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Abstract. We consider a perturbed double phase eigenvalue problem. Using the Nehari
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least three nontrivial bounded solutions all with sign information (positive, negative and
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1. Introduction

Let Ω ⊆ RN be a bounded domain with a Lipschitz boundary ∂Ω. In this paper we study
the following parametric double phase problem

(1)

{
−∆a

p(z)−∆qu(z) = λa(z)|u(z)|p−2u(z) + β(z)|u(z)|r−2u(z) in Ω,
u|∂Ω = 0, λ > 0, 1 < q < p < r.

}
Here, ∆a

p denotes the weighted p-Laplacian with weight a ∈ C0,1(Ω̄), a ≥ 0, a ̸= 0, defined
by

∆a
pu = div(a(z)|Du|p−2Du).

When a ≡ 1, we recover the standard p-Laplacian. Equation (1) is driven by a weighted
p-Laplacian and a standard q-Laplacian with q < p. So, the differential operator of (1) is
not homogeneous and is related to the so-called double phase integral functional

u→
∫
Ω
[a(z)|Du|p + |Du|q]dz.

Let η(z, t) denote the density of this integral functional, that is

η(z, t) = a(z)tp + tq, z ∈ Ω, t ≥ 0.

We do not assume that the weight a(·) is bounded away from zero (that is, we do not
assume that 0 < minΩ̄ a). So, this density exhibits unbalanced growth in t, that is,

tq ≤ η(z, t) ≤ c0(1 + tp) for some c0 > 0, all t ≥ 0.

This is a new class of functionals, which were first investigated by Marcellini [12, 13] and
Zhikov [22, 23], in the context of problems of the calculus of variations and of nonlinear
elasticity. The unbalanced growth of the density η(z, ·) leads to a setting that uses general-
ized Orlicz spaces. For boundary value problems driven by the double phase operator, there
is no global regularity theory as for balanced growth problems (see Lieberman [9]). There
are only local regularity results. A comprehensive account of the known regularity theory
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for double phase problems can be found in the papers of Marcellini [14, 15] and of Mingione
& Rădulescu [16]. Double phase operators provide a valuable framework for explaining the
behavior of highly anisotropic materials whose hardening properties, which are linked to the
exponent governing the propagation of the gradient variable, differ considerably with the
point in space, with the modulating coefficient a(·) dictating the geometry of a composite
made of two different materials.

Problem (1) can be viewed as a perturbed version of an eigenvalue problem for the double
phase operator, with the perturbation being β(z)|u|r−2u. The novel feature of (1), is that
the coefficient β(·) is sign-changing, that is, the perturbation term is indefinite. Recently
there have been existence and multiplicity results for parametric double phase problems. We
mention the works of Colasuonno & Squassina [2], Gasinski & Papageorgiou [4], Joe, Kim,
Kim & Oh [7], Leonardi & Papageorgiou [8], Liu & Papageorgiou [10, 11], Papageorgiou,
Vetro & Vetro [20, 21]. None of the aforementioned works studies the case of an indefinite
perturbation.

2. Mathematical background

As we already mentioned in the introduction, the appropriate space framework for double
phase problems is provided by generalized Orlicz spaces. A detailed account of the theory
of these spaces can be found in the book of Harjulehto & Hästo [6].

Let L0(Ω) denote the space of all measurable functions u : Ω → R. As usual we identify
two such functions which differ only on a Lebesgue–null set. Recall that

η(z, t) = a(z)tp + tq, z ∈ Ω, t ≥ 0,

with a ∈ C0,1(Ω̄)\{0}, a ≥ 0, 1 < q < p < N . Then the generalized Orlicz space Lη(Ω), is
defined by

Lη(Ω) = {u ∈ L0(Ω) : ρη(u) <∞},
where

ρη(u) =

∫
Ω
η(z, |u|)dz =

∫
Ω
[a(z)|u|p + |u|q]dz

is the modular function corresponding to η. We equip Lη(Ω) with the so-called Luxemburg
norm ∥ · ∥η defined by

∥u∥η = inf
{
λ > 0 : ρη

(u
λ

)
≤ 1
}
.

With this norm Lη(Ω) becomes a Banach space which is separable and reflexive (in fact,
uniformly convex). The corresponding generalized Orlicz–Sobolev spaceW 1,η(Ω), is defined
by

W 1,η(Ω) = {u ∈ Lη(Ω) : |Du| ∈ Lη(Ω)}.
This space is endowed with the following norm

∥u∥1,η = ∥u∥η + ∥Du∥η,

with ∥Du∥η = ∥|Du|∥η. Also we set W 1,η
0 (Ω) = C∞

c (Ω)
∥·∥1,η

. We know that the Poincaré

inequality holds on W 1,η
0 (Ω), namely we can find ĉ = ĉ(Ω) > 0 such that

∥u∥η ≤ ĉ∥Du∥η for all u ∈W 1,η
0 (Ω)

(see Crespo Blanco, Gasinski, Harjulehto & Winkert [3]). So, on W 1,η
0 (Ω), we can consider

the equivalent norm

∥u∥ = ∥Du∥η for all u ∈W 1,η
0 (Ω).

The spaces W 1,η(Ω) and W 1,η
0 (Ω) are separable and reflexive Banach spaces (in fact,

uniformly convex).
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Let Ap be the p-Muckenhoupt class (see Harjulehto & Hästo [6, p.106]). Our hypotheses
on the data of (1) are the following:

(H): a ∈ C0,1(Ω̄) ∩ Ap, a(z) > 0 for all z ∈ Ω, 1 < q < p < N, β ∈ L∞(Ω), p < r < q∗ =
Nq
N−q and p

q < 1 + 1
N .

Remark 1. The last condition on the exponents p, q, implies that they can not be far apart
and that p < q∗ = Nq

N−q . So the condition on r makes sense and in addition we have compact

embeddings of some relevant spaces (see Proposition 2 below).

There is a close relation between the norm ∥ · ∥η and the modular function ρη(·).

Proposition 1. If hypotheses (H) hold, then

(a) ∥u∥η = ϑ⇔ ρη

(u
ϑ

)
= 1;

(b) ∥u∥η < 1 (resp. = 1, > 1) ⇔ ρη(u) < 1 (resp. = 1, > 1);
(c) ∥u∥η < 1 ⇒ ∥u∥pη ≤ ρη(u) ≤ ∥u∥qη;
(d) ∥u∥η > 1 ⇒ ∥u∥qη ≤ ρη(u) ≤ ∥u∥pη;
(e) ∥u∥η → 0 (resp. → +∞) ⇔ ρη(u) → 0 (resp. → +∞).

There are some useful embeddings between the spaces introduced above.

Proposition 2. If hypotheses (H) hold, then

(a) Lη(Ω) ↪→ Lτ (Ω) andW 1,η
0 (Ω) ↪→W 1,τ

0 (Ω) continuously and densely for all τ ∈ [1, q];

(b) W 1,η
0 (Ω) ↪→ Lτ (Ω) continuously and densely for all τ ∈ [1, q∗] andW 1,η

0 (Ω) ↪→ Lτ (Ω)
compactly for all τ ∈ [1, q∗];

(c) Lp(Ω) ↪→ Lη(Ω) continuously and densely.

Let η0(z, t) = a(z)tp for all z ∈ Ω, all t ≥ 0. As we did for η(·, ·), we introduce the spaces

Lη0(Ω) and W 1,η0
0 (Ω). These are separable and reflexive Banach spaces (see Harjulehto &

Hästo [6, pp.52,66]). Additionally, we have the following properties:

(i) W 1,η
0 (Ω) ↪→W 1,η0

0 (Ω) continuously and densely;

(ii) W 1,η0
0 (Ω) ↪→ Lη0(Ω) compactly (see Papageorgiou, Rădulescu & Zhang [19]).

We consider the following eigenvalue problem

(2)

{
−∆a

pu(z) = λ̂a(z)|u(z)|p−2u(z) in Ω,
u|∂Ω = 0.

}
Exploiting the compact embedding of W 1,η0

0 (Ω) into Lη0(Ω), Papageorgiou, Pudelko &

Rădulescu [17], proved that problem (2) has a smallest eigenvalue λ̂a1 > 0 which is isolated

and simple. Moreover, we have the following variational characterization of λ̂a1 > 0

(3)
λ̂a1 = inf

{
ρη0(Du)

ρη0(u)
: u ∈W 1,η0

0 (Ω), u ̸= 0

}
= inf{ρη0(Du) : ρη0(u) = 1} (by p-homogeneity).

For a measurable function u : Ω → [0,∞), we write 0 ≺ u, if for all K ⊆ Ω compact,
0 < cK ≤ u(z) for a.a. z ∈ K. We write u ≺ 0 if 0 ≺ −u. Now let û1 be the positive

eigenfunction corresponding to λ̂a1 with ∥û1∥η0 = 1. We know that 0 ≺ û1.
We introduce the following quantity

(4) λ∗ = inf

{
ρη0(Du)

ρη0(u)
: u ∈W 1,η0

0 (Ω), u ̸= 0,

∫
Ω
β(z)|u|rdz > 0

}
.

Proposition 3. If hypotheses (H) hold and
∫
Ω β(z)û

r
1dz > 0, then λ∗ = λ̂a1.
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Proof. From (3) and (4), we see that λ̂a1 ≤ λ∗. On the other hand, the hypotheses imply
that

λ∗ ≤ ρη0(Dû1)

ρη0(û1)
= λ̂a1,

⇒λ∗ = λ̂a1.

The proof is now complete. □

In the sequel we will also use the following strengthened version of hypotheses (H).

(H’): Hypotheses (H) hold and in addition
∫
Ω β(z)û

r
1dz > 0.

For every λ > 0, let φλ : W 1,η
0 (Ω) → R be the energy functional for problem (1) defined

by

φλ(u) =
1

p
ρη0(Du) +

1

q
∥Du∥qq −

λ

p
ρη0(u)−

1

r

∫
Ω
β(z)|u|rdz for all u ∈W 1,η

0 (Ω).

Evidently, φλ ∈ C1(W 1,η
0 (Ω)).

We also consider the positive and negative truncations of φλ(·), namely the C1 functionals

φ±
λ :W 1,η

0 → R defined by

φ±
λ (u) =

1

p
ρη0(Du) +

1

q
∥Du∥qq −

λ

p
ρη0(u

±)− 1

r

∫
Ω
β(z)(u±)rdz for all u ∈W 1,η

0 (Ω).

Using the Nehari method we will show that for all λ ∈ (0, λ̂a1) problem (1) has at least
three nontrivial solutions, one positive, one negative and the third nodal (sign-changing).

So, for the functionals φλ, φ
±
λ introduced above, we define the corresponding Nehari

manifolds. We have

Nλ = {u ∈W 1,η
0 (Ω) : ⟨φ′

λ(u), u⟩, u ̸= 0},

N±
λ = {u ∈W 1,η

0 (Ω) : ⟨(φ±
λ )

′|u|, u⟩, u ̸= 0}.
Note that

u ∈ Nλ ⇔ u+ ∈ N+
λ , u

− ∈ N−
λ and u ∈ N+

λ ⇔ −u ∈ N−
λ .

The properties of these sets are linked to the behavior of the fibering function t 7→ φλ(tu)

for given u ∈W 1,η
0 (Ω), all t ≥ 0.

3. Multiplicity theorem

We start by proving some important properties of the Nehari manifolds Nλ, N
±
λ .

Proposition 4. If hypotheses (H) hold, u ∈ W 1,η
0 (Ω), u ̸= 0,

∫
Ω β(z)|u|

rdz > 0, and

λ ∈ (0, λ̂a1), then there exists unique tu > 0 such that tuu ∈ Nλ.

Proof. We consider the fibering map t 7→ φλ(tu), t ≥ 0. We have

φλ(tu) =
tp

p
ρη0(Du) +

tq

q
∥Du∥qq −

λtp

p
ρη0(u)−

tr

r

∫
Ω
β(z)|u|rdz,

⇒φλ(tu)

tq
≥ tp−q

p
(1− λ

λ̂a1
)ρη(Du) +

1

q
∥Du∥qq −

tr−q

r

∫
Ω
β(z)|u|rdz (see (3))

Since 1 < q < p < r and 0 < λ < λ̂a1, we see that

(5) lim inft→0∗
φλ(tu)

tq
≥ 1

q
∥Du∥qq > 0.
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On the other hand dividing with tr, we have

(6)

φλ(tu)

tr
≤ 1

p

1

tr−p
ρη0(Du) +

1

tr−q
∥Du∥qq −

1

r

∫
Ω
β(z)|u|rdz,

⇒lim supt→+∞
φλ(tu)

tr
≤ −1

r

∫
Ω
β(z)|u|rdz < 0 (by hypothesis).

From (5) we see that

(7) φλ(tu) > 0, for t > 0 small,

while from (5) we have

(8) φλ(tu) < 0, for t > 0 large,

The fibering function is continuous. So, from (7) and (8) we infer that these exists tu > 0
such that

φλ(tuu) = max
t≥0

φλ(tu).

Then we have

d

dt
φλ(tu)|t=tu = ⟨φ′

λ(tuu), u⟩ = 0 (by the chain rule),

⇒⟨φ′
λ(tuu), tuu⟩ = 0,

⇒tuu ∈ Nλ.

We show that tu > 0 is unique. Suppose for some t > 0, we have tu ∈ Nλ, then

(9)

tp[ρη0(Du)− λρη0(u)] + tq∥Du∥qq = tr
∫
Ω
β(z)|u|rdz,

⇔ 1

tr−p
[ρη0(Du)− λρη0(u)] +

1

tr−q
∥Du∥qq =

∫
Ω
β(z)|u|rdz,

Since λ ∈ (0, λ̂a1), we have ρη0(Du)− λρη0(u) > 0 and so in (9) we see that the left-hand
side is a strictly decreasing function of t > 0, which goes to +∞ as t → 0+ and to zero as
t→ +∞. Since

∫
Ω β(z)|u|

rdz > 0 (by hypothesis), we conclude that tu > 0 is unique. □

An immediate consequence of the above proposition, is the following result concerning
the Nehari manifold Nλ.

Corollary 1. If hypotheses (H’) hold and λ ∈ (0, λ̂a1), then Nλ ̸= ∅.

In a similar fashion, we prove analogous results for the Nehari manifolds N±
λ .

Proposition 5. If hypotheses (H) hold, u ∈W 1,η
0 (Ω),

∫
Ω β(z)(u

±)rdz > 0, and λ ∈ (0, λ̂a1),

then there exist unique t±u > 0 such that

t±u u ∈ N±
λ and so N±

λ ̸= 0.

Remark 2. Therefore if hypotheses (H’) hold, then N±
λ ̸= ∅ for all λ ∈ (0, λ̂a1).

Next, we show that the functionals φλ and φ±
λ are bounded away from zero when evalu-

ated on the corresponding Nehari manifolds.

Proposition 6. If hypotheses (H) hold and λ ∈ (0, λ̂a1), then

(a) for all u ∈ Nλ, φλ(u) ≥ c1(λ)min{∥u∥p, ∥u∥q} with c1(λ) > 0;
(b) for all u ∈ N±

λ , φ
±
λ (u) ≥ c2(λ)min{∥u∥p, ∥u∥q} with c2(λ) > 0.
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Proof. (a) If u ∈ Nλ, then

(10) ρη0(Du) + ∥Du∥qq − λρη0(u) =

∫
Ω
β(z)|u|rdz,

Then we have

φλ(u) ≥
1

p
[ρη0(Du) + ∥Du∥qq − λρη0(u)]−

1

r

∫
Ω
β(z)|u|rdz (since q < p)

=

[
1

p
− 1

r

]
(ρη0(Du) + ∥Du∥qq − λρη0(u)) (see (10))

≥ r − p

rp

(
(1− λ

λ̂a1
)ρη0(Du) + ∥Du∥qq

)
(see (3))

≥ r − p

rp
c1(λ)ρη0(Du) for some c1(λ) > 0 (since λ ∈ (0, λ̂a1))

≥ r − p

rp
c1(λ)min{∥u∥p, ∥u∥q} (see Proposition 1).

(b) The proof of this part is similar to that of (a). □

From this proposition, we infer the following result.

Corollary 2. If hypotheses (H’) hold and λ ∈ (0, λ̂a1), then φλ|Nλ
and φ±

λ |N±
λ

are all

coercive.

Remark 3. This corollary highlights the significance of the Nehari manifold. Note that
since r > p > q, we can not have coercivity of φλ(·) on all of W 1,η

0 (Ω). However φλ|Nλ
is

coercive (similarly for φ±
λ ).

Next we show that the elements of the Nehari manifolds are bounded below away from
zero.

Proposition 7. If hypotheses (H’) hold and λ ∈ (0, λ̂a1), then we can find c(λ) > 0 such

that

0 < c(λ) ≤ ∥u∥ for all u ∈ Nλ, u ∈ N±
λ .

Proof. If u ∈ Nλ, then

(11)

ρη0(Du) + ∥Du∥qq = λρη0(u) +

∫
Ω
β(z)|u|rdz

≤ λ

λ̂a1
ρη0(Du) +

∫
Ω
β(z)|u|rdz (see (3)),

⇒

(
1− λ

λ̂a1

)
ρη0(Du)+∥Du∥qq ≤

∫
Ω
β(z)|u|rdz,

⇒ c3(λ)ρη(Du) ≤ ∥u∥r(for some c3(λ) > 0)

(recall that W 1,η
0 (Ω) ↪→ Lr(Ω) continuously, see Proposition 2).

If ∥u∥ ≤ 1, then from (11) and Proposition 1 we have

0 < c3(λ) ≤ ∥u∥r−p.

If ∥u∥ > 1, then from (11) and Proposition 1 we have

0 < c3(λ) ≤ ∥u∥r−q.
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We conclude that there exists ĉ > 0 such that

0 < ĉ(λ) ≤ ∥u∥ for all u ∈ Nλ.

Similarly for the Nehari manifolds N±
λ . □

Proposition 8. If hypotheses (H) hold and λ ∈ (0, λ̂a1), and u ∈ Nλ (resp. u ∈ N±
λ ), then∫

Ω β(z)|u|
rdz > 0, (resp.

∫
Ω β(z)(u

±)rdz > 0).

Proof. We know that (
1− λ

λ̂a1

)
ρa(Du) + ∥Du∥qq ≤

∫
Ω
β(z)|u|rdz

⇒0 < c4(λ)ρη(Du) ≤
∫
Ω
β(z)|u|rdz.

Similarly we show that

0 <

∫
Ω
β(z)(u±)rdz for all u ∈ N±

λ .

This completes the proof. □

To generate a nodal solution, we will need the following subset of the Nehari manifold
Nλ

N0
λ = {u ∈W 1,η

0 (Ω) : u± ∈ Nλ}.
Evidently N0

λ ⊆ Nλ and next we show that N0
λ ̸= ∅ when 0 < λ < λa1.

Proposition 9. If hypotheses (H’) hold and λ ∈ (0, λ̂a1), then N
0
λ ̸= ∅.

Proof. On account of hypotheses (H’), we know that Nλ, N
±
λ ̸= ∅ (see Corollary 1 and

Remark 2). Let u ∈ N+
λ and v ∈ N−

λ . From Proposition 8, we know that∫
Ω
β(z)(u+)rdz > 0,

∫
Ω
β(z)(v−)rdz > 0.

Since u+, v− ∈W 1,η
0 (Ω) \ 0, by Proposition 4, we can find unique t1, t2 > 0 such that

(12) t1u
+ ∈ Nλ, t2v

− ∈ Nλ.

We set y = t1u
+ − t2v

−. Evidently y+ = t1u
+, y− = t2v

− and so from (12) we conclude
that y ∈ N0

λ and so N0
λ ̸= ∅. □

Now we consider the following constrained minimization problems

(13) m+
λ = inf

N+
λ

φ+
λ , m

−
λ = inf

N−
λ

φ−
λ , and m0

λ = inf
N0

λ

φλ.

To solve these minimization problems, we will need the following lemma.

Lemma 1. If hypotheses (H) hold and λ ∈ (0, λ̂a1) and u ∈ N±
λ , then φ±

λ (tu) ≤ φ±
λ (u) for

all t ≥ 0.

Proof. We do the proof for the pair (φ+
λ , N

+
λ ), the proof for the pair (φ−

λ′ , N
−
λ′) being similar.

Reasoning as in the proof of Proposition 4, we show that

φ+
λ (tu) > 0 for all t ∈ (0, 1) small,

φ+
λ (tu) < 0 for t > 1 large.
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Therefore as in that proof, we produce a unique t̂u > 0 such that

(14)

φ+
λ (t̂uu) = max

t≥0
φ+
λ (tu),

⇒ d

dt
φ+
λ (tu)|t=t̂u

= 0,

⇒⟨(φ+
λ )

′(t̂uu), t̂uu⟩ = 0,

⇒t̂uu ∈ N+
λ .

But by hypothesis, u ∈ N+
λ . Therefore t̂u = 1 and so from (14) it follows that

φ+
λ (tu) ≤ φ+

λ (u) for all t ≥ 0.

Similarly for the pair (φ−
λ , N

−
λ ). □

Using this lemma, we can solve the minimization problems in (14).

Proposition 10. If hypotheses (H’) hold and λ ∈ (0, λ̂a1), then

(a) there exists ûλ ∈ N+
λ such that φ+

λ (ûλ) = m+
λ ;

(b) there exists v̂λ ∈ N−
λ such that φ−

λ (v̂λ) = m−
λ ;

(c) there exists φ̂λ ∈ N0
λ such that φλ(ŷλ) = m0

λ.

Proof. (a) Let {un}n∈N ⊆ N+
λ be such that

φ+
λ (un) ↓ m

+
λ .

From Corollary 2 we know that φ+
λ |N+

λ
is coercive. Therefore {un}n∈N ⊆ W 1,η

0 (Ω) is

bounded. So, we may assume that

un → uλ weakly in W 1,η
0 (Ω), un → uλ in Lr(Ω) (see Proposition 2).

If uλ = 0, then

(15) un → 0 weakly in W 1,η
0 (Ω), u+n → 0 in Lr(Ω).

Since un ∈ N+
λ , we have

ρη(Dun) = λρη0(u
+
n ) +

∫
Ω
β(z)(u+n )

rdz,

⇒ρη(Dun) → 0 (see (15)),

⇒un → 0 (in W 1,η
0 (Ω) (see Proposition 1)

⇒φ+
λ (un) → φ+

λ (0) = 0 = m+
λ .

But from Propositions 6 and 7, we see that m+
λ > 0, a contradiction. Therefore uλ ̸= 0.

Note that ∫
Ω
β(z)(u+n )

rdz > 0, for all n ∈ N (see Proposition 8),

⇒
∫
Ω
β(z)(u+λ )

rdz ≥ 0 (see (15)).

Suppose
∫
Ω β(z)(u

+
λ )dz = 0. Then

(16) lim
n→∞

∫
Ω
β(z)(u+n )

rdz = 0.
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Since un ∈ N+
λ , n ∈ N, we have

ρη(Dun) = λρη0(u
+
n ) +

∫
Ω
β(z)(u+n )

rdz,

⇒ρη0(Du
+
λ ) < λρη0(u

+
λ ) (see (16) and note that ∥Duλ∥q > 0),

which contradicts (3). Therefore

0 <

∫
Ω
β(z)(u+λ )

rdz.

According to Proposition 5, there exists unique t+uλ
= t+λ > 0, such that t+λ uλ = úλ ∈ N+

λ .
So we have

m+
λ = lim

n→∞
φ+
λ (un)

≥ lim inf
n→∞

φ+
λ (t

+
λ un) (see Lemma 1)

≥ φ+
λ (ûλ) (since φ+

λ is sequentially weakly lower semicontinuous)

≥ m+
λ (since ûλ ∈ N+

λ ),

⇒φ+
λ (ûλ) = m+

λ with ûλ ∈ N+
λ .

(b) Arguing as in (a), we produce v̂λ ∈ N−
λ such that

φ−
λ (v̂λ) = m−

λ .

(c) Let {yn}n∈N ⊆ N0
λ such that

φλ(yn) ↓ m0
λ.

From Corollary 2, we know that φλ|Nλ
is coercive. Since N0

λ ⊆ Nλ, it follows that

{yn}n∈N ⊆W 1,η
0 (Ω) is bounded. Therefore

{y+n }n∈N, {y−n }n∈N ⊆W 1,η
0 (Ω)

are both bounded.
We may assume that

(17) y+n → w1, y
−
n → w2 weakly in W 1,η

0 (Ω), w1, w2 ≥ 0, {w1 > 0} ∩ {−w2 < 0} = ∅.

We have

φλ(yn) = φλ(y
+
n ) + φλ(y

−
n ) ≥ m+

λ +m−
λ ,

⇒m0
λ ≥ m+

λ +m−
λ > 0.(see Propositions 6 and 7).

Since yn ∈ N0
λ , by definition we have y+n , y

−
n ∈ Nλ for all n ∈ N. Therefore the following

equalities hold:

ρη(Dy
+
n ) = λρη0(y

+
n ) +

∫
Ω
β(z)(y+n )

rdz,(18)

ρη(Dy
−
n ) = λρη0(y

−
n ) +

∫
Ω
β(z)(y−n )

rdz for all n ∈ N.(19)

Suppose that w1 = 0 (see (17)). Then from (17) and (18), we see that

(20)
ρη(Dy

+
n ) → 0,

⇒y+n → 0 in W 1,η
0 (Ω) (see Proposition 1).
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But 0 < m+
λ ≤ φ+

λ (y
+
n ) for all n ∈ N and φ+

λ (y
+
n ) → φ+

λ (0) = 0 (see (20)), a contradiction.
Therefore w1 ̸= 0. Similarly using this time (17) and (19), we show that w2 ̸= 0. As before
using (17) and (18), (19), we show that

0 <

∫
Ω
β(z)wr

1dz, 0 <

∫
Ω
β(z)wr

2dz.

On account of Proposition 4, we can find unique t1, t2 > 0 such that

t1w1 ∈ Nλ, t2w2 ∈ Nλ.

We set ŷλ = t1w1 − t2w2 ∈W 1,η
0 (Ω), w ̸= 0 and observe that

ŷ+λ = t1w1 ∈ Nλ, ŷ
−
λ = t2w2 ∈ Nλ,

⇒ŷλ ∈ N0
λ .

Note that

m0
λ = lim

n→∞
φλ(yn)

= lim
n→∞

[φλ(y
+
n ) + φλ(y

−
n )]

= lim
n→∞

[φ+
λ (y

+
n ) + φ−

λ (y
−
n )]

≥ lim inf
n→∞

[φ+
λ (t1y

+
n ) + φ−

λ (t2y
−
n )]

= lim inf
n→∞

[φλ(t1y
+
n ) + φλ(t2y

−
n )]

≥ φλ(t1w1) + φλ(t2w2)

= φλ(ŷλ)

≥ m0
λ (since ŷλ ∈ N0

λ),

⇒ φλ(ŷλ) = m0
λ with ŷλ ∈ N0

λ .

The proof is now complete. □

Next, we show that the minimizers produced in Proposition 10, are critical points of φ±
λ

and φλ respectively, that is, N±
λ and N0

λ are natural constraints for the functionals φ±
λ and

φλ respectively (see Papageorgiou, Rădulescu & Repovs [18, p.425]).
In what follows, we denote by Kφ±

λ
and Kφλ

the critical sets of φ±
λ and φλ respectively,

that is,

Kφ±
λ
= {u ∈W 1,η

0 (Ω) : (φ±
λ )

′(u) = 0},

Kφλ
= {u ∈W 1,η

0 (Ω) : φ′
λ(u) = 0}.

Proposition 11. If hypotheses (H’) hold and λ ∈ (0, λ̂a1), then

ûλ ∈ Kφ+
λ
, v̂λ ∈ Kφ−

λ
and ŷλ ∈ Kφλ

.

Proof. Let ψ+
λ :W 1,η

0 (Ω) → R be defined by

ψ+
λ (u) = ρη(Du)− λρη0(u

+)−
∫
Ω
β(z)(u+)rdz.

Evidently, ψ+
λ ∈ C1(W 1,η

0 (Ω)). We see that

m+
λ = inf{φ+

λ (u) : u ∈W 1,η
0 (Ω) \ {0}, ψ+

λ (u) = 0}.
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The Lagrange multiplier rule (see Theorem 5.5.9 of Papageorgiou, Rădulescu, Repovs
[18, p.422]) implies that we can find (ξ, µ) ∈ R2 \ {0} such that

(21) ξ(φ+
λ )

′(ûλ) + µ(ψ+
λ )

′(ûλ) = 0 in W 1,η
0 (Ω).

If µ = 0, then ξ ̸= 0 and we have

ξ(φ+
λ )

′(ûλ) = 0,

⇒(φ+
λ )

′(ûλ) = 0

⇒ûλ ∈ Kφ+
λ
.

So, we need to show that µ = 0. To this end on (21), we act with ûλ ∈ N+
λ . Then since

⟨(φ+
λ )

′(ûλ), ûλ⟩ = 0 (recall that ûλ ∈ N+
λ ), we obtain

(22)

µ⟨(ψ+
λ )

′(ûλ), ûλ⟩ = 0,

⇒µ[pρη0(Dûλ) + q∥Dûλ∥qq − λpρη0(u
+
λ )−

∫
Ω
rβ(z)(u+λ )

rdz] = 0,

⇒µp[ρη(Dûλ)− λρη0(û
+
λ )−

∫
Ω
β(z)(û+λ )

rdz]

+ µ[−(p− q)∥Dûλ∥qq − (r − p)

∫
Ω
β(z)(û+λ )

rdz]

=0.

If µ ̸= 0, then we may assume that µ > 0 (the reasoning is similar if µ < 0). Then from
Proposition 8 and since p < r, we see that

(23) µ[−(p− q)∥Dûλ∥qq − (r − p)

∫
Ω
β(z)(û+λ )

rdz] < 0.

So from (22) and (23), we infer that

(24) µp[ρη(Dûλ)− λρη0(û
+
λ )−

∫
Ω
β(z)(û+λ )

rdz] > 0.

But recall that ûλ ∈ N+
λ . Hence

(25)

ρη0(Dûλ) + ∥Dûλ∥qq = λρη0(û
+
λ ) +

∫
Ω
β(z)(û+λ )

rdz,

⇒ρη(Dûλ)− λρη0(û
+
λ )−

∫
Ω
β(z)(û+λ )

rdz = 0.

Comparing (24) and (25), we have a contradiction. This proves that µ = 0, hence
ûλ ∈ Kφ+

λ
.

Similarly we show that v̂λ ∈ Kφ−
λ
, using this time the C1-constraint function ψ−

λ :

W 1,η
0 (Ω) → R defined by

ψ−
λ (u) = ρη(Du)− λρη0(u

−)−
∫
Ω
β(z)(u−)rdz for all u ∈W 1,η

0 (Ω).

Finally, we show that ŷλ ∈ Kφλ
. To this end, note that

mλ = inf{φλ(u) : u
± ∈W 1,η

0 (Ω) \ {0}, ψ+
λ (u

+) = 0, ψ−
λ (u

−) = 0}.

Consider the maps τ± :W 1,η
0 (Ω) →W 1,η

0 (Ω) defined by

τ±(u) = u±.
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These are Lipschitz mappings and we have

ψ±
λ (u

±) = (ψ±
λ ◦ τ±)(u).

Then by the nonsmooth Lagrange multiplier rule of Clarke (see Theorem 10.47 in [1, p.
221]), we can find (ξ, µ1, µ2) ∈ R3 \ {0} such that

(26) 0 ∈ ξφ′
λ(ŷλ) + µ1(ψ

+
λ )

′(ŷ+λ )∂τ+(ŷλ) + µ2(ψ
−
λ )

′(ŷ−λ )∂τ−(ŷλ).

Here by ∂ϑ(·) we denote the Clarke subdifferential of a locally Lipschitz function ϑ(·)
and we have used the nonsmooth chain rule for this subdifferential (see Clarke [1, pp. 196,
202]).

Suppose that (µ1, µ2) ∈ R2 \ {0}. Hence one of the components is nonzero. To fix
things, suppose µ1 > 0 (the reasoning is similar if µ1 < 0). On (26) we act with ŷ+λ . Since

⟨φ′
λ(ŷλ), ŷ

+
λ ⟩ = ⟨φ′

λ(ŷ
+
λ ), ŷ

+
λ ⟩ = 0 (recall that ŷ+λ ∈ Nλ), we obtain

(27)

µ1⟨(ψ′
λ)

′(ŷ+λ ), ŷ
+
λ ⟩ = 0 (note that {ŷ+λ > 0} ∩ {ŷ−λ > 0} = ∅),

⇒µ1p[ρη(Dŷ
+
λ )− λρη0(ŷ

+
λ )−

∫
Ω
β(z)(ŷ+λ )

rdz]

+ µ1[−(p− q)∥Dŷ+λ ∥
q
q − (r − p)

∫
Ω
β(z)(ŷ+λ )

rdz] = 0,

⇒µ1p[ρη(Dŷ
+
λ )− λρη0(ŷ

+
λ )−

∫
Ω
β(z)(ŷ+λ )

rdz] > 0

(as before, using Proposition 8 and since p < r).

But since ŷ+λ ∈ Nλ, we have

(28) ρη(Dŷ
+
λ )− λρη0(ŷ

+
λ )−

∫
Ω
β(z)(ŷ+λ )

rdz = 0.

Comparing (27) and (28), we have a contradiction. Therefore µ1 = 0. Similarly we show
that µ2 = 0. Therefore µ1 = µ2 = 0 and so ξ ̸= 0. We have

ξφ′
λ(ŷλ) = 0 in W 1,η

0 (Ω) (see (26)),

⇒φ′
λ(ŷλ) = 0 and so ŷλ ∈ Kφλ

.

The proof is now complete. □

Now we can state and prove the multiplicity theorem for problem (1).

Theorem 1. If hypotheses (H) hold and λ ∈ (0, λ̂a1), then problem (1) has at least three

nontrivial solutions

ûλ ∈W 1,η
0 (Ω) ∩ L∞(Ω), 0 ≺ ûλ,

v̂λ ∈W 1,η
0 (Ω) ∩ L∞(Ω), v̂λ ≺ 0,

ŷλ ∈W 1,η
0 (Ω) ∩ L∞(Ω)nodal.

Proof. From Proposition 10 we know that there exists ûλ ∈ N+
λ such that

m+
λ = φ+

λ (ûλ).

Moreover, from Proposition 11, we know that

(29) ⟨(φ+
λ )

′(ûλ), h⟩ = 0 for all h ∈W 1,η
0 (Ω).
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In (29) we use the test function h = −û−λ ∈W 1,η
0 (Ω). We have

ρη(Dû
−
λ ) = 0,

⇒ûλ ≥ 0, ûλ ̸= 0 (recall that ûλ ∈ N+
λ ).

From Gasinski & Winkert [5, Theorem 3.1], we have

ûλ ∈W 1,η
0 (Ω) ∩ L∞(Ω).

Let ρ = ∥ûλ∥∞. We can find ξ̂ρ > 0 such that

λa(z)xp−1 − β(z)xr−1 + ξ̂ρx
p−1 ≥ 0 for a.a. z ∈ Ω, all 0 ≤ x ≤ ρ.

So, we have

−∆a
pûλ −∆qûλ + ξ̂ρû

p−1
λ ≥ 0 in Ω.

Then invoking Proposition 2.4 of Papageorgiou, Vetro & Vetro [20], we infer that 0 ≺ ûλ.

Similarly we show that v̂λ ∈ W 1,η
0 (Ω) ∩ L∞ is a negative solution of problem (1) such that

v̂λ ≺ 0.
Finally, let ŷλ ∈ Nλ be such that

m0
λ = φλ(ŷλ) (see Proposition 10)

Then from Proposition 11 we know that ŷλ ∈ Kφλ
⊆ W 1,η

0 (Ω) ∩ L∞(Ω) and so ŷλ is a
nontrivial solution of (1). Since ŷλ ∈ N0

λ , we have ŷ±λ ̸= 0 and so ŷλ is a nodal solution of
problem (1). This completes the proof. □
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