Sobolev inequality and sobolev embedding inequal-
ity, we know

t2n =
∫

An

f (tnwn)tnwndx − t2q
n

∫
R2

(Iα ∗ |wn |q)|wn |qdx + o(1)

�
∫

An

f (tnwn)tnwndx − C(α, q)t2q
n .

Analogous to [43, Lemma 2.4], one has

lim
n→∞ t2n � (β0 − ε̄)πρ2e−V (ρ)ρ2/2 − C(α, q) lim

n→∞ t2q
n .

Since lim supn→∞ tn � 1, we obtain

1 + C(α, q) � (β0 − ε̄)πρ2e−V (ρ)ρ2/2.

Because of the arbitrariness of ε̄, one has

β0 � [1 + C(α, q)]e 1
2 V (ρ)ρ2

πρ2 ,

which contradicts (2.5). The proof is completed. �
As the argument in [13, Lemma 2.3], we can conclude the following lemma. For reader’s
convenience, we sketch the proof here.

Lemma 2.4 Assume that ( f1)–( f4) hold. Let {un} ⊂ H1(R2) be a (PS) sequence for Iε , that
is

Iε(un) → c, I ′
ε(un) → 0 in

(
H1(R2)

)∗
, as n → ∞.

Then, up to subsequence, there exists u ∈ H1(R2) such that, un⇀u weakly in H1(R2),

F(un) → F(u) in L1
loc(R

2) (2.11)

and u is a weak solution of (1.8).

Proof Since {un} is a (PS) sequence for Iε , one has

1

2
‖un‖2E + 1

2q

∫
R2

(Iα ∗ |un |q)|un |qdx −
∫

R2
F(un)dx → c, (2.12)

∣∣∣∣‖un‖2E +
∫

R2
(Iα ∗ |un |q)|un |qdx −

∫
R2

f (un)undx

∣∣∣∣ � εn‖un‖E , (2.13)

123



43 Page 12 of 25 Y. Li et al.

where εn → 0 as n → ∞. We claim that for any un ∈ H1(R2),

f (un)un − 2q F(un) � 0. (2.14)

Indeed, for t > 0, set

G(t) = t2F(tu) − F(u) + 1 − t2+2q

2 + 2q
[ f (u)u + 2F(u)], ∀u ∈ H1(R2).

Then, it follows from ( f4) that

G ′(t) = 2t F(tu) + t2 f (tu)u − t1+2q [ f (u)u + 2F(u)]
= t1+2q

{
f (tu)tu + 2F(tu)

t2q
− [ f (u)u + 2F(u)]

}
{

� 0, t � 1,

< 0, t < 1,

which implies G(t) � G(1) = 0, let t → 0 in G(t), we get the claim. Thus, using this claim,
we get

c + o(1) = Iε(un) − 1

2q
〈I ′

ε(un), un〉

=
(
1

2
− 1

2q

)
‖un‖2E + 1

2q

∫
R2

[ f (un)un − 2q F(un)]dx

�
(
1

2
− 1

2q

)
‖un‖2E . (2.15)

Above inequality means that ‖un‖E is bounded. Hence, it follows from (2.12) and (2.13)
that ∫

R2
f (un)undx � C,

∫
R2

F(un)dx � C .

Since un⇀u in H1(R2), we have un → u in Ls
loc(R

2), 2 � s < ∞, un → u a.e. in R
2.

Analogous to [17, Lemma 2.1], one can conclude that∣∣∣∣
∫

�

F(un)dx −
∫

�

F(u)dx

∣∣∣∣→ 0, ∀ � ⊂⊂ R
2.

Furthermore, the proof that u is a weak solution of (1.8) can be obtained similarly to [13,
Lemma 2.3], we omit it here. �
Proof of Theorem 1.1 In terms of Lemmas 2.1, 2.2 and 2.4, it remains only to prove that the
weak solution u is nontrivial. Argue by contradiction, we assume that u ≡ 0. Since {un} is
bounded, we distinguish two cases: {un} is vanishing or non-vanishing.

If {un} is vanishing, applying Lion’s concentration compactness lemma (see [41, Lemma
1.21]), for any s > 2, we have

un → 0 in Ls(R2), as n → ∞. (2.16)

Repeating the proof of (2.11), one can get that

F(un) → 0 in L1(R2), as n → ∞.
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Since {un} is a (PS)c sequence, it follows from Lemma 2.3 that

lim
n→∞

[
1

2
‖un‖2E + 1

2q

∫
R2

(Iα ∗ |un |q)|un |qdx

]
= c � 1

2
.

Hence, there is K̄ > 0 and δ > 0 small enough, such that

1

2
‖un‖2E + 1

2q

∫
R2

(Iα ∗ |un |q)|un |qdx � 1 − δ

2
, ∀n > K̄ .

From line by line [13, Lemma 2.4], we get∣∣∣∣
∫

R2
f (un)undx

∣∣∣∣→ 0 as n → ∞.

Then, un → 0 in H1(R2), Iε(un) → 0, which implies c = 0. That is impossible.
If {un} is non-vanishing, then there exist δ1, r0 > 0 and a sequence {yn} ∈ Z

2 such that

lim
n→∞

∫
Br0 (yn)

|un |2dx � δ1.

Set vn := un(x − yn), one has ∫
Br0 (0)

|vn |2dx � δ1. (2.17)

Since Iε and I ′
ε are invariant by Z

2 translations, then {vn} is also a (PS) sequence. Therefore,
we can obtain that vn⇀v in H1(R2). By (2.17) and vn → v in L2

loc(R
2), we have v �= 0.

Thus, v is a nontrivial critical point of Iε , the proof of Theorem 1.1 is now complete. �

3 Existence of ground state solutions

Now, we consider the problem (1.1). Define the Nehari manifold associated to Iε as
follows:

Nε = {u ∈ H1(R2) : u �= 0, 〈I ′
ε(u), u〉 = 0

}
.

Lemma 3.1 Assume that ( f1)–( f3) hold. Then there exist C > 0 and α1 > 0 independent of
ε, such that

‖u‖E � α1, u ∈ Nε.

Proof By (2.8)–(2.10), we obtain∫
R2

f (u)udx � ε‖u‖22 + C‖u‖p
2p, p > 2 (3.1)

for some positive constant C . Since u ∈ Nε,

‖u‖2E +
∫

R2
(Iα ∗ |u|q)|u|qdx =

∫
R2

f (u)udx,

then, using Sobolev embedding inequality, we have

‖u‖2E �
∫

R2
f (u)udx � ε‖u‖22 + C‖u‖p

2p � εC‖u‖2E + C‖u‖p
E . (3.2)

Thus, ‖u‖E is bounded from below. The proof is thus complete. �
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In view of Lemma 2.1, the functional Iε satisfies the Mountain Pass geometry. Thus, there
is a sequence {un} ⊂ H1(R2) satisfying

Iε(un) → cε, I ′
ε(un) → 0,

where

cε := inf
u∈H1(R2)\{0}

max
t�0

Iε(tu), (3.3)

and 0 < C < cε . From ( f4), for all u ∈ H1(R2)\{0}, there exists a unique t = t(u) such
that

Iε(t(u)u) = max
s�0

Iε(su), t(u)u ∈ Nε.

Then, by standard argument as in [41, Theorem 4.2], one has

cε = inf
u∈Nε

Iε(u).

Lemma 3.2 Assume that (V ) and ( f1)–( f4) hold. Then

lim
ε→0

cε = cV0 < cV∞ ,

where cV∞ is defined as (2.4).

Proof It follows from Theorem 1.1 that there is a ground state solutionw ∈ H1(R2), namely

‖w‖2V0
+
∫

R2
(Iα ∗ |w|q)|w|qdx =

∫
R2

f (w)wdx . (3.4)

For all δ > 0, setting wδ ∈ C∞
0 (R2) satisfying

wδ ∈ NV0 , wδ → w in H1(R2), IV0(wδ) < cV0 + δ.

Fix η ∈ C∞
0 (R2, [0, 1]) such that η = 1 on B1(0) and η = 0 on R

2\B2(0). Now define
vn(x) = η(εn x)wδ(x) with εn → 0, we have

vn → wδ in H1(R2), as n → ∞.

Since the definition of Nε , there is a unique tn satisfying tnvn ∈ Nεn . Then,

cεn � Iεn (tnvn) = t2n
2

‖vn‖2E + t2q
n

2q

∫
R2

(Iα ∗ |vn |q)|vn |qdx −
∫

R2
F(tnvn)dx .

Note that 〈I ′
εn

(tnvn), tnvn〉 = 0, using ( f2)–( f3) and Taylor’s expansion as (2.3), we have

t2n ‖vn‖2E + t2q
n

∫
R2

(Iα ∗ |vn |q)|vn |qdx =
∫

R2
f (tnvn)tnvndx

�
∫

tnvn�Rε̄

(β0 − ε̄)e4π t2n v2ndx

then {tn} is bounded. Up to a subsequence, we suppose that tn → t0 � 0. Since cεn > C > 0,
we know t0 > 0. Let n → ∞ in above inequality, one has

t20‖wδ‖2V0
+ t2q

0

∫
R2

(Iα ∗ |wδ|q)|wδ|qdx =
∫

R2
f (t0wδ)t0wδdx . (3.5)
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Thus, combining (3.4) with (3.5), we have as n → ∞

t2−2q
0 ‖w‖2V0

− ‖w‖2V0
=
∫

R2

f (t0w)t0w

t2q
0

dx −
∫

R2
f (w)wdx,

from ( f4), when t0 > 1, the right-hand side of above equality is more than zero, while the
left side is less than zero, which is impossible. We consider t0 < 1 by a similar way. Then
we conclude that t0 = 1. Hence, analogous to [2, Lemma 3.3], we obtain limε→0 cε = cV0 .

�
In what follows, one can get that Iε satisfying (PS)cε condition for ε ∈ [0, ε0).

Lemma 3.3 Assume that (V ) and ( f1)–( f4) hold. For any ε ∈ [0, ε0), let {un} be a (PS)cε

sequence and un⇀uε, then un → uε in H1(R2).

Proof The proof of this lemma is analogous to [13, Lemma 3.3], for convenience to the
reader, we sketch the proof briefly. Similar to (2.15) and Lemma 3.1, for functional Iε with
V (εx) = V∞, there are C̄, C̃ > 0, we have

C̄ < ‖un‖V∞ < C̃ . (3.6)

Then we can obtain that uε �= 0 by Lion’s concentration compactness lemma. For this
purpose, we give the proof as follows.

Fix tn > 0 satisfying tnun ∈ NV∞ , nowwe prove that {tn} is bounded. Set νn = un(x+yn),
passing to a subsequence, we may assume that νn⇀ν in H1(R2). Moreover, since un � 0
for n ∈ N, we get that there exists C > 0 and � ⊂ R

2 with positive measure, such that, for
any x ∈ �, ν(x) > C . With the reduction to absurdity, we suppose

lim inf
n→∞

f (tnvn)tnvn

t2q
n

= +∞, a.e. in H1(R2). (3.7)

Since 〈I ′(un), un〉 = 0, one has

t2n ‖un‖2V∞ + t2q
n

∫
R2

(Iα ∗ |un |q)|un |qdx =
∫

R2
f (tnun)tnundx,

Consequently, we have

t2n ‖un‖2V∞ + t2q
n

∫
R2

(Iα ∗ |un |q)|un |qdx =
∫

�

f (tnvn)tnvndx .

Using (3.7) and Fatou’s lemma, we get

lim inf
n→∞

[
t2−2q
n ‖un‖2V∞ +

∫
R2

(Iα ∗ |un |q)|un |qdx

]
= ∞,

which contradicts (3.6). Then we may assume that

lim
n→∞ tn = t0 > 0.

We divide the following proof into three steps, that is, t0 � 1, t0 = 1 and t0 < 1, we conclude
that uε �= 0 by make a contradiction in above three steps. Hence, using Fatou’s lemma, one
can get that un → uε in H1(R2). Thus the proof is complete. �
Lemma 3.4 Assume that (V ) and ( f2) hold. Let u be the nonnegative solution of problem
(1.8), then u > 0 for all x ∈ R

2.
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Proof Set W (x) = V (εx) + (Iα ∗ |u|q)|u|q−2 − f (u)
u , then

−�u + W (x)u = 0 in R
2.

As (3.6), we have ‖u‖E � C , then by Sobolev embedding theorem, ‖u‖s � C‖u‖E . Con-
sequently, from (V ), ( f2) and u ∈ Ls(R2), s ∈ [2,∞), we have W ∈ Ls(R2). Using strong
maximum principle [21, Theorem 8.19], one has u > 0 for all x ∈ R

2. �
From Lemma 3.3 and Lemma 3.4, we have the following corollary.

Corollary 3.1 Assume that (V ) and ( f1)–( f4) hold. Then for ε > 0 small enough, cε is
achieved and problem (1.8) has a positive ground state solution.

4 Proof of Theorem 1.2

To obtain the concentration behavior from ground state solution of problem (1.8), we first
recall the following lemma.

Lemma 4.1 Assume that (V ) and ( f1)–( f4) hold. Let εn → 0 and {un} ⊂ Nεn be such that
Iεn (un) → cV0 . Then, there is a sequence {yn} ⊂ R

2 such that vn = un(x + yn) has a
convergent subsequence in H1(R2). Moreover, up to a subsequence, yn → y ∈ �.

Proof Analogous to [2, Proposition 4.2], we can prove Lemma 4.1, so we omit the proof
here. �

Let εn → 0 as n → ∞, and let un be the ground state solution of (1.8). Using Lemma 3.2,
we have

Iεn (un) → cV0 .

Hence, there is {ȳn} ⊂ R
2 such that vn = un(x + ȳn) is a solution of the following equation

− �vn + V (εn x + εn ȳn)vn + (Iα ∗ |vn |q)|vn |q−2vn = f (vn), in R
2. (4.1)

Furthermore, {vn} has a convergent subsequence in H1(R2) and yn → y ∈ �. Consequently,
there exists g ∈ H1(R2) satisfying

|vn(x)| � g(x), a.e. in R
2, ∀n ∈ N. (4.2)

Lemma 4.2 Assume that (V ) and ( f1)–( f4) hold. Then there is a constant C > 0 and δ̄ > 0
such that δ̄ � ‖vn‖L∞(R2) � C, for any n ∈ N. Moreover,

lim|x |→∞ vn(x) = 0 uni f ormly in n ∈ N.

Proof For any R > 0, 0 < r � R/2, set η ∈ C∞(R2), 0 � η � 1 with η(x) = 1 if |x | � R
and η(x) = 0 if |x | � R − r and |∇η| � 2/r . For any L > 0, fix

vL,n =
{

vn(x), vn(x) � L,

L, vn(x) > L,

and

zL,n = η2v
2(γ−1)
L,n vn, wL,n = ηvnv

γ−1
L,n ,
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where γ > 1 to be determined later. Setting zL,n as a test function, i.e. 〈I ′
ε(un), zL,n〉, we

know that

∫
R2

η2v
2(γ−1)
L,n |∇vn |2 dx+

∫
R2

V (εx)|vn |2η2v2(γ−1)
L,n dx +

∫
R2

(Iα ∗ |vn |q)η2|vn |qv
2(γ−1)
L,n dx

=
∫

R2
f (vn)η2vnv

2(γ−1)
L,n dx − 2(γ − 1)

∫
R2

vnv
2γ−3
L,n η2∇vn∇vL,n dx

−2
∫

R2
ηv

2(γ−1)
L,n vn∇vn∇η dx .

(4.3)

Let σ = √
s, h > 2σ

σ−1 > 2 and γ = h(σ−1)
2σ , for any δ > 0, β > 1, there exists C(δ, h, β)

such that

f (u)u � δu2 + C(δ, h, β)|u|h
[
e4πβ|u|2 − 1

]
, ∀u ∈ R.

For δ small enough, from (4.3) and Young’s inequality, for any τ > 0, one has

∫
R2

η2v
2(γ−1)
L,n |∇vn |2 dx +

∫
R2

V0|vn |2η2v2(γ−1)
L,n dx

� C
∫

R2
vh

n η2v
2(γ−1)
L,n

[
e4πβ|vn |2 − 1

]
dx + 2

∫
R2

ηv
2(γ−1)
L,n vn∇vn∇ηdx

� C
∫

R2
vh

n η2v
2(γ−1)
L,n

[
e4πβ|vn |2 − 1

]
dx + 2Cτ

∫
R2

v2nv
2(γ−1)
L,n |∇η|2dx

+2τ
∫

R2
η2v

2(γ−1)
L,n |∇vn |2dx .

Choosing τ = 1
4 , we get

∫
R2

η2v
2(γ−1)
L,n |∇vn |2 dx + 2

∫
R2

V0|vn |2η2v2(γ−1)
L,n dx

� 2C
∫

R2
vh

n η2v
2(γ−1)
L,n

[
e4πβ|vn |2 − 1

]
dx + C

∫
R2

v2nv
2(γ−1)
L,n |∇η|2dx . (4.4)

In addition, using Sobolev embedding inequality, we know

‖wL,n‖2h � Cγ 2
[∫

R2
v2nv

2(γ−1)
L,n |∇η|2dx +

∫
R2

η2v
2(γ−1)
L,n |∇vn |2dx

]
. (4.5)

Combining (4.4) with (4.5), we obtain

‖wL,n‖2h � Cγ 2
[∫

R2
v2nv

2(γ−1)
L,n |∇η|2dx +

∫
R2

vh
n η2v

2(γ−1)
L,n

[
e4πβ|vn |2 − 1

]
dx

]

� Cγ 2
[∫

R�|x |�R−r
v2nv

2(γ−1)
L,n dx +

∫
|x |�R−r

vh
n v

2(γ−1)
L,n

[
e4πβ|vn |2 − 1

]
dx

]
.

(4.6)
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Hence, by the Hölder inequality, we have

‖wL,n‖2h � Cγ 2
[∫

R�|x |�R−r
v
2γ
n dx +

∫
|x |�R−r

vh−2
n v

2γ
n

[
e4πβ|vn |2 − 1

]
dx

]

� Cγ 2

{(∫
R�|x |�R−r

v
2γ t
t−1
n dx

) t−1
t
(∫

R�|x |�R−r
1dx

) 1
t

+
(∫

|x |�R−r
v(h−2)t

n

[
e4πβ|vn |2 − 1

]t
dx

) 1
t
(∫

|x |�R−r
v

2γ t
t−1
n dx

) t−1
t
}

� Cγ 2

{(∫
R�|x |�R−r

v
2γ t
t−1
n dx

) t−1
t
(∫

R�|x |�R−r
1dx

) 1
t

+
(∫

|x |�R−r
vth

n dx

) h−2
ht
(∫

|x |�R−r

[
e4πβ|vn |2 − 1

] th
2
dx

) 2
th

(∫
|x |�R−r

v
2γ t
t−1
n dx

) t−1
t
}

. (4.7)

Furthermore, from (4.2) and Trudinger–Moser inequality (see Lemma 1.1), we know that

∫
R2

[
e4πβ|vn |2 − 1

]s
dx �

∫
R2

[
e4πβ|g|2 − 1

]s
dx = C < ∞, ∀n ∈ N, s > 1. (4.8)

On the other hand, set γ = h/2 > 1, it follows from (4.6), (4.8) that,

(∫
R2

(ηvnv
h
2 −1
L,n )hdx

) 2
h

� Cγ 2

(∫
R2

v2nv
2( h

2 −1)
L,n |∇η|2dx +

∫
|x |� R

2

vh
n η2v

2( h
2 −1)

L,n

[
e4πβ|vn |2 − 1

]
dx

)

� Cγ 2
∫

R2
v2nv

2( h
2 −1)

L,n |∇η|2dx + Cγ 2

(∫
|x |� R

2

vh
n

[
e4πβ|vn |2 − 1

] h
h−2

dx

) h−2
h

·
(∫

|x |� R
2

ηhvh
n v

h( h
2 −1)

L,n dx

) 1
h
(∫

|x |� R
2

ηhvh
n v

h( h
2 −1)

L,n dx

) 1
h

� Cγ 2
∫

R2
v2nv

2( h
2 −1)

L,n |∇η|2dx + Cγ 2

(∫
|x |� R

2

vh
ndx

) h−2
h (∫

R2
ηhvh

n v
h( h

2 −1)
L,n dx

) 2
h

,

Since vn → v in H1(R2), for R sufficiently large, let ε1 � 1
2Cγ 2 , we have

∫
|x |� R

2

vh
ndx � ε1 uniformly in n.
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Then, by the definition of wL,n , we have

(∫
|x |�R

(vnv
( h
2 −1)

L,n )hdx

) 2
h

� Cγ 2
∫

R2
v2nv

2( h
2 −1)

L,n |∇η|2dx

� Cγ 2
∫

R2
vh

ndx � C .

Applying Fatou’s lemma, when L → ∞, we get
∫

|x |�R
v

h2
2

n dx < ∞,

which means vn ∈ L
h2
2 (|x | � R).

Together (4.7) with (4.8), applying Hölder’s inequality, set γ = t = h/2 > 1, one has

‖wL,n‖2h � Cγ 2
(∫

|x |�R−r
v

2γ t
t−1
n dx

) t−1
t

.

Thus,

‖vL,n‖2γhγ (|x |�R)
�
(∫

|x |�R−r
v

hγ

L,ndx

) 2
h

�
(∫

R2
ηhvh

n v
h(γ−1)
L,n dx

) 2
h

= ‖wL,n‖2h � Cγ 2
(∫

|x |�R−r
v

2γ t
t−1
n dx

) t−1
t

= Cγ 2‖vn‖2γ2γ t
t−1 (|x |�R−r)

.

By Fatou’s lemma, we derive that

‖vn‖2γhγ (|x |�R)
� Cγ 2‖vn‖2γ2γ t

t−1 (|x |�R−r)
.

From line by line of [27, Lemma 4.5], let χ = h(t−1)
2t , s = 2t

t−1 , we conclude that

‖vn‖χm+1s(|x |�R) � C
∑m

i=1 χ−i
χ
∑m

i=1 iχ−i ‖vn‖h(|x |�R−r),

which means

‖vn‖L∞(|x |�R) � C‖vn‖h(|x |�R−r). (4.9)

For x̄ ∈ BR , using the same argument as above, let η ∈ C∞(R2), 0 � η � 1 with η(x) = 1
if |x − x̄ | � R̄ and η(x) = 0 if |x − x̄ | > 2R̄ and |∇η| � 2/R̄, one can get that

‖vn‖L∞(|x−x̄ |�R̄) � C‖vn‖h(|x−x̄ |�2R̄). (4.10)

By (4.9) and (4.10), it follows from a standard covering argument that

‖vn‖L∞(R2) < C .

In addition, using vn → v in H1(R2) and (4.9), for fixed δ > 0, there is R > 0 satisfying
‖vn‖L∞(|x |�R) < δ. Hence,

lim|x |→∞ vn(x) = 0 uniformly in n ∈ N.
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Thus, following the similar arguments of [2, Lemma 4.4], one can get that

δ̄ � ‖vn‖L∞(R2).

This completes the proof. �
Proof of Theorem 1.2 From Corollary 3.1, we obtain that problem (1.8) has a positive ground
state solution.

For item (i), set bn is the maximum of vn . Note that bn is a bounded sequence, that is, there
is R > 0 such that bn ∈ BR(0). Then, we can get the global maximum of uεn , we denoted it
by zn = bn + ȳn and εnzn = εnbn + εn ȳn = εnbn + yn . Since {bn} is bounded, one has

lim
n→∞ zn = y

and

lim
n→∞ V (εnzn) = V0.

Fix uε be the ground state solution of (1.8), then wε(x) = uε(
x
ε
) is a ground state solution

of (1.1). Hence, the maxima points of wε and uε, denoted by ηε and ςε respectively, such
that ηε = εςε and

lim
ε→0

V (ηε) = V0.

Thus, from (4.1), we can get that (i) holds.
Now we prove the statement (ii). Indeed, note that uε is the ground state solution of (1.8),

for convenience, we denoted it by u, let ςε be the maxima point of u, we have |u(ςε)| =
maxx∈R2 |u(x)|. Since ςε is bounded, it follows from Lemma 4.2 that

u(x) → 0 as |x − ςε| → ∞.

Using assumption ( f1), there is R̄ > 0 such that

f (u) � C̄ε|u|, ∀|x − ςε| � R̄.

Combining the above inequality with the boundedness of |u| in H1(R2), one has

�|u| = u · �u

|u| = V (εx)u2 + (Iα ∗ |u|q)|u|q − f (u)u

|u|
� (V0 − C̄ε)|u| := �|u|.

Fix w̃ = |u(x)| − Ce−√
�(|x−ςε |−R̄), where C is given by Lemma 4.2. Thus, we have

�w̃ � �w̃, |x − ςε| � R̄.

Applying the maximum principle, we obtain

w̃ � 0, ∀|x − ςε| � R̄,

namely,

|u(x)| � Ce−√
�(|x−ςε |−R̄), ∀|x − ςε| � R̄,

which means that (ii) holds. �
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5 Proof of Theorem 1.3

In this section, we denote by w the ground state solution of problem (1.8) with V ≡ V0,
let ϕ ∈ C∞(R+, [0, 1]) be a smooth non-increasing cut-off function such that ϕ(t) = 1 on
[0, 1

2 ] and ϕ(t) = 0 on [1,∞). For any y ∈ �, we define the function

�ε,y(x) := ϕ(|εx − y|)w
(

εx − y

ε

)

and tε > 0 verifying

Iε(tε�ε,y) = max
t�0

Iε(t�ε,y).

Furthermore, we define �ε : � → Nε by

�ε(y) = tε�ε,y .

By construction, one can easily get that �ε(y) has compact support for any y ∈ �.

Lemma 5.1 Assume that (V ) and ( f1)–( f4) hold. Then, uniformly for y ∈ �, the following
limit

lim
ε→0

Iε(�ε(y)) = cV0 .

holds.

Proof Arguing by contradiction, we suppose that the lemma is false. Thus, there exist δ0,
{yn} ⊂ � and εn → 0 such that∣∣Iεn (�εn (yn)) − cV0

∣∣ � δ0. (5.1)

Now, we claim that limn→∞ tεn = 1. Indeed, it follows from Lemma 3.1 and the definition
of tεn that

α2
1 =
∫

R2

[
t2εn

|∇�εn ,yn |2 + V (εn x)(tεn �εn ,yn )
2] dx + t2q

εn

∫
R2

(Iα ∗ |�εn ,yn |q)|�εn ,yn |qdx

=
∫

R2
f (tεn �εn ,yn )tεn �εn ,yndx .

Using (3.1), one can get that tεn � t̄ > 0 for some t̄ . If tεn → ∞, in view of the boundedness
of �εn ,yn and ( f4), one has

t2−2q
εn

‖�εn ,yn ‖2E +
∫

R2
(Iα ∗ |�εn ,yn |q)|�εn ,yn |qdx

=
∫

R2

f (tεn �εn ,yn )tεn �εn ,yn

t2q
εn

dx >

∫
B 1
2
(0)

f (tεn ϕ(|εnz|)w(z))

t2q−1
εn

ϕ(|εnz|)w(z)dz

=
∫

B 1
2
(0)

f (tεn w)

t2q−1
εn

wdx �
∫

B 1
2
(0)

f (tεn w̄)

t2q−1
εn

w̄dx → ∞,

where w̄ = infx∈B 1
2
(0) w(x). Since tεn → ∞ as εn → 0, the left side of above inequality

tends to
∫

R2(Iα ∗ |w|q)|w|qdx , that is a contradiction. Thus, tεn � C . We may assume that
tεn → t̄0. Repeating the proof of Lemma 3.2 line by line, we can verify that t̄0 = 1.
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Note that

Iεn (�εn (yn)) = t2εn

2

∫
R2

(∣∣∣∇(ϕ(|εnz|)w)

∣∣∣2 + V (εnz + yn)

∣∣∣ϕ(|εnz|)w
∣∣∣2
)
dx

+ t2q
εn

2q

∫
R2

(
Iα ∗
∣∣∣ϕ(|εnz|)w

∣∣∣q)
∣∣∣ϕ(|εnz|)w

∣∣∣qdx −
∫

R2
F(tεn ϕ(|εnz|)wdx .

Let n → ∞ in above equation, one has limn→∞ Iεn (�εn (yn)) = cV0 , which contradicts
(5.1). This ends the proof. �

For any δ > 0, set ρ = ρ(δ) > 0 satisfying �δ ⊂ Bρ(0). We define ψ : R
2 → R

2 as
follows: ψ(x) = x for |x | � ρ and ψ(x) = ρx/|x | for |x | � ρ. Now, we consider the map
βε : Nε → R

2, and

βε(u) =
∫

R2 ψ(εx)u2qdx∫
R2 u2qdx

.

By using � ⊂ Bρ(0) and the Lebesgue’s theorem, one has

lim
ε→0

βε(�ε(y)) = y uniformly in y ∈ �.

Lemma 5.2 Assume that (V ) and ( f1)–( f4) hold. Then, for any δ > 0,

lim
ε→0

sup
u∈Ñε

dist(βε(u),�δ) = 0,

where Ñε := {u ∈ Nε : Iε(u) � cV0 + a(ε)}, a : R
+ → R

+ is a positive function such that
a(ε) → 0 as ε → 0.

Proof Fix {εn} ⊂ R
+ satisfying εn → 0. In fact, there is {un} ⊂ Ñεn such that

dist(βεn (un),�δ) = sup
u∈̃Nεn

dist(βεn (u),�δ) + o(1).

Hence, we only need to prove that there is a sequence {yn} ⊂ �δ such that∣∣βεn (un) − yn
∣∣ = o(1). (5.2)

By using {un} ⊂ Ñεn ⊂ Nεn , we obtain

cV0 � cεn � Iεn (un) � cV0 + a(εn).

Then we have Iεn (un) → cV0 . Applying Lemma 4.1, one can get that there is a sequence
{ỹn} ⊂ R

2 such that yn = εn ỹn ∈ �δ , for n large enough. Thus,

βεn (un) = yn +
∫

R2 (ψ(εnz + yn) − yn))u2q
n (z + ỹn)dx∫

R2 u2q(z + ỹn)dx
.

It follows from εnz + yn → y ∈ �δ that βεn (un) = yn + o(1). Therefore, {yn} verifies (5.2).
This completes the proof. �
Lemma 5.3 Assume that (V ) and ( f1)–( f4) hold. Let {un} be the (P S)cε sequence for Iε in
Nε . Then, {un} possesses a convergent subsequence in H1(R2).
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Proof By hypotheses, we have

Iε(un) → cε, ‖I ′
ε(un)‖(H1)∗ = o(1).

Consequently, there is {λn} ⊂ R satisfying

I ′
ε(un) = λn J ′

ε(un) + o(1), (5.3)

where Jε : H1 → R is given by

Jε(u) =
∫

R2

(|∇u|2 + V (εx)u2) dx +
∫

R2
(Iα ∗ |u|q)|u|qdx −

∫
R2

f (u)udx .

Thus, from ( f 4) and Hölder’s inequality, one has

〈J ′
ε(un), un〉 = 2

∫
R2

(|∇un |2 + V (εx)u2
n

)
dx + 2q

∫
R2

(Iα ∗ |un |q)|un |qdx

−
∫

R2
f (un)undx −

∫
R2

f ′(un)u2
ndx

� −
[∫

R2
f ′(un)u2

ndx − (2q − 1)
∫

R2
f (un)undx

]

� −
(∫

R2
[ f ′(un)un − (2q − 1) f (un)]2dx

) 1
2
(∫

R2
|un |2dx

) 1
2

< 0.

We assume that 〈J ′
ε(un), un〉 → l � 0. Now we claim that l �= 0. Indeed, if l = 0, the

above inequality shows that un → 0 in L2(R2), then un → 0 in H1(R2), which contradicts
to Lemma 3.1. Hence, l �= 0, and so, λn = on(1). By using (5.3), one has I ′

ε(un) = o(1).
Then, {un} is a (P S)cε sequence in H1(R2). From Lemma 3.3, we obtain that {un} possesses
a convergent subsequence in H1(R2). �
By the similar arguments explored in above lemma, we get the following result.

Corollary 5.1 Assume that (V ) and ( f1)–( f4) hold. Then, the critical points of Iε on Nε are
critical points of Iε in H1(R2).

Proof of Theorem 1.3 Applying Lemmas 5.1–5.2, we obtain that βε ◦ �ε is homotopically
equivalent to the embedding map ι : � → �δ . Consequently, from Lemma 4.3 in [5], we
conclude that

catÑε
(Ñε) � cat�δ (�).

Because Iε satisfies the (P S)cε condition for c ∈ (cV0 , cV0 + a(ε)), according to the
Ljusternik–Schnirelmann theory [41], Iε possesses at least cat�δ (�) critical points in Nε.
Then, byCorollary 5.1, Iε possesses at least cat�δ (�) critical points in H1(R2). Repeating the
proof of Theorem 1.2, we can also conclude that the positive solutions satisfy concentration
behavior and exponential decay. Hence we complete the proof. �
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