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We consider the drifting p-Laplace operator
Appu = e Vdiv (e’ |VulP~2Vu)

and discuss generalized weighted Hardy-type inequalities associated with the measure
dp = e¥(®)dz. As an application, we obtain several Liouville-type results for positive
solutions of the non-linear elliptic problem with singular lower order term

Vul?
—Appu > c(x)uP ™t 4 Bﬂ in ©Q,
u

where Q is a bounded or an unbounded exterior domain in RN, N > p > 1,
B+ p—1>0, as well as of the non-autonomous quasilinear elliptic problem

—Ap ptu+ b(@) | VuP~1 > c(z)uP™1 in Q,

with general weights b > 0 and ¢ > 0. Liouville-type results are also discussed for a
class of higher order differential equations.
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1. Introduction

For a smooth function v : Q — R on a domain © in RY, we consider the drifting
p-Laplace operator

A, ou=e vdiv (e’|VulP~2Vu), 1<p< oo,

and the related measure
du(z) = e*@ da.,
Note that we have
A, yu = Apu+ |VulP2Vu - Vo,

where A,u = div (|Vu[P72Vu) is the standard p-Laplace operator. In particular,
if v is a constant, then A, ,u coincides with Apu. There has been interest in the
study of the drifting p-Laplace equation, mostly the case p =2 on a metric measure
space (M, (-,-),e” dw), where (M, (-,-)) is an N-dimensional Riemannian manifold
with the metric (-,-), v is a smooth real-valued function defined on M and dw is
the Riemannian volume element related to (-, -). Several interesting related results
including Liouville theorems, estimates on the lowest eigenvalue, gradient estimates,
and Harnack inequalities to the solutions of the problem —As ,u = Au can be found,
for instance, in [28, 40-42] and the references therein.

The aim of this work is to study Hardy-type inequalities related to the drifting p-
Laplace operator. As an application, we discuss Liouville-type theorems for positive
classical solutions of several quasilinear elliptic problems. One of the novelties is
that we do not make any assumptions on the asymptotic behaviour of solutions
at infinity, nor on whether they are bounded or radial. For instance, we consider
positive solutions u € C%(Q,R,) to

P
Ay @yt + Y g, (P)
u
where €2 is a bounded domain or an unbounded exterior domain in RN, B4+p—1 > 0
and 1 <p < N.
The motivation for the problem (P) comes from the singular quasilinear elliptic
equation

P
—Apu = P!+ B|Vu|

+f in Q, (1.1)
where € is a domain in RY, B € R, f > 0 is an arbitrary locally integrable function
or a measure. Equations of the type (1.1), in the case p =2, have been studied in
[1, 7, 8, 17, 21], mostly in bounded domains Q@ C RV, with f € L"(Q) for some
r>1.
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Hardy-type inequalities for the drifting p-Laplace operator and applications 3

Arcoya et al. considered (1.1) in [7] on a bounded domain © with zero Dirichlet
data, when A=0, p=2,0 < B < 1, f > 0, and proved the existence of positive
solutions in suitable Sobolev spaces (depending on f and B). In the general case
p > 1, Cao-Verbitsky [21] characterized the existence of positive solutions u of (1.1)
in Q = RY with liminf, ,, u(z) =0, A=0 and B = % < 0 for some 0 < ¢ <
p — 1. In [9], Arcoya and Moreno-Mérida considered (1.1) with A # 0 and p=2
and proved the existence (resp., non-existence) of positive solutions provided that

A< 11—13 (resp., A > 11—13), where A1 denotes the lowest eigenvalue of the Laplace
operator.

Notice that every solution of (1.1) is a solution of the problem (P) with ¢(x) = A.
In this case, our results for (P) imply the non-existence of positive solutions for a
wider range of 1 —p < B < o0, if

p—1 \?!
_p=1 i
/\><p—1—|—B> Q. p),

where

Jo IVoIP du
fQ ‘¢|p dp

is the lowest eigenvalue of the weighted p-Laplace operator. Here VVO1 P(Q; ) is the
completion of C2°(£2) under the weighted Sobolev norm

1
1811 = ( /2 617 dya + /Q |V¢>|pdu) :

We also consider the problem (P) in unbounded exterior domains €2 with a general
potential ¢ > 0 and v satisfying

A (@up) = int { 0 W@, 070 (12)

vy = limsup |z||Vv(z)| < oo and vy =limsupzx - Vo(z). (1.3)

We prove the non-existence of positive solutions of (P), if

—1 9 p
. p—1 \” , v 28 )2 N—p
liminf |z[Pc(z) > | ———— + =+ —v , = . 1.4
m inf |2[?c(z) (p_HB) (5 A+ Tw) . p=—L 4

We also show that the condition (1.4) is essentially sharp under appropriate
conditions (see remark 3.3).

As an another application of the Hardy-type inequalities, we examine positive
solutions u € C%(f) to the non-autonomous quasilinear elliptic problem

—Apu+b(@)|VulP~t > e(z)uP~t in Q, Q)

with general continuous weights b > 0 and ¢ >0 (not necessarily bounded), where
Q) is a bounded domain or an exterior domain in R, 1 < p < N. Problems similar
to (Q), mostly in the case p =2 and v =0, have been studied in [2; 5, 6, 12, 13, 15,
16, 38].
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4 A. Aghajani, J. Kinnunen and V. D. Radulescu

Berestycki, Hamel, and Nadirashvili [12] proved that « = 0 is the unique non-
negative solution of

—~Au—b-Vu—cu=0 inRY, (1.5)

where b € RV ¢ € R with 4¢ — |b|?> > 0. As a special case of the Liouville-type
results for the problem (Q), we show that indeed the condition pc — |b|P > 0
(which becomes 4c — b2 > 0 when p = 2) is also sufficient to rule out the existence
of positive supersolutions to the more general equation

~Apu — |VulP2(b+ Vv) - Vu—cu?P"' =0 in Q,

where 2 = RY or any exterior domain in RN 1 < p < N, and v satisfying (1.3)
(which also includes the case when v is constant).

Berestycki, Hamel, and Rossi [13] extended the results of [12] to elliptic equations
with non-constant coefficients. In particular, they proved that if the vector field b
and the function ¢ are continuous, then the problem

—Au+b(x) - Vu>c(r)u inRY (1.6)

does not admit any positive solution, if the functions b and ¢ are bounded and
satisfy

liminf D(z) >0, D(z)=c(x)—

(1.7)

In [38], Rossi generalized the non-existence results to the framework of fully
non-linear elliptic equations in general unbounded domains, showing that the
assumption (1.7) can be relaxed, in particular the case liminf|,_ . D(z) < 0 is
allowed (but all the above papers require limsup|,_,., D(z) > 0). Note also that
any non-existence result for positive solutions of the problem (Q) can be applied
for positive solutions to

—Aypu+ |VulP~2b(z) - Vu > c(z)uP™ in Q, (R)

where this time b is a smooth vector field, because by Cauchy—Schwarz inequality
we have |[Vu|P~2b(z)-Vu < |b(z)||Vu[P~t. Recently in [3.14], as consequences of the
study of problem (Q), the authors also extended some of the above non-existence
results with some improvements to the general problem

—Apu+ |VulP~2b(z) - Vu > c(z)uP~' in Q, (1.8)

in exterior domains. In particular, the case

limsup Dy(x) =0, Dp(z)=c(z)—

|z|— 00 pP

is included.

We also discuss several Liouville-type theorems, extending the above results
to the general problems (Q) and (R) both in bounded and unbounded exterior
domains. In particular, applying our Liouville-type results to (1.8), we cover the
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Hardy-type inequalities for the drifting p-Laplace operator and applications 5

case lim|y| o Dp(z) = 0. Also, applying our result for the general problem (Q), in
the case when  is bounded and b(xz) = b > 0 and c¢(x) = ¢ > 0 are constant, we
obtain the non-existence of positive solutions for (Q) if

il

o - % > M(Q,p)P.

This result also seems to be new even for the case p =2 and v is a constant function.
The crucial point in our proofs is that if the problem (Q) has a positive solution in
an arbitrary domain  C R”, then the functions b and c satisfy

(U C(x”wd“); <(/, 'W'pd“); (] b(;))qu'pdu); 7

for every ¢ € C°(Q), where du(z) = e?(®)dz. The interesting aspect of this estimate
is that it does not depend on the solution itself.

At the end of this work, we briefly explain how our findings may be applied to
obtain Liouville-type theorems for a class of higher order differential equations. In
particular, we prove a Hardy-type inequality

1
/<(—A)u) ¢2dac§/|v¢|2dac
Q u Q

for every ¢ € C°(Q), where m > 1 is an integer and u is a positive smooth
polysuperharmonic function, that is, (—A)'u >0in Q,i=1,...,m.

2. Hardy-type inequalities

This section discusses several Hardy-type inequalities. The proofs are based on the
following lemma.

LEMMA 2.1. Let V : Q — RY be a smooth vector field and ¢ € C>°(2). Then

/ —(divV+V-Vo+ (p— 1)|V\Pp%1)|¢\pd,u < / |[VIP dp. (2.1)
o Q

Moreover, for any t € [0,1], we have

/ (=divV =V -Vu)¢P du
Q

(2.2)
Proof. Let ¢ € C*(Q2) and ¢ = /|P|? +€2 — . Then ¢. € C*(2) and by the

divergence theorem, we have

[ v viszdu= [ (~div vigzerdn = [ V(o 1Yo+ 6290 dp.
Q Q

Q

P tp p—1
gpp( / [V|p=T |¢|pdu> ( / |V|”“—”|V¢Pdu>.
Q Q
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6 A. Aghajani, J. Kinnunen and V. D. Radulescu
Thus

[ (divv-vToezdu=p [ oV Vodu<p [ VIer Vo du. (23
Q Q Q
Since 0 < ¢ < |¢|, we have

By the fact that |V|¢|| < |[V¢| a.e., we have
S Vel < [0 IVI6l < 61"V,
Thus from (2.3) and Young’s inequality, we obtain

fol—div V- V- Sjdzdu < p Jy VIl Tl du
< (p - 1) fQ |V|ﬁ¢pd/‘ + fQ |v¢|p dp.

By the dominated convergence theorem as ¢ — 0 we arrive at (2.1).
For any t¢ € [0,1], Holder’s inequality implies that

p—1 1

_tp D 1

[ Viei9elan < ( / |V|pp1¢Pdu) ([ wro-owerau)”.
Q Q Q

Applying this in (2.4), we have

/ (=divV =V V)P du
Q

O

PROPOSITION 2.2. Let Q be a domain in RY and assume that E : Q — R is a
positive smooth function. Then we have

—A,  E
| 5 o du< [ volran (25)

for every ¢ € C°(Q). Moreover, for any smooth function F : Q — R and t € [0,1],
we have

p p—1
< ([rwrmoras) [ 1vF0-reDgep g,
Q Q
(2.6)

\ R

for every ¢ € C(Q).

p tp p—1
Sp’”(/ IVI”—1|¢>I”du) (/ VI”“”quﬁlpdu).
Q Q



Hardy-type inequalities for the drifting p-Laplace operator and applications 7
Proof. We apply (2.1) with V = |Vw|P~2Vw. With this choice of V, we have

_p_
divV+V -Vo+ (p—DV|PT =Aw+ |VIWP2Vw- Vo + (p— 1)|Vuw|?
= Apow + (p = 1)[Vwl?.

From (2.1), we obtain

/ (Apwtw+ (p— 1)|Veol?)g? dp < / VPP dp.
Q Q

By setting w = log E, we have

Ap L E
Apw+ (p—1)|[Vwl? = r 1

which leads to
A, ,E
—=——du < / VolP du.
o FEP-1 Q Vol

Moreover, by substituting V = |[VF|P~2V F in (2.2) and applying div V +V - Vv =
A, F, we arrive at (2.6). O

REMARK 2.3. Notice that if W : 0 — R is a function, which is measurable with
respect to the measure du = ¢*@dz and such that for smooth functions E. > 0,
>0, with —A, ,E. > 0, we have

AV ) . . .
—Br s 2% W pointwise a.e. inQ, (2.7)
E?

then by (2.5) and Fatou’s lemma we obtain

/ WopPdu < / VolPdu (2.8)
Q Q

for every ¢ € C°(€2). Note also that (2.8) holds for any W € L{ (Q; u) such that
(2.7) holds (in this case we do not need —A, ,E. > 0). Moreover, if W satisfies
(2.8) for measures dy. = e’s(*)dz, where v. is smooth and v. — v pointwise a.e.
on Q as € — 0, then (2.8) also holds true with the measure du = e*®)dz provided
W e LL _(Q;p).

loc

The following elementary inequalities will be useful later. For the proof of part
(1) see lemma 2.1 in [30] or theorem 1 in [34] and for (ii) see [31].

LEMMA 2.4. Let q>2.
1 ere exists a constant > 0 such that
i) Th kg >0 h th
a+b)?>a?+ b7+ qa? b+ koab?? 2.9
q

for every a,b >0, where kq € (0,q) when 2 < q < 3, ky = q¢ when g > 3.
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8 A. Aghajani, J. Kinnunen and V. D. Radulescu

i) There exists a constant ¢, > 0 such that
q
la—b|7 > [a|? — gla|" 2ab + ¢4[b]7, (2.10)

or every a,b € R, where ¢, = min 1 ((1—1)9—t9 4 qt971) is the optimal
q 0<t<5

constant.

Recall the classical Hardy inequality

_ p P
[ 1vop da > (N ”) Ll
Q p Q |33|p

for every ¢ € C°(€2), where 2 is a smooth bounded domain in RY (N > 3) with
0eQ, or Q=RY, 1< p< N. Moreover, the constant (¥=2 —E)P is best possible.

Many authors have studied Hardy-type inequalities and their generalizations to
derivatives of higher order with weights, for example see [19, 20, 24, 25, 32, 33, 36,
37]. As a consequence of proposition 2.2, we have the following version of Hardy’s
inequality.

COROLLARY 2.5. The following generalization of the Hardy inequality holds with
the measure du = e*®dxz. When 0 € Q is a domain in RN, 1 < p < N, then we
have

1 1 z-Vv

N — P 1 S|P du

Q Q (f 18P 4 )P
Q =[P

for every ¢ € C*(Q). In particular, the following assertions hold true.

(a) If p>2 and

/x~Vv|¢|pd#20
Q

ki

for some ¢ € C°(2), then

— p\P! x-Vo
Jo Vol d > (222)" [ 8 du+ (22)" J, 55210l du
z-Vv x-Vo p=1
Lp( [z|P |¢| d/i)1 kp(]\; ) <fQ [P ‘¢|p dﬂ) ,
P 9, \? P lglP .\
(fQ TalP ) (fQ de)

for some constant ky, where k, € (0,p) when 2 <p <3, k, =p whenp >3
and kg = 0.
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Hardy-type inequalities for the drifting p-Laplace operator and applications 9

(b) If p > 2 and
/"” TV v g < 0

[P

for some ¢ € CF(Q), then

JolVopdn > (XY J 9 g (XY e g ap
, (Jo 5510 )

PP el N\
(o fifp 20)

(1 = t)P —tP + ptP~1).

z - Vv
/ 9P dp =0
Q

|

where ¢, = min

(c) If

1
0<t<3

for some ¢ € C°(QY), then

N —p\? P
(F2) [ aus [ woran
P a lzP
Proof. First we assume that 0 ¢ Q and apply proposition 2.2 with E(z) = |z|~™.

If 0 € Q we can mimic the proof starting with E(z) = (|z|> +)~"/? and then pass
to the limit as € — 0 using the fact that |z|7P € L{ (Q;p) for 1 < p < N. Since

Ay(121) = alalP~(a(p — 1) + N —p)la*®=D,
we have

ApoE =A,E+|VE[P2Vv-VE
= —m|m[?~(~=m(p—1) + N —p)|a| =7
—m|m|P~2|z| P~V =Py . V.

This implies that

—Ap B mm|P(—m(p—1) + N —p) p—2
Ep—1 |x|p +m|m|

z - Vv
|z|P

By (2.5), we then have

m|m[P~? ((—m(p—lHN—p) 9P 4 +/Q BE |¢|”du> /QIVW”du-

[P

(2.12)

for every ¢ € C°(Q). For a fixed ¢ € C(2), we set X = (N — p)A + B, where

A [0 ana B= /"”'Wwdu,
Q

o laf? [P

377

378

379

380



10 A. Aghajani, J. Kinnunen and V. D. Radulescu
then we note the left-hand side of (2.12) becomes

m|m[P~*((—=m(p — 1) + N — p)A + B).

Then we note that m = pLA is the number that maximizes the left-hand side of

. Hence with this choice of m in (2.12),

(2.12) with the maximum value (D;l)
we get

AZ’

1 z-Vv P
N-p ( Wd;L)p WL 1 fQ o p 194K |¢| / Vol dp. (2.13)
p a lzf? (f [¢IP 4
o p d

We apply lemma 2.4(i) with

hSTE

1 z-Vv
N — P 1 2|97 dp
o= p( 1ol du) and b_,%”_l.
p [P

P (e an) T

to prove (a) and lemma 2.4(ii) to prove (b). For (c), the above inequality (2.13)

becomes
N —
p o |zl Ip

We mention that the above generalized Hardy type inequalities apply well when
the function v is a homogeneous function of order of some k € R. In this case,
Euler’s formula yields = - Vu(z) = kv(z). If k=0 then part (c) of corollary 2.5
holds for every ¢ € C'°(2), also if v > 0 then (a) and (b) hold for every ¢ € C2°(Q2)
if k>0 or k <0, respectively.

Many arguments in this section are based on proposition 2.2 by choosing appro-
priate functions E and F. We discuss more sophisticated versions of Hardy’s
inequalities in corollaries 2.6 and 2.7.

O

COROLLARY 2.6. Ify>p— N and du, = |z|"dx then

(Np+7>p lol”

d Vo|Pd 2.14

for every ¢ € C°(Q

)-
Proof. Let ve(x) = 3 log(|z|? + ), £ >0, and note that

2
UE(Z') — 2 % d . v — ,}/|x| .
e (|lz|*+¢e)2 and z-Vo.(z) P
By (2.13) with v. and using the facts that
ve(xz) €0 e—0

e — |z[" and z-Vu(zx) —~
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Hardy-type inequalities for the drifting p-Laplace operator and applications 11
together with the local integrability of |z|7? for v > p — N we obtain (2.14). O

2(N+7)
N+~v+1

COROLLARY 2.7. Let 1 <p < and vy € (p — N,p). Then we have

Nopty )" lolP _ ) (Nepr )PP 2P o[
( Z ) Jon ol A+ 1)( Z ) JeN Ta T osirren
< fRN |V¢‘p dp
for every ¢ € C(RYN), where du = |z|Vdz.

Proof. Let p>1,p— N <y <p, a>1, v(x) =~log|z| and

After some computations, we obtain

—Ap,vE(x) _ a 1 p=2

E(z)p—1 (W B (1+\x|)10g(1+|93|))

a(N+y—p-a(p=1))  N+y—1-2p—1)a_ p—1 )
||2 [z[(1+[z]) log(1+[=]) ' (1+]z])2log(1+]|x]) )

Consider the case when a >1, N+y—p—a(p—1) > 0and N+v—1-2(p—1)a > 0,
which is the case if

N N -1
<ﬂ and 1<a< el

Since log(1 +t) > 5 for t > 0, we obtain

~ApuE() (afl)p72((0*1)(N+’Y*1*a(17*1)) n p-1 )
B(a)p~T o] o2 (1+]z])?log(1-+]2])
_ @V)P I (Niymiza(eol) | (o (e=)P?
[T (1+]z))2 log(1-+]2)|=[P=2

If we set a = ¥ we can see that (2.15) holds for any 1 < p <

p
the calculations above, we get

2(N+7)
N+~+12

and from

—A, E(x) (W)Z (p— 1)t )p=2
E(z)p=t = |zfp (1 + [z[)2 log(1 + [x])[z[r—2"

The claim follows from proposition 2.2. U

The uncertainty principle can be stated as

(/RN |z[*¢° dx) </RN |V¢|2dx> > NTQ (/RN ¢? dx>2 (2.16)

for all ¢ € L2(R™), see [36]. The uncertainty principle in quantum mechanics asserts
that the momentum and position of a particle cannot be determined simultaneously,
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see Cazacu—Flynn—Lam [24] or the book of Balinsky—Evans—Lewis [11]. The follow-
ing corollary of proposition 2.2 is a general form of LP-uncertainty principle with
the measure du(z) = e*®)dz.

COROLLARY 2.8. Let 1 < p < co. Then any ¢ € LP(RY) satisfies

P p p—1
p—1 p p
< (/RN 1P |g) du> /Q|v¢\ du. (217)

In particular, if v is constant, we have

N P P % p—1
(p) (/RN|¢|pdm> s(/RN PE 1|¢|de) /Q|V¢>|Pdw,

which coincides with (2.16) when p=2.

N+x-Vv

oPd
" ) |p|P dp

Proof. 1t suffices to prove (2.17) for ¢ € C>°(RY), then the conclusion follows by a

p
density argument. Let & > 0. We apply (2.6) with t =1 and F.(x) = (Jz|? +¢)2—1
and obtain

p p—1
] [ sweriora < ([ wrpiora) [ woran  eas)
Q Q Q

Using the facts that

p—1
ApoFe(z) 2% (pl) (N +z-Vo(z)) and |VF.(z)] =% 2 || 7T,
p—= p—
and passing to the limit in (2.18), we obtain (2.17). O

The hydrogen uncertainty principle

(/RN¢2dx) <AN|V¢2dx>>W<ANﬁdx>2 (2.19)

for all ¢ € L?(RY) is connected both to the uncertainty principle and Hardy’s
inequality. Moreover, it is related to the ground state of a system with a single fixed
nucleus and one electron, or a hydrogen atom, see [24]. The following corollary of
proposition 2.2 is a general form of the hydrogen uncertainty principle.

COROLLARY 2.9. Let 1 <p < N + 1. Then any ¢ € LP(RY) satisfies

P p(2—p) p—1
dy s( [ el |¢|pdu) [ 1vor ag,
RN Q

(2.20)

N-p+1+z-Vou |9
RN p [Pt

where du(zx) = e’ @ dz. In particular, if v is constant, we have

_ p P p p(2—p) p—l
(Np“) ( [ dm> g( [, el |¢|de) [ 1vor
p RN |x|P RN Q

563

564
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which coincides with (2.19) when p=2.

Proof. Tt suffices to prove (2.20) for ¢ € C°(RY) and the conclusion follows by
a density argument. Let £ >0. As in the proof of corollary 2.8, we obtain (2.18).
Using the facts that

-1 2-p
cs0 1 \'7N—p+1+a-Vou S P
A, Fe(x) (p — 1) P and |VF.(z)] — PR
and passing to the limit in (2.18), we obtain (2.20). O

We discuss the L2-Caffarelli-Kohn-Nirenberg inequality

2
2 9] [Vo|? 9]
C (N7a,b) </1;N de) S /RN |m|2b dz LN |x|2a dx (221)

for every ¢ € C§°(RYN \ {0}), where C(N,a,b), a,b € RU {cc}, is a constant
independent of ¢. The best constant C2(N,a,b) > 0 is known and the minimizers
are fully described, see [23]. For example, it is shown in [23] that C(N,a,b) =
1IN — (a+b+1)| when (a,b) € A, where

A={(@bb+1-a>0b< Y2} U{(a,b)b+1—a<0,b> N2}

The following corollary can be considered as a LP form of (2.21) with the measure
dp(z) = e'®dx.

COROLLARY 2.10. Let1 < p < o0 and a,b € R. Then

r 67 NPT Ve

< pP d d

=v (/Q [l “) o Tl
(2.22)

N—(p-1la+b+1)+z-Vv
/Q || (P~ Da+b+1 61" dpe

for every ¢ € C°(RN \ {0}). In particular, if v is constant, we have
N-(p—-1a—-b-1

P 6] P [P N\NPTE [ Vel
— <
» ( o [a] - DarorT dﬂ”) . ( o [l dﬂ”) o Jopr

which coincides with (2.21) for p=2.

Proof. For the proof, we apply (2.2) in lemma 2.1 with V(z) = |z|™%z, 8 € R.
Since div V(z) = (N — B)|z|=# and |V (z)| = |z|'~# we obtain, for any t € [0, 1],

p—1

p D P
o[ Vo)
Q

N-—-p+z-Vv
w1 o |z[a=0p(E=1)

|(£|B |¢|p dp

Q
]

(2.23)
Set a = U= and b= (1 —t)(8— 1), hence 8 = (p— 1)a+ b+ 1, then from (2.23)

pom
we arrive at (2.22). O
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3. Non-existence results in unbounded domains

This section discusses Liouville theorems for positive solutions of (P) and (Q) in
unbounded domains by applying Hardy’s inequalities. The following auxiliary result
which may be of independent interest.

PROPOSITION 3.1. Let Q be an exterior domain in RN, 1 < p < N, du(z) =
e’@dx, where v satisfies (1.3). If a non-negative function g satisfies

[ slordn< [ 1voa (3.1)
Q Q
for every non-negative ¢ € C° (), then
v? 28 5 N-—p
liminf |z[Pg(z) < <52 + =+ v2> , B= . (3.2)
|| =00 p p p

Proof of proposition 3.1: Assume that ¢ satisfies (3.1) and for simplicity let
Q=RN \BiRO, for some Ry > 0. Let d>1, R > 2Ry and let ¥ a smooth function
in Q such that 0 < ¢ < 1,2 € Q, =0 when Ry < |z| < & and |z| > 2dR, =1 1in
R < |z| <dR, |V¢| < % when & < |2| < R and |V¢| < 7 when yR < |z| < 2dR.
We take

—v(x) N —
$(x) = || PP Y(z), B= pp,

as a test function in (3.1) and observe that

Jo VoI dp = f%<\m|<2dR IVoIP dp
= f§<\z|<R Vol dp + fR<|w|<dR V[P dp + de<|a:|<2dR Vo[P du
= L(R) + Ix(R) + I3(R).
We estimate each I;(R), ¢ = 1,2, 3, separately. We note that

Volx) = 7 (Blal P 2p(a)e o] V(@) + Llal~P(x) Vo))
= e P a4 (Bua) & — V() + L) el Vo))

Since 0 < ¢ < 1, VY| < % and S+ 1 =L, we obtain

p b
4 1 P
Vol < e @l (54 G4 Lalvote)))
R p
By setting
1
M = —sup |z||Vu(z)],
D zeQ
we have

R
[Vo(x)|P < (B+4+ M)Plz|Ne @ = Oy |x|Ne @), 5 < |z <R, (3.3)

631

639
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where C' is independent of R. Similarly as above we get
IVo(x)[P < Chlz|Ne @) dR < |z| < 2dR. (3.4)
Since ¢y =1 in R < |z| < dR, we have

—v

() 1
P ’ﬁ; o [elVo(@)|, R < el < dR

Vo (z)| = |x|—(ﬂ+1)e
We also note that
2
B+ Helvo@)| =57+ BlalIVo@)P + Lo Vo)
|z D p P
2

<34 MNPLQR) + 28 My (d, R) = A(R, d),

where

Mi(d,R) = sup |z||Vu(z)] and Ms(d,R)= sup z-Vu(x).
R<|z|<dR R<|z|<dR

It follows that
IVo(z)]P < AR, d)2e @ |z|~N, R < |z| < dR. (3.5)

By the estimates above and using the fact that

T
/ ||~V do = Cy log —
R<|z|<T R

together with (3.3) we obtain

h(R) = f§<|w\<R VoPdu = f§<|z|<R |V|Pe’ @ dz
—N _
SCl f§<|x|<R|x| —CNCl 10g2

Similarly, by (3.4), we have

Ig(R) S CN01 10g2

and by (3.5), we obtain
LR = [ V[P du < Cy A(R,d)% logd.
R<|z|<dR
Hence, we conclude that

/ IVo|P du = I (R) + Io(R) + I3(R) < 20,Cx log 2 + CnA(R, d) % logd. (3.6)
Q
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By the properties of ¢, we have

/ e(@)|BlP ds > / (@) |BfP dyt = / () |z ~PP da
Q R<|z|<dR R<|z|<dR

- / 2P e(a) 2] ~#PP de = / 2P e(a) 2N dz
R<|z|<dR R<|z|<dR

>C inf z|Pc(x) log d.

- NR<\x\<dR| | ( ) &

By the above estimate, (3.6) and (3.1), we obtain

. 2C1 log 2
f p < ==
R<|lg?|<dR|x| o) < log d

p
2

+ A(R, d) (3.7)

By first letting d — oo and then R — oo in (3.7), we obtain

Tr—r00

2 2 2
liminf |z|Pe(z) < (BQ + Z—; + 2;81)2) ;

which proves (3.2).

3.1. Liouville-type results for the problem (P)

By applying propositions 2.2 and 3.1, we have the following non-existence result
for positive solutions to the problem (P).

THEOREM 3.2. Consider the problem (P) in an exterior domain Q in RN, 1 < p <

N,

where v satisfies (1.3).

(i) If p—14 B > 0, then the problem (P) does not admit any positive solution
provided

p
-1 \"! 2 28 \2 N —
liminf |z|Pe(z) > <p> (52 + 1% + ng) , B= P
p p

(3.8)
In particular, the problem
—Appu > c(x)uP™t in Q,
does not admit any positive solution, if
2 2 %
liminf [zPe(z) > <52 + q% + ﬁvg> . (3.9)

(ii) Let E> 0 be a smooth function in an exterior domain Q of RN, 1 <p < N,
with —Ap E >0 in Q, where v satisfies (1.3). Then

[ViS]

lim inf mpM

o2
j2]— o0 B(x)p1 < (52 + ]% + pﬁ’Ug) . (3.10)
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t
Proof. Let u be a positive solution of (P) in Q. Let ¢ >0 and u(z) = = t(z). Since

Vu(z) = w(z) ™ Vw(z)

and
Apu(z) = (t = 1)(p — Dw(z) D=0 Vw(z) [P + w= VPV A w(z),
we obtain
c(z) 1 |Vw(z)[?
Set t = 1% to arrive at

e (50 e

By multiplying both sides by |¢?, ¢ € C°(Q), and integration over Q@ we get

— A, ,w —1+B\"!
/ —er TP dp > (p) / c(z)|[P dp.
Q p—1 Q

wP

Then proposition 2.2 implies that

p—1+B\""
fiworans (P2E) [ caior an

(p—pl%lfl)p*lc(x) must satisfy (3.2), hence

By proposition 3.1, we see that g(x)
there is no positive solution if

flzlP p—1 \'' (L v} 2B 5
lim P~ U2,
iminf |z[Pe(z) > <p— 7 —B> (5 + p + ) v2>

|z]— o0
O
REMARK 3.3. Notice that v; > |vg| implies
v? 28 p N—-p+uvl°
<ﬂ2+§+v2) > ’ 7
p p p
and the equality holds if and only if v; = |va|. We claim that if
lim z-Vo(z) = ve,
|z]— o0
then the condition
. p—1 \'"IN—-p+uv
a = limsup |z[Pc(x) < , 3.11
msup oPete) < (L5 ) . (3.11)
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suffices for the problem (P) to have a solution in an exterior domain Qr = RV \ Bg
with R sufficiently large. Hence, in this case, (3.9) is essentially sharp. To prove
this, we search for ¢ # 0 such that u(x) = |z|* is a solution to (P) in RN \ Bg for R
sufficiently large. A direct computation gives

—A, yu(z) — c(x)u(z)P~ — B%
= [a| PV (= (p =1+ B)|t] — (N —p+ 2 Vo@)tt]’~* — |afPe(x))

>0

for |z| sufficiently large. Assume that N —p+wvy > 0 (the other case is similar). By
(3.11), we may choose a1 > a and § < vy so that N —p+ 6 > 0 and

—1 p
p—1 \? N—p+5>
<|— —_— . 3.12
“ (p—1+B> < p (312)

By the definitions of «,wvq, for |z| sufficiently large, we have |z[Pc(x) < @1 and
x - Vo(z) > §, hence by the computation above we see that u(x) = |z|* for a t <0
is a solution of (P) in Qg for R large, if

ht)=—=p—1+B)[tP+ (N —p+ o)t —a1 >0
for some ¢ < 0. By (3.12), we have
( p=1 " (N—p+§
h(to)_<p1+3) ( p a1 =0,
with
(p—LN -—p+9)

to = — <0.
0 p(p—1+ B)

Thus, for R large, u(z) = |z|~% is a solution to (P) in RY \ Bg.

ExAMPLE 3.4. Consider the problem
—Ap,u > |z[*u?  in €, (3.13)

where a € R, 1 < p < N, ¢ >p—1and Q is an exterior domain in RV, If u is a
positive solution of (3.13) then by (3.9) in theorem 3.2 we get

p
2
2 2 —-A
B+ A, —5@2 > lim inf |a:|pp’7vu($) > lim inf |2|*TPu(z)9 P
p2 p |z|— 00 ’LL(.’E)p71 |z]— 00

Let us additionally assume that u is p-superharmonic at infinity, i.e., —A,u(z) >0
for |z| > R, R large. It is well known that a p-superharmonic function v in an
exterior domain ) satisfies

p—N
u(z) > Clz|p~1, z€q,
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(see for instance [39]), hence we must have a+p+(¢—p+1) ’;_fjf < 0 or equivalently
q > %_(i*l). Thus, Eq. (3.13) does not admit any positive p-superharmonic
(N +]\t;)(

p=1), By a similar argument, we see that the equation

solution if ¢ < —

—Apu= inQ, pu>0,

U
[P

where 2 an exterior domain, does not admit any positive supersolution, if

p
v 2 2
u>(52+§+5vz>
P op

REMARK 3.5. In [3.14], it is shown that if vi = limsup),)_,. |2[[b(z)| < oo, then
problem

—Apu + |Vu|P~2b(z) - Vu > c(z)uP™'  in Q (3.14)

does not have any positive solution in exterior domains provided

N — P
lim inf |2[Pe(x) > <W> .

|| —o00 D
If b = YV for some smooth function v, then (3.14) can be written as
—Appu > c(z)uP~t in Q.

Then noticing that |va| < vy (vy,v2 defined in (1.3)), we have

P P
s Vi 28 2 s Vi 28 2 v \” N—-p+uv\’
Bt L+=Zn) <(B+S+Fun) =(8+—2) =(———] .
p p p p p p

Hence, theorem 3.2 improves the previous results in [2, 3.14] when b = Vv for some
smooth vector field v satisfying |vs| # v;. We see this in the next example.

ExXAMPLE 3.6. Consider (3.14) in an exterior domain Q2 C RY, 1 < p < N, with
b = Vv, where

(IJ2

v(z) = ﬁeh e1 = (1,0,0,...,0),

for © = (21,...,zy). Then we see that

2 /2 4. .. 2
x-Vou(zr) =0 and |z||Vu(z)| = 1l vy + +mN§1, x € Q.

- ks

Hence, vo = 0 and v; = 1. By theorem 3.2, we see that (3.14) does not admit any
positive smooth solution, if

p

P 5 z
1\2 N — 1
liminf |z|Pc(z) > (ﬂQ + 2) — <p> + =
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3.2. Results for the problem (Q)

In this subsection, we discuss Liouville-type results for positive solutions to the
problem (Q).

PROPOSITION 3.7. Consider the problem (Q) is in an arbitrary domain Q C RY,
1< p< N, with ¢ >0 and b being continuous functions, and v satisfying (1.3). If
the problem has a positive solution in §, then

</Q c(z)|¢l du>[1) < (/Q |Vo|P du>}) + (/Q b(;;)p|¢|1odu)1177 (3.15)

/Q<( c(x) B |b(x)|p> |7 du g/ﬂ|v¢|p dy, >0, (3.16)

tr1)p1 prgpl
for every ¢ € C(Q), which also implies that

. b))’ , ,
nf (1—p C(I)> [ cneran< [ [vor dn. (3.17)

Proof. Let u >0 be a positive solution of (Q). As in the proof of theorem 3.2, let
()t
s

and

t>0 and u(x) = . Since

Apu(z) = t(p = Dw(@)* PV Vu(@)P + w(z) P Ayuw(z),
we have
—t(p — Dw ()" D7 Vw(@)]P —w(@)' P VA, yw(z) + b(a)w(z)™?|Vw(z) P
w(x)(t+1)(p—1)

> C(l‘) (tJr 1)p—1

Dividing both sides of the above inequality by w(z)*+D®=1 we get

et > i — )T g T
= (tfgiz—l +t(p — )T ()P — b(z)T(x)P~ 1,
where
7() = 2,
Then noticing that for A, B > 0, we have
—1)-1 ppr
r%li%(ATp - BT = - 2 pp) A1
we obtain
—Apw(z) clx)  |b)P

> (3.18)

CCIL S SV

895
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Hence, from proposition 2.2, we have

c(z) [b(z)[”
/Q ((t+ 1)7’*1 N pptpl) |¢|P d'u’ < /Q ‘V(blp d/J, t >0,

which proves (3.16).
Note also that, for = € supp ¢, we have

c(z) [b@) P _
wrpT o1 = <)

1 @I _a )
(t+1)P—1 pPc(z) tp—1

1 B
> c(x) (trp—1 — tp—l) ’

where
P
B sup L@
supp ¢ PPC(T)

Using the fact that, for 0 < B < 1, the function

1 B
t) = — , t>0
g( ) (t—|— 1)1)—1 p—1 )
achieves its maximum
B
1
g(te) = (1—BP)" at to= T
1—BpP
1
then by the above computation we see that if u = 'fi, then w satisfies
,0+1

—Apw(z)

w(z)P~t > (1= BP)Pc(z).

From (3.19), we then have

(1—3%)”/Qc<:c>\¢|pdus/wadu

for every ¢ € C°(€2). This proves (3.17).

Moreover, if for a ¢ € C2°(2) we multiply both sides of (3.18) by |¢|?, integrating

(3.19)

over §) and applying the Hardy-type inequality (2.5) in proposition 2.2, we obtain

p
|p|” dp,

D p—1 P (t + 1);0—1 b($)
[ caor du< e+ 1yt [ voran ST [ 2
which is true for all ¢> 0. Let ¢ € C°(Q2) and set

b(z)P
A:/ [Vo|P dp  and B:/ ﬂ\gﬂpdu.
Q o PP

(3.20)

978

985
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Then (3.20) can be rewritten as

(t+ 1)1

o >0

/Qc(:n)|¢(x)|pdu <A+ 1P '+ B

The best possible choice for ¢ would be the one which minimizes the right-hand
side of the above inequality. Note that for A >0 and B > 0, the function

(t+1)Pt

f)=At+1)»"t+B P

, t>0,

achieves its minimum

fto) = (AP + BFY at 1o = (B) v

Therefore, by setting

1
z)P p
o [ do 5 lor du
fQ |v¢|p dup ’
we arrive at
L CIRTA
x
| ealolr du< (/ |V¢|pdu> ¥ (/ p|¢>|pdu> ,
Q Q Q P
which proves (3.15). O

Using the above results, we can formulate our non-existence results for the
problem (Q).

THEOREM 3.8. Let 1 < p < N, b,c € C(Q), where Q = RN\BRO, Ry >0, is an

exterior domain in RN, with c(z) — b(;z?p > 0 for large |z| and v is smooth and

satisfies (1.3). Then the problem (Q) does not have any positive solution in ), if
either

Y4
e c(z)  b(=)P 2 Vi, 28 )2 _N-»
lim inf f2] <(t+1)?‘1 po1) 7Tt ) 0 PE » (321)

for some t> 0 or

sup ( inf (1 bz) ) inf |z|pc(x)>oo, (3.22)

R>2Ry \ B <|z|<24R pR/c(x) ) E<|z|<dR
or some d > 1. In particular, if T = limsup z|b(x) < oo, then the problem
d>1. T ticular, i li 2|00 |Z[D then th bl
(@) does not have any positive solution, if

P
2 2 2
liminf [z[Pe(z) > [~ + (62 +oy Bw) . (3.23)
P P

|| =00
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Proof. The proof of non-existence of positive solution under condition (3.21) is a
consequence of (3.16) and proposition 3.1. To prove the result under the condition
(3.22) note that by (3.17), if (Q) has a solution u >0, then we have

i ﬂ ! c(x)|o|? p
sl g <1_PW> /Q (@)l dué/g|v¢| dp (3.24)

for every ¢ € C°(Q). Consider the same test function ¢ as in the proof of
proposition 3.1. By applying (3.6) for ¢, from (3.24), we get
P
. b(x) p
inf [1—- ——= c(z)|g|P du < 2C1Cnlog2 + CNyA(R,d)2 logd < K4 n,
Q

pl/c(x)

where Ky y is a constant independent of R. Since we have supp ¢ = {% < x| <
2dR} and ¢ =1 in R < |z| < dR, we obtain

p
. b(x) .
inf 11— ———— inf z|Pe(x) < K4 N- 3.25
gi<z<2wR< p@/C(fﬂ)) R<|$|<VR| ) = Kax (329)

Hence, the problem does not admit any positive solution if (3.22) holds true.
To prove the last part, let

a = liminf |z|Pe(x).

If o« = o0, then (3.21) obviously holds and there is no positive solution. Thus, we
assume that a < co. By

lim inf [2]? <( o(x) b)” ) > a 7

| =00 t+ 1)p-1  pegp—1 t41)p=1  peep—1

we see that (3.21) holds, if

p

« TP , vi 28 2
— :> —_ —_

(t+1)p=1  prer! <ﬁ T

1
for some ¢ > 0. Taking t = 7(paP — 7)1 we find that the inequality above becomes

This concludes the proof. O
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REMARK 3.9. By [12], the trivial solution u = 0 is the unique non-negative solution
of the equation

—Au—b-Vu—cu=0 inRY,
where b € RV, ¢ € R with 4c — [b|> > 0. By [3.14], this is true for

—Apu —|VulP™?b-Vu—cu=0 inQ,

. . N p .
where Q is an exterior domain in RV, 1 < p < N and ¢ — ﬁ—lp > 0. A simple

application of theorem 3.8 shows that the same result is true for the more general
equation

—Apu — |Vu|P72(b+ Vo) - Vu—cuP™t =0 in Q, (3.26)

where Q is an exterior domain in RV, 1 <p < N, c¢— ﬁ—f > 0 and v satisfying(1.3).
Indeed, since

|[[Vul[P~2b - Vu| < |b]|[VulP~,
we note that any positive solution of (3.26) is also a solution of
—Appu+ ||| VulP~t > cuP™t in Q.
Note that ifc—li—‘pp > 0, then § =1 —
conclude the result, since

% > 0. Thus we may apply (3.22) to

P
. b(x) . )
sup inf 1-— n z|P =dc sup inf  |z|P
R>2Rq <1§<|x|<2dR ( pR/c( ) R<\w\<dR| el )> R>2Rq R<|ﬂv\<dR| |
= 0.
EXAMPLE 3.10. Consider the equation
—Apu — |Vul|P~? <b + ||2) Vu—cuP™' =0 inQ, (3.27)

where be RN, v € R and Q is an exterior domain in RV, 1 < p < N. Since
W = V(vlog|z|) and v(z) = ~ylog|z| satisfies (1.3), by the above remark, for
any v € R, the problem (3.27) does not have any positive supersolution provided
c— Ib‘p > 0.

REMARK 3.11. As in remark 3.3, we note that, by the inequality v; > |va|, we

have
P

1
2 3 _ P
p p? p p
and the equality holds iff v; = |va|. We show that if vy = lim|y| 0 2 - Vv and
N — p
a = limsup |z[Pe(z) < (7’—i—|p+v2> , (3.28)

|z|— 00 p
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then the problem (Q) has a positive solution in all exterior domains RY \ Bgr
with R sufficiently large. To see this, assume (3.28) holds and consider the case
N — p+ vy > 0 (the other case is similar). Let a1 > o, 71 < 7 and § < vy be so
that so that N —p+§ > 0 and

N—p+s\?
ap < (“p“) . (3.29)

We search for ¢ >0 such that u(z) = |z|~! is a solution to (Q) in RN \ By for R
sufficiently large. A direct computation gives

—Apu(z) +b(@)|Vu(@) [P~ — c(@)u(z)P
= |z|7P7H=D (—(p — )P + tP"H (N — p+ 2 - Vv + |2]b(z)) — |z[Pe(z)) >0

for |z| sufficiently large. By the definitions of «,T,vy, we have |z|Pc(z) < ay,
|z|b(x) > 71, and z - Vv > ¢ for |z| sufficiently large, hence the inequality above
holds once we have

gt)=—p—-P+ (N —p+d+m)t" ' —a; >0

for some ¢ > 0. Now if we set

N — 0
t] = Pt +Tl>0
p
then
N—-p+m+d\"
o - (NrEnsy

which is positive by (3.29). Thus, for R large, u(x) = |z|~*1 is a solution to (Q) in
RN \ Bg.

4. Non-existence results in bounded domains

In this section, we apply our main results to the problems (P) and (Q) in bounded
domains Q € RV, 1 < p < N. For the sake of simplicity, we only discuss the case in
which ¢ and b are constant functions. We consider the lowest eigenvalue A\/'(£2,p)
for the weighted p-Laplace equation given by (1.2).

PROPOSITION 4.1. Let Q be a bounded domain in RY, 1 < p < N, and assume
that v satisfies (1.3).

(i) The problem
p
—Ap,u > AP+ B@ in, (4.1)
where p— 14+ B > 0 and A > 0, does not have any positive solution, if

—1+B\"!
A (pp—I;) > M (Q,p).
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(ii) The problem

—Apu+bVulP~t > cuP~ in Q, (4.2)

where b > 0 and ¢ > 0 does not have any positive solution in Q, if

Sl

1 b
cP — b M (S p)?P.

Proof. Let u be a positive solution of problem 4.1 in €. As in the proof of
theorem 3.2, we see that B and A have to satisfy

\ (p -1- A)p‘l _ JolVélrdu
p—1 - fg\¢|pd/i7
for every ¢ € C§°(Q), ¢ #0, which implies that
-1
p—1—A\"
Al ————— < M, p).
(=12) < x@n
Hence, the problem (4.1) does not have any positive solution if the inequality above
does not hold. This proves (i).

Then we consider (ii). Let u be a positive solution of (4.2) for some ¢,b > 0.
From proposition 3.7, we must have

1 1
v » bP v
( / C|¢|”du> s( / |V¢|pdu) +( / pp|¢|pdu) ,

or equivalently

p

p) T [LlelPdu

for every ¢ € C°(Q), ¢ #0. This implies that

p
(cé —]‘;) < XN p).

Sl

1
Therefore, (4.2) does not have any positive solution if ¢? — % > N(Q,p)P. O

REMARK 4.2. Regarding the condition p—1+ B > 0 in proposition 4.1, it is easy to
see that if p—1+ B < 0, then the problem (P) has a positive solution in an arbitrary

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222



Hardy-type inequalities for the drifting p-Laplace operator and applications 27

proper domain  C RY assuming the functions z - Vo(x) and ¢ are bounded in €.
Also, when p — 1 + B = 0, the same is true if for some § >0

N—p+(z—=x0) Vu(z) >4, =ze€Q, for somexy ¢ Q, (4.3)

or
N—p+(z—2x0) Vu(z) <=0, =z for somezy & . (4.4)

To see this consider u(z) = |z — zo|*, t #0, with 2o € Q. As in remark 3.3, we see
that u is a solution to (P), if

—~(p=14+B)[t|P+ (N —p+ (x — x0) - Vo(z)t|t|P~? — |z — zo|Pc(x) >0, z€Q,

which is obviously true for all large ¢ >0,if p—1+ B < 0. Whenp—-1+B =0
then the above inequality holds true for large ¢ > 0 if v satisfies (4.3), and for ¢ <0,
|t| large, if v satisfies (4.4).

5. Higher order differential equations

The final section illustrates how our findings can be applied to higher order
differential equations of the type

(=A)"u > e(x)u?  in Q.

In recent years, there has been a lot of interest in the existence or non-existence of
solutions to several kinds of higher order differential equations and systems on RV,
For instance, a differential equation or inequality of the form

(=A)"u > f(u) in Q, (5.1)

where = RY or an exterior domain in RY. A relevant special case of (5.1) is
fw) = wP with p>0. It is well known that if 1 < p < ﬁ then the latter
inequality in the whole space does not admit any non-negative polysuperharmonic

solution wu, that is,

(=A)Yu>0 inQ, i=1,...,m,

see, for example, corollary 3.6 in Caristi, D’Ambrosio, and Mitidieri [22], where
the authors have proved Liouville theorems for supersolutions of the polyhar-
monic Hénon-Lane-Emden system and also explored its connection with the
Hardy-Littlewood—Sobolev systems. For more results on the structure of positive
solutions or some related problems, we refer to [18, 26, 27] and the references
therein.

We start with the following Hardy-type inequality involving the operator (—A)™
that can be proved using proposition 2.2.
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COROLLARY 5.1. Let m > 1 be an integer, Q be a domain in RN and u € C*™(1)
a positive polysuperharmonic function. Then we have

/Q((—Au)mu)#‘ ¢2dac§/9|v¢|2dx (5.2)

for every ¢ € C°(£2)

Proof. Let u be a smooth positive polysuperharmonic function. Proposition 2.2

with p=2 and v as a constant and E = (=A)""lu, i = 1,...,m, implies that
(D) o 2
2T gy < [ Vol dr, (5.3)
/Q(—A)Z u Q

for every ¢ € C°(€2). We observe that

SRS (Co0)

i=1

and by Holder’s inequality and (5.3) we obtain

3=

1 .
(_A)mu>m 2 M (/ (=A)'u ) / 2
— ¢ dx < ——————|¢|° dx < [ |Vé|~dux.
/Q ( u ZI;II Q (—A)Z_W' | Q| |
O
COROLLARY 5.2. Assume that u € C*™(Q) satisfies
(—A)’fu > c(x)u in (5.4)
(=A)u>0 mQ, 1=0,1,...,m—1,

where m > 1 is an integer, Q2 is an exterior domain in RN, N > 2m, and ¢ > 0.
Then

N — 2y 2m
liminf |z|*™e(x) < (7> . (5.5)

In particular, (5.4) does not admit any positive solution if

N —2)?
lim nf [2[2c(z) % > O~ 2

|z]—o00 4

Proof. If u € C*™(Q) satisfies (5.4), then we have

(E2)" 2

u

3

in Q.
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and by corollary 5.1 we obtain

[y ¢2de < [ 9o da,
Q Q

for every ¢ € C°(€2). By proposition 3.1 with p =2 and v(z) = 0, we have

N —2)2
lim inf \x|2c(x)% < 7( )

)

which is equivalent to (5.5). O
The above result together with the following lemma can be applied to obtain

Liouville-type results for related higher order equations or inequalities in exterior

domains.

LEMMA 5.3. Suppose that u> 0 is a smooth function such that
(=A)Yu>0 mQ, i=1,...,m,

where m > 1 is an integer and 2 is an exterior domain 2 C RN, N > 2m. Then
there exists a positive constant C, depending only on u, ), and N, so that

u(z) > Clz[* N for everyxz € Q. (5.6)
Proof. We prove the claim by induction. The case m =1 is well known, see for

example [10], also see [3] for the case m =2. Assume the statement is true for
m — 1. Then since w = —Awu satisfies the induction hypothesis we get

—Au = w(z) > Clz)?™ VN in Q. (5.7)

Fix rog > 0 such that R\ By, C . Select a >0 so small that v < m
|2m—N

and u(z) > |z in a neighbourhood of 9B,,. Then for each ¢ > 0, there exists

R, > rg such that
u(z) +e>¢e>7lz|*N  for every x € RN\ Bg,.

Notice that

~A(u+e) =—Au>Clz/2m-D-N
> 9y(m — 1)(N — 2m)Ja]20m =)=
— — A,

Applying the maximum principle in Bg \ B,,, for each R > R, we get
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u(x) + & >z for every z € RV \ By,.

Letting € — 0, we obtain u(x) > c|lz|>*™~" in RN \ B,,, which proves (5.6). O

7"07

COROLLARY. Consider the problem

(=A)"u > e(x)ul? in Q,

, (5.8)
(=A)u >0 mQ, i=0,1,....,m—1,

where m > 1 is an integer, Q is an exterior domain in RN, N > 2m and q> 1.
This problem does not admit any positive smooth solution if

‘ l‘im |2 =N e(z) = o (5.9)
xT|— 00

In particular, if c(x) = |z|* then there is no positive solution when

N+«
Moreover, the problem
(—A)"y > |$T;m in €, (5.11)
(—A)u >0 inQ, i=0,1,...,m—1,

does mot have any positive smooth solution, if

o (N — 2)27"
H U .

Proof. Let u be a positive solution of (5.11). Thus
(=A)™u > c(z)u? = (c(z)u? )u in Q.

Then by corollary 5.2, we have

liminf|x|2(c(x)u(x)q_1)% < M

|z|—o00 4
However, by lemma 5.3, we have
u(z) > Clz|* N for every z € Q,
where C' is independent of x € 2, which together ¢ — 1 > 0 imply that

lim inf |2|2™ =N @~ De(z) < oo,
|z|— 00

This implies that (5.11) does not have any positive solution if (5.9) holds.
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If e(z) = |x|®, then (5.9) reads as

lim inf [z|*F29m—N@—1) —
|| =00 ’
which holds true if ¢ < I\J,V:;f‘n
The last assertion is an immediate consequence of corollary 5.2. O
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