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1. Introduction and the main results

We consider the following semilinear elliptic equation:

:u= p(x)f(u) in <;

u ≥ 0; u �≡ 0 in <; (1)

where <⊂RN (N ≥ 3) is a smooth domain (bounded or possibly unbounded) with
compact (possibly empty) boundary. We assume throughout this paper that p is a
non-negative function such that p∈C0; �( =<) if < is bounded, and p∈C0; �

loc (<), other-
wise. The nonlinearity f is assumed to ful?ll

(f 1) f ∈ C1[0;∞); f′ ≥ 0; f(0) = 0 and f¿ 0 on (0;∞)

and the Keller–Osserman condition (see [7,13])

(f 2)
∫ ∞

1
[2F(t)]−1=2 dt ¡∞ where F(t) =

∫ t

0
f(s) ds:

The main purpose of the paper is to ?nd properties of large solutions of (1), that
is solutions u satisfying u(x) → ∞ as dist (x; @<) → 0 (if < �≡ RN ), or u(x) → ∞ as
|x| → ∞ (if < = RN ). In the latter case the solution is called to be an entire large
solution.
Problems of this type have been originally studied by Loewner and Nirenberg in

their celebrated paper [11]. Their work deals with partial diGerential equations having
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a “partial conformal invariance” and is motivated by a concrete problem arising in
Riemannian Geometry. More precisely, in [11] Loewner and Nirenberg proved the re-
markable result that (1) has a maximal solution, provided that < �= RN ; p ≡ Const:¿ 0
in < and f(u) = u(N+2)=(N−2).
In [1,12] problem (1) is considered in the special case when < is bounded and

p¿ 0 in =<. More precisely, in [1] Bandle and Marcus described the precise asymptotic
behavior of large solutions near the boundary and established the uniqueness of such
solutions, while in [12] Marcus obtained existence results for large solutions.
The ?rst result we obtain in this paper is an existence theorem for large solutions

when < is bounded.

Theorem 1. Suppose < is bounded and p satis5es
(p1) for every x0 ∈ < with p(x0) = 0; there is a domain <0 	 x0 such that <0 ⊂<

and p¿ 0 on @<0.
Then problem (1) has a positive large solution.

This result generalizes Theorem 3:1 in Marcus [12] and Lemma 2:6 in [4] since
condition (p1) is weaker than the assumption that p¿ 0 on @<, as required in [4,
Lemma 2:6] and in [12, Theorem 3:1]. Indeed, the continuity of p, the compactness
of @< and the fact that p¿ 0 on @< imply the existence of some �¿ 0 such that
p¿ 0 in

<� := {x ∈ =<; dist (x; @<) ≤ �}:
Therefore, all the zeros of p are included in <0 = =<\<�⊂⊂<. Hence p¿ 0 on @<0,
so (p1) is ful?lled.
We now consider problem (1) when <=RN , and ?rst observe that any entire large

solution of (1) is positive. Indeed, assume there exists x0 ∈ RN such that u(x0) = 0.
Since u is an entire large solution, we can choose R¿ |x0| such that u¿ 0 on @B(0; R).
Thus, by Theorem 5 in the appendix, the problem

:�= p(x)f(�) in B(0; R);

�= u on @B(0; R);

� ≥ 0 in B(0; R)

has a unique solution, which is positive. By uniqueness, of course, �= u, which is the
required contradiction. This shows that u cannot vanish in RN .
The next purpose of the paper is to prove the existence of an entire maximal solution

for (1), under more general hypotheses than in [4]. They investigate the structure of
all positive solutions of (1) in the special case when f(u) = u�; �¿ 1, and they also
establish existence of the maximal classical solution U of (1), under the hypotheses
that this equation possesses at least a positive entire solution and there is a sequence
of smooth bounded domains (<n)n≥1 such that, for any n ≥ 1,

<n⊆<n+1; RN =
∞⋃
n=1

<n; p¿ 0 on @<n: (2)
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Cheng and Ni [4] also proved that the maximal solution U is the unique entire large
solution of problem (1), under the additional restriction that for some l¿ 2 there exist
two positive constants C1; C2 such that

C1p(x) ≤ |x|−l ≤ C2p(x) for large |x|: (3)

Our result in the case < = RN is the following.

Theorem 2. Assume that <=RN and that problem (1) has at least a solution. Sup-
pose that p satis5es the condition
(p1)′ There exists a sequence of smooth bounded domains (<n)n≥1 such that <n⊂

<n+1; RN =
⋃∞
n=1 <n; and (p1) holds in <n; for any n ≥ 1.

Then there exists a maximal classical solution U of (1).
If p veri5es the additional condition

(p2)
∫∞
0 rT(r) dr ¡∞ where T(r) = max{p(x): |x|= r};

then U is an entire large solution.

In view of the remark above that condition (p1) on < is weaker than the requirement
that p¿ 0 on @<, it follows that condition (p1)′ is weaker than the assumption (2)
required in [4], and also assumption (p2) is weaker than condition (3) imposed in [4].
We now observe that if p(x)¿ 0 for |x| suUciently large, then (p1)′ is automatically

satis?ed. Therefore, it is natural to ask us if there exists p ≥ 0 which satis?es (p2)
and (p1)′, with p vanishing in every neighborhood of in?nity. The answer is positive
by the following example. Take

p(r) = 0 for r = |x| ∈ [n− 1=3; n+ 1=3]; n ≥ 1;

p(r)¿ 0 in R+ \
∞⋃
n=1

[n− 1=3; n+ 1=3];

p ∈ C1[0;∞) and max
r∈[n;n+1]

p(r) =
2

n2(2n+ 1)
:

Of course, (p1)′ is ful?lled, for <n = B(0; n+ 1=2). On the other hand, condition (p2)
is also satis?ed since

∫ ∞

1
rT(r) dr =

∞∑
n=1

∫ n+1

n
rp(r) dr ≤

∞∑
n=1

∫ n+1

n

2
n2(2n+ 1)

r dr =
∞∑
n=1

1
n2
¡∞:

We now consider the case in which < �= RN and < is unbounded; we say that a
large solution u of (1) is regular if u tends to zero at in?nity. In [12, Theorem 3:1]
Marcus proved for this case the existence of regular large solutions to problem (1) by
assuming that there exist �¿ 1 and �¿ 0 such that

lim inf
t→0

f(t)t−� ¿ 0 and lim inf
|x|→∞

p(x)|x|� ¿ 0:
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The large solution constructed in Marcus [12] is the smallest large solution of problem
(1). In the next result we show that problem (1) admits a maximal classical solution
U and that U blows-up at in?nity if < = RN \ B(0; R).

Theorem 3. Suppose that < �= RN is unbounded and that problem (1) has at least a
solution. Assume that p satis5es condition (p1)′ in <. Then there exists a maximal
classical solution U of problem (1).

If <=RN \B(0; R) and p satis5es the additional condition (p2); with T(r)= 0 for
r ∈ [0; R]; then the maximal solution U is a large solution that blows-up at in5nity.

In conclusion, by Theorem 3 and the recalled result of Marcus, in the case < =
RN \ B(0; R), problem (1) admits large solutions tending to zero or to in?nity as
|x| → ∞ (regular or normal large solutions).
In Section 2, we prove Theorem 1, while in Section 3 we prove Theorems 2 and 3.

In Section 4, we prove the following necessary condition for the existence of entire
large solutions to Eq. (1) if p satis?es (p2), and for which f is not assumed to satisfy
(f 2), and p is not required to be so regular as before. More precisely, we prove

Theorem 4. Assume that p ∈ C(RN ) is a non-negative and non-trivial function which
satis5es (p2). Let f be a function satisfying assumption (f 1). Then condition∫ ∞

1

dt
f(t)

¡∞ (4)

is necessary for the existence of entire large solutions to (1).
For further results in this direction we refer to [3] and [10].

2. Existence results for bounded domains

Lemma 1. Assume that conditions (f 1) and (f 2) are ful5lled. Then∫ ∞

1

dt
f(t)

¡∞:

Proof. Fix R¿ 0 and denote B=B(0; R). By Theorem 5 in the appendix the boundary
value problem

:un = f(un) in B;

un = n on @B;

un ≥ 0; un �≡ 0 in B

(5)

has a unique positive solution. Since f is non-decreasing, it follows by the maximum
principle that un(x) increases with n, for any ?xed x ∈ B.
We ?rst claim that (un) is uniformly bounded in every compact subdomain of B.

Indeed, let K ⊂B be any compact set and d := dist(K; @B). Then

0¡d ≤ dist(x; @B) ∀x ∈ K: (6)
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By Proposition 1 of Bandle–Marcus [1], there exists a continuous, non-increasing func-
tion � : R+ → R+ such that

un(x) ≤ �(dist(x; @B)) ∀x ∈ K:
The claim now follows from (6). Thus, for every x ∈ B we can de?ne u(x) :=
limn→∞ un(x).
We next show that u is a classical large solution of

:u= f(u) in B: (7)

Fix x0 ∈ B and let r ¿ 0 be such that B(x0; r)⊂B. Let V ∈ C∞(B) be such that V ≡ 1
in B(x0; r=2) and V ≡ 0 in B \ B(x0; r). We have

:(Vun) = 2∇V · ∇un + pn;
where pn = un:V + V:un. Since (un) is uniformly bounded on B(x0; r) and f is
non-decreasing on [0;∞), it follows that ||pn||∞ ≤ C, where C is a constant inde-
pendent of n. From now on, using the same argument given in the proof of Lemma 3
of [9], we ?nd that (un) converges in C2; �(B(x0; r1)), for some r1¿ 0. Since x0 ∈ B
is arbitrary, this shows that u ∈ C2(B) and u is a positive solution of (7). More-
over, by the Gidas–Ni–Nirenberg theorem in [6], u is radially symmetric in B, namely
u(x) = u(r); r = |x|, and u satis?es in the r variable the equation

u′′(r) +
N − 1
r

u′(r) = f(u(r)); 0¡r¡R:

This equation can be rewritten as follows:

(rN−1u′(r))′ = rN−1f(u(r)); 0¡r¡R: (8)

Integrating (8) from 0 to r we obtain

u′(r) = r1−N
∫ r

0
sN−1f(u(s)) ds; 0¡r¡R:

Hence u is a non-decreasing function and

u′(r) ≤ r1−Nf(u(r))
∫ r

0
sN−1 ds=

r
N
f(u(r)); 0¡r¡R: (9)

Similarly, un is non-decreasing on (0; R), for any n ≥ 1.
In order to show that u is a large solution of (7), it remains to prove that u(r) → ∞

as r↗R. Assume the contrary. Then there exists C¿ 0 such that u(r)¡C for all 0 ≤
r ¡R. Let N1 ≥ 2C be ?xed. The monotonicity of uN1 and the fact that uN1 (r) → N1

as r ↗ R imply the existence of some r1 ∈ (0; R) such that C ≤ uN1 (r), for r ∈ [r1; R).
Hence

C ≤ uN1 (r) ≤ uN1+1(r) ≤ · · · ≤ un(r) ≤ un+1(r) ≤ · · · ∀n ≥ N1; ∀r ∈ [r1; R):

Passing to the limit as n→∞, we obtain u(r) ≥ C for all r ∈ [r1; R), which is a
contradiction.
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Integrating (9) on (0; r) and taking r ↗ R we ?nd∫ ∞

u(0)

1
f(t)

dt≤ R2

2N
:

The conclusion of Lemma 1 is therefore proved.

Proof of Theorem 1. By Theorem 5 in the appendix, the boundary value problem

:vn = p(x)f(vn) in <;

vn = n on @<;

vn ≥ 0; vn �≡ 0 in <

(10)

has a unique positive solution, for any n≥ 1.
We now claim that

(a) for all x0 ∈ < there exist an open set O⊂⊂< containing x0 and M0 =M0(x0)¿ 0
such that vn ≤ M0 in O, for any n ≥ 1;

(b) limx→@< v(x) =∞; where (x) = limn→∞ vn(x).
We ?rst remark that the sequence (vn) is non-decreasing. Indeed, by Theorem 5 in the
appendix, the boundary value problem

:�= ||p||∞f(�) in <;

�= 1 on @<;

�¿ 0 in <

has a unique solution. Then, by the maximum principle,

0¡�≤ v1 ≤ · · · ≤ vn ≤ · · · in <: (11)

We also observe that (a) and (b) are suUcient to conclude the proof. In fact, assertion
(a) shows that the sequence (vn) is uniformly bounded on every compact subset of <.
Standard elliptic regularity arguments (see the proof of Lemma 3 in [9]) show that v
is a solution of problem (1). Then, by (11) and (b), it follows that v is the desired
solution.
To prove (a) we distinguish two cases:
Case p(x0)¿ 0: By the continuity of p, there exists a ball B= B(x0; r)⊂⊂< such

that

m0 := min{p(x); x ∈ =B}¿ 0:

Let w be a positive solution of problem

:w = m0f(w) in B;

w(x) → ∞ as x → @B:
(12)

The existence of w follows by [7, Theorem III], due to Keller. By the maximum
principle it follows that vn ≤ w in B. Furthermore, w is bounded in B(x0; r=2). Setting
M0 = supO w, where O= B(x0; r=2), we obtain (a).

Case p(x0)= 0: Our hypothesis (p1) and the boundedness of < imply the existence
of a domain O⊂⊂< which contains x0 such that p¿ 0 on @O. The above case shows
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that for any x ∈ @O there exist a ball B(x; rx) strictly contained in < and a constant
Mx¿ 0 such that vn ≤ Mx on B(x; rx=2), for any n ≥ 1. Since @O is compact, it follows
that it may be covered by a ?nite number of such balls, say B(xi; rxi =2), i = 1; : : : ; k0.
Setting M0 = max {Mx1 ; : : : ; Mxk0

} we have vn ≤ M0 on @O, for any n ≥ 1. Applying
the maximum principle we obtain vn ≤ M0 in O and (a) follows.
Let us now consider the problem

−:z = p(x) in <;

z = 0 on @<;

z ≥ 0; z �≡ 0 in <:

(13)

Applying Theorem 1 in Brezis–Oswald [2] we deduce that (13) has a unique solution
which is positive in <, by the maximum principle.
We ?rst observe that for proving (b) it is suUcient to show that∫ ∞

v(x)

dt
f(t)

≤ z(x) for any x ∈ <: (14)

By Lemma 1, the left-hand side of (14) is well de?ned in <. Fix &¿ 0. Since vn = n
on @<, there is n1 = n1(&) such that∫ ∞

vn(x)

dt
f(t)

≤ &(1 + R2)−1=2 ≤ z(x) + &(1 + |x|2)−1=2 ∀x ∈ @< ∀n ≥ n1; (15)

where R¿ 0 is chosen so that =<⊂B(0; R).
In order to prove (14), it is enough to show that∫ ∞

vn(x)

dt
f(t)

≤ z(x) + &(1 + |x|2)−1=2 ∀x ∈ < ∀n ≥ n1: (16)

Indeed, putting n→∞ in (16) we deduce (14), since &¿ 0 is arbitrarily chosen.
Assume now, by contradiction, that (16) fails. Then

max
x∈ =<

{∫ ∞

vn(x)

dt
f(t)

− z(x)− &(1 + |x|2)−1=2
}
¿ 0:

Using (15) we see that the point where the maximum is achieved must lie in <. At
this point, say x0, we have

0≥:
(∫ ∞

vn(x)

dt
f(t)

− z(x)− &(1 + |x|2)−1=2
)
|x=x0

=

(
− 1
f(vn)

:vn −
(
1
f

)′
(vn) · |∇vn|2 −:z(x)− &:(1 + |x|2)−1=2

)
|x=x0
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=

(
−p(x)−

(
1
f

)′
(vn) · |∇vn|2 + p(x)− &:(1 + |x|2)−1=2

)
|x=x0

=

(
−
(
1
f

)′
(vn) · |∇vn|2 + &(N − 3)(1+ |x|2)−3=2 +3 &(1+ |x|2)−5=2

)
|x=x0

¿0:

This contradiction shows that inequality (16) holds and the proof of Theorem 1 is
complete.

3. Existence results for unbounded domains

In this section we are interested mainly in the question of ?nding and describing
the behavior on the boundary and at in?nity of the maximal solution to problem (1),
where < is now an unbounded domain, possibly RN . For the signi?cance of such
a study we refer to Dynkin [5] where it is showed that there exist certain relations
between hitting probabilities for superdiGusions and maximal solutions of (1) with
f(u) = u�; 1¡� ≤ 2.
It is clear that a unique normal large solution is necessarily a maximal solution. In

view of this remark the problem of maximal solution seems to be connected with the
uniqueness of large solutions. But this is not the best way to be followed because we
lose the control if the uniqueness of large solutions fails. The advantage oGered by
our results is that we ?nd a direct method which establishes an interesting connection
between the maximal solution and any sequence of large solutions taken on bounded
domains of the type given in condition (p1)′ in <.

Proof of Theorem 2. By Theorem 1, the boundary value problem

:vn = p(x)f(vn) in <n;

vn(x) → ∞ as x → @<n;

vn ¿ 0 in <n (17)

has solution. Since <n⊂<n+1 we can apply, for each n ≥ 1, the maximum principle
(in the same manner as in the uniqueness proof of Theorem 5 in the appendix) in
order to ?nd that vn ≥ vn+1 in <n. Since RN =

⋃∞
n=1 <n and <n⊂<n+1 it follows that

for every x0 ∈ RN there exists n0 = n0(x0) such that x0 ∈ <n for all n ≥ n0. In view of
the monotonicity of the sequence (vn(x0))n≥n0 we can de?ne U (x0) = limn→∞ vn(x0).
By applying the standard bootstrap argument (see [8, Theorem 1]) we ?nd that U ∈
C2; �
loc (R

N ) and :U = p(x)f(U ) in <.
We now prove that U is the maximal solution of problem (1). Indeed, let u be an

arbitrary solution of (1). Applying again the maximum principle we obtain that vn ≥ u
in <n for all n ≥ 1. By the de?nition of U , it is clear that U ≥ u in RN .
We point out that U is independent of the choice of the sequence of domains <n

and the number of solutions of problem (17). This follows easily by the uniqueness
of the maximal solution.



F. #S. C&̂rstea, V.D. R(adulescu / Nonlinear Analysis 48 (2002) 521–534 529

We suppose, in addition, that p satis?es (p2) and we shall prove that U blows-up
at in?nity. For this aim, it is suUcient to ?nd a positive function w ∈ C(RN ) such that
U ≥ w in RN and w(x) → ∞ as |x| → ∞. We ?rst observe that (p2) implies

K =
∫ ∞

0
r1−N

(∫ r

0
'N−1T(') d'

)
dr ¡∞: (18)

Note that (18) is a simple consequence of the fact that for all R¿ 0 we have∫ R

0
r1−N

(∫ r

0
'N−1T(') d'

)
dr =

1
2− N

∫ R

0

d
dr

(r2−N )
(∫ r

0
'N−1T(') d'

)
dr

=
1

2− N R
2−N

∫ R

0
'N−1T(') d' − 1

2− N∫ R

0
rT(r) dr ≤ 1

N − 2

∫ ∞

0
rT(r) dr ¡∞:

Using (18) and the maximum principle we obtain that the problem

−:z =T(r); r = |x|¡∞;
z(x) → 0; as |x| → ∞

has a unique positive radial solution which is given by

z(r) = K −
∫ r

0
'1−N

(∫ '

0
(N−1T(() d(

)
d' ∀r ≥ 0:

Let w be the positive function de?ned implicitely by

z(x) =
∫ ∞

w(x)

dt
f(t)

∀x ∈ RN : (19)

Assumption (f1) and L’Hospital rule yield

lim
t↘0

f(t)
t

= lim
t↘0

f′(t) = f′(0) ∈ [0;∞);

which implies the existence of some �¿ 0 such that

f(t)
t
¡f′(0) + 1 for all 0¡t¡�:

Thus for every s ∈ (0; �) we have∫ �

s

dt
f(t)

¿
1

f′(0) + 1

∫ �

s

dt
t
=

1
f′(0) + 1

(ln �− ln s):

It follows that lims↘0
∫ �
s dt=f(t) = ∞, which gives the possibility to de?ne w as

in (19).
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We claim that w ≤ vn in <n for all n ≥ 1. Obviously this inequality is true on @<n.
Using the same arguments as in the proof of the inequality (26) in the appendix (with
< replaced by <n) we obtain that for any &¿ 0 and n ≥ 1 we have

w(x) ≤ vn(x) + &(1 + |x|2)−1=2 in <n

and the claim follows. Consequently, U ≥ w in RN and, by (19), w(x)→∞ as |x| →
∞. This completes the proof.

Proof of Theorem 3. We argue in a similar manner as in the proof of Theorem 2, but
with some changes due to the fact that < �= RN .

Let (<n)n≥1 be the sequence of bounded smooth domains given by condition (p1)′.
For n ≥ 1 ?xed, let vn be a positive solution of problem (17) and recall that vn ≥ vn+1

in <n. Set U (x) = limn→∞ vn(x), for every x ∈ <. With the same arguments as in
Theorem 2, we ?nd that U is a classical solution to (1) and that U is the maximal
solution. Hence the ?rst part of Theorem 3 is proved.
For the second part, in which < = RN \ B(0; R), we suppose that (p2) is ful?lled,

with T(r) = 0 for r ∈ [0; R]. In order to prove that U is a normal large solution it
is enough to show the existence of a positive function w ∈ C(RN \ B(0; R)) such that
U ≥ w in RN \B(0; R), and w(x) → ∞ as |x| → ∞ and as |x| ↘ R. This will be done
as in the proof of Theorem 2, with the function z given now as the unique positive
radial solution of the problem

−:z =T(r) if |x|= r ¿R;

z(x) → 0 as |x| → ∞;

z(x) → 0 as |x|↘R:

The uniqueness of z follows by the maximum principle. Moreover,

z(r) =
(

1
RN−2 − 1

rN−2

)∫ ∞

R
'1−N

(∫ '

0
(N−1T(() d(

)
d' − 1

RN−2

∫ r

R
'1−N

×
(∫ '

0
(N−1T(() d(

)
d':

This completes the proof.

4. Proof of Theorem 4

Let u be an entire large solution of problem (1). De?ne

u(r) =
1

!NrN−1

∫
|x|=r

(∫ u(x)

a

dt
f(t)

)
dS =

1
!N

∫
|+|=1

(∫ u(r+)

a

dt
f(t)

)
dS;
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where !N denotes the surface area of the unit sphere in RN and a is chosen such that
a ∈ (0; u0), where u0 = infRN u¿ 0. By the divergence theorem we have

u′(r) =
1
!N

∫
|+|=1

1
f(u(r+))

∇u(r+) · + dS = 1
!NrN

∫
|y|=r

1
f(u(y))

∇u(y) · y dS

=
1

!NrN

∫
|y|=r

∇
(∫ u(y)

a

dt
f(t)

)
· y dS = 1

!NrN−1

∫
|y|=r

@
@-

(∫ u(y)

a

dt
f(t)

)
dS

=
1

!NrN−1

∫
B(0;r)

:

(∫ u(x)

a

dt
f(t)

)
dx:

Since u is a positive classical solution it follows that

|u′(r)| ≤ Cr → 0 as r → 0:

On the other hand,

!N (RN−1u′(R)− rN−1u′(r)) =
∫
D
:

(∫ u(x)

a

1
f(t)

dt

)
dx

=
∫ R

r

(∫
|x|=z

:

(∫ u(x)

a

dt
f(t)

)
dS

)
dz;

where D = {x ∈ RN : r ¡ |x|¡R}. Dividing by R− r and letting R→ r we ?nd

!N (rN−1u′(r))′ =
∫
|x|=r

:

(∫ u(x)

a

dt
f(t)

)
dS =

∫
|x|=r

div
(

1
f(u(x))

∇u(x)
)

dS

=
∫
|x|=r

[(
1
f

)′
(u(x)) · |∇u(x)|2 + 1

f(u(x))
:u(x)

]
dS

≤
∫
|x|=r

p(x)f(u(x))
f(u(x))

dS ≤ !NrN−1T(r):

Integrating the above inequality yields

u(r) ≤ u(0) +
∫ r

0
'1−N

(∫ '

0
(N−1T(() d(

)
d' ∀r ≥ 0: (20)

Since (p2) implies (18) we have

u(r) ≤ u(0) + K ∀r ≥ 0:

Thus =u is bounded and assuming that (4) is not ful?lled it follows that u cannot be a
large solution.
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Appendix

The following result is mentioned without proof in Marcus [12] and it was applied
several times in this paper. For the sake of completeness we present in this section a
simple proof of this theorem.

Theorem 5. Let < be a bounded domain. Assume that p ∈ C0; �( =<) is a non-negative
function; f satis5es (f1) and g : @< → (0;∞) is continuous. Then the boundary value
problem

:u= p(x)f(u) in <;

u= g on @<;

u ≥ 0; u �≡ 0 in <

(A.1)

has a unique classical solution; which is positive.

Proof of Theorem 5. We ?rst observe that the function u+(x) = n is a super-solution
of problem (A.1), provided that n is suUciently large. To ?nd a positive subsolution,
we look for an arbitrary positive solution to the following auxiliary problem:

:v=T(r) in A(r; =r) = {x ∈ RN ; r ¡ |x|¡ =r}; (A.2)

where

r = inf {(¿ 0; @B(0; () ∩ =< �= ∅}; =r = sup {(¿ 0; @B(0; () ∩ =< �= ∅}

T(r) = max
|x|=r

p(x) for any r ∈ [r; =r]:

The function

v(r) = 1 +
∫ r

r
'1−N

(∫ '

0
(N−1T(() d(

)
d'; r ≤ r ≤ =r

veri?es Eq. (A.2). The assumptions on f and g imply

g0 := min
@<

g¿ 0 and lim
z↘0

∫ g0

z

dt
f(t)

=∞:

This will be used to justify the existence of a positive number c such that

max
@<

v=
∫ g0

c

dt
f(t)

: (A.3)
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Next, we de?ne the function u− such that

v(x) =
∫ u−(x)

c

dt
f(t)

∀x ∈ <: (A.4)

It turns out that u− is a positive subsolution of problem (A.1). Indeed, it is clear that

u− ∈ C2(<) ∩ C( =<) and u− ≥ c in <:

On the other hand, from (A.2), (A.4) and (f1) it follows that

p(x)≤:v(x) =
1

f(u−(x))
:u−(x) +

(
1
f

)′
(u−(x)) · |∇u−(x)|2

≤ 1
f(u−(x))

:u−(x) in <;

which yields

:u−(x) ≥ p(x)f(u−(x)) in <:

On the other hand, taking into account (A.3) and (A.4) we ?nd

u−(x) ≤ g(x) ∀x ∈ @<:
So, we have proved that u− is a positive subsolution to problem (A.1). Therefore,
this problem has at least a positive solution u. Furthermore, taking into account the
regularity of p and f, a standard boot-strap argument based on Schauder and HYolder
regularity shows that u ∈ C2(<) ∩ C( =<).
Let us now assume that u1 and u2 are arbitrary solutions of (A.1). In order to prove

the uniqueness, it is enough to show that u1 ≥ u2 in <. Denote

! := {x ∈ <; u1(x)¡u2(x)}
and suppose that ! �= ∅. Then the function ũ= u1 − u2 satis?es

:ũ= p(x)(f(u1)− f(u2)) in !;
ũ= 0 on @!:

(A.5)

Since f is non-decreasing and p ≥ 0, it follows by (A.5) that ũ is a super-harmonic
function in ! which vanishes on @!. Thus, by the maximum principle, either ũ ≡ 0
or ũ¿ 0 in !, which yield a contradiction. Thus u1 ≥ u2 in <.
We give in what follows an alternative proof for the uniqueness. Let u1, u2 be two

arbitrary solutions of problem (A.1). As above, it is enough to show that u1 ≥ u2 in
<. Fix &¿ 0. We claim that

u2(x) ≤ u1(x) + &(1 + |x|2)−1=2 for any x ∈ <: (A.6)

Suppose the contrary. Since (A.6) is obviously ful?lled on @<, we deduce that

max
x∈ =<

{u2(x)− u1(x)− &(1 + |x|2)−1=2}
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is achieved in <. At that point we have

0≥:(u2(x)− u1(x)− &(1 + |x|2)−1=2) = p(x)(f(u2(x))− f(u1(x)))
−&:(1 + |x|2)−1=2

=p(x)(f(u2(x))− f(u1(x))) + &(N − 3)(1 + |x|2)−3=2 + 3 &(1 + |x|2)−5=2¿ 0;

which is a contradiction. Since &¿ 0 is chosen arbitrarily, inequality (A.6) implies
u2 ≤ u1 in <.

We point out that the hypothesis that f is diGerentiable in the origin is essential
in order to ?nd a positive solution to problem (A.1). Indeed, consider < = B1, and
f(u) = u(�−2)=�, where �¿ 2. Choose p ≡ 1 and g ≡ C on @B1, where C = (�2 +
(N − 2)�)−�=2. For this choice of <; p; f and g, the function u(r) =Cr�, 0 ≤ r ≤ 1,
is the unique solution of problem (A.1), but u(0) = 0.
Under the hypotheses on f made in the statement of Theorem 5, except f is of

class C1 at the origin (but f ∈ C0; � in u = 0), problem (A.1) has a unique solution
which may vanish in <. For this purpose it is suUcient to choose as a sub-solution in
the above proof the function u− = 0.
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