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Abstract
This paper focuses on the constraint minimization problem associated with the
fractional Kirchhoff equation{ (

a+ b
´
RN |(−∆)

s
2 u|2dx

)
(−∆)

s u+ |x|2u= µu+βu
8s
N +1 in RN,´

RN |u|2dx= 1,

where s ∈ (N/4,1),N= 2,3, a⩾ 0,b> 0 are constants, µ ∈ R is the corres-
ponding Lagrange multiplier and (−∆)s is the fractional Laplacian operator,
8s/N+ 1 is the correspondingmass critical exponent. The purpose of this paper
is threefold: to establish the existence and non-existence of the L2-constraint
minimizers to the degenerate fractional Kirchhoff problem, that is a= 0, to
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prove some classical concentration behaviors of constraint minimizers and to
reveal the local uniqueness of constraint minimizers of above problem under
double nonlocal effect. In particular, we will give some energy estimates, decay
estimates and uniform regularity to find that the maximal point of constraint
minimizer concentrates on the bottom point of the homogeneous potential.
Furthermore, we introduce several new techniques based on the combination
of the localization method of (−∆)s and by establishing the nonlocal Pohozăev
identity, which allow us to get over some new challenges due to the nonlocal
property of (−∆)s and the fact that

´
RN |(−∆)

s
2 u|2dx(−∆)su does not vanish as

a↘ 0. We believe that these techniques will have some potential applications
in various related problems.

Keywords: constraint minimization, concentration behavior,
local uniqueness, Pohozăev identity

Mathematics Subject Classification numbers: 35J20, 35J62, 35Q55

1. Introduction

1.1. Background and relevant progress

In this paper, we are concerned with the mass critical fractional Kirchhoff equations{ (
a+ b

´
RN |(−∆)

s
2 u|2dx

)
(−∆)

s u+ |x|2u= µu+βu
8s
N +1 in RN,´

RN |u|2dx= 1,
(1)

where s ∈ (N/4,1),N= 2,3, a⩾ 0,b> 0 are constants, µ ∈ R is the corresponding Lagrange
multiplier, (−∆)s is the fractional Laplacian operator defined by

(−∆)
s u(x) := CsP.V.

ˆ
RN

u(x)− u(y)
|x− y|N+2s

dy= Cs lim
ε→0

ˆ
RN\Bε(x)

u(x)− u(y)
|x− y|N+2s

dy,

for x ∈ RN, where P.V. is the principal value, and Cs is a normalization constant.
The first feature of our problem is the appearance of the fractional Laplace operator. Such

type of operators, which has special properties and the connection with the Fourier transform,
arise in a quite natural way in many different applications, such as optimization, finance, phase
transitions, stratified materials, anomalous diffusion, crystal dislocation, soft thin films, semi-
permeable membranes, flame propagation, conservation laws and water waves. A series of
studies have been done on the fractional Laplacian operator, we refer readers to [1, 7, 34, 35,
47] and references therein for physical background.

When s= 1, the classical Kirchhoff type equation is analogous to the stationary case of
equations that arise in the study of string or membrane vibrations, namely,

utt−M

(ˆ
RN

|∇u|2dx
)
∆u= h(x,u) in RN,

where u denotes the displacement, and h(x,u) the external force, such equations were pro-
posed by Kirchhoff [31] in 1883 to describe the transversal oscillations of a stretched string,
furthermore, taking into account the subsequent change in string length caused by oscillations.
The most typical feature of such an equation is the appearance of the term

(´
RN |∇u|2dx

)
∆u,
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which makes Kirchhoff’s model a nonlocal one and more challenging to deal with. Scholars
have done a lot of research on Kirchhoff type equations on account of its extensive application
in physics and biology, since the nonlocal effect also finds its applications in biological sys-
tems, we refer readers to [2, 3, 17, 40, 41, 48, 49] and references therein for different existence
results.

The solvability of the Kirchoff type equation (1) has been well-studied in general dimen-
sions by various authors and its main feature is the normalization condition

ˆ
RN

|u(x) |2dx= ∥u∥22 = 1,

the solution of such an equation under which is commonly called normalized solution accord-
ingly. From a physical point of view, the normalization condition can also be regarded as a
mass conservation, which makes such problems more practical and physically significant, for
example, it can represent the total number of atoms or the power source in nonlinear optics.
Therefore, the research of the correlation properties about the normalized solution has become
an important topic in the research of nonlinear equations.

Among the investigations of the above problems, due to the appearance of normalization
condition and Lagrange multiplier µ, the common idea is to use the constraint minimization
method on a constrained set, more specially on some submanifolds. For the classical case, the
energy functional of the following form contains a lot of classical models

Ēa,b,p,q (u) :=
ˆ
RN

(
a|∇u|2 +V(x) |u|2

)
dx+

b
2

(ˆ
RN

|∇u|2dx
)2

− 2p
q+ 2

ˆ
RN

|u|q+2dx (2)

and its constraint minimization problem

ē(a,b,p,q,c) := inf
{∥u∥2

2=c
2}
Ēa,b,p,q (u) (3)

has been studied in many different contexts. For instance, as N= 2, a= 1, b= 0 and q= 2, (2)
turns to Gross–Pitaevskii energy functional which describes Bose–Einstein condensates of a
dilute gas with attractive interactions, we refer to Guo et al [21–23] and references therein for
more details. For the classical Laplacian, it is well known that the L2-critical exponent 2+ 4/N
plays an important role in the Schrödinger equation, when b= 0 and 2< q< 2+ 4/N, the
energy functional Ēa,b,p,q is bounded below on the constrained set. It is worth mentioning here
that the corresponding classical Schrödinger equations also receive much attention, see, for
example [9, 25, 39, 42, 53, 54] and references therein for more details.

Back to the classical Kirchhoff equation, that is a, and b are arbitrary but fixed, and its
corresponding L2-critical exponent becomes 2+ 8/N. Ye [55] first demonstrated the existence
and non-existence of normalized solutions to a kind of Kirchoff equation when s= 1, then
a series of subsequent study has been done on the existence of normalized solutions to the
nonlinear Kirchhoff equation, for L2-critical problem with s= 1, we refer to [56, 57]. Luo and
Wang [43] obtained the multiplicity existence of normalized solutions to a kind of Kirchoff
equation when N= 3. Zeng et al [58] recently used a global branch approach for handling
the nonlinearities in a unified way, and obtained the existence of normalized solutions to the
Kirchhoff equation with general nonlinearities.
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As for nonlinear equations involving fractional Laplacian, Cingolani et al [11] studied the
following fractional problem (−∆)

s u+µu= g(u) in RN,´
RN |u|2dx= m,
u ∈ Hs

r

(
RN
)
,

where N⩾ 2, s ∈ (0,1),m> 0, µ is an unknown Lagrange multiplier and g ∈ C(R,R) satisfies
Berestycki-Lions type conditions. Using a Lagrangian formulation of the above problem, they
proved the existence of a weak solutionwith prescribedmass when g has L2-subcritical growth.
Luo and Zhang [42] proved some existence and nonexistence results about the normalized
solutions of the fractional nonlinear Schrödinger equations with combined nonlinearities{

(−∆)
s u= λu+µ|u|q−2u+ |u|p−2u in RN,´

RN |u|2dx= a2,

where 0< s< 1, N⩾ 2, µ ∈ R and 2< q< p< 2∗s =
2N

N−2s . After that, Zhen and Zhang [59]
considered the case of p= 2∗s . For more results on this direction, see for example, [25, 33,
38, 39, 45, 52]. It is worth mentioning here that the Sobolev critical index makes it difficult
to verify the existence of gauge solutions, even for unconstrained problems. We refer to He
and Zou [26] for the details about the existence and concentration of solutions to the fractional
critical Schrödinger equation.

Back to our concerned fractional Kirchhoff equation, there are a few literature studies on
this issue. Huang and Zhang [30] provided a thorough classification for the existence of solu-
tions to the fractional Kirchhoff functional on the L2-normalized manifold when f is pure
power nonlinearity, taking into account p. Chen and Huang [8] considered the existence and
nonexistence of solutions to the fractional Kirchhoff equation with an external potential V and
doubly critical exponents: critical Sobolev exponent and the fractional Gagliardo–Nirenberg–
Sobolev critical exponent. By decomposing the Pohozaev set and constructing a fiber map,
Liu et al [39] established the existence and properties of normalized ground states to fractional
Kirchhoff equation with combined nonlinearities. Kong and Chen [32] studied the existence
of normalized ground states for nonlinear fractional Kirchhoff equations with Sobolev crit-
ical exponent and mixed nonlinearities in R3, and analyzed the asymptotic behavior of the
obtained normalized solutions. We refer to [8, 30, 32, 39] and the reference therein for more
details. For unconstrained problems, here we refer [14, 27, 28] to the readers for the details of
ground state solution of fractional Kirchhoff equations with critical growth and multiplicity of
concentrating solutions to the nonlinear fractional Kirchhoff equation.

1.2. Main goal and difficulties

In this paper, we are concerned with the concentration and uniqueness of constraint minimizers
of the mass critical fractional Kirchhoff equations (1). It is worth mentioning that the study of
the concentration behavior of solutions is an excellent approach to further study the properties
of solutions and their development trend in the near critical case.

In the model we mentioned before, that is N= 2, a= 1, b= 0 and q= 2 in (2), Guo et al
[21–23] explored the limiting behaviour of minimizers for the Gross–Pitaevskii energy func-
tional (3) by some techniques consisting of blow-up estimate and elliptic regularity theory,
then they also proved the local uniqueness of constraint minimizer by establishing Pohozaev
identities and by contradiction. When b ̸= 0 and N= 2, the energy functional (2) becomes a

4
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classical Kirchhoff type energy functional. Guo and Zhou [18, 19] considered the limiting
behavior of constraint minimizers as b→ 0+, in particular, they first illustrated the existence
and nonexistence of constraint minimizers for different parameters p, and then they considered
concentration behaviors of the minimizers of (3) as b→ 0+ and also the uniqueness of the min-
imizers of (3) for b sufficiently close to 0 were shown. For the concentration phenomenon and
local uniqueness of constraint minimizers of (3) as a↘ 0, recently, Hu and Tang [29] had
overcame the difficulties in estimates and blow-up analysis caused by the nonlocal term in
the process of establishing decay estimate and setting Pohozăev identities, they improved the
concentration phenomenon in the sense of that they provided the accurate estimating exponent
instead of o(1), and then they finally established the corresponding results. Motivated by [29],
Guo et al [20] studied the normalized solutions for a kind of Kirchhoff type equation on a
suitable weighted Sobolev space, and they investigated the limit behaviors of the normalized
solutions for this equation as (a,b)→ (0+,0+), furthermore, they also discussed the unique-
ness of the normalized solution when a,b close to 0. For more concentration phenomenon
and local uniqueness results of the classical elliptic equation, we also refer to [37, 44] and the
references therein.

In the present paper, we are likewise interested in the concentration phenomenon and local
uniqueness of the solution under the effect of the fractional Laplace operator and the nonlocal
Kirchhoff term. Motivated by the above works, a natural question is one may ask whether we
could use the insights and methods therein to continue the subsequent research, to establish
the concentration phenomenon and local uniqueness of constraint minimizers of fractional
Kirchhoff equation (1) as a↘ 0 ?

Note that until now there have been no results in this field. Two intuitive difficulties arise, on
the one hand, some well-known regularity theories for classical elliptic problems are invalid
due to the nonlocal properties of fractional Laplace operators. On the other hand, the non-
local Kirchhoff term will not vanish as a↘ 0 and it will cause great difficulty concerning the
uniqueness since it could influence the rate of decay of solutions sequence.

In the following, we shall give the relevant results to equation (1). The energy functional
of (1) can be defined by

Ea,β (u) :=
ˆ
RN

(
a|(−∆)

s
2 u|2 + |x|2u2

)
dx+

b
2

(ˆ
RN

|(−∆)
s
2 u|2dx

)2

− Nβ
N+ 4s

ˆ
RN

|u|
8s+2N
N dx u ∈ H,

where the work space H is defined by

H :=

{
u ∈ Hs

(
RN
)
:

ˆ
RN

|x|2u2 <∞
}
.

From the variational method, one could turn the constraint solution of (1) into the research of
the following minimization problem

e(a,β) := inf
{u∈H,∥u∥2

2=1}
Ea,β (u) .

In order to consider the asymptotic properties of constraint minimizers, we first need to
figure out their existence under the degenerate condition, that is a= 0. Similar to the clas-
sical case, fractional Gagliardo–Nirenberg–Sobolev inequality plays a crucial role in verify-
ing the existence of a constraint minimizer. Du et al [12] established the following fractional

5
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Gagliardo–Nirenberg–Sobolev inequality

ˆ
RN

|u(x) |
8s+2N
N dx⩽ N+ 4s

N∥ϕ∥
8s
N
2

(ˆ
RN

|(−∆)
s
2 u(x) |2dx

)2(ˆ
RN

|u(x) |2dx
) 4s−N

N

, (4)

where ϕ(x) is the unique radial positive ground state solution of the following equation

2(−∆)
s u+

4s−N
N

u− u
8s
N +1 = 0 in RN, (5)

with
ˆ
RN

|(−∆)
s
2 ϕ(x) |2dx=

ˆ
RN

|ϕ(x) |2dx= N
N+ 4s

ˆ
RN

|ϕ(x) |
8s+2N
N dx (6)

and

C1

1+ |x|N+2s
⩽ ϕ(x)⩽ C2

1+ |x|N+2s
for x ∈ RN. (7)

Our first result is the existence and non-existence of degenerate fractional Kirchhoff
equation.

Theorem 1. Let ϕ(x)> 0 be the unique positive solution of (5), then we have

(i) if 0< β < β∗ := b
2∥ϕ∥

8s
N
2 , there exists at least one minimizer to e(0,β);

(ii) if β ⩾ β∗, e(0,β) has no minimizer.
Moreover, e(0,β∗) = 0 and e(0,β) =−∞ for all β > β∗.

Next, we consider the concentration phenomenon of constraint minimizer as a↘ 0. Our
second result is as follows.

Theorem 2. Let uk be a nonnegative minimizer of e(ak,β∗) with ak → 0 as k→∞. Then
there exists a subsequence of {uk}, still denoted by {uk} such that each uk has a unique global
maximum point z̄k with

lim
k→∞

z̄k = 0 (8)

and

lim
k→∞

ε̄
N
2
k uk (ε̄kx+ z̄k) =

(
b

2β∗

) N
8s

ϕ(x) in L∞
(
RN
)
, (9)

where ε̄k is defined by

ε̄k :=

[
sak∥ϕ∥22´

RN |x|2ϕ2 (x)dx

] 1
2+2s

. (10)

Moreover, we have

lim
k→∞

z̄k
ε̄k

= 0. (11)

6
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Remark 1. Note that in the process of establishing the concentration phenomenon of constraint
minimizers, some classical local elliptic theories such as De Giorgi-Nash-Morser theory, reg-
ularity theory and comparison principle are no longer applicable. Therefore, some uniform
regularity and decay estimates for the solutions to the fractional Kirchhoff equation are estab-
lished by taking full advantage of the Bessel kernel and employing the Morse iteration. In
addition, for the sake of subsequent uniqueness results, as in theorem 2, we need to verify the
convergence of minimizers in L∞(RN) instead ofHs(RN), where the most convergence results
of minimizers to fractional nonlinear equations were established in the latter space.

Based on the above concentration phenomenon of constraint minimizer, we give the fol-
lowing result about the uniqueness of the constraint minimizer.

Theorem 3. Let uk be a nonnegative minimizer of e(ak,β∗) with ak → 0 as k→∞, then the
minimizer uk is unique as k→∞.

Comments on the theorems 2 and 3:

1. The essential idea to prove theorem 3 is to derive contradiction by establishing nonlocal
Pohozăev identities. First, select two suitable û1 and û2 which are scaling functions of two
different constraint minimizers u1 and u2. By studying the properties of fractional Laplacian,
we can decompose η̄ := (û1 − û2)/∥û1 − û2∥∞ as the linear combination of some functions
consisting of the unique radial positive ground state solution to (5). Inspired by [5], then we
consider the localization method introduced by Caffarelli and Silvestre. More precisely, for a
function u ∈ Hs(RN), set

ũ(x, t) = Ps [u] =
ˆ
RN

Ps (x− z, t)u(z)dz, (x, t) ∈ RN+1
+ :=

{
(x, t) : x ∈ RN, t> 0

}
, (12)

where

Ps (x, t) = βs
t2s

(|x|2 + t2)
N+2s

2

(13)

with a constant βs such that
´
RN Ps(x,1)dx= 1. Moreover, ũ satisfies

div
(
t1−2s∇ũ

)
= 0 x ∈ RN+1

+ ,

− lim
t→0

t1−2s∂tũ(x, t) = ωs (−∆)
s u(x) x ∈ RN,

(14)

in the distribution sense, where ωs = 21−sΓ(1− s)/Γ(s). Without loss of generality, we may
assume ωs = 1. Taking advantage of decay estimates and blow up analysis, we obtain a con-
tradiction which indicates the local uniqueness as a closes to zero sufficiently by establishing
two nonlocal Pohozăev identities.

2. Compared to the classical case, constraint minimizers in our problem only satisfy poly-
nomial decay (it can be exponential decay in the classical case) which requires more precision
in our estimates. In the process of our research, we find that the scaling functions used in the
classical case (such as the ones in [23, 29]) can not meet our requirement of estimates due to
the polynomial decay and the non-vanishing of the nonlocal fractional Kirchhoff term. The
testing function defined in this paper, which is defined by

ûik (x) :=

(
2β∗

b

) N
8s

ε̄
N
2
k uik (ε̄

τ
k x) i = 1,2,

7
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achieves the best decay speed, please see equation (96) for more details, which improves the
accuracy of our estimates. As a new attempt, we believe it will be useful in the relevant research
of fractional nonlinear equations.

3. Some technique difficulties appear, for instance, the appearance of (−∆)s makes the
classical elliptic regularity invalid, we have to set the decay estimate of |∇u| (where u stands
for the constraint minimizer). Moreover, the property of the linearized operator Γ := (−∆)s+
4s−N
2N − 8s+N

2N ϕ
8s
N is also an important topic of our research.

4. Although the corresponding harmonic extension problem can help us to establish
Pohozăev identities, we have to deal with several new integral terms that never appeared in
the classical local elliptic problems. As a result, the nonlocal Pohozăev identity we establish
may be the first result of the fractional Kirchhoff equation and we believe it will be useful in
the relevant research of fractional nonlinear equations.

This paper is organized as follows. In section 2, we study the existence and nonexistence of
the constraint minimizers and prove the theorem 1. In section 3, we show some general con-
centration behaviors and finally prove theorem 2. Theorem 3 will be established in section 4.

2. Existence and non-existence of minimizers

In this section, we discuss the existence and non-existence of the minimizer to e(0,β). Inspired
by [12, 29], we consider this problem in three cases and complete the proof of theorem 1. We
first give a compactness result, see [10] for the details.

Lemma 1. The embedding H ↪→ Lq(RN) is compact for all q ∈ [2,2∗s ).

Next, we give the proof of theorem 1.

Proof of theorem 1: For β ∈ (0,β∗). Following (4), for any u ∈ H with ∥u∥2 = 1, it has

E0,β (u) =
ˆ
RN

|x|2u2dx+ b
2

(ˆ
RN

|(−∆)
s
2 u|2dx

)2

− Nβ
N+ 4s

ˆ
RN

|u|
8s+2N
N dx

⩾
(
b
2
− β

∥ϕ∥
8s
N
2

)(ˆ
RN

|(−∆)
s
2 u|2dx

)2

,

(15)

which implies E0,β(u) is bounded from below in this case. Letting {un} ∈ H be a min-
imizing sequence for e(0,β) for β ∈ (0,β∗), it is easy to see from (15) that sequences{´

RN |(−∆)
s
2 un|2dx

}
and

{´
RN |x|2u2ndx

}
are bounded uniformly in n. By the weak lower semi-

continuity of the norm in H and the lemma 1, we can conclude that e(0,β) has at least one
minimizer in this case.

For β > β∗, we take advantage of the cut-off function to prove the non-existence of min-
imizer of e(0,β) in this case. Let ω ∈ C∞

0 (R2) be a cut-off function with 0⩽ ω ⩽ 1, ω(x) = 1
when |x|⩽ 1, ω(x) = 0 when |x|> 2 and |∇ω|⩽ 2, and define the following trail function

Uτ (x) :=
Aττ

N
2

∥ϕ∥2
ω

(
x− x0
τ 2

)
ϕ(τ |x− x0|) , (16)

where Aτ > 0 is chosen such that ∥Uτ (x)∥22 = 1. From the polynomial decay of ϕ, it holds

1
A2
τ

= 1+
1

∥ϕ∥22

ˆ
RN\Bτ3 (0)

[
ω2
( x
τ 3

)
− 1
]
ϕ2dx= 1+O

(
τ−3N+2s

)
as τ →∞. (17)

8
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Following (6), [12, lemma 3.2] and (17), one has

ˆ
RN

|(−∆)
s
2 Uτ (x) |2dx=

A2
ττ

2s

∥ϕ∥22

ˆ
RN

ˆ
RN

∣∣ω ( x
τ 3

)
ϕ(x)−ω

( y
τ 3

)
ϕ(y)

∣∣2
|x− y|N+2s

dxdy

⩽ A2
ττ

2s

∥ϕ∥22

(ˆ
RN

|(−∆)
s
2 ϕ(x) |2dx+O

(
τ−12s

))
= τ 2s+O

(
τ−10s

)
as τ →∞,

(18)

ˆ
RN

|Uτ (x) |
8s+2N
N dx=

A
8s+2N
N

τ τ 4s

∥ϕ∥
8s+2N
N

2

ˆ
RN

ω
8s+2N
N

( x
τ 3

)
ϕ

8s+2N
N dx

=
(N+ 4s)τ 4s

N∥ϕ∥
8s
N
2

+O
(
τ−3N−36s− 48s2

N

)
as τ →∞,

(19)

and
ˆ
RN

|x|2|Uτ (x) |2dx=
A2
τ

∥ϕ∥22

ˆ
B2τ3 (0)

∣∣∣ x
τ
+ x0

∣∣∣2ω2
( x
τ 3

)
ϕ2dx→ |x0|2 as τ →∞. (20)

Therefore, we derive from (18)–(20) that for β > β∗,

e(0,β)⩽ E0,β (u)⩽
(
b
2
− β

∥ϕ∥
8s
N
2

)
τ 4s+ |x0|2 +O

(
τ−8s

)
+ o(1)→−∞ as τ →∞,

(21)

which implies that e(0,β) has no minimizer for β > β∗.
For β = β∗, we may assume that there exists a positive constraint minimizer v, then taking

x0 = 0 in (16), we can deduce from (21) that e(0,β)⩽ 0. Moreover, (15) shows that

E0,β∗ (v)⩾
ˆ
RN

|x|2v2dx⩾ 0.

Then we obtain e(0,β∗) = 0 and v(x) = 0 in RN \ {0} which is a contradiction to the fact´
RN |v|2dx= 1.

3. Concentration phenomenon

In this section, we fix β = β∗ and focus on some concentration phenomenon of the minimizer
ua to e(a,β∗). Similar to the proof of theorem 1, we can prove that for any a> 0, there exists
a nonnegative minimizer ua of e(a,β∗). On the other hand, there is no minimizer to e(0,β∗)
as a= 0. Therefore, a nature question is what would happen if a↘ 0? We shall establish the-
orem 2 on the concentration phenomenon of ua as a↘ 0. As a bedding, the following lemma
describes the limiting behavior of energy as a↘ 0.

Lemma 2. Let ua be a nonnegative minimizer of e(a,β∗), then
e(a,β∗)→ e(0,β∗) = 0 as a↘ 0,´
RN |(−∆)

s
2 ua|2dx→+∞ as a↘ 0,

a
´
RN |(−∆)

s
2 ua|2dx→ 0 as a↘ 0,´

RN |x|2|ua|2dx→ 0 as a↘ 0.

9
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Proof. In view of theorem 1 and (4), it holds

e(a,β∗) = Ea,β∗ (ua)⩾
ˆ
RN

(
a|(−∆)

s
2 ua|2 + |x|2u2a

)
dx> e(0,β∗) = 0. (22)

Defining Uτ (x) as (16), it follows from (17)–(20) that

0< e(a,β∗)⩽ Ea,β∗ (Uτ )⩽ aτ 2s+ |x0|2 +Caτ−10s+Cτ−8s+ o(1) as τ →∞. (23)

Taking x0 = (0,0, . . .0) and letting τ = a−
1
4s , then (23) shows that

0< e(a,β∗)→ 0 as a↘ 0, (24)

from which and (22) we have

a
ˆ
RN

|(−∆)
s
2 ua|2dx→ 0,

ˆ
RN

|x|2|ua|2dx→ 0 as a↘ 0. (25)

We next prove that

ˆ
RN

|(−∆)
s
2 ua|2dx→+∞ as a↘ 0. (26)

On the contrary, we now assume that (26) is false, then (25) shows that there exists a sequence
{ak} with ak → 0 as k→∞ such that {uk} is bounded in H, where uk := uak . Thus lemma 1
implies that there exists u0 ∈ H such that uk ⇀ u0 weakly inH and uk → u0 strongly in Lp(RN)
as k→∞ for p ∈ [2,2∗s ). Then,

e(0,β∗)⩽ liminf
k→∞

Eak,β∗ (uk) = lim
k→∞

e(ak,β
∗) = 0= e(0,β∗) .

This shows that u0 is a minimizer of e(0,β∗), which is a contradiction.

We next investigate asymptotic behaviors of the minimizers ulteriorly by scaling it and give
some properties of the trail function.

Lemma 3. Let uk be a nonnegative minimizer of e(ak,β∗) with ak → 0 as k→∞, then there
exists a sequence {yk}, K0 > 0 and δ > 0 such that the normalized function

wk (x) = ε
N
2
k uk (εkx+ εkyk) where εk :=

(ˆ
RN

|(−∆)
s
2 uk|2dx

)− 1
2s

(27)

satisfies

liminf
k→∞

ˆ
BK0 (0)

|wk|2dx⩾ δ > 0. (28)

Moreover, for any sequence {ak} with ak → 0 as k→∞, there exists a subsequence, still
denoted by {ak}, such that zk := εkyk → 0 as k→∞. In addition, for any ρ> 0 small enough

uk (x) = ε
− N

2
k wk

(
x− zk
εk

)
→ 0 as k→∞ for x ∈ Bcρ (0) , (29)

10
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and

wk (x)→ w0 (x) :=

(
b

2β∗

) N
8s

ϕ(|x− y0|) as k→∞ for some y0 ∈ RN in Hs
(
RN
)
. (30)

Proof. We divide this proof into six steps.

Step 1: Define w̃k(x) := ε
N
2
k uk(εkx), we can derive from lemma 2 that

ˆ
RN

|w̃k|
8s+2N
N dx=ε4sk

ˆ
RN

|uk|
8s+2N
N dx

=
ε4sk (N+ 4s)

Nβ∗

[ˆ
RN

(
ak|(−∆)

s
2 uk|2 + |x|2u2k

)
dx

+
b
2

(ˆ
RN

|(−∆)
s
2 uk|2dx

)2

− e(ak,β
∗)

]

→b(N+ 4s)
2Nβ∗ as k→∞.

(31)

We now claim that there exists a sequence {yk} ⊂ RN and K0, δ > 0 such that

liminf
εk→0

ˆ
BK0 (yk)

|w̃k|2dx⩾ δ > 0. (32)

Suppose by contradiction that for any K> 0, there exists a subsequence of {w̃k}, still denoted
by {w̃k}, satisfying

lim
k→∞

sup
y∈RN

ˆ
BK(y)

|w̃k|2dx= 0.

By the fact that s ∈ (N/4,1), we deduce from the vanishing lemma that w̃k → 0 in L
8s+2N
N (RN)

as k→∞, which contradicts (31). Then (32) shows that (28) holds.

Step 2: Applying lemma 2 and (27), we have

ˆ
RN

|x|2u2kdx=
ˆ
RN

|εkx+ εkyk|2w2
kdx→ 0 as k→∞,

which implies that

0= liminf
k→∞

ˆ
RN

|εkx+ εkyk|2w2
kdx⩾ liminf

k→∞

ˆ
BK0(0)

|εkx+ εkyk|2w2
kdx.

Since |x|2 →∞ as |x| →∞, then (28) shows that {εkyk} is bounded inRN. Up to a subsequence
if necessary, there exists a x0 ∈ RN such that zk := εkyk → x0 as k→∞. By Fatou lemma, it
then follows from (28) that

11
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liminf
k→∞

ˆ
RN

|εkx+ εkyk|2w2
kdx⩾ |x0|2

ˆ
BK0(0)

lim
k→∞

w2
kdx⩾

|x0|2δ
2

,

which shows that |x0|= 0.

Step 3: Since uk is a nonnegative minimizer of e(ak,β∗), then it satisfies the following frac-
tional Kirchhoff equation(

ak+ b
ˆ
RN

|(−∆)
s
2 uk|2dx

)
(−∆)

s uk+ |x|2uk = µkuk+β∗u
8s
N +1
k in RN, (33)

where µk ∈ R is the Lagrange multiplier. It is easy to check that

µk =

ˆ
RN

(
ak|(−∆)

s
2 uk|2 + |x|2u2k

)
dx+ b

(ˆ
RN

|(−∆)
s
2 uk|2dx

)2

−β∗
ˆ
RN

u
8s+2N
N

k dx (34)

and

e(ak,β
∗) =

ˆ
RN

(
ak|(−∆)

s
2 uk|2 + |x|2u2k

)
dx+

b
2

(ˆ
RN

|(−∆)
s
2 uk|2dx

)2

− Nβ∗

N+ 4s

ˆ
RN

u
8s+2N
N

k dx. (35)

Combing (27) and (35), it yields from lemma 2 that

ˆ
RN

|(−∆)
s
2 wk|2dx=

ˆ
RN

|wk|2 = 1,
ˆ
RN

w
8s+2N
N

k dx= ε4sk

ˆ
RN

u
8s+2N
N

k dx→ b(N+ 4s)
2Nβ∗ as k→∞.

(36)

Following (34) and (36), one has

µkε
4s
k → (N− 4s)b

2N
as k→∞. (37)

Moreover, one can check that wk(x) satisfies the following equation

(
akε

2s
k + b

)
(−∆)

swk+ ε4sk |εkx+ εkyk|2wk = µkε
4s
k wk+β∗w

8s
N +1
k in RN. (38)

Applying (36), we conclude that {wk} is bounded in Hs(RN). Passing to subsequence, there
exists w0 ∈ Hs(RN) such that

wk ⇀ w0 ⩾ 0 in Hs
(
RN
)
as k→∞. (39)

Since wk satisfies (38), using (37) and passing to weak limit, one has

b(−∆)
sw0 =

(N− 4s)b
2N

w0 +β∗w
8s
N +1
0 in RN (40)

12
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in weak sense. Furthermore, (28) implies that w0 ̸≡ 0. Similar to the proof of [50, proposition
4.4], we have that w0 ∈ C2,α(RN) for some α ∈ (0,1). Then, following [13, lemma 3.2], we
have

(−∆)
sw0 (x) =−Cs

2

ˆ
RN

w0 (x+ y)+w0 (x− y)− 2w0 (x)
|y|N+2s

dy in RN.

Assume that there exists x0 ∈ RN such that w0(x0) = 0, it then follows from w0(x)⩾ 0 and
w0 ̸≡ 0 that

(−∆)
sw0 (x0) =−Cs

2

ˆ
RN

w0 (x0 + y)+w0 (x0 − y)
|y|N+2s

dy< 0.

However, from (40) we know that (−∆)sw0(x0) = 0, which is a contradiction. Hence, w(x)>
0 for any x ∈ RN. Comparing (5) and (40), the uniqueness of positive radial solution of (5)
implies that

w0 (x) =

(
b

2β∗

) N
8s

ϕ(|x− y0|) , for some y0 ∈ RN. (41)

Moreover, we derive from (4) and (41) that
ˆ
RN

|(−∆)
s
2 w0|2dx=

ˆ
RN

|w0|2 = 1. (42)

In view of (36), (39) and (42), one has

wk → w0 :=

(
b

2β∗

) N
8s

ϕ(|x− y0|) for somey0 ∈ RN.

Step 4:Nowwe show that ∥wk∥∞ <∞ uniformly for large k. In fact, from (37), (38) and (42),
it has

(−∆)
swk ⩽

2β∗

b
w

8s
N +1
k . (43)

Define

h(t) :≡ hT,γ (t) =

 0 t⩽ 0,
tγ 0< t⩽ T,
γTγ−1 (t−T)+ Tγ t> T,

where γ > 1 and T > 0. It is easy to check that h(t) is convex and Lipschitz continuous, so

(−∆)
s h(wk)⩽ h ′ (wk)(−∆)

swk

in the weak sense. Clearly, h ∈ C1(R)∩W1,∞(R) and it is positive, increasing and convex.
Define

h̃(t) :=
ˆ t

0
(h ′ (r))

2 dr,

13
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which is positive, increasing, convex and belongs to C1(R)∩W1,∞(R), then we have h̃ ′(t) =
(h ′(t))2 and h̃(t)− h̃(r) = h̃ ′(t)(t− r) for t,r ∈ R. Also, by the Jensen inequality, the fact
0⩽ h(t)⩽ |t|γ and 0⩽ th ′(t)⩽ γh(t) for r, t ∈ R, we deduce 0⩽ h̃(t)⩽ ∥h ′∥∞|t|γ and |h(t)−
h(r)|2 ⩽ (h̃(t)− h̃(r))(t− r). Thus, we conclude h̃(wk) ∈ Hs(RN) since h̃ is Lipschitz continu-
ous and h̃(0) = 0.

Assume that 1< γ ⩽ 2∗s /2, it has h̃(wk)⩽ ∥h ′∥∞|wk|γ ∈ L2(RN). By using Sobolev
inequality, (43) and the properties of h̃(t), we can see that

∥h(wp)∥22∗s ⩽ C∥(−∆)
s
2 h(wk)∥22

⩽ C
ˆ
R2N

(
h̃(wk (x))− h̃(wk (y))

)
(wk (x)−wk (y))

|x− y|N+2s
dxdy

= C
ˆ
RN

(−∆)
s
2 wk (−∆)

s
2 h̃(wk)dx

⩽ C
ˆ
RN

(
wk+w

2∗s −1
k

)
h̃(wk)dx

⩽ C
ˆ
RN

(
wk+w

2∗s −1
k

)
wkh̃

′ (wk)dx

⩽ C
ˆ
RN

(
wk+w

2∗s −1
k

)
wk (h

′ (wk))
2 dx

⩽ γ2C
ˆ
RN

(
1+w

2∗s −2
k

)
(h(wk))

2 dx

= γ2C
ˆ
RN

(h(wk))
2dx+ γ2C

ˆ
RN

w
2∗s −2
k (h(wk))

2dx.

(44)

Now let R> 0 be fixed, by the Hölder inequality, we have

ˆ
RN

(h(wk))
2w

2∗s −2
k dx

=

ˆ
{wk⩽R}

(h(wk))
2w

2∗s −2
k dx+

ˆ
{wk>R}

(h(wk))
2w

2∗s −2
k dx

⩽ R2∗s −2∥h(wk)∥22 +

(ˆ
{wk>R}

w
2∗s
k dx

) 2∗s −2
2∗s

∥h(wk)∥22∗s .

(45)

Note that {wk} converges strongly in Hs(RN), then one has {wk} converges strongly in
L2∗s (RN), so we can choose R> 0 sufficiently large such that

(ˆ
{wk>R}

w
2∗s
k dx

) 2∗s −2
2∗s

⩽ 1
2γ2C

.

It follows from (44), (45) and the fact h(t)⩽ |t|γ that

∥h(wk)∥22∗s ⩽ 2γ2C
(
1+R2∗s −2

)
∥h(wk)∥22 ⩽ 2γ2C

(
1+R2∗s −2

)
∥wk∥2γ2γ .

14
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From the Fatou lemma and the fact limT→+∞ hT,γ(t) = tγ , we deduce that

∥wk∥2γ2∗s γ =

(ˆ
RN

liminf
T→+∞

h
2∗s
T,γ (wk)dx

) 2
2∗s

⩽ liminf
T→+∞

(ˆ
RN

h
2∗s
T,γ (wk)dx

) 2
2∗s

⩽ 2γ2C
(
1+R2∗s −2

)
∥wk∥2γ2γ ,

which implies that wk ∈ L2∗s γ(RN) since 1< γ ⩽ 2∗s
2 . Iterating this argument with γ0 :=

2∗s
2 ,

γi :=
2∗s
2 γi−1 and let γi →+∞, we can obtain that wk ∈ Lr(RN) where r ∈ [2,+∞). By Fatou

lemma, (44) and the fact h(t)⩽ |t|γ , we have

∥wk∥2γ2∗s γ ⩽ γ2C
ˆ
RN

(
w2γ
k +w

2∗s −2+2γ
k

)
dx. (46)

By Hölder inequality and Young inequality, we get that

ˆ
RN

w
2∗s −2+2γ
k dx⩽ ∥w2∗s −2

k ∥ N
s
∥wγ

k ∥2∥w
γ
k ∥2∗s ⩽ ∥w2∗s −2

k ∥ N
s

(
1
2ε

∥wk∥2γ2γ +
ε

2
∥wk∥2γ2∗s γ

)
. (47)

Set

L := ∥w2∗s −2
k ∥ 2

N
,

then the fact wk ∈ Lr(RN) shows that L<+∞, where r ∈ [2,+∞). Let ε= 1/(Lγ2C), it fol-
lows from (46) and (47) that

∥wk∥2γ2∗s γ ⩽ 2γ2C

(
1+

1
2L2γ2C

)
∥wk∥2γ2γ ⩽ Cγ4∥wk∥2γ2γ . (48)

Letting 2γi = 2∗s γi−1 in (48), we have

∥wk∥2∗s γi ⩽
(
Cγ4

i

) 1
2γi ∥wk∥2∗s γi−1

which implies that

∥wk∥2∗s γi ⩽
i∏

j=0

(
Cγ4

j

) 1
2γj ∥wk∥2∗s γ0 . (49)

Letting i→+∞ in (49), we conclude that

∥wk∥∞ ⩽ e

∑∞
j=0

log

C

(
2∗s
2

)4j
γ4
0


2

(
2∗s
2

)j
γ0 ∥wk∥2∗s γ0 ⩽ C.

Step 5: Next we prove the fact wk → 0 as |x| →∞ uniformly for large k. We rewrite prob-
lem (38) as follows

(−∆)
swk+wk = hk (x) in RN,
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where

hk := wk+
(
ε2sk ak+ b

)−1
(
µkε

4s
k wk+β∗w

8s
N +1
k − ε4sk |εkx+ εkyk|2wk

)
.

It is easy to check that hk ∈ L∞
(
RN
)
for large k, thus by the interpolation on the Lp-spaces

and the convergence of {wk} in Hs
(
RN
)
, there exists h ∈ Lr

(
RN
)
such that hk → h in Lr

(
RN
)

as k→∞ for r⩾ 2. Using [16], we have

wk =
ˆ
RN

K (x− y)hk (x)dy,

where K is a Bessel potential and it satisfies
(K1)K is positive, radially symmetric and smooth in RN\{0}.
(K2) There exists C> 0 such that K(x)⩽ C

|x|N+2s for x ∈ RN\{0}.
(K3)K ∈ Lr(RN) for r ∈ [1,N/(N− 2s)).
Now argue as in the proof of [51, lemma 6.4], we conclude that

lim
|x|→∞

wk (x)→ 0 as k→∞. (50)

Step 6: We now show (29) holds. In fact, lemma 2 shows that there exists M> 0 such that

akε
2s
k + b⩽M uniformly for large k. (51)

Following [16, lemma 4.3], there exists a function X such that

0< X <
1

1+ |x|N+2s

and

(−∆)
sX +

(4s−N)b
4NM

X = 0 in RN\BR1 (0) for some R1 > 0.

Following (37), (38), (50) and (51), we conclude for large k that

(−∆)
swk+

(4s−N)b
4NM

wk ⩽ (−∆)
swk+

(4s−N)bwk
4N
(
akε2sk + b

)
=

−ε4sk |εkx+ εkyk|2wk+µkε
4s
k wk+β∗w

8s
N +1
k + (4s−N)b

4N wk
akε2sk + b

⩽ 0

for |x|⩾ R2 with R2 large enough. Similar to [50, lemma 5.6], we conclude that

wk (x)⩽
C

1+ |x|N+2s
uniformly for large k. (52)

For any x ∈ Bcρ(0), we have

|x− zk|
εk

⩾ |x|
2εk

⩾ ρ

2εk
→+∞ as k→∞. (53)

16
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From (52) and (53), it follows that

uk (x) = ε
− N

2
k wk

(
x− zk
εk

)
⩽ ε

− N
2

k

C

1+ | x−zk
εk

|N+2s

⩽ ε
− N

2
k

C
1+ | ρ

2εk
|N+2s

→ 0 as k→∞ for x ∈ Bcρ (0) ,

thus the proof of lemma 3 is complete.

Next, we recall the [36, propostion 3.2], whose regularity property is crucial for our proof.

Lemma 4. Assume that g ∈ Cr(BR(0)),r> 0 and u is a nonnegative solution of

(−∆)
s u= g(x) inBR (0) .

If 2s+ r⩽ 1, then u ∈ C0,2s+r
(
B R

2
(0)
)
with

∥u∥
C0,2s+r

(
B R

2
(0)

) ⩽ C

[
∥u∥

L∞
(
B 3R

4
(0)

)+ ∥g∥
Cr
(
B 3R

4
(0)

)
]
.

If 2s+ r> 1, then u ∈ C1,2s+r−1
(
B R

2
(0)
)
with

∥u∥
C1,2s+r−1

(
B R

2
(0)

) ⩽ C

[
∥u∥

L∞
(
B 3R

4
(0)

)+ ∥g∥
Cr
(
B 3R

4
(0)

)
]
.

Proposition 1. Let uk be a nonnegative minimizer of e(ak,β∗) with ak → 0 as k→∞, then
there exists a sequence {uk}, still denoted by {uk}, such that each uk has a unique global
maximum point z̄k satisfying

lim
k→∞

z̄k = 0 (54)

and

lim
k→∞

ε
N
2
k uk (εkx+ z̄k) =

(
b

2β∗

) N
8s

ϕ(x) in L∞
(
RN
)
, (55)

where ϕ(x) is the unique solution of (5), and εk → 0 as k→∞ is defined by

εk :=

(ˆ
RN

|(−∆)
s
2 uk|2dx

)− 1
2s

. (56)

Proof. Let z̄k be a global maximum point of uk, it then follows from (33) and (37) that

uk (z̄k)⩾
(
−µk
β∗

) N
8s

⩾ Cε
− N

2
k , (57)

from which and (29) we derive that z̄k → 0 as k→∞. Set

w̄k (x) = ε
N
2
k uk (εkx+ z̄k) . (58)
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One can check that w̄k(x) satisfies the following equation(
akε

2s
k + b

)
(−∆)

s w̄k+ ε4sk |εkx+ z̄k|2w̄k = µkε
4s
k w̄k+β∗w̄

8s
N +1
k in RN. (59)

We now claim that w̄k satisfies (28) for some positive constants R0 and δ. Indeed, (52) and (57)

yield that there exists R1 > 0, independent of k, such that
∣∣∣ z̄k−zk

εk

∣∣∣< R1
2 . Since wk satisfies (38),

we then deduce from (58) that

lim
k→∞

ˆ
BR0+R1 (0)

|w̄k|2dx= lim
k→∞

ˆ
BR0+R1

(
z̄k−zk
εk

) |wk|2dx⩾
ˆ
B
R0+

R1
2
(0)

|wk|2dx⩾ δ > 0, (60)

which proves the claim. Similar to lemma 3, one can further derive that there exists a sub-
sequence, still denoted by {w̄k} with

µkε
4s
k → (N− 4s)b

2N
and w̄k ⇀ w̄0 ⩾ 0 in Hs

(
RN
)
as k→∞, (61)

where w̄0 satisfies (40). Moreover, (60) implies that w̄0 ̸≡ 0. Thus, following Step 3 in lemma
3, it has w̄0 > 0. Further, we obtain that

w̄0 (x) =

(
b

2β∗

) N
8s

ϕ(|x|) , (62)

since the origin is the unique global maximum point of ϕ.
We next prove the uniqueness of z̄k as k→∞. Rewriting (59) as follows

(−∆)
s w̄k = Fk (x) in RN, (63)

where

Fk (x) :=
(
akε

2s
k + b

)−1
[
−ε4sk |εkx+ z̄k|2w̄k+µkε

4s
k w̄k+β∗w̄

8s
N +1
k

]
.

By the fact ∥w̄k∥∞ < C and z̄k → 0 as k→∞, we then deduce from (61) that {Fk} is bounded
uniformly in L∞(RN) as k→∞. Using [47, Proposition 2.9], we have

∥w̄k∥C1,α(RN) ⩽ C
(
∥w̄k∥L∞(RN) + ∥Fk∥L∞(RN)

)
⩽ C for α ∈ (0,1)ask→∞.

Furthermore, since ε4sk |εkx+ z̄k|2 is locally Lipschitz continuous in RN, in view of z̄k → 0 as
k→∞. Applying lemma 4 a finite number of times to (63), there exists some positive γ ∈
(0,1) such that

∥w̄k∥C2,γ(BR/2) ⩽ C
[
∥w̄k∥L∞(B3R/4) + ∥Fk∥Cγ(B3R/4)

]
⩽ C as k→∞,

which shows that {w̄k} is bounded uniformly in C2,γ
loc (RN) as k→∞ for some γ ∈ (0,1). So

there exists w̃0 ∈ C2
loc(RN) such that w̄k → w̃0 in C2

loc(RN) as k→∞. Further, by using (61)
we have that w̄0 = w̃0. Thus,

w̄k → w̄0 in C2
loc

(
RN
)
as k→∞. (64)
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Because the origin is the unique global maximum point of ϕ(x), then (64) shows that all global
maximum points of w̄k stay in a small ball Bρ(0) as k→∞ for some ρ> 0. Since ϕ ′ ′(0)< 0,
we know ϕ ′ ′(r)< 0 for r ∈ [0,ρ). By [46, lemma 4.2], we obtain that w̄k has no critical point
other than origin and z̄k is the unique global maximum point of w̄k as k→∞.

We now prove (55) holds. It then follows from (7) and (52) that for any ε> 0, there exists
a constant Rϵ > 0 independent k, such that

|w̄k (x) |,

∣∣∣∣∣
(

b
2β∗

) N
8s

ϕ(x)

∣∣∣∣∣< ε

4
for any |x|> Rϵ as k→∞,

which yields that

sup
|x|>Rϵ

|w̄k (x)− w̄0 (x) |⩽ sup
|x|>Rϵ

(
|w̄k (x) |+

∣∣∣∣∣
(

b
2β∗

) N
8s

ϕ(x)

∣∣∣∣∣
)

<
ε

2
as k→∞,

from which and (64) we can obtain (55).

Following the proof of Proposition 1, we now address theorem 2 on the local properties of
concentration points. Before proving theorem 2, we first establish several Claims.

Claim 1: Define λ0 :=
´
RN |x|2ϕ2(x)dx, then we have

limsup
a→0

e(a,β∗)

a
1

1+s

⩽ (1+ s)

(
λ0

s∥ϕ∥22

) s
1+s

.

Indeed, let Uτ (x) be the trail function defined by (16). Taking x0 = 0, we deduce from (18)
and (19) that

ˆ
RN

|x|2|Uτ (x) |2dx=
λ0

τ 2∥ϕ∥22
(1+ o(1)) as τ →∞, (65)

and

e(a,β∗) = Ea,β∗ (Uτ )⩽ aτ 2s+ aCτ−10s+
λ0

τ 2∥ϕ∥22
(1+ o(1))+Cτ−8s as τ →∞. (66)

Let τ =
(

λ0

as∥φ∥2
2

) 1
2+2s

, then τ →∞ as a↘ 0. We thus obtain from (65) and (66) that

e(a,β∗)⩽ a

(
λ0

as∥ϕ∥22

) s
1+s

+
λ0

∥ϕ∥22

(
λ0

as∥ϕ∥22

) −1
1+s

(1+ o(1))+Cτ−8s+ o(1) as a↘ 0,

which shows that

limsup
a→0

e(a,β∗)

a
1

1+s

⩽ (1+ s)

(
λ0

s∥ϕ∥22

) s
1+s

.

Claim 2: Let uk be a nonnegative minimizer of e(ak,β∗) as in proposition 1 with ak → 0 as

k→∞, then the unique global maximum point z̄k of uk satisfies z̄k → 0 as k→∞ and
{
z̄k
εk

}
is bounded.
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In fact, if
∣∣∣ z̄kεk ∣∣∣→∞ as k→∞, then for anyM> 0 large enough, we have

liminf
k→∞

1
ε2k

ˆ
RN

|x|2u2kdx= liminf
k→∞

ˆ
RN

∣∣∣∣x+ z̄k
εk

∣∣∣∣2 w̄2
kdx⩾M. (67)

Following (4), we deduce by calculation that there exists a constant C> 0 such that

e(ak,β
∗) = Eak,β∗ (uk)⩾ akε

−2s
k +Mε2k ⩾ CM

s
1+s a

1
1+s

k ,

which is a contradiction in view of Claim 1 by choosing M> 0 large enough.

Proof of theorem 2: Actually, Claim 2 shows that there exists z0 ∈ RN such that

z̄k
εk

→ z0 as k→∞. (68)

Since ϕ(x) is a radial decreasing function and decays polynomially as |x| →∞, we then con-
clude that

liminf
k→∞

1
ε2k

ˆ
RN

|x|2u2kdx=
1

∥ϕ∥22

ˆ
RN

|x+ z0|2ϕ2 (x)dx

⩾ 1
∥ϕ∥22

ˆ
RN

|x|2ϕ2 (x)dx=
λ0

∥ϕ∥22
.

(69)

Together with the Young inequality, we derive from (66) that

e(ak,β
∗) = Eak,β∗ (uk)⩾ akε

−2s
k +

λ0ε
2
k

∥ϕ∥22
(1+ o(1))

⩾ (1+ s)a
1

1+s

k (1+ o(1))

(
s∥ϕ∥22
λ0

) −s
1+s

.

Hence

liminf
k→∞

e(ak,β∗)

a
1

1+s

k

⩾ (1+ s)

(
λ0

s∥ϕ∥22

) s
1+s

, (70)

where the equality holds if and only if

lim
k→∞

εk
ε̄k

= 1 where ε̄k :=

(
sak∥ϕ∥22

λ0

) 1
2+2s

. (71)

In view of (70) and Claim 1, it follows that

liminf
k→∞

e(ak,β∗)

a
1

1+s

k

= (1+ s)

(
λ0

s∥ϕ∥22

) s
1+s

.

Therefore, (55) and (71) show that (9) holds. Next, we prove (11), indeed, from the definition
of e(ak,β∗), we know that

ˆ
RN

|x|2u2k (x)dx⩽
ˆ
RN

|x|2u2k (x+ z̄k)dx. (72)
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By the decay estimate of w̄k and ϕ, we deduce from (71) that

ˆ
RN

|x|2u2k (x+ z̄k)dx=
ε2k

∥ϕ∥22
(1+ o(1))

ˆ
RN

|x|2ϕ2 (x)dx as k→∞. (73)

Note that

ˆ
RN

|x|2u2k (x)dx⩾
ˆ
B 1√

εk

(0)
|εkx+ z̄k|2w̄2

k (x)dx=
(1+ o(1))ε2k

∥ϕ∥22

ˆ
B 1√

εk

(0)

∣∣∣∣x+ z̄k
εk

∣∣∣∣2ϕ2 (x)dx.

(74)

On the contrary, we assume that there exists a constant ρ> 0 and a subsequence of
{
z̄k
εk

}
with

|̄zk|
εk

⩾ ρ > 0 as k→∞. Then (72)–(74) show that

ε2k
∥ϕ∥22

ˆ
B 1√

εk

(0)

∣∣∣∣x+ z̄k
εk

∣∣∣∣2ϕ2(x)dx⩽ (1+ o(1))ε2k
∥ϕ∥22

ˆ
RN

|x|2ϕ2(x)dx as k→∞.

Applying the Fatou lemma, we have

ˆ
RN

|x|2ϕ2 (x)dx<
ˆ
RN

liminf
k→∞

∣∣∣∣x+ z̄k
εk

∣∣∣∣2ϕ2 (x)dx⩽
ˆ
RN

|x|2ϕ2 (x)dx

which is a contradiction. Thus z̄k
εk
→ 0 as k→∞, from which and (71) we can obtain (11).

This completes the proof.

4. Local uniqueness

This section is devoted to studying the local uniqueness of nonnegative minimizers when a is
small enough. For this purpose, let {ak} be a sequence satisfies ak → 0 as k→∞. Suppose
by contradiction, let u1k and u2k be two different normalized minimizers to e(ak,β∗) with
∥uik∥22 = 1 for i = 1,2. Let z̄1k and z̄2k be the unique global maximal point of u1k and u2k as
k→∞, respectively. Obviously, we rewrite (33) as(
ak+ b

ˆ
RN

|(−∆)
s
2 uik|2dx

)
(−∆)

s uik+ |x|2uik = µikuik+β∗u
8s
N +1
ik in RN, i = 1,2, (75)

where µik ∈ R is the corresponding Lagrange multiplier. Define

ūik (x) :=

(
2β∗

b

) N
8s

ε̄
N
2
k uik (ε̄kx+ z̄1k) i = 1,2, (76)

and

η̄k (x) :=
ū1k (x)− ū2k (x)
∥ū1k− ū2k∥∞

. (77)
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One can check that ūik and η̄k satisfy[
akε̄

2s
k + b

(
b

2β∗

) N
4s
ˆ
RN

|(−∆)
s
2 ūik|2dx

]
(−∆)

s ūik+ ε̄4sk |ε̄kx+ z̄1k|2ūik

= µikε̄
4s
k ūik+

b
2
ū

8s
N +1
ik in RN, i = 1,2,

(78)

and [
akε̄

2s
k + b

(
b

2β∗

) N
4s
ˆ
RN

|(−∆)
s
2 ū2k|2dx

]
(−∆)

s
η̄k+ ε̄4sk |ε̄kx+ z̄1k|2η̄k

+ b

(
b

2β∗

) N
4s
ˆ
RN

(−∆)
s
2 (ū1k+ ū2k)(−∆)

s
2 η̄kdx(−∆)

s
2 ū1k

= µ1kε̄
4s
k η̄k+

ε̄4sk ū2k (µ1k−µ2k)

∥ū1k− ū2k∥∞
+

(8s+N)b
2N

[Aū1k+(1−A) ū2k]
8s
N η̄k,

(79)

where A ∈ (0,1). The following result shows the polynomial decay of ūik and |∇ūik|.

Lemma 5. Assume that uik(i = 1,2) are two minimizers of e(ak,β∗) with ak → 0 as k→∞
and ūik is defined by (76), then there exist R> 0 large enough and 2s> ρ > 0 small enough
such that

ūik (x)⩽
C

1+ |x|N+2s
as k→∞, (80)

and

|∇ūik (x) |⩽
C

1+ |x|N+2s
for |x|> R as k→∞. (81)

Proof. Clearly (80) follows from the decay estimate of uik in section 3 and we now show
that (81) is true. In fact, ūik ∈ C1,α(RN) for some α ∈ (0,1) as k→∞. In particular, |Dūik| ∈
L∞(RN) as k→∞. Differentiating (78), we get[

akε̄
2s
k + b

(
b

2β∗

) N
4s
ˆ
RN

|(−∆)
s
2 ūik|2dx

]
(−∆)

s ∂ūik
∂xj

+ ε̄4sk |ε̄kx+ z̄1k|2
∂ūik
∂xj

= µikε̄
4s
k
∂ūik
∂xj

+
b
2
8s+N
N

ū
8s
N
ik

∂ūik
∂xj

− 2ε̄4s+1
k

(
ε̄kxj+ z̄j1k

)
ūik

(82)

where i = 1,2 and j = 1,2, · · ·,N. By (61) and (71), we have

µikε̄
4s
k → (N− 4s)b

2N
as k→∞ and i = 1,2. (83)

Using the fact that z̄1k → 0 as k→∞, we derive from (80) and (83) that there exists ϑ> 0
large such that

inf
|x|⩾ϑ

 −µikε̄
4s
k − b

2
8s+N
N ū

8s
N
ik + ε̄4sk |ε̄kx+ z̄1k|2

akε̄2sk + b
(

b
2β∗

) N
4s ´

RN |(−∆)
s
2 ūik|2dx

 := ρ0 > 0 as k→∞ and i = 1,2. (84)
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Let v ∈ Hs(RN) be a positive radial solution of

(−∆)
s v+ ρ0v= v

8s
N +1 in RN. (85)

From [15], we know that v ∈ C(RN) and there exist constants C2 > C1 > 0 such that

C1

1+ |x|N+2s
⩽ v(x)⩽ C2

1+ |x|N+2s
x ∈ RN. (86)

For large k and ϑ0 > ϑ, set

v̄ :=

(
1+

∥Dǔik∥∞
inf|x|⩽ϑ0

v

)
v.

In view of (82) and (85), it follows that

(−∆)s
(
∂ūik
∂xj

− v̄

)
+

 −µikε̄
4s
k − b

2
8s+N
N ū

8s
N
ik + ε̄4sk |ε̄kx+ z̄1k|2

akε̄2sk + b
(

b
2β∗

) N
4s ´

RN |(−∆)
s
2 ūik|2dx

 ∂ūik
∂xj

− ρ0v̄

=
−2ε̄4s+1

k

(
ε̄kxj+ z̄j1k

)
ūik

akε̄2sk + b
(

b
2β∗

) N
4s ´

RN |(−∆)
s
2 ūik|2dx

−
(
1+

∥Dǔik∥∞
inf|x|⩽ϑ0 v

)
v

8s
N
+1 i = 1,2 and j = 1,2, · · ·,N.

(87)

Testing (87) with
(

∂ūik
∂xj

− v̄
)+

, we get

ˆ
RN

(−∆)
s
2

(
∂ūik
∂xj

− v̄

)
(−∆)

s
2

(
∂ūik
∂xj

− v̄

)+

dx

+

ˆ
RN


 −µikε̄

4s
k − b

2
8s+N
N ū

8s
N
ik + ε̄4sk |ε̄kx+ z̄1k|2

akε̄2sk + b
(

b
2β∗

) N
4s ´

RN |(−∆)
s
2 ūik|2dx

 ∂ūik
∂xj

− ρ0v̄


(
∂ūik
∂xj

− v̄

)+

dx

=

ˆ
RN

 −2ε̄4s+1
k

(
ε̄kxj+ z̄j1k

)
ūik

akε̄2sk + b
(

b
2β∗

) N
4s ´

RN |(−∆)
s
2 ūik|2dx

−
(
1+

∥Dǔik∥∞
inf|x|⩽ϑ0 v

)
v

8s
N
+1

(
∂ūik
∂xj

− v̄

)+

dx,

(88)

where i = 1,2 and j = 1,2, · · ·,N. According to the definition of v̄, we can see that(
∂ūik
∂xj

− v̄
)+

= 0 in Bϑ0(0) as k→∞. Moreover, we have that as k→∞

ˆ
RN

 −2ε̄4s+1
k

(
ε̄kxj+ z̄j1k

)
ūik

akε̄2sk + b
(

b
2β∗

) N
4s ´

RN |(−∆)
s
2 ūik|2dx

−
(
1+

∥Dǔik∥∞
inf|x|⩽ϑ0

v

)
v

8s
N +1

(∂ūik
∂xj

− v̄

)+

dx⩽ 0,

(89)
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where i = 1,2 and j = 1,2, · · ·,N. By the fact that ϑ0 > ϑ, we obtain from (84) that

ˆ
RN


 −µikε̄

4s
k − b

2
8s+N
N ū

8s
N
ik + ε̄4sk |ε̄kx+ z̄1k|2

akε̄2sk + b
(

b
2β∗

) N
4s ´

RN |(−∆)
s
2 ūik|2dx

 ∂ūik
∂xj

− ρ0v̄


(
∂ūik
∂xj

− v̄

)+

dx

=

ˆ
Bcϑ0

(0)


 −µikε̄

4s
k − b

2
8s+N
N ū

8s
N
ik + ε̄4sk |ε̄kx+ z̄1k|2

akε̄2sk + b
(

b
2β∗

) N
4s ´

RN |(−∆)
s
2 ūik|2dx

 ∂ūik
∂xj

− ρ0v̄


(
∂ūik
∂xj

− v̄

)+

dx

⩾
ˆ
Bcϑ0

(0)

(
ρ0

∂ūik
∂xj

− ρ0v̄

)(
∂ūik
∂xj

− v̄

)+

dx

= ρ0

ˆ
RN

∣∣∣∣∣
(
∂ūik
∂xj

− v̄

)+
∣∣∣∣∣
2

dx as k→∞, i = 1,2 and j = 1,2, · · ·,N.

(90)

Let ωi :=
∂ūik
∂xj

− v̄, where i = 1,2 and j = 1,2, · · ·,N. Some calculations show that

ˆ
RN

ˆ
RN

(ωi (x)−ωi (y))
(
ω+
i (x)−ω+

i (y)
)

|x− y|N+2s
dxdy

=

ˆ
{ωi(x)⩾0}

ˆ
{ωi(y)<0}

(ωi (x)−ωi (y))ωi (x)
|x− y|N+2s

dxdy

+

ˆ
{ωi(x)<0}

ˆ
{ωi(y)⩾0}

(ωi (y)−ωi (x))ωi (y)
|x− y|N+2s

dxdy

+

ˆ
{ωi(x)⩾0}

ˆ
{ωi(y)⩾0}

(ωi (x)−ωi (y))
2

|x− y|N+2s
dxdy

(91)

and
ˆ
RN

ˆ
RN

|ω+
i (x)−ω+

i (y) |2

|x− y|N+2s
dxdy=

ˆ
{ωi(x)⩾0}

ˆ
{ωi(y)<0}

ω2
i (x)

|x− y|N+2s
dxdy

+

ˆ
{ωi(x)<0}

ˆ
{ωi(y)⩾0}

ω2
i (y)

|x− y|N+2s
dxdy

+

ˆ
{ωi(x)⩾0}

ˆ
{ωi(y)⩾0}

(ωi (x)−ωi (y))
2

|x− y|N+2s
dxdy.

(92)

Following (91) and (92), it follows that

ˆ
RN

(−∆)
s
2

(
∂ūik
∂xj

− v̄

)
(−∆)

s
2

(
∂ūik
∂xj

− v̄

)+

dx⩾
ˆ
RN

∣∣∣∣∣(−∆)
s
2

(
∂ūik
∂xj

− v̄

)+
∣∣∣∣∣
2

dx. (93)

It the follows from (88)–(90) and (93) that for i = 1,2 and j = 1,2, · · ·,N

ˆ
RN

∣∣∣∣∣(−∆)
s
2

(
∂ūik
∂xj

− v̄

)+
∣∣∣∣∣
2

dx+ ρ0

ˆ
RN

∣∣∣∣∣
(
∂ūik
∂xj

− v̄

)+
∣∣∣∣∣
2

dx⩽ 0 as k→∞,

24



Nonlinearity 38 (2025) 045008 L Liu et al

which implies that
(

∂ūik
∂xj

− v̄
)+

= 0 in R3. Thus, we have

∂ūik
∂xj

⩽ v̄⩽ C
1+ |x|N+2s

as k→∞, i = 1,2 and j = 1,2, · · ·,N.

By the same arguments as above, we can also obtain that−∂ūik
∂xj

⩽ C
1+|x|N+2s as k→∞, i = 1,2

and j = 1,2, · · ·,N. This therefore completes the proof of lemma 5.

To achieve the optimal decay frequency, denote

ûik (x) :=

(
2β∗

b

) N
8s

ε̄
N
2
k uik (ε̄

τ
k x) for i = 1,2, (94)

and

η̂k (x) :=
û1k (x)− û2k (x)
∥û1k− û2k∥∞

, (95)

where τ < 0 satisfy

{
τ <min

{
−2s, −4s−6

4s

}
N= 2,

−4s− 4< τ <min
{
−2s, −4s−5

4s+2

}
N= 3.

(96)

In view of (76), (78), (94) and (95), it follows that

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 ûik|2dx

]
(−∆)

s ûik

+ ε̄4sk |ε̄τk x|2ûik = µikε̄
4s
k ûik+

b
2
û

8s
N +1
ik in RN, i = 1,2

(97)

and

2akε̄
2s(2−τ)
k (−∆)s η̂k+ b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

(
|(−∆)

s
2 û1k|2 + |(−∆)

s
2 û2k|2

)
dx(−∆)s η̂k

+ b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

(−∆)
s
2 (û1k+ û2k)(−∆)

s
2 η̂kdx(−∆)s (û1k+ û2k)+ 2ε̄4sk |ε̄τk x|

2η̂k

= ε̄4sk (µ1k+µ2k) η̂k+
ε̄4sk (µ1k−µ2k)

∥û1k− û2k∥∞
(û1k+ û2k)+

(8s+N)b
N

[Aû1k+(1−A) û1k]
8s
N η̂k.

(98)
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Following (76)–(78), we have

ε̄4sk (µ1k−µ2k)

∥û1k− û2k∥∞
(û1k+ û2k)

=
b
2

(
2β∗

b

)− N
2s
ˆ
RN

(
|(−∆)

s
2 ū1k|2 + |(−∆)

s
2 ū2k|2

)
dx

×
ˆ
RN

(−∆)
s
2 (ū1k+ ū2k)(−∆)

s
2 η̄kdx(û1k+ û2k)

− 4sβ∗

N

(
2β∗

b

)−1− N
4s
ˆ
RN

(
ū

4s+N
N

1k + ū
4s+N
N

2k

)
[Aū1k+(1−A) ū2k]

4s
N η̄kdx(û1k+ û2k) .

(99)

We next claim that for any x0 ∈ RN, there exists a small constant δ > 0 such that

ˆ
∂Bδ(x0)

[
ε̄
2s(1−τ)
k |(−∆)

s
2 η̂k|2 + ε̄4sk |ε̄τk x|2η̂2

k + η̂2
k

]
dS⩽ Cε̄N(1−τ)

k as k→∞. (100)

In fact, multiplying (98) by η̂k and integrating over RN, we have

[
2akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

(
|(−∆)

s
2 û1k|2 + |(−∆)

s
2 û2k|2

)
dx

]ˆ
RN

|(−∆)
s
2 η̂k|2dx

+ 2ε̄4sk

ˆ
RN

|ε̄τk x|2η̂2
kdx− ε̄4sk (µ1k+µ2k)

ˆ
RN

η̂2
kdx := A1 +A2 +A3 +A4, (101)

where

A1 :=−b
(

b
2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

(ˆ
RN

(−∆)
s
2 (û1k+ û2k)(−∆)

s
2 η̂kdx

)2

,

A2 :=
b
2

(
2β∗

b

)− N
2s

ε̄
(1−τ)N
k

ˆ
RN

(
|(−∆)

s
2 ū1k|2 + |(−∆)

s
2 ū2k|2

)
dx

×
ˆ
RN

(−∆)
s
2 (ū1k+ ū2k)(−∆)

s
2 η̄kdx

ˆ
RN

(ū1k+ ū2k) η̄kdx,

A3 :=− 4sβ∗

N

(
2β∗

b

)−1− N
4s

ε̄
(1−τ)N
k

ˆ
RN

(
ū

4s+N
N

1k + ū
4s+N
N

2k

)
× [Aū1k+(1−A) ū2k]

4s
N η̄kdx

ˆ
RN

(ū1k+ ū2k) η̄kdx,

A4 :=
(8s+N)b

N
ε̄
(1−τ)N
k

ˆ
RN

[Aū1k+(1−A) ū2k]
8s
N η̄2

kdx.
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By the fact that ∥ūik∥Hs(RN) ⩽ C as k→∞, we can derive from the Hölder inequality that

|A1|⩽ Cε̄(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 (û1k+ û2k) |2dx

ˆ
RN

|(−∆)
s
2 η̂k|2dx

⩽ Cε̄(τ−1)(N−4s)+(1−τ)(N−2s)
k

ˆ
RN

|(−∆)
s
2 (ū1k+ ū2k) |2dx

ˆ
RN

|(−∆)
s
2 η̂k|2dx

⩽ Cε̄2s(1−τ)
k ∥ū1k+ ū2k∥2Hs(RN)

ˆ
RN

|(−∆)
s
2 η̂k|2dx

⩽ Cε̄2s(1−τ)
k

ˆ
RN

|(−∆)
s
2 η̂k|2dx as k→∞.

(102)

Using the same argument of (102), we can obtain that

|A2|⩽ Cε̄(1−τ)N
k ∥η̄k∥2Hs(RN)

⩽ Cε̄(1−τ)N
k

[
ε̄
(N−2s)(τ−1)
k

ˆ
RN

|(−∆)
s
2 η̂k|2dx+ ε̄

N(τ−1)
k

ˆ
RN

η̂2
kdx

]
⩽ Cε̄2s(1−τ)

k

ˆ
RN

|(−∆)
s
2 η̂k|2dx+C

ˆ
RN

η̂2
kdx as k→∞.

(103)

Noticing that |η̄k|⩽ 1, we conclude from lemma 5 that

|A3 +A4|⩽ Cε̄(1−τ)N
k as k→∞. (104)

Thus, from (10), (37) and (101)–(104), we obtain that

ε̄
2s(1−τ)
k

ˆ
RN

|(−∆)
s
2 η̂k|2dx+ ε̄4sk

ˆ
RN

|ε̄τk x|2η̂2
kdx− (µ1k+µ2k) ε̄

4s
k

ˆ
RN

η̂2
kdx

⩽ C

[
ε̄
2s(1−τ)
k

ˆ
RN

|(−∆)
s
2 η̂k|2dx+

ˆ
RN

η̂2
kdx+ ε̄

2(1−τ)
k

]
as k→∞.

Together with [6, lemma 4.5], we know that (100) holds. Thus we obtain following the estimate
immediately

∥η̄k∥Hs(RN) ⩽ C as k→∞. (105)

In order to deduce the limiting behaviors of η̄k, let us first study some basic properties of
ground state ϕ, which will be used later.

Lemma 6. Let ϕ> 0 be the unique radial positive solution of (5) and Γ denotes the corres-
ponding linearized operator given by

Γ := (−∆)
s
+

4s−N
2N

− 8s+N
2N

ϕ
8s
N .

Then we have:

(i) ϕ is nondegenerate in Hs(RN) in the sense that there holds

KerΓ = span

{
∂ϕ

∂x1
,
∂ϕ

∂x2
, . . . ,

∂ϕ

∂xN

}
.

(ii) Γ
(
N
4ϕ+ x ·∇ϕ

)
=− (4s−N)

N ϕ and Γ(x ·∇ϕ) = 2s(−∆)sϕ.
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Proof. According to [15, theorem 3], we know that (i) holds. Let w(x)> 0 be the radial pos-
itive solution of

(−∆)
sw+w−w

8s
N +1 = 0. (106)

Define

L := (−∆)
s
+ 1− 8s+N

N
w

8s
N .

Following [15, (7.2) and (7.3)], we have that L
(
N
4w+ x ·∇w

)
=−2sw. Thus, (106) shows

that

(−∆)
s
(x ·∇w)+ x ·∇w− 8s+N

N
w

8s
N (x ·∇w) = 2sw

8s
N +1 − 2sw. (107)

In view of (5) and (106), it follows that

w(x) =

(
N

4s−N

) N
8s

ϕ

[(
2N

4s−N

) 1
2s

x

]
, (108)

then

(−∆)
s
(x ·∇ϕ)+

4s−N
2N

(x ·∇ϕ)− 8s+N
2N

ϕ
8s
N (x ·∇ϕ) = sϕ

8s+N
N − (4s−N)s

N
ϕ. (109)

Moreover, since ϕ(x)> 0 is the unique solution to (5), a straightforward calculation shows
that

Γ

(
N
4
ϕ+ x ·∇ϕ

)
= (−∆)

s
(x ·∇ϕ)+

4s−N
2N

(x ·∇ϕ)− sϕ
8s+N
N

− 8s+N
2N

ϕ
8s
N (x ·∇ϕ) =− (4s−N)s

N
ϕ,

in view of (109). This completes the proof of lemma 6.

Lemma 7. Under the assumptions of theorem 3, there exists η̄0 ∈ C1(RN) such that

η̄k → η̄0 in C1
(
RN
)
as k→∞, (110)

and

η̄0 (x) = d0ϕ+ d̄0 (x ·∇ϕ)+
N∑
i=1

di
∂ϕ

∂xi
, (111)

where d0, d̄0,d1, · · ·,dN are all constants.

Proof. By the fact that ∥ūik∥Hs(RN) ⩽ C as k→∞ for i = 1,2, we deduce from (105) that
ˆ
RN

(−∆)
s
2 (ū1k+ ū2k)(−∆)

s
2 η̄kdx

⩽
(ˆ

RN

|(−∆)
s
2 (ū1k+ ū2k) |2dx

) 1
2
(ˆ

RN

|(−∆)
s
2 η̄k|2dx

) 1
2

⩽ ∥ū1k+ ū2k∥Hs(RN)∥η̄k∥Hs(RN) ⩽ C as k→∞.

(112)
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By the fact that z̄1k → 0 and ∥ū1k∥∞ ⩽ C as k→∞, we derive from (61) and (78) that

|(−∆)
s ū1k|=

∣∣∣∣∣
(
akε̄

2s
k + b

(
b

2β∗

) N
4s
ˆ
RN

|(−∆)
s
2 ū1k|2dx

)−1

×
[
−ε̄4sk |ε̄kx+ z̄1k|2ū1k+µ2kε̄

4s
k ū1k+

b
2
ū

8s
N +1
1k

]∣∣∣∣∣⩽ C as k→∞.

(113)

Combining (75) with (76) yields that

µikε̄
4s
k = e(ak,β

∗) ε̄4sk +
b
2

(
2β∗

b

)− N
2s
(ˆ

RN

|(−∆)
s
2 ūik|2dx

)2

− 4sβ∗

N+ 4s

(
2β∗

b

)−1− N
4s
ˆ
RN

ū
8s+2N
N

ik dx i = 1,2,

(114)

together with (77) implies that

ε̄4sk ū2k
µ1k−µ2k

∥ū1k− ū2k∥∞

=
b
2

(
2β∗

b

)− N
2s
ˆ
RN

(
|(−∆)

s
2 ū1k|2 + |(−∆)

s
2 ū2k|2

)
dx

×
ˆ
RN

(−∆)
s
2 (ū1k+ ū2k)(−∆)

s
2 η̄kdxū2k

− 4sβ∗

N

(
2β∗

b

)−1− N
4s
ˆ
RN

(
ū

4s+N
N

1k + ū
4s+N
N

2k

)
[Aū1k+(1−A) ū2k]

4s
N η̄kdxū2k.

(115)

By the fact that |η̄k|⩽ 1, ∥ū2k∥∞ ⩽ C and ∥ūik∥Hs(RN) ⩽ C as k→∞ for i = 1,2, we conclude
from (80) and (115) that∣∣∣∣ε̄4sk ū2k µ1k−µ2k

∥ū1k− ū2k∥∞

∣∣∣∣⩽ C as k→∞. (116)

We now rewrite problem (79) as

(−∆)
s
η̄k = F̄k (x) in RN,

where

F̄k (x) =

(
akε̄

2s
k + b

(
b

2β∗

) N
4s
ˆ
RN

|(−∆)
s
2 ū2k|2dx

)−1

×

[
−b
(

b
2β∗

) N
4s
ˆ
RN

(−∆)
s
2 (ū1k+ ū2k)(−∆)

s
2 η̄kdx(−∆)

s ū1k

− ε̄4sk |ε̄kx+ z̄1k|2η̄k+µ1kε̄
4s
k η̄k+

ε̄4sk (µ1k−µ2k) ū2k
∥ū1k− ū2k∥∞

+
(8s+N)b

2N
[Aū1k+(1−A) ū2k]

8s
N η̄k

]
.
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By the fact that |η̄k|⩽ 1, ∥ūik∥∞ ⩽ C and ∥ūik∥Hs(RN) ⩽ C as k→∞ for i = 1,2, we deduce
from (112), (113) and (116) that F̄k(x) ∈ L∞(RN) as k→∞. Thus, using [47, proposition 2.9],
we know that ∥η̄k∥C1,α(RN) ⩽ C for some α ∈ (0,1) as k→∞. Passing to a subsequence, there
exists some function η̄0 ∈ C1,α(RN) such that (110) holds.

Moreover, (55), (71) and (76) show that

ˆ
RN

|(−∆)
s
2 ūik|2dx→

(
2β∗

b

) N
4s

as k→∞ for i = 1,2. (117)

Taking k→∞ in (79), we then derive from (115) and (117) that

(−∆)
s
η̄0 +

4s−N
2N

η̄0 −
8s+N
2N

ϕ
8s
N η̄0 =−2

(
b

2β∗

) N
4s
ˆ
RN

(−∆)
s
2 ϕ(−∆)

s
2 η̄0dx(−∆)

s
ϕ

+ 2

(
2β∗

b

)− N
4s
ˆ
RN

(−∆)
s
2 ϕ(−∆)

s
2 η̄0dxϕ− 8sβ∗

Nb

(
2β∗

b

)−1− N
4s
ˆ
RN

ϕ
8s+N
N η̄0dxϕ,

(118)

from which and lemma 6 we deduce that (111) holds.

Until now, we have decomposed η̄0 and we need to verify that d0, d̄0,d1, · · ·,dN = 0.
Hereafter, we consider the relationships between the parameters.

Lemma 8. Assume that d0, d̄0,d1, · · ·,dN are defined in (111), then

d̄0 =
2
N
d0.

Proof. We first claim that

d1

ˆ
RN

(−∆)
s
2
∂ϕ

∂x1
(−∆)

s
2 ϕdx+ · · ·+ dN

ˆ
RN

(−∆)
s
2
∂ϕ

∂xN
(−∆)

s
2 ϕdx= 0. (119)

Indeed, from (5) we have

di

ˆ
RN

(−∆)
s
2
∂ϕ

∂xi
(−∆)

s
2 ϕdx+ di

4s−N
2N

ˆ
RN

ϕ
∂ϕ

∂xi
dx

− di
2

ˆ
RN

ϕ
8s+N
N

∂ϕ

∂xi
dx= 0 i = 1,2, · · ·,N.

(120)

Applying lemma 6, we conclude that

d1

ˆ
RN

(−∆)
s
2
∂ϕ

∂x1
(−∆)

s
2 ϕdx+ · · ·+ dN

ˆ
RN

(−∆)
s
2
∂ϕ

∂xN
(−∆)

s
2 ϕdx

+ d1
4s−N
2N

ˆ
RN

ϕ
∂ϕ

∂x1
dx+ · · ·+ dN

4s−N
2N

ˆ
RN

ϕ
∂ϕ

∂xN
dx

− d1 (8s+N)
2N

ˆ
RN

ϕ
8s+N
N

∂ϕ

∂x1
dx− ·· ·− dN (8s+N)

2N

ˆ
RN

ϕ
8s+N
N

∂ϕ

∂xN
dx= 0.

(121)
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In view of (120) and (121), it follows that

d1

ˆ
RN

ϕ
8s+N
N

∂ϕ

∂x1
dx+ · · ·+ dN

ˆ
RN

ϕ
8s+N
N

∂ϕ

∂xN
dx= 0. (122)

Moreover, we know that
´
RN ϕ

∂φ
∂xi

dx= 0 for the season that ϕ is even in xi while ∂φ
∂xi

is odd.
Thus, from (121) and (122), we get that (119) holds. Following (111) and (119), we have

ˆ
RN

(−∆)
s
2 ϕ(−∆)

s
2 η̄0dx

=

ˆ
RN

(−∆)
s
2 ϕ(−∆)

s
2

(
d0ϕ+ d̄0 (x ·∇ϕ)+

N∑
i=1

di
∂ϕ

∂xi

)
dx

= d0

ˆ
RN

|(−∆)
s
2 ϕ|2dx+ d̄0

ˆ
RN

(−∆)
s
2 ϕ(−∆)

s
2 (x ·∇ϕ)dx.

(123)

Taking advantage of lemma 6, we deduce from (6) that

ˆ
RN

(−∆)
s
2 ϕ(−∆)

s
2 (x ·∇ϕ)dx

= 2s
ˆ
RN

|(−∆)
s
2 ϕ|2dx+ N− 4s

2N

ˆ
RN

ϕ(x ·∇ϕ)dx+
8s+N
2N

ˆ
RN

ϕ
8s+N
N (x ·∇ϕ)dx

= 2s
ˆ
RN

|(−∆)
s
2 ϕ|2dx+ N− 4s

4N

ˆ
RN

x ·∇ϕ2dx+
8s+N

16s+ 4N

ˆ
RN

x ·∇ϕ
8s+2N
N dx

= 2s
ˆ
RN

|(−∆)
s
2 ϕ|2dx− N− 4s

4

ˆ
RN

ϕ2dx+
(8s+N)(−N)

16s+ 4N

ˆ
RN

ϕ
8s+2N
N dx

= 2s

(
2β∗

b

) N
4s

+
4s−N

4

(
2β∗

b

) N
4s

− (8s+N)(4s+N)
16s+ 4N

(
2β∗

b

) N
4s

=

(
s− N

2

)(
2β∗

b

) N
4s

.

(124)

Also, we get from (6) and (122) that

ˆ
RN

ϕ
8s+N
N η̄0dx=

ˆ
RN

ϕ
8s+N
N

(
d0ϕ+ d̄0 (x ·∇ϕ)+

N∑
i=1

di
∂ϕ

∂xi

)
dx

=
N+ 4s
N

d0

(
2β∗

b

) N
4s

− N2d̄0
8s+ 2N

ˆ
RN

ϕ
8s+2N
N dx

=
N+ 4s
N

d0

(
2β∗

b

) N
4s

− Nd̄0
2

(
2β∗

b

) N
4s

.

(125)
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Hence, we derive from lemma 6, (118), (123), (124) and (125) that

Γ(η̄0) =− 2

(
b

2β∗

) N
4s

[
d0

(
2β∗

b

) N
4s

+

(
s− N

2

)
d̄0

(
2β∗

b

) N
4s

]
(−∆)

s
ϕ

+ 2

(
2β∗

b

)− N
4s

[
d0

(
2β∗

b

) N
4s

+

(
s− N

2

)
d̄0

(
2β∗

b

) N
4s

]
ϕ

− 8sβ∗

Nb

(
2β∗

b

)−1− N
4s

[
N+ 4s
N

(
2β∗

b

) N
4s

d0 −
N
2

(
2β∗

b

) N
4s

d̄0

]
ϕ

=Γ

(
d0ϕ+ d̄0 (x ·∇ϕ)+

N∑
i=1

di
∂ϕ

∂xi

)
=d0Γ(ϕ)+ d̄0Γ(x ·∇ϕ)

=
4s(N− 4s)

N2
d0ϕ− 8s

N
d0 (−∆)

s
ϕ+ 2sd̄0 (−∆)

s
ϕ,

which implies that

d̄0 =
2
N
d0,

this completes the proof of lemma 8.

From [24], we give a technical result as follows.

Lemma 9. Let ρ > θ > 0 be two constants. Suppose (y− x)2 + t2 ⩾ ρ2, t> 0 andα > N. Then,
when β > N, it holds that

ˆ
RN\Bθ(y−x)

1
(t+ |z|)α |y− z− x|β

⩽ C

[
1

(1+ |y− x|)β
1

tα−N
+

1

(1+ |y− x|)β
1

θβ−N

]
,

where C> 0 is a constant independent of θ. Moreover, for some ε→ 0, we have

ˆ
RN

1

(t+ |z|)α
(
1+ |y−z−x|

ϵ

)β ⩽ CεN
[

1

(1+ |y− x|)β
1

tα−N
+

1
(1+ |y− x|)α

]
.

From above results, we now have the following result about the parameter di, i = 1,2, · · ·,N.

Lemma 10. Assume that di are defined in (111), where i = 1,2, · · ·,N, it holds

d1 = d2 = · · ·= dN = 0.

Proof. We first write the extension of ûik, it has
div
(
t1−2s∇˜̂uik)= 0 in RN+1

+ ,

−
[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s
ε̄
(τ−1)(N−4s)
k

´
RN |(−∆)

s
2 ûik|2dx

]
lim
t→0

∂t˜̂uik (x, t)
= −ε̄4sk |ε̄τk x|2ûik+µikε̄

4s
k ûik+

b
2 û

8s
N +1
ik in RN,

(126)
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where i = 1,2. For writing convenience, we give the following definitions

Bδ

(
ε̄−τ
k z̄1k

)
:=
{
x ∈ RN : |x− ε̄−τ

k z̄1k|⩽ δ
}
⊆ RN,

B+
δ

(
ε̄−τ
k z̄1k

)
:=
{
X= (x, t) : |X−

(
ε̄−τ
k z̄1k,0

)
|⩽ δ, t> 0

}
⊆ RN+1

+ ,

∂ ′B+
δ

(
ε̄−τ
k z̄1k

)
:=
{
X= (x, t) : |X−

(
ε̄−τ
k z̄1k,0

)
|⩽ δ, t= 0

}
⊆ RN,

∂ ′ ′B+
δ

(
ε̄−τ
k z̄1k

)
:=
{
X= (x, t) : |X−

(
ε̄−τ
k z̄1k,0

)
|= δ, t> 0

}
⊆ RN+1

+ ,

∂B+
δ

(
ε̄−τ
k z̄1k

)
:= ∂ ′B+

δ

(
ε̄−τ
k z̄1k

)
∪ ∂ ′ ′B+

δ

(
ε̄−τ
k z̄1k

)
,

where δ > 0 small is given by (100) and τ < 0 is given by (96). Multiplying (126) by ∂ ˜̂uik
∂xj

,

where i = 1,2 and j = 1,2, · · · ,N, and integrating over Bδ(ε̄
−τ
k z̄1k), we see that

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 ûik|2dx

]

×

[
−
ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s ∂
˜̂uik
∂ν

∂˜̂uik
∂xj

+
1
2

ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s|∇˜̂uik|2νj]

+ ε̄4sk

ˆ
Bδ(ε̄−τ

k z̄1k)
|ε̄τk x|2ûik

∂ûik
∂xj

dx

=
µikε̄

4s
k

2

ˆ
∂Bδ(ε̄−τ

k z̄1k)
û2ikνjdS+

Nb
2(8s+ 2N)

ˆ
∂Bδ(ε̄−τ

k z̄1k)
û

8s+2N
N

ik νjdS.

(127)

Noticing that

ˆ
Bδ(ε̄−τ

k z̄1k)
|ε̄τk x|2ûik

∂ûik
∂xj

dx=
1
2

ˆ
∂Bδ(ε̄−τ

k z̄1k)
|ε̄τk x|2û2ikνjdS−

1
2

ˆ
Bδ(ε̄−τ

k z̄1k)

∂|ε̄τk x|2

∂xj
û2ikdx,

(128)

from which and (127), we deduce that

1
2
ε̄4sk

ˆ
Bδ(ε̄−τ

k z̄1k)

∂|ε̄τk x|2

∂xj
û2ikdx

=

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 ûik|2dx

]

×

[
−
ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s ∂
˜̂uik
∂ν

∂˜̂uik
∂xj

+
1
2

ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s|∇˜̂uik|2νj]

+
ε̄4sk
2

ˆ
∂Bδ(ε̄−τ

k z̄1k)
|ε̄τk x|2û2ikνjdS−

µikε̄
4s
k

2

ˆ
∂Bδ(ε̄−τ

k z̄1k)
û2ikνjdS

− Nb
2(8s+ 2N)

ˆ
∂Bδ(ε̄−τ

k z̄1k)
û

8s+2N
N

ik νjdS.

(129)
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Applying (76), (94) and lemma 5, we can obtain that

|ûik (x) |+ |∇ûik (x) |= |ūik
(
ε̄τ−1
k x− ε̄−1

k z̄1k
)
|+ ε̄τ−1

k |∇ūik
(
ε̄τ−1x− ε̄−1

k z̄1k
)
|

⩽ C

1+ |ε̄τ−1
k x− ε̄−1

k z̄1k|N+2s
+

Cε̄τ−1
k

1+ |ε̄τ−1
k x− ε̄−1

k z̄1k|N+2s

⩽ Cε̄τ−1
k(

1+ | x−ε̄−τ
k z̄1k

ε̄1−τ
k

|2
) N+2s

2

as k→∞ and i = 1,2.

(130)

Following (12), (13), (130) and lemma 9, we derive that for |x− ε̄−τ
k z̄1k|+ t2 = δ2 and t> 0,

it has

|˜̂uik (x, t) |⩽ Cε̄τ−1
k

ˆ
RN

t2s

(|x− ξ|+ t)N+2s

1(
1+ | ξ−ε̄−τ

k z̄1k
ε̄1−τ
k

|
)N+2s dξ

⩽ Cε̄(1−τ)(N−1)
k(

1+ |x− ε̄−τ
k z̄1k|

)N+2s as k→∞ and i = 1,2.

(131)

Moreover, from (12), (13), (130), lemmas 5 and 9, we also obtain for |x− ε̄−τ
k z̄1k|+ t2 = δ2

and t> 0

∣∣∣∣ ∂∂xj ˜̂uik (x, t)
∣∣∣∣=
∣∣∣∣∣
ˆ
RN

1

(1+ |z|2)
N+2s

2

∂

∂xj
ûik (x− tz)dz

∣∣∣∣∣
⩽ Cε̄τ−1

k

ˆ
RN

1

(1+ |z|2)
N+2s

2

1(
1+ | x−tz−ε̄−τ

k z̄1k
ε̄1−τ
k

|2
) N+2s

2

dz

⩽ Cε̄τ−1
k

ˆ
RN

t2s

(t+ |x− ξ|)N+2s

1(
1+ | ξ−ε̄−τ

k z̄1k
ε̄1−τ
k

|
)N+2s dξ

⩽ Cε̄(1−τ)(N−1)
k(

1+ |x− ε̄−τ
k z̄1k|

)N+2s as k→∞, i = 1,2 and j = 1,2, · · ·,N.

(132)

Under the same assumptions, we can also get

∣∣∣∣ ∂∂ν ˜̂uik (x, t)
∣∣∣∣⩽ Cε̄(1−τ)(N−1)

k(
1+ |x− ε̄−τ

k z̄1k|
)N+2s as k→∞ and i = 1,2. (133)
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Clearly we have

|ξ̂k (x) |+ |∇ξ̂k (x) |=

∣∣∣∣∣∣∣
û1k (x)− û2k (x)(

2β∗

b

) N
8s
ε̄
N
2
k ∥u1k (ε̄τk x)− u2k (ε̄τk x)∥∞

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∇û1k (x)−∇û2k (x)(

2β∗

b

) N
8s
ε̄
N
2
k ∥u1k (ε̄τk x)− u2k (ε̄τk x)∥∞

∣∣∣∣∣∣∣
⩽ Cε̄

τ−1− N
2

k(
1+ | x−ε̄−τ

k z̄1k
ε̄1−τ
k

|2
) N+2s

2

as k→∞.

We then deduce from (131)–(133) that for |x− ε̄−τ
k z̄1k|+ t2 = δ2 and t> 0

| ˜̂ηk (x, t) |, ∣∣∣∣ ∂

∂xj
˜̂ηk (x, t)∣∣∣∣ , ∣∣∣∣ ∂

∂ν
˜̂ηk (x, t)∣∣∣∣⩽ Cε̄

(N−1)(1−τ)− N
2

k(
1+ |x− ε̄−τ

k z̄1k|
)N+2s as k→∞ and j = 1,2, · · ·,N.

(134)

Following (129), we have

ε̄4sk
2

ˆ
Bδ(ε̄−τ

k z̄1k)

∂|ε̄τk x|2

∂xj
(û1k+ û2k) η̂kdx := B1 +B2 +B3 +B4 +B5 +B6, (135)

where

B1 :=
ε̄4sk
2

ˆ
∂Bδ(ε̄−τ

k z̄1k)
|ε̄τk x|2 (û1k+ û2k) η̂kνjdS,

B2 := −
µ1kε̄

4s
k

2

ˆ
∂Bδ(ε̄−τ

k z̄1k)
(û1k+ û2k) η̂kνjdS−

ε̄4sk (µ1k−µ2k)

2∥û1k− û2k∥∞

ˆ
∂Bδ(ε̄−τ

k z̄1k)
û22kνjdS,

B3 := − b
4

ˆ
∂Bδ(ε̄−τ

k z̄1k)

(
û

4s+N
N

1k + û
4s+N
N

2k

)
[Aû1k+(1−A) û2k]

4s
N η̂kνjdS,

B4 := −

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 û1k|2dx

]

×
ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s

(
∂ ˜̂ηk
∂xj

∂ ˜̂u1k
∂ν

+
∂ ˜̂ηk
∂ν

∂ ˜̂u2k
∂xj

)
,

B5 :=
1
2

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 û1k|2dx

]

×
ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s∇
(˜̂u1k+ ˜̂u2k)∇ ˜̂ηkνj,

35



Nonlinearity 38 (2025) 045008 L Liu et al

B6 := b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

(−∆)
s
2 (û1k+ û2k)(−∆)

s
2 η̂kdx

×

[
1
2

ˆ
∂ ′ ′B+

δ (ε̄−τ
k z̄1k)

t1−2s|∇˜̂u2k|2νj− ˆ
∂ ′ ′B+

δ (ε̄−τ
k z̄1k)

t1−2s ∂
˜̂u2k
∂ν

∂ ˜̂u2k
∂xj

]
.

Let us estimate each of term the above one by one. By the fact z̄1k → 0 as k→∞, it follows
from lemma 5 and (100) that

|B1|⩽ Cε̄4sk

(ˆ
∂Bδ(ε̄−τ

k z̄1k)
|ε̄τk x|2η̂kdS

) 1
2
(ˆ

∂Bδ(ε̄−τ
k z̄1k)

|ε̄τk x|2|û1k+ û2k|2dS

) 1
2

⩽ Cε̄
4s+ (1−τ)N−4s

2
k

(ˆ
∂Bδ(0)

|ε̄τk x+ z̄1k|2|û1k
(
x+ ε̄−τ

k z̄1k
)
+ û2k

(
x+ ε̄−τ

k z̄1k
)
|2dS

) 1
2

⩽ Cε̄
4s+ (1−τ)N−4s

2
k

(ˆ
∂Bδ(0)

|ε̄τk x+ z̄1k|2|ū1k
(
ε̄τ−1
k x

)
+ ū2k

(
ε̄τ−1
k x

)
|2dS

) 1
2

⩽ Cε̄
4s+ (1−τ)N−4s

2 +τ+(1−τ)(N+2s)
k as k→∞.

(136)

Using the fact µikε̄
−4s
k → (N−4s)b

2N as k→∞, we deduce from lemma 5 and (100) that

|B2|⩽ C

(ˆ
∂Bδ(ε̄−τ

k z̄1k)
|û1k+ û2k|2dS

) 1
2
(ˆ

∂Bδ(ε̄−τ
k z̄1k)

η̂2
kdS

) 1
2

+C
ˆ
∂Bδ(ε̄−τ

k z̄1k)
|û2k|2dS

⩽ C

(ˆ
∂Bδ(0)

|û1k
(
x+ ε̄−τ

k z̄1k
)
+ û2k

(
x+ ε̄−τ

k z̄1k
)
|2dS

) 1
2
(ˆ

∂Bδ(ε̄−τ
k z̄1k)

η̂2
kdS

) 1
2

+C
ˆ
∂Bδ(0)

|û2k
(
x+ ε̄−τ

k z̄1k
)
|2dS

⩽ Cε̄
(1−τ)N

2
k

(ˆ
∂Bδ(0)

|ū1k
(
ε̄τ−1
k x

)
+ ū2k

(
ε̄τ−1
k x

)
|2dS

) 1
2

+C
ˆ
∂Bδ(0)

|ū2k
(
ε̄τ−1
k x

)
|2dS

⩽ Cε̄
(1−τ)N

2 +(1−τ)(N+2s)
k as k→∞. (137)

Similarly, we also have

|B3|⩽ C
ˆ
∂Bδ(0)

∣∣∣ū 4s+N
N

1k

(
ε̄τ−1
k x

)
+ ū

4s+N
N

2k

(
ε̄τ−1
k x

)∣∣∣ |Aū1k (ε̄τ−1
k x

)
+(1−A) ū2k

(
ε̄τ−1
k x

)
| 4sN dS

⩽ Cε̄
(1−τ)(N+2s) 8s+N

N
k as k→∞. (138)
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Noticing that ∥ūik∥Hs(RN) ⩽ C as k→∞ for i = 1,2, it then follows from (132)–(134) that

|B4|⩽ Cε̄(1−τ)2s
k

ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s

(
∂ ˜̂ηk
∂xj

∂ ˜̂u1k
∂ν

+
∂ ˜̂ηk
∂ν

∂ ˜̂u2k
∂xj

)

⩽ Cε̄
(1−τ)(2s+2N−2)− N

2
k

ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s

(
1(

1+ |x− ε̄−τ
k z̄1k|

)N+2s

)2

⩽ Cε̄
(1−τ)(2s+2N−2)− N

2
k as k→∞.

(139)

Similarly

|B5|⩽ Cε̄
(1−τ)(2s+2N−2)− N

2
k as k→∞. (140)

Applying the Hölder inequality, we derive from (132)–(134) that

|B6|⩽ Cε̄(1−τ)(2s+2N−2)
k

(ˆ
RN

|(−∆)
s
2 (ū1k+ ū2k) |2dx

) 1
2
(ˆ

RN
|(−∆)

s
2 η̄k|2dx

) 1
2

×
ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s

(
1(

1+ |x− ε̄−τ
k z̄1k|

)N+2s

)2

⩽ C∥ū1k+ ū2k∥Hs(RN)∥η̄k∥Hs(RN)ε̄
(1−τ)(2s+2N−2)
k ⩽ Cε̄(1−τ)(2s+2N−2)

k as k→∞. (141)

For simplicity, we define
q1 := (1− τ)

(
3N
2 + 2s

)
+ τ + 2s,

q2 := (1− τ)
(
3N
2 + 2s

)
,

q3 := (1− τ)(N+ 2s) 8s+N
N ,

q4 := (1− τ)(2s+ 2N− 2)− N
2 ,

q5 := (1− τ)(2s+ 2N− 2) .

By (96), we can see that q1,q2,q3,q4,q5 > 0, 0< q1 < q2 < q3, 0< q4 < q5 and 0< q4 < q1.
Then by the fact that z̄1kε̄k → 0 and η̄k → η̄0 in C1(RN) as k→∞, we can get from lemma 5, (7)
and (135)–(141) that

O
(
ε̄
(1−τ)(2s+2N−2)− N

2
k

)
=

ε̄4sk
2

ˆ
Bδ(ε̄−τ

k z̄1k)

∂|ε̄τk x|2

∂xj
(û1k+ û2k) η̂kdx

=
ε̄4sk
2

ˆ
Bδ(ε̄−τ

k z̄1k)

∂|ε̄τk x|2

∂xj

[
ū1k

(
ε̄τ−1
k x− ε̄−1

k z̄1k
)
+ ū2k

(
ε̄τ−1
k x− ε̄−1

k z̄1k
)]

η̄k

(
ε̄τ−1
k x− ε̄−1

k z̄1k
)
dx

=
ε̄
4s+(1−τ)N+τ−1
k

2

ˆ
B
ε̄
τ−1
k δ

(0)

∂|ε̄kx+ z̄1k|2

∂xj
(ū1k+ ū2k) η̄kdx

= ε̄
4s+(1−τ)N+τ+1
k

ˆ
B
ε̄
τ−1
k δ

(0)

∣∣∣∣∣xj+ z̄j1k
ε̄k

∣∣∣∣∣(ū1k+ ū2k) η̄kdx

= O
(
ε̄
4s+(1−τ)N+τ+1
k

)
(1+ o(1))

ˆ
RN

2xjφη̄0dx, (142)
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where j = 1,2, · · ·,N and z̄j1k = (z̄11k, z̄
2
1k, · · ·, z̄N1k) ∈ RN. Applying (96) and the fact that N4 < s<

1, we can get that (1− τ)(2s+ 2N− 2)− N
2 > (1− τ)N+ 4s+ 2> 4s+(1− τ)N+ τ + 1>

0. We thus obtain from (142), lemmas 7 and 8 that

0= 2
ˆ
RN

xjϕ

[
d0ϕ+ d̄0 (x ·∇ϕ)+

N∑
i=1

di
∂ϕ

∂xi

]
dx=−dj

ˆ
RN

ϕ2dx j = 1,2, · · · ,N,

which shows that dj = 0 for j = 1,2, · · ·,N.

Lemma 11. Assume that d0 and d̄0 are defined in (111), it holds d0 = d̄0 = 0.

Proof. Multiplying (126) by [X− (ε̄−τ
k z̄1k,0)] ·∇˜̂uik, where i = 1,2, and integrating over

Bδ(ε̄
−τ
k z̄1k), other assumptions are same as before, then we have

−

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 ûik|2dx

]

×
ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s ∂
˜̂uik
∂ν

[
X−

(
ε̄−τ
k z̄1k,0

)]
·∇˜̂uik

+
1
2

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 ûik|2dx

]

×
ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s|∇˜̂uik|2 [X− (ε̄−τ
k z̄1k,0

)]
· ν

+
2s−N

2

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 ûik|2dx

]

×
ˆ
∂B+

δ (ε̄
−τ
k z̄1k)

t1−2s ∂
˜̂uik
∂ν
˜̂uik

=

ˆ
Bδ(ε̄−τ

k z̄1k)

[
−ε̄4sk |ε̄τk x|2ûik+µikε̄

4s
k ûik+

b
2
û

8s
N +1
ik

](
x− ε̄−τ

k z̄1k
)
·∇ûikdx. (143)

By direct calculations, we have

2s−N
2

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 ûik|2dx

]

×
ˆ
∂B+

δ (ε̄
−τ
k z̄1k)

t1−2s ∂
˜̂uik
∂ν
˜̂uik

=
2s−N

2

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 ûik|2dx

]

×
ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s ∂
˜̂uik
∂ν
˜̂uik

+
2s−N

2

ˆ
Bδ(ε̄−τ

k z̄1k)

[
−ε̄4sk |ε̄τk x|2ûik+µikε̄

4s
k ûik+

b
2
û

8s
N +1
ik

]
ûikdx.

(144)
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Integrating by parts, we see that

ˆ
Bδ(ε̄−τ

k z̄1k)

[
−ε̄4sk |ε̄τk x|2ûik+µikε̄

4s
k ûik+

b
2
û

8s
N +1
ik

](
x− ε̄−τ

k z̄1k
)
·∇ûikdx

=−
ε̄4sk
2

ˆ
Bδ(ε̄−τ

k z̄1k)
|ε̄τk x|2

(
x− ε̄−τ

k z̄1k
)
·∇û2ikdx

+
µikε̄

4s
k

2

ˆ
Bδ(ε̄−τ

k z̄1k)

(
x− ε̄−τ

k z̄1k
)
·∇û2ikdx

+
bN

2(8s+ 2N)

ˆ
Bδ(ε̄−τ

k z̄1k)

(
x− ε̄−τ

k z̄1k
)
·∇û

8s+2N
N

ik dx, (145)

ˆ
Bδ(ε̄−τ

k z̄1k)
|ε̄τk x|2

(
x− ε̄−τ

k z̄1k
)
·∇û2ikdx

=

ˆ
∂Bδ(ε̄−τ

k z̄1k)
|ε̄τk x|2

(
x− ε̄−τ

k z̄1k
)
· νû2ikdS

−
ˆ
Bδ(ε̄−τ

k z̄1k)

[
∇|ε̄τk x|2 ·

(
x− ε̄−τ

k z̄1k
)
+N|ε̄τk x|2

]
û2ikdx, (146)

ˆ
Bδ(ε̄−τ

k z̄1k)

(
x− ε̄−τ

k z̄1k
)
·∇û2ikdx

=

ˆ
∂Bδ(ε̄−τ

k z̄1k)

(
x− ε̄−τ

k z̄1k
)
· νû2ikdS−N

ˆ
Bδ(ε̄−τ

k z̄1k)
û2ikdx, (147)

ˆ
Bδ(ε̄−τ

k z̄1k)

(
x− ε̄−τ

k z̄1k
)
·∇û

8s+2N
N

ik dx

=

ˆ
∂Bδ(ε̄−τ

k z̄1k)

(
x− ε̄−τ

k z̄1k
)
· νû

8s+2N
N

ik dS−N
ˆ
Bδ(ε̄−τ

k z̄1k)
û

8s+2N
N

ik dx. (148)

Following (143)–(148), we derive that

−

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 ûik|2dx

]

×
ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s ∂
˜̂uik
∂ν

[
X−

(
ε̄−τ
k z̄1k,0

)]
·∇˜̂uik

+
1
2

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 ûik|2dx

]

×
ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s|∇˜̂uik|2 [X− (ε̄−τ
k z̄1k,0

)]
· ν

+
2s−N

2

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 ûik|2dx

]

×
ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s ∂
˜̂uik
∂ν
˜̂uik
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=−
ε̄4sk
2

ˆ
∂Bδ(ε̄−τ

k z̄1k)
|ε̄τk x|2

(
x− ε̄−τ

k z̄1k
)
· νû2ikdS

+
ε̄4sk
2

ˆ
Bδ(ε̄−τ

k z̄1k)
∇|ε̄τk x|2 ·

(
x− ε̄−τ

k z̄1k
)
û2ikdx−

b(8s2 − 2sN)
16s+ 4N

ˆ
Bδ(ε̄

−τ
k z̄1k)

û
8s+2N
N

ik dx

+ sε̄4sk

ˆ
Bδ(ε̄

−τ
k z̄1k)

|ε̄τk x|2û2ikdx+
µikε̄

4s
k

2

ˆ
∂Bδ(ε̄

−τ
k z̄1k)

(x− ε̄−τ
k z̄1k) · νû2ikdS

− sµikε̄
4s
k

ˆ
Bδ(ε̄

−τ
k z̄1k)

û2ikdx+
bN

2(8s+ 2N)

ˆ
∂Bδ(ε̄

−τ
k z̄1k)

(x− ε̄−τ
k z̄1k) · νû

8s+2N
N

ik dS. (149)

Moreover, we deduce from (114) that

µikε̄
4s
k

ˆ
RN
û2ikdx=

(
2β∗

b

) N
4s

ε̄
(1−τ)N+4s
k e

(
ak,β

∗)
+
b
2

(
2β∗

b

)− N
4s

ε̄
(τ−1)(N−4s)
k

(ˆ
RN

|(−∆)
s
2 ûik|2dx

)2

− 2sb
N+ 4s

ˆ
RN
û

8s+2N
N

ik dx,

(150)

from which and (149), we conclude that

−

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 ûik|2dx

]

×
ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s ∂
˜̂uik
∂ν

[X−
(
ε̄−τ
k z̄1k,0

)
] ·∇˜̂uik

+
1
2

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 ûik|2dx

]]

×
ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s|∇˜̂uik|2[X− (ε̄−τ
k z̄1k,0

)
] · ν

+
2s−N

2

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

|(−∆)
s
2 ûik|2dx

]

×
ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s ∂
˜̂uik
∂ν
˜̂uik+ ε̄4sk

2

ˆ
∂Bδ(ε̄−τ

k z̄1k)
|ε̄τk x|2

(
x− ε̄−τ

k z̄1k
)
· νû2ikdS

−
ε̄4sk
2

ˆ
Bδ(ε̄−τ

k z̄1k)
∇|ε̄τk x|2 ·

(
x− ε̄−τ

k z̄1k
)
û2ikdx− sε̄4sk

ˆ
Bδ(ε̄

−τ
k z̄1k)

|ε̄τk x|2û2ikdx

=
µikε̄

4s
k

2

ˆ
∂Bδ(ε̄

−τ
k z̄1k)

(x− ε̄−τ
k z̄1k) · νû2ikdS+ sµikε̄

4s
k

ˆ
RN\Bδ(ε̄

−τ
k z̄1k)

û2ikdx

+
bN

2(8s+ 2N)

ˆ
∂Bδ(ε̄

−τ
k z̄1k)

(x− ε̄−τ
k z̄1k) · νû

8s+2N
N

ik dS

+
b(8s2 − 2sN)
16s+ 4N

ˆ
RN\Bδ(ε̄

−τ
k z̄1k)

û
8s+2N
N

ik dx− s

(
2β∗

b

) N
4s

ε̄
(τ−1)(N−4s)
k e(ak,β

∗)

− sb
2

(
2β∗

b

)− N
4s

ε̄
(τ−1)(N−4s)
k

(ˆ
RN

|(−∆)
s
2 ûik|2dx

)2

+
Nsb

8s+ 2N

ˆ
RN

û
8s+2N
N

ik dx.
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This shows there exists A ∈ (0,1) such that

sb
2

(
2β∗

b

)− N
4s

ε̄
(τ−1)(N−4s)
k

ˆ
RN

(
|(−∆)

s
2 û1k|2 + |(−∆)

s
2 û2k|2

)
dx

×
ˆ
RN

|(−∆)
s
2 (û1k+ û2k)(−∆)

s
2 η̂kdx

− sb
2

ˆ
RN

(
û

4s+N
N

1k + û
4s+N
N

2k

)
[Aû1k+(1−A) û2k]

4s
N η̂kdx

:= D1 +D2 +D3 +D4,

(151)

where

D1 :=

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s
ε̄
(τ−1)(N−4s)
k

´
RN |(−∆)

s
2 û2k|2dx

]
F2

∥û1k− û2k∥∞

−

[
akε̄

2s(2−τ)
k + b

(
b

2β∗

) N
4s
ε̄
(τ−1)(N−4s)
k

´
RN |(−∆)

s
2 û1k|2dx

]
F1

∥û1k− û2k∥∞

− ε̄4sk
2

ˆ
∂Bδ(ε̄−τ

k z̄1k)
|ε̄τk x|2

(
x− ε̄−τ

k z̄1k
)
· ν (û2k+ û1k) η̂kdS

+
b
(
8s2 − 2sN

)
4N

ˆ
RN\Bδ(ε̄−τ

k z̄1k)

(
û

4s+N
N

1k + û
4s+N
N

2k

)
[Aû1k+(1−A) û2k]

4s
N η̂kdx

+
µ1kε̄

4s
k

2

ˆ
∂Bδ(ε̄−τ

k z̄1k)

(
x− ε̄−τ

k z̄1k
)
· ν (û2k+ û1k) η̂kdS

+
ε̄4sk (µ1k−µ2k)

2∥û1k− û2k∥∞

ˆ
∂Bδ(ε̄−τ

k z̄1k)

(
x− ε̄−τ

k z̄1k
)
· νû22kdS

+ sµ1kε̄
4s
k

ˆ
RN\Bδ(ε̄−τ

k z̄1k)
(û2k+ û1k)η̂kdx+

sε̄4sk (µ1k−µ2k)

∥û1k− û2k∥∞

ˆ
RN\Bδ(ε̄

−τ
k z̄1k)

û22kdx

+
b
4

ˆ
∂Bδ(ε̄

−τ
k z̄1k)

(x− ε̄−τ
k z̄1k) · ν

(
û

4s+N
N

1k + û
4s+N
N

2k

)
[Aû1k+(1−A)û2k]

4s
N η̂kdS,

Fi :=−
ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s ∂˜̂uik
∂ν

[
X−

(
ε̄−τ
k z̄1k,0

)]
·∇˜̂uik

+
1
2

ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s|∇˜̂uik|2 [X−
(
ε̄−τ
k z̄1k,0

)]
· ν+ 2s−N

2

ˆ
∂ ′ ′B+

δ (ε̄
−τ
k z̄1k)

t1−2s ∂˜̂uik
∂ν

˜̂uik,
D2 :=

ε̄4sk
2

ˆ
Bδ(ε̄−τ

k z̄1k)

[
∇|ε̄τk x|2 · x

]
(û2k+ û1k) η̂kdx,

D3 :=− ε̄4sk
2

ˆ
Bδ(ε̄−τ

k z̄1k)

[
∇|ε̄τk x|2 ·

(
ε̄−τ
k z̄1k

)]
(û2k+ û1k) η̂kdx,

D4 := sε̄4sk

ˆ
Bδ(ε̄−τ

k z̄1k)
|ε̄τk x|2 (û2k+ û1k) η̂kdx.
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The same arguments of |B1| − |B6| give that

D1 = O
(
ε̄
(1−τ)(2s+2N−2)− N

2
k

)
as k→∞. (152)

By the fact ε̄−τ
k z̄1k → 0 as k→∞, we conclude from (142) that

ε̄4sk
2

ˆ
Bδ(ε̄−τ

k z̄1k)

[
∇|ε̄τk x|2 ·

(
ε̄−τ
k z̄1k

)]
(û2k+ û1k) η̂kdx

=
ε̄4sk
2

N∑
i=1

ε̄−τ
k z̄(i)1k

ˆ
Bδ(ε̄−τ

k z̄1k)

∂|ε̄τk x|2

∂xi
(û2k+ û1k) η̂kdx

= O
(
ε̄
(1−τ)(2s+2N−2)− N

2
k

)
as k→∞,

which shows that

D3 = O
(
ε̄
(1−τ)(2s+2N−2)− N

2
k

)
) as k→∞. (153)

By the fact that ∇|ε̄τk x|2 · x= 2|ε̄τk x|2 and z̄1k
ε̄k

→ 0 as k→∞, we deduce from lemmas 5 and 7
that

D2 =ε̄4s+2τ
k

ˆ
Bδ(ε̄−τ

k z̄1k)
|x|2 (û2k+ û1k) η̂kdx

=ε̄4s+2τ
k

ˆ
Bδ(ε̄−τ

k z̄1k)
|x|2

(
ū1k

(
ε̄τ−1
k x− ε̄−1

k z̄1k
)
+ ū2k

(
ε̄τ−1
k x− ε̄−1

k z̄1k
))

η̄k

(
ε̄τ−1
k x− ε̄−1

k z̄1k
)
dx

=ε̄
4s+2+(1−τ)N
k

ˆ
B
ε̄
τ−1
k δ

(0)

∣∣∣∣x+ z̄1k
ε̄k

∣∣∣∣2 (ū1k+ ū2k) η̄kdx

=2(1+ o(1)) ε̄4s+2+(1−τ)N
k

ˆ
RN

|x|2φη̄0dx (154)

and

D4 =sε̄
4s
k

ˆ
Bδ(ε̄−τ

k z̄1k)
|ε̄τk x|2

(
ū1k

(
ε̄τ−1
k x− ε̄−1

k z̄1k
)
+ ū2k

(
ε̄τ−1
k x− ε̄−1

k z̄1k
))

η̄k

(
ε̄τ−1
k x− ε̄−1

k z̄1k
)
dx

=sε̄4s+2+(1−τ)N
k

ˆ
B
ε̄
τ−1
k δ

(0)

∣∣∣∣x+ z̄1k
ε̄k

∣∣∣∣2 (ū1k+ ū2k) η̄kdx

=2s(1+ o(1)) ε̄4s+2+(1−τ)N
k

ˆ
RN

|x|2φη̄0dx. (155)
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Using (6) and lemma 7, we conclude that

bs
2

(
2β∗

b

)− N
4s

ε̄
(N−4s)(τ−1)
k

ˆ
RN

(
|(−∆)

s
2 û1k|2 + |(−∆)

s
2 û2k|2

)
dx
ˆ
RN

(−∆)
s
2 (û1k+ û2k)(−∆)

s
2 η̂kdx

=
bs
2

(
2β∗

b

)− N
4s

ε̄
(N−4s)(τ−1)+2(1−τ)(N−2s)
k

ˆ
RN

(
|(−∆)

s
2 ū1k|2 + |(−∆)

s
2 ū2k|2

)
dx

×
ˆ
RN

(−∆)
s
2 (ū1k+ ū2k)(−∆)

s
2 η̄kdx

= 2bs(1+ o(1)) ε̄(1−τ)N
k

ˆ
RN

(−∆)
s
2 φ(−∆)

s
2 η̄0dx (156)

and

bs
2

ˆ
RN

(
û

4s+N
N

1k + û
4s+N
N

2k

)
[Aû1k+(1−A) û2k]

4s
N η̂kdx

=
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2
ε̄
(1−τ)N
k

ˆ
RN

(
ū

4s+N
N

1k + ū
4s+N
N

2k

)
[Aū1k+(1−A) ū2k]

4s
N η̄kdx

= bs(1+ o(1)) ε̄(1−τ)N
k

ˆ
RN

ϕ
8s+N
N η̄0dx.

(157)

Following (123)–(125) and (151)–(157), we have

2bs(1+ o(1)) ε̄(1−τ)N
k

[(
2β∗

b

) 4s
N

d0 +

(
s− N

2

)(
2β∗

b

) N
4s

d̄0

]

− bs(1+ o(1)) ε̄(1−τ)N
k

[
N+ 4s
N

(
2β∗

b

) N
4s

d0 −
N
2

(
2β∗

b

) N
4s

d̄0

]

= O
(
ε̄
(1−τ)(2s+2N−2)− N

2
k

)
+ 2(1+ s)(1+ o(1)) ε̄(1−τ)N+4s+2

k

ˆ
RN

|x|2ϕη̄0dx.

(158)

By (96), we know that (1− τ)(2s+ 2N− 2)− N
2 > (1− τ)N+ 4s+ 2> 0. We thus derive

from lemma 8 and (158) that

ˆ
RN

|x|2ϕη̄0dx= 0,

from which and lemmas 7 and 10, we obtain that

0=

ˆ
RN

|x|2φ
[
N
2
d̄0φ+ d̄0 (x ·φ)

]
dx=

d̄0
2

ˆ
RN

[
N|x|2φ2 + |x|2

(
x ·∇φ2

)]
dx=−d̄0

ˆ
RN

|x|2φ2dx,

which shows that d̄0 = 0, thus, d0 = 0.

Proof of theorem 3. Let qk be a point satisfying |η̄k(qk)|= ∥η̄k∥∞ = 1, we know that |qk|⩽ C
uniformly in k. Then lemma 7 implies that η̄0 ̸≡ 0 on RN. From lemma 7, lemmas 10 and 11,
we know that η̄0 ≡ 0. Thus, our assumption that u1k ̸≡ u2k is false. This completes the proof of
theorem 3.
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