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a b s t r a c t

We consider a class of double phase variational integrals driven by nonhomogeneous
potentials. We study the associated Euler equation and we highlight the existence of
two different Rayleigh quotients. One of them is in relationship with the existence
of an infinite interval of eigenvalues while the second one is associated with the
nonexistence of eigenvalues. The notion of eigenvalue is understood in the sense of
pairs of nonlinear operators, as introduced by Fučík, Nečas, Souček, and Souček. The
analysis developed in this paper extends the abstract framework corresponding to
some standard cases associated to the p(x)-Laplace operator, the generalized mean
curvature operator, or the capillarity differential operator with variable exponent.
The results contained in this paper complement the pioneering contributions of
Marcellini, Mingione et al. in the field of variational integrals with unbalanced
growth.

© 2018 Elsevier Ltd. All rights reserved.

1. Unbalanced problems à la Marcellini and Mingione

The study of differential equations and variational problems involving variable growth conditions was
motivated by their various applications. In 1920, Bingham was surprised to discover that some paints do not
run like honey. He studied such a behavior and described a strange phenomenon. There are fluids that first
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flow, then stop spontaneously (Bingham fluids). Inside them, the forces that create the flows do not reach a
threshold. As this threshold is not reached, the fluid flow deforms as a solid. Invented in the 17th century,
the “Flemish medium” makes painting oil thixotropic: it flows under pressure of the brush, but freezes as
soon as you leave it to rest. While the exact composition of the Flemish medium remains unknown, it is
known that the bonds form gradually between its components, which is why the picture freezes in a few
minutes. Thanks to this wonderful medium, Rubens was able to paint La Kermesse in only 24 h.

The recent systematic study of nonlinear problems with variable exponents is motivated by the description
of several relevant phenomena that arise in the applied sciences. For instance, this mechanism can be used
to give models for non-Newtonian fluids that change their viscosity in the presence of an electro-magnetic
field, which in this case influences the size of the variable exponent, see Halsey [25] and Růžička [38]. Similar
models appear in image segmentation, see Chen, Levine and Rao [10]. Their framework is a combination of
the Gaussian smoothing and regularization based on the total variation.

In this paper, we are concerned with the study of a nonlinear problem whose features are the following:
(i) the presence of several differential operators with different growth, which generates a double phase
associated energy;
(ii) the presence of several variable potentials, which involves a different environment (according to the
point) as well as a degenerate abstract setting.

These attributes of the present paper imply multiple combined effects of the multiple variable exponents,
the reaction term, and the values of a suitable real parameter. In particular, the existence of several Rayleigh
quotients implies the existence of solutions in the case of high perturbations, while nontrivial solutions do
not exist in the case of small perturbations of the reaction term. This is in accordance with respect to the
position of a suitable parameter with respect to these Rayleigh quotients.

We recall in what follows some of the outstanding contributions of the Italian school (Marcellini, Mingione,
Colombo, Baroni, et al.) to the study of unbalanced integral functionals and double phase problems. In the
next section of this paper, we recall some basic properties of the Lebesgue and Sobolev spaces with variable
exponent. We also refer to a new nonhomogeneous differential operator, which will be used in the present
paper in the abstract setting of double phase problems with variable exponent. This operator has a broad
spectrum and it extends not only the p(x)-Laplace operator but also the generalized mean curvature operator,
the capillarity operator with variable exponent and other non-homogeneous differential operators. The main
results and proofs and developed in the remaining section of this paper.

This paper was motivated by several recent contributions to the qualitative analysis of nonlinear problems
with unbalanced growth. We first refer to the pioneering contributions of Marcellini [27–29] who studied
lower semicontinuity and regularity properties of minimizers of certain quasiconvex integrals. Problems of
this type arise in nonlinear elasticity and are connected with the deformation of an elastic body, cf. Ball [3,4].
We also refer to Fusco and Sbordone [24] for the study of regularity of minima of anisotropic integrals.

In order to recall the roots of double phase problems, let us assume that Ω is a bounded domain in RN

(N ≥ 2) with smooth boundary. If u : Ω → RN is the displacement and if Du is the N × N matrix of the
deformation gradient, then the total energy can be represented by an integral of the type

I(u) =
∫
Ω

f(x,Du(x))dx, (1.1)

where the energy function f = f(x, ξ) : Ω × RN×N → R is quasiconvex with respect to ξ, see Morrey [31].
One of the simplest examples considered by Ball is given by functions f of the type

f(ξ) = g(ξ) + h(det ξ),

where det ξ is the determinant of the N × N matrix ξ, and g, h are nonnegative convex functions, which
satisfy the growth conditions

g(ξ) ≥ c1 |ξ|p; lim
t→+∞

h(t) = +∞,
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where c1 is a positive constant and 1 < p < N . The condition p ≤ N is necessary to study the existence of
equilibrium solutions with cavities, that is, minima of the integral (1.1) that are discontinuous at one point
where a cavity forms; in fact, every u with finite energy belongs to the Sobolev space W 1,p(Ω ,RN ), and
thus it is a continuous function if p > N . In accordance with these problems arising in nonlinear elasticity,
Marcellini [27,28] considered continuous functions f = f(x, u) with unbalanced growth that satisfy

c1 |u|p ≤ |f(x, u)| ≤ c2 (1 + |u|q) for all (x, u) ∈ Ω × R,

where c1, c2 are positive constants and 1 ≤ p ≤ q. Regularity and existence of solutions of elliptic equations
with p, q-growth conditions were studied in [28].

The study of non-autonomous functionals characterized by the fact that the energy density changes its
ellipticity and growth properties according to the point has been continued in a series of remarkable papers
by Mingione et al. [6–8,13,12]. These contributions are in relationship with the works of Zhikov [40], in order
to describe the behavior of phenomena arising in nonlinear elasticity. In fact, Zhikov intended to provide
models for strongly anisotropic materials in the context of homogenization. These functionals revealed to
be important also in the study of duality theory and in the context of the Lavrentiev phenomenon [41]. In
particular, Zhikov considered three different model functionals for this situation in relation to the Lavrentiev
phenomenon. These are

M(u) :=
∫
Ω

c(x)|Du|2dx, 0 < 1/c(·) ∈ Lt(Ω), t > 1

V(u) :=
∫
Ω

|Du|p(x)
dx, 1 < p(x) < ∞

Pp,q(u) :=
∫
Ω

(|Du|p + a(x)|Du|q)dx, 0 ≤ a(x) ≤ L, 1 < p < q.

(1.2)

The functional M is well-known and there is a loss of ellipticity on the set {x ∈ Ω ; c(x) = 0}. This
functional has been studied at length in the context of equations involving Muckenhoupt weights. The
functional V has also been the object of intensive interest nowadays and a huge literature was developed on
it. We refer to Acerbi and Mingione [1] for gradient estimates and pioneering contributions to the qualitative
analyze of minimizers of nonstandard energy functionals involving variable exponents. We refer to Colombo
and Mingione [14] as a reference paper on double phase problems studied independently of their variational
structure. We also point out the abstract setting, respectively the variational analysis developed in the
monographs by Diening, Harjulehto, Hästö, and Růžička [16], respectively by Rădulescu and Repovš [35].
The energy functional defined by V was used to build models for strongly anisotropic materials: in a material
made of different components, the exponent p(x) dictates the geometry of a composite that changes its
hardening exponent according to the point. The functional Pp,q defined in (1.2) appears as un upgraded
version of V. Again, in this case, the modulating coefficient a(x) dictates the geometry of the composite
made by two differential materials, with hardening exponents p and q, respectively.

The functionals displayed in (1.2) fall in the realm of the so-called functionals with nonstandard growth
conditions of (p, q)-type, according to Marcellini’s terminology. These are functionals of the type in (1.1),
where the energy density satisfies

|ξ|p ≤ f(x, ξ) ≤ |ξ|q + 1, 1 ≤ p ≤ q.

Another significant model example of a functional with (p, q)-growth studied by Mingione et al. [6–8,13,12]
is given by

u ↦→
∫
Ω

|Du|p log(1 + |Du|)dx, p ≥ 1,

which is a logarithmic perturbation of the p-Dirichlet energy.
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General models with (p, q)-growth in the context of geometrically constrained problems have been recently
studied by De Filippis [15]. This seems to be the first work dealing with (p, q)-conditions with manifold
constraint. Refined regularity results are proved in [15], by using an approximation technique relying on
estimates obtained through a careful use of difference quotients. A key role is played by the method developed
by Esposito, Leonetti, and Mingione [20] in order to prove the equivalence between the absence of Lavrentiev
phenomenon and the extra regularity of the minimizers for unconstrained, non-autonomous variational
problems.

The main feature of this paper is the study of a class of unbalanced double phase problems with variable
exponent. In such a way, the present paper complements our previous related contributions to this field,
see [37,36]. The present paper extends and complements the main results obtained in [30] and [5] (see also
[35, Section 3.3]).

2. Spaces and operators with variable exponent

Nonlinear problems with non-homogeneous structure are motivated by several models in mathematical
physics and other applied sciences that are described by partial differential equations with one or more
variable exponents. In some circumstances, the standard analysis based on the theory of usual Lebesgue
and Sobolev function spaces, Lp and W 1,p, is not appropriate in the framework of material that involve
non-homogeneities. The presence of a variable exponent allows to describe in a proper and accurate manner
the geometry of a material which is allowed to change its hardening exponent according to the point. This
leads to the analysis of variable exponents Lebesgue and Sobolev function spaces (denoted by Lp(x) and
W 1,p(x)), where p is a real-valued (non-constant) function.

2.1. Lebesgue and Sobolev spaces with variable potential

Let S(Ω) be the set of all measurable real valued functions defined on Ω . Let

C+(Ω) =
{
u; u ∈ C(Ω), u(x) > 1 for x ∈ Ω

}
,

Lp(·)(Ω) =
{
u ∈ S(Ω);

∫
Ω

|u(x)|p(x)
dx < ∞

}
.

For all p ∈ C+(Ω) we define

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

The function space Lp(·)(Ω) is equipped with the Luxemburg norm

|u|Lp(·)(Ω) = inf
{
λ > 0;

∫
Ω

⏐⏐⏐⏐u(x)
λ

⏐⏐⏐⏐p(x)
dx ≤ 1

}
.

Then (Lp(·)(Ω), |·|Lp(·)(Ω)) becomes a Banach space, and we call it a variable exponent Lebesgue space.
The following properties of spaces with variable exponent (Propositions 2.1–2.4) are essentially due to

Fan and Zhao [21], see also [16,35], and [34]. We also refer to the important contributions of Edmunds et al.,
see [18,17,19].

Proposition 2.1. The space (Lp(·)(Ω), |u|Lp(·)(Ω)) is a separable, uniformly convex Banach space, and its
conjugate space is Lp′(·)(Ω), where 1

p(x) + 1
p′(x) = 1. For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have the

following Hölder inequality ⏐⏐⏐⏐∫
Ω

uvdx

⏐⏐⏐⏐ ≤
(

1
p− + 1

p′−

)
|u|Lp(·)(Ω)|v|

Lp′(·)(Ω).
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Proposition 2.2. If f : Ω × R → R is a Carathéodory function and satisfies

|f(x, s)| ≤ d(x) + b|s|p1(x)/p2(x) for any x ∈ Ω , s ∈ R,

where p1, p2 ∈ C+(Ω), d(x) ∈ Lp2(·)(Ω), d(x) ≥ 0, b ≥ 0, then the Nemytsky operator from Lp1(·)(Ω) to
Lp2(·)(Ω) defined by (Nfu)(x) = f(x, u(x)) is a continuous and bounded operator.

Proposition 2.3. If we denote

ρp(·)(u) =
∫
Ω

|u|p(x)
dx, ∀u ∈ Lp(·)(Ω),

then the following properties hold:
(i) |u|Lp(·)(Ω) < 1 (= 1;> 1) ⇐⇒ ρp(·)(u) < 1 (= 1;> 1);
(ii) |u|Lp(·)(Ω) > 1 =⇒ |u|p

−

Lp(·)(Ω) ≤ ρp(·)(u) ≤ |u|p
+

Lp(·)(Ω);

|u|Lp(·)(Ω) < 1 =⇒ |u|p
−

Lp(·)(Ω) ≥ ρp(·)(u) ≥ |u|p
+

Lp(·)(Ω);
(iii) |u|Lp(·)(Ω) → ∞ ⇐⇒ ρp(·)(u) → ∞.

Proposition 2.4. If u, un ∈ Lp(·)(Ω), n = 1, 2, . . . , then the following statements are equivalent:
(1) limk→∞ |uk − u|Lp(·)(Ω) = 0;
(2) limk→∞ ρp(·) (uk − u) = 0;
(3) uk → u in measure in Ω and limk→∞ ρp(·) (uk) = ρp(·) (u).

The variable exponent Sobolev space W 1,p(·)(Ω) is defined by

W 1,p(·)(Ω) =
{
u ∈ Lp(·) (Ω) ; Du ∈ [Lp(·) (Ω)]N

}
,

and it is equipped with the norm

∥u∥W 1,p(·)(Ω) = |u|Lp(·)(Ω) + |Du|Lp(·)(Ω), for all u ∈ W 1,p(·) (Ω) .

We denote by W 1,p(·)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(·) (Ω). The dual space of W 1,p(x)
0 (Ω) is denoted

by W−1,p′(x)(Ω), where p′(x) is the conjugate exponent of p(x).
We recall that the critical Sobolev exponent is defined as follows:

p∗(x) =

⎧⎨⎩
Np(x)
N − p(x) , if p(x) < N,

+∞, if p(x) ≥ N.

We point out that if q ∈ C+(Ω) and q(x) ≤ p∗(x) for all x ∈ Ω , then W 1,p(·)(Ω) is continuously embedded
in Lq(·)(Ω). This embedding is compact if

inf{p∗(x) − q(x); x ∈ Ω} > 0.

The Lebesgue and Sobolev spaces with variable exponents coincide with the usual Lebesgue and Sobolev
spaces provided that p is constant. According to [35, pp. 8-9], these function spaces Lp(x) and W 1,p(x) have
some unusual properties, such as:

(i) Assuming that 1 < p− ≤ p+ < ∞ and p : Ω → [1,∞) is a smooth function, then the following co-area
formula ∫

Ω

|u(x)|pdx = p

∫ ∞

0
tp−1 |{x ∈ Ω ; |u(x)|> t}| dt

has no analogue in the framework of variable exponents.
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(ii) Spaces Lp(x) do not satisfy the mean continuity property. More exactly, if p is nonconstant and
continuous in an open ball B, then there is some u ∈ Lp(x)(B) such that u(x + h) ̸∈ Lp(x)(B) for every
h ∈ RN with arbitrary small norm.

(iii) Function spaces with variable exponent are never invariant with respect to translations. The
convolution is also limited. For instance, the classical Young inequality

|f ∗ g|p(x) ≤ C |f |p(x) ∥g∥L1

remains valid if and only if p is constant.

2.2. A generalized operator with variable exponent

Assume that p ∈ C+(Ω). Kim and Kim [26] introduced an important class of nonhomogeneous operators
with variable exponent. These are operators of the type

div (ϕ(x, |Du|)Du),

where ϕ(x, ξ) satisfies the following hypotheses:
(ϕ1) the mapping ϕ(·, ξ) is measurable on Ω for all ξ ≥ 0 and it is locally absolutely continuous on [0,∞)
for almost all x ∈ Ω ;
(ϕ2) there exist a ∈ Lp′(x)(Ω) and b > 0 such that

|ϕ(x, |v|)v| ≤ a(x) + b|v|p(x)−1
,

for almost all x ∈ Ω and for all v ∈ RN ;
(ϕ3) there exists c > 0 such that

ϕ(x, ξ) ≥ cξp(x)−2, ϕ(x, ξ) + ξ
∂ϕ

∂ξ
(x, ξ) ≥ cξp(x)−2

for almost all x ∈ Ω and for all ξ > 0.
We now give some examples of potentials satisfying hypotheses (ϕ1)–(ϕ3). If ϕ(x, ξ) = ξp(x)−2 then we

obtain the standard p(x)-Laplace operator, that is,

∆p(x)u := div (|Du|p(x)−2
Du).

The abstract setting considered in this paper includes the case ϕ(x, ξ) = (1+|ξ|2)(p(x)−2)/2, which corresponds
to the generalized mean curvature operator

div
[
(1 + |Du|2)(p(x)−2)/2Du

]
.

The capillarity equation corresponds to

ϕ(x, ξ) =
(

1 + ξp(x)√
1 + ξ2p(x)

)
ξp(x)−2, x ∈ Ω , ξ > 0,

hence the corresponding capillary phenomenon is described by the differential operator

div

⎡⎣⎛⎝1 + |Du|p(x)√
1 + |Du|2p(x)

⎞⎠ |Du|p(x)−2
Du

⎤⎦ .
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For ϕ described in hypotheses (ϕ1)–(ϕ3) we set

Φ0(x, t) :=
∫ t

0
ϕ(x, s)sds

and define the functional Φ : W 1,p(x)
0 (Ω) → R by

Φ(u) =
∫
Ω

Φ0(x, |Du(x)|)dx.

The following result was established in [26, Lemma 3.2].

Proposition 2.5. Assume that (ϕ1) and (ϕ2) hold. Then Φ ∈ W
1,p(x)
0 (Ω) and its Gâteaux derivative is

given by

⟨Φ′(u), v⟩ =
∫
Ω

ϕ(x, |Du(x)|)Du(x)Dv(x)dx for all u, v ∈ W
1,p(x)
0 (Ω).

The following estimate plays a crucial role in order to establish that Φ′ is an operator of type (S)+. In the
particular case when p(x) is a constant, this result is usually referred as Simon’s inequality [39, formula 2.2]
(see also [22, p. 713]).

Denote

Ω1 = {x ∈ Ω ; 1 < p(x) < 2}, Ω2 = {x ∈ Ω ; p(x) ≥ 2}

(we allow the possibility that one of these sets is empty).
The following result was established in [26, Proposition 3.3].

Proposition 2.6. Assume that hypotheses (ϕ1)–(ϕ3) are fulfilled. Then the following estimate holds

⟨ϕ(x, |u|)u− ϕ(x, |v|)v, u− v⟩ ≥{
c(|u| + |v|)p(x)−2|u− v|2 if x ∈ Ω1, (u, v) ̸= (0, 0)
41−p+

c|u− v|p(x) if x ∈ Ω2,

where c is the positive constant from (ϕ3).

For the following result we refer to [26, Lemma 3.4].

Proposition 2.7. Assume that hypotheses (ϕ1)–(ϕ3) are fulfilled. Then the operator Φ′ : W 1,p(x)
0 (Ω) →

W−1,p′(x)(Ω) is a strictly monotone mapping of type (S)+, that is, if

un ⇀ u in W
1,p(x)
0 (Ω) as n → ∞ and lim sup

n→∞
⟨Φ′(un) − Φ′(u), un − u⟩ ≤ 0,

then un → u in W
1,p(x)
0 (Ω) as n → ∞.

We refer to Baraket, Chebbi, Chorfi, and Rădulescu [5] for the mathematical analysis of a nonlinear
Dirichlet problem driven by operators as described in this section.
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3. Hypotheses and main results

We study the following nonlinear problem⎧⎨⎩
−div (ϕ(x, |Du|)Du) − div (ψ(x, |Du|)Du) + w(x)θ(x, |u|)u =
λ (|u|r−2

u+ |u|s−2
u) in Ω

u = 0 on ∂Ω ,
(3.1)

where Ω is a smooth bounded domain in RN (N ≥ 2), w is an indefinite potential, and λ is a real parameter.
We assume that ϕ, ψ satisfy the following hypotheses:

(H1) the mappings ϕ(·, ξ), ψ(·, ξ), and θ(·, ξ) are measurable on Ω for all ξ ≥ 0 and they are locally absolutely
continuous on [0,∞) for almost all x ∈ Ω ;
(H2) there exist a1 ∈ Lp′

1(x)(Ω), a2 ∈ Lp′
2(x)(Ω), and b > 0 such that for almost all x ∈ Ω and for all v ∈ RN

|ϕ(x, |v|)v| ≤ a1(x) + b|v|p1(x)−1
,

|ψ(x, |v|)v| ≤ a2(x) + b|v|p2(x)−1

and

|θ(x, |v|)v| ≤ b|v|p3(x)−1;

(H3) there exists c > 0 such that for almost all x ∈ Ω and for all ξ > 0

min
{
ϕ(x, ξ), ϕ(x, ξ) + ξ

∂ϕ

∂ξ
(x, ξ)

}
≥ cξp1(x)−2,

min
{
ψ(x, ξ), ψ(x, ξ) + ξ

∂ψ

∂ξ
(x, ξ)

}
≥ cξp2(x)−2

and

θ(x, ξ) ≥ cξp3(x)−2.

Throughout this paper, we assume that r and s are real numbers while p1, p2, and p3 are continuous on
Ω such that

1 < max
x∈Ω

p1(x) < r ≤ min
x∈Ω

p3(x) ≤ max
x∈Ω

p3(x) ≤ s < min
x∈Ω

p2(x). (3.2)

We work in a subcritical setting, which is defined by the hypothesis

min
x∈Ω

{p∗
1(x) − p2(x)} > 0, (3.3)

where

p∗
1(x) :=

⎧⎨⎩
Np1(x)
N − p1(x) if p1(x) < N

+∞ if p1(x) ≥ N .

We also assume that the weight w is indefinite (that is, sign-changing) and w ∈ L∞(Ω).
In accordance with the comments developed in the previous section, we introduce the functions

Φ0(x, t) :=
∫ t

0
ϕ(x, s)sds; Ψ0(x, t) :=

∫ t

0
ψ(x, s)sds; Θ0(x, t) :=

∫ t

0
θ(x, s)sds
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and define the functionals

Φ : W 1,p1(x)
0 (Ω) → R; Φ(u) =

∫
Ω

Φ0(x, |Du(x)|)dx

Ψ : W 1,p2(x)
0 (Ω) → R; Ψ(u) =

∫
Ω

Ψ0(x, |Du(x)|)dx

and

Θ : W 1,p3(x)
0 (Ω) → R; Θ(u) =

∫
Ω

w(x)Θ0(x, |u(x)|)dx.

An important role in the proof of our main result is played by the following assumption, which is also
used in [26] for proving the existence of weak solutions in a different framework:
(H4) For all x ∈ Ω and all ξ ∈ RN , the following estimate holds:

0 ≤ [ϕ(x, |ξ|) + ψ(x, |ξ|)] |ξ|2 ≤ p+
1 [Φ0(x, |ξ|) + Ψ0(x, |ξ|)].

Taking into account the growth of the potentials ϕ, ψ and θ defined in hypothesis (3.2), it follows that
the natural function space for the existence of all energies Φ, Ψ and Θ is W 1,p2(x)

0 (Ω).

Definition 3.1. We say that u ∈ W
1,p2(x)
0 (Ω) \ {0} is a solution of problem (3.1) if∫

Ω

[ϕ(x, |Du|) + ψ(x, |Du|)]DuDvdx+
∫
Ω

w(x)θ(x, |u|)uvdx =

λ

∫
Ω

(|u|r−2 + |u|s−2)uvdx

for all v ∈ W
1,p2(x)
0 (Ω).

We will say that the corresponding real number λ for which problem (3.1) has a nontrivial solution is an
eigenvalue while the corresponding u ∈ W

1,p2(x)
0 (Ω) \ {0} is an eigenfunction of the problem. These terms

are in accordance with the related notions introduced by Fučik, Nečas, Souček, and Souček [23, p. 117] in
the context of nonlinear operators. Indeed, if we denote

A(u) := Φ(u) + Ψ(u) + Θ(u) and B(u) :=
∫
Ω

(
|u|r

r
+ |u|s

s

)
dx

then λ is an eigenvalue for the pair (A,B) of nonlinear operators (in the sense of [23]) if and only if there
is a corresponding eigenfunction that is a solution of problem (3.1) as described in Definition 3.1.

The energy functional associated to problem (3.1) is E : W 1,p2(x)
0 (Ω) → R defined by

E(u) := Φ(u) + Ψ(u) + Θ(u) − λ

∫
Ω

(
|u|r

r
+ |u|s

s

)
dx.

The contribution of the convection term Du in the expression of the energy is given by

Φ(u) + Ψ(u) =
∫
Ω

(Φ0(x, |Du(x)|) + Ψ0(x, |Du(x)|)) dx,

which corresponds to a nonhomogeneous double phase problem.
We describe in what follows the main result of this paper. We first point out that hypothesis (3.2) implies

that E is coercive. Furthermore, the Rayleigh quotient associated to problem (3.1) has a blow-up behavior
both at the origin and at infinity. More exactly, we have

lim
∥u∥p2(x)→0

Φ(u) + Ψ(u) + Θ(u)
1
r

∫
Ω

|u|r dx+ 1
s

∫
Ω

|u|s dx
= +∞



Please cite this article in press as: M. Cencelj, et al., Double phase problems with variable growth, Nonlinear Analysis (2018),
https://doi.org/10.1016/j.na.2018.03.016.

10 M. Cencelj et al. / Nonlinear Analysis ( ) –

and

lim
∥u∥p2(x)→∞

Φ(u) + Ψ(u) + Θ(u)
1
r

∫
Ω

|u|r dx+ 1
s

∫
Ω

|u|s dx
= +∞ ,

where ∥ · ∥p2(x) denotes the norm in the space W 1,p2(x)
0 (Ω).

Roughly speaking, these remarks show that the infimum of this (first) Rayleigh quotient associated to
problem (3.1) is finite, that is,

λ∗ := inf
u∈W

1,p2(x)
0 (Ω)\{0}

Φ(u) + Ψ(u) + Θ(u)
1
r

∫
Ω

|u|r dx+ 1
s

∫
Ω

|u|s dx
∈ R.

Our main result shows that problem (3.1) has a solution provided that λ is at least λ∗. This corresponds
to high perturbations (with respect to λ) of the reaction term in problem (3.1).

In view of the non-homogeneous character of problem (3.1), there is a second Rayleigh quotient, namely∫
Ω

(ϕ(x, |Du|) + ψ(x, |Du|))|Du|2dx+
∫
Ω
w(x)θ(x, |u|)u2dx∫

Ω
(|u|r + |u|s)dx

.

Let λ∗ denote the second critical parameter that corresponds to the infimum of this new Rayleigh quotient,
that is,

λ∗ := inf
u∈W

1,p2(x)
0 (Ω)\{0}

∫
Ω

(ϕ(x, |Du|) + ψ(x, |Du|))|Du|2dx+
∫
Ω
w(x)θ(x, |u|)u2dx∫

Ω
(|u|r + |u|s)dx

.

The existence of two Rayleigh quotients (and, consequently, of two different Dirichlet-type energies) is due
to the presence of the nonstandard potential ϕ(x, ξ). In the simplest case corresponding to ϕ(x, ξ) = ξp(x)−2

the corresponding energies are ∫
Ω

|Du|p(x)
dx and

∫
Ω

1
p(x) |Du|p(x)

dx

with associated Euler equations

div (p(x)|Du|p(x)−2
Du) = 0

and

div (|Du|p(x)−2
Du) = 0.

Our main result also shows that problem (3.1) does not have solutions for the values of λ less than λ∗.
These properties are described in the following theorem, which asserts the existence of a continuous family
of eigenvalues starting with the principal eigenvalue λ∗, while no eigenvalues exist below λ∗.

Theorem 3.2. Assume that hypotheses (H1)–(H4), (3.2) and (3.3) are satisfied. Then the following
properties hold:

(i) λ∗ is an eigenvalue of problem (3.1);
(ii) all values λ ≥ λ∗ are eigenvalues of problem (3.1);
(iii) any λ < λ∗ is not an eigenvalue of problem (3.1).

This result shows that λ∗ plays an important role in the context of problem (3.1). Next, we focus on λ∗

and we look it as a quantity depending on the weight w ∈ L∞(Ω), hence

λ∗(w) := inf
u∈W

1,p2(x)
0 (Ω)

∫
Ω
Φ0(x, |Du(x)|)dx+

∫
Ω
Ψ0(x, |Du(x)|)dx+

∫
Ω
w(x)Θ0(x, |u(x)|)dx

1
r

∫
Ω

|u|r dx+ 1
s

∫
Ω

|u|s dx
.
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We refer to Colasuonno and Squassina [11] who also studied eigenvalues of double phase problems and
established the existence of a sequence of nonlinear eigenvalues by a minimax procedure.

Next, we are interested in the following optimization problem: is there w0 ∈ L∞(Ω) such that

λ∗(w0) = inf
w∈L∞(Ω)

λ∗(w) ?

The following result gives a positive answer to this question in the framework of bounded closed subsets
of L∞(Ω).

Theorem 3.3. Assume that hypotheses (H1)–(H4), (3.2) and (3.3) are verified. Let W be a nonempty,
bounded, closed subset of L∞(Ω).

Then there exists w0 ∈ W such that

λ∗(w0) = inf
w∈W

λ∗(w).

The proof of Theorem 3.2 is given in Section 4 while Section 5 is devoted to the proof of Theorem 3.3.
Concluding remarks and some perspectives are given in the final part of this paper.

4. Existence of an unbounded interval of eigenvalues

In this section we give the proof of Theorem 3.2.
We denote

E0(u) := Φ(u) + Ψ(u); E1(u) := E0(u) + Θ(u); E2(u) :=
∫
Ω

(
|u|r

r
+ |u|s

s

)
dx.

It follows that E(u) = E1(u) + E2(u).
We denote by ∥ · ∥ the norm in the Banach space W 1,p2(x)

0 (Ω).
The first result establishes a coercivity behavior of the energy E1 with respect to E2, both near the origin

and at infinity.

Lemma 4.1. We have

lim
∥u∥→0

E1(u)
E2(u) = lim

∥u∥→∞

E1(u)
E2(u) = +∞.

Proof. By (3.2), we deduce that

E2(u) ≤
∫
Ω

(|u|r + |u|s)dx.

By Sobolev embeddings we have

E2(u) ≤ C1(∥u∥r + ∥u∥s) for all u ∈ W
1,p2(x)
0 (Ω).

Next, we obtain by (H3)

E0(u) ≥ c

p+
1

∫
Ω

|Du|p1(x)
dx+ c

p+
1

∫
Ω

|Du|p1(x)
dx = C2

∫
Ω

(|Du|p1(x) + |Du|p2(x))dx.

We now estimate Θ(u) by using hypotheses (H2) and (3.2). We obtain

Θ(u) =
∫
Ω

w(x)Θ0(x, |u(x)|)dx =
∫
Ω

w(x)
∫ |u(x)|

0
θ(x, s)sds

≥ −∥w∥∞
b

p−
3

∫
Ω

|u|p3(x)
dx

≥ −C3(∥u∥r + ∥u∥s).
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It follows that

E1(u)
E2(u) ≥

C2
∫
Ω

(|Du|p1(x) + |Du|p2(x))dx
C1(∥u∥r + ∥u∥s) − C4. (4.1)

Let us first assume that (un) ⊂ W
1,p2(x)
0 (Ω) and ∥un∥ → 0. Assuming that ∥un∥ < 1 for all n, relation

(4.1) implies that for all n

E1(un)
E2(un) ≥ C2∥un∥p+

1

C1(∥un∥r + ∥un∥s) − C4.

Since p+
1 < r ≤ s and ∥un∥ → 0 we deduce that E1(un)/E2(un) → +∞ as n → ∞.

To conclude the proof, let us now assume that (un) ⊂ W
1,p2(x)
0 (Ω) is chosen arbitrarily so that ∥un∥ → ∞.

Without loss of generality we can assume that ∥un∥ > 1 for all n. This time relation (4.1) yields

E1(un)
E2(un) ≥ C2∥un∥p−

2

C1(∥un∥r + ∥un∥s) − C4.

By (3.2) we have r ≤ s < p−
2 . Since ∥un∥ → ∞, we obtain

lim
n→∞

E1(un)
E2(un) = +∞,

which concludes the proof of Lemma 4.1. □

For the following result we refer to [26, Lemma 4.3]. This property establishes that Φ is lower
semicontinuous with respect to the weak topology of W 1,p2(x)

0 (Ω).

Lemma 4.2. Assume that hypotheses (H1)–(H3) and (3.3) are fulfilled. Then Φ is weakly lower
semicontinuous, that is, un ⇀ u in W

1,p2(x)
0 (Ω) as n → ∞ implies that Φ(u) ≤ lim infn→∞Φ(un).

The next result establishes that the infimum of E1(u)/E2(u) is attained in W 1,p2(x)
0 (Ω)\{0} by an element

which is an eigenfunction of problem (3.1).

Lemma 4.3. The real number λ∗ is an eigenvalue of problem (3.1).

Proof. We first prove that there exists ∈ W
1,p2(x)
0 (Ω) \ {0} such that

λ∗ = E1(u)
E2(u) .

Let (un)W 1,p2(x)
0 (Ω) \ {0} be a minimizing sequence of E1/E2. By Lemma 4.1, this sequence is bounded.

Next, using the reflexivity of W 1,p2(x)
0 (Ω), we can assume (up to a subsequence) that

un ⇀ u in W
1,p2(x)
0 (Ω).

By the lower semicontinuity of E0 we obtain

E0(u) ≤ lim inf
n→∞

E0(un). (4.2)

Next, using hypotheses (3.2) and (3.3), we deduce that the function space W 1,p2(x)
0 (Ω) is continuously

embedded into Lp3(x)(Ω). It follows that we can assume that

un → u in Lp3(x)(Ω).
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Therefore

Θ(un) → Θ(u) as n → ∞. (4.3)

Using again compact embeddings of W 1,p2(x)
0 (Ω) into Lr(Ω) and Ls(Ω) we deduce that

E2(un) → E2(u) as n → ∞. (4.4)

We now claim that

u ̸= 0. (4.5)

Arguing by contradiction, we assume that u = 0. The previous comments show that

Θ(un) → 0 and E2(un) → 0 as n → ∞.

Thus, if ε > 0 is sufficiently small then for all n large enough we have

|E1(un) − λ∗E2(un)| < εE2(un).

This implies E1(un) → 0, hence E0(un) → 0 as n → ∞. Using (H3) we deduce that

un → 0 in W
1,p2(x)
0 (Ω).

Thus, by Lemma 4.1, we deduce that

E1(un)
E2(un) → +∞ as n → ∞,

hence E1(u)/E2(u) = +∞. This contradiction implies our claim (4.5).
Combining relations (4.2), (4.3), (4.4), and (4.5), we deduce that

E1(u)
E2(u) = inf

v∈W
1,p2(x)
0 (Ω)\{0}

E1(v)
E2(v) =: λ∗. (4.6)

Next, we argue that u is an eigenfunction of problem (3.1) corresponding to λ = λ∗. For this purpose, we
fix w ∈ W

1,p2(x)
0 (Ω) \ {0} and consider the function h : R → R defined by

h(t) = E1(u+ tw)
E2(u+ tw) .

By (4.6) we obtain h′(0) = 0, hence

E2(u)E ′
1(u)(w) − E1(u)E ′

2(u)(w) = 0. (4.7)

Recall that E1(u) = λ∗E2(u). Thus, relation (4.7) yields

E ′
1(u)(w) − λ∗E ′

2(u)(w) = 0 for all w ∈ W
1,p2(x)
0 (Ω),

hence u is a solution of problem (3.1) for λ = λ∗. □

We prove in what follows that every λ > λ∗ is an eigenvalue of problem (3.1), which shows the existence
of an unbounded interval of eigenvalues.

Lemma 4.4. Problem (3.1) has a solution for all λ > λ∗.
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Proof. Fix λ > λ∗ and consider the map N : W 1,p2(x)
0 (Ω) → R defined by

N (v) = E1(v) − λE2(v).

Then v is a solution of problem (3.1) if and only if v is a critical point of N .
With the same arguments as in the proof of Lemma 4.1 we deduce that N is coercive, so it has a global

minimum. Since N is also lower semicontinuous, we deduce that the global minimum of N is attained at
some v ∈ W

1,p2(x)
0 (Ω).

To conclude the proof it remains to show that v ̸= 0. Using the definition of λ∗ we deduce that N (v) < 0,
hence

inf
w∈W

1,p2(x)
0 (Ω)

N (w) < 0,

which implies that v ̸= 0. □

Next, we conclude the proof of Theorem 3.2 by proving that the second Rayleigh quotient (which generates
the value λ∗) is not associated with the existence of eigenvalues for problem (3.1).

Lemma 4.5. Problem (3.1) does not have any solution for all λ < λ∗.

Proof. Fix arbitrarily λ < λ∗ and assume by contradiction that λ is an eigenvalue for problem (3.1). Thus,
there exists u ∈ W

1,p2(x)
0 (Ω) \ {0} such that∫

Ω

((ϕ(x, |Du|)) + (ψ(x, |Du|)))DuDvdx+
∫
Ω

w(x)θ(x, |u|)uvdx =

λ

∫
Ω

(|u|r−2 + |u|s−2)uvdx

for all v ∈ W
1,p2(x)
0 (Ω).

Taking v = u, we obtain that

λ =
∫
Ω

(ϕ(x, |Du|) + ψ(x, |Du|))|Du|2dx+
∫
Ω
w(x)θ(x, |u|)u2dx∫

Ω
(|u|r + |u|s)dx

.

This yields a contradiction, since λ < λ∗. □

The proof of Theorem 3.2 is now complete. □

5. Optimization of λ∗ for bounded closed subsets of L∞(Ω)

In this section we give the proof of Theorem 3.3. We will denote by Ew
1 and Θw the energies corresponding

to the weight w.
Let W be a nonempty, bounded, closed subset of L∞(Ω). Let (wn) ⊂ W be a minimizing sequence of

infw∈Wλ∗(w), that is,

inf
w∈W

λ∗(w) = lim
n→∞

λ∗(wn). (5.1)

Since W is a bounded set, it follows that the sequence (wn) is bounded. Thus, by the Banach–Alaoglu–
Bourbaki theorem (see Brezis [9, Theorem 3.16]) it follows that, up to a subsequence, wn → w0 ∈ W in the
weak∗ topology σ(L∞, L1).
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We claim that

λ∗(w0) = lim
n→∞

λ∗(wn). (5.2)

By Theorem 3.2, there exists un ∈ W
1,p2(x)
0 (Ω) \ {0} such that

Ewn
1 (un)
E2(un) = λ∗(wn) for all n ≥ 1. (5.3)

On the other hand, returning to relation (4.1), we have

Ewn
1 (un)
E2(u) ≥ C0

∫
Ω

(|Dun|p1(x) + |Dun|p2(x))dx
∥un∥r + ∥un∥s

− C4. (5.4)

Combining (5.3) and (5.4) we deduce that (un) is bounded in W
1,p2(x)
0 (Ω). Moreover, by Lemma 4.1,

the sequence (un) does not contain a subsequence converging to zero. Thus, by reflexivity, there exists
u0 ∈ W

1,p2(x)
0 (Ω) \ {0} such that

un ⇀ u0 in W
1,p2(x)
0 (Ω) (5.5)

and

un → u0 in Lp3(x)(Ω). (5.6)

By hypothesis (H2), we observe that

|Θw0(un) − Θw0(u0)| =

⏐⏐⏐⏐⏐
∫
Ω

w0(x)
∫ |un(x)|

|u0(x)|
sθ(x, s)dsdx

⏐⏐⏐⏐⏐
≤ b

p+
3

∫
Ω

(⏐⏐⏐ |un|p3(x) − |u0|p3(x)
⏐⏐⏐) dx.

Using now (5.6), we obtain

Θw0(un) → Θw0(u0) as n → ∞. (5.7)

With a similar argument and using the fact that (wn) ⊂ W and W is a bounded set, we deduce that

Θwn(un) → Θwn(u0) as n → ∞. (5.8)

We now recall that wn → w0 ∈ W in the weak∗ topology σ(L∞, L1). Since the mapping

Ω ∋ x ↦→ Θw0
0 (x, |u0(x)|)

is in L1(Ω), then Proposition 3.13(iv) in [9] shows that

Θwn(u0) → Θw0(u0) as n → ∞. (5.9)

Combining relations (5.7)–(5.9) we deduce that

lim
n→∞

[Θwn(un) − Θw0(un)] = 0. (5.10)

Next, using the definition of λ∗(w0) we have

λ∗(w0) ≤ Ew0
1 (un)
E2(un) .
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Thus, by (5.3),

λ∗(w0) ≤ Ewn
1 (un)
E2(un) + Ew0

1 (un) − Ewn
1 (un)

E2(un)

= λ∗(wn) + Ew0
1 (un) − Ewn

1 (un)
E2(un)

= λ∗(wn) + Θw0(un) − Θwn(un)
E2(un) .

(5.11)

Relations (5.10) and (5.11) yield

λ∗(w0) ≤ lim
n→∞

λ∗(wn).

Combining this relation with (5.1) we deduce that

λ∗(w0) ≤ inf
w∈W

λ∗(w).

Since w0 ∈ W, this relation shows that, in fact, we have equality, hence our claim (5.2) is argued. □
Concluding remarks and perspectives. (i) The differential operator that describes problem (3.1) falls

in the realm of those related to the so-called Musielak–Orlicz spaces (see [32,33]), more in general, of the
operators having non-standard growth conditions (which are widely considered in the calculus of variations).
These function spaces are Orlicz spaces whose defining Young function exhibits an additional dependence
on the x variable. Indeed, classical Orlicz spaces LΦ are defined requiring that a member function f satisfies∫

Ω

Φ(|f |)dx < ∞,

where Φ(t) is a Young function (convex, non-decreasing, Φ(0) = 0). In the new case of Musielak–Orlicz
spaces, the above condition becomes ∫

Ω

Φ(x, |f |)dx < ∞.

In a particular case, the problems considered in this paper are driven by the function

Φ(x, |ξ|) :=
{

|ξ|p1(x) if |ξ| ≤ 1
|ξ|p2(x) if |ξ| ≥ 1.

(ii) According to the recent papers by Baroni, Colombo and Mingione [6–8] dealing with double phase
energy functional associated to (p, q)-operators, we consider that an interesting field of research concerns
nonhomogeneous problems of the type∫

Ω

[Φ0(x, |Du(x)|) + a(x)Ψ0(x, |Du(x)|)] dx (5.12)

or ∫
Ω

[Φ0(x, |Du(x)|) + a(x)Ψ0(x, |Du(x)|) log(e+ |x|)] dx, (5.13)

where a(x) is a nonnegative potential and the assumption (3.2) holds.
In such a case, the variable potential controls the geometry of a composite of two materials described by

Φ0 and Ψ0, hence by ϕ and ψ. In the region [x : a(x) > 0] then the material described by ψ is present,
otherwise the material described by ϕ is the only one that creates the composite.
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We also point out that since the integral energy functionals defined in (5.12) and (5.13) have a degenerate
behavior on the zero set of the gradient, it is natural to study what happens if the integrand is modified in
such a way that, also if |Du| is small, there exists an imbalance between the two terms of every integrand.

In a related framework, we refer to our recent paper Bahrouni, Rădulescu, and Repovš [2], where it is
studied a class of integral functions with variable exponent and vanishing weight and it is established a
Caffarelli–Kohn–Nirenberg inequality in this degenerate setting.

(iii) The problem studied in the present paper corresponds to a subcritical setting, which is described in
hypothesis (3.3). This assumption has been crucial in our arguments in order to deal with strong convergence
in suitable Lebesgue spaces with variable exponent. Due to the particular setting existing in this paper, we
suggest the study of “almost critical” abstract framework, which assumes to replace hypothesis (3.3) with

min{p∗
1(x) − p2(x); x ∈ Ω} = 0.

In particular, this assumption holds if there exists x0 ∈ Ω such that

p2(x0) = p∗
1(x0) and p2(x) < p∗

1(x) for all x ∈ Ω \ {x0}.

We do not have any response to this new setting, even for particular cases (for instance, if Ω is a ball).
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