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Communication, Technická 3058/10, Brno 61600, Czech Republic and
Simion Stoilow Institute of Mathematics of the Romanian Academy,
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We consider the drifting p-Laplace operator

∆p,vu = e−vdiv (ev |∇u|p−2∇u)

and discuss generalized weighted Hardy-type inequalities associated with the measure
dµ = ev(x)dx. As an application, we obtain several Liouville-type results for positive
solutions of the non-linear elliptic problem with singular lower order term

−∆p,vu ≥ c(x)up−1 +B
|∇u|p

u
in Ω,

where Ω is a bounded or an unbounded exterior domain in RN , N > p > 1,
B + p− 1 > 0, as well as of the non-autonomous quasilinear elliptic problem

−∆p,vu+ b(x)|∇u|p−1 ≥ c(x)up−1 in Ω,

with general weights b ≥ 0 and c> 0. Liouville-type results are also discussed for a
class of higher order differential equations.

© The Author(s), 2025. Published by Cambridge University Press on behalf of
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1. Introduction

For a smooth function v : Ω → R on a domain Ω in RN , we consider the drifting
p-Laplace operator

∆p,vu = e−vdiv (ev|∇u|p−2∇u), 1 < p <∞,

and the related measure

dµ(x) = ev(x) dx.

Note that we have

∆p,vu = ∆pu+ |∇u|p−2∇u · ∇v,

where ∆pu = div (|∇u|p−2∇u) is the standard p-Laplace operator. In particular,
if v is a constant, then ∆p,vu coincides with ∆pu. There has been interest in the
study of the drifting p-Laplace equation, mostly the case p=2 on a metric measure
space (M, 〈·, ·〉, ev dw), where (M, 〈·, ·〉) is an N -dimensional Riemannian manifold
with the metric 〈·, ·〉, v is a smooth real-valued function defined on M and dw is
the Riemannian volume element related to 〈·, ·〉. Several interesting related results
including Liouville theorems, estimates on the lowest eigenvalue, gradient estimates,
and Harnack inequalities to the solutions of the problem −∆2,vu = λu can be found,
for instance, in [28, 40–42] and the references therein.

The aim of this work is to study Hardy-type inequalities related to the drifting p-
Laplace operator. As an application, we discuss Liouville-type theorems for positive
classical solutions of several quasilinear elliptic problems. One of the novelties is
that we do not make any assumptions on the asymptotic behaviour of solutions
at infinity, nor on whether they are bounded or radial. For instance, we consider
positive solutions u ∈ C2(Ω,R+) to

−∆p,vu ≥ c(x)up−1 +B
|∇u|p

u
in Ω, (P)

where Ω is a bounded domain or an unbounded exterior domain in RN , B+p−1 > 0
and 1 < p < N .

The motivation for the problem (P) comes from the singular quasilinear elliptic
equation

−∆pu = λup−1 +B
|∇u|p

u
+ f in Ω, (1.1)

where Ω is a domain in RN , B ∈ R, f ≥ 0 is an arbitrary locally integrable function
or a measure. Equations of the type (1.1), in the case p=2, have been studied in
[1, 7, 8, 17, 21], mostly in bounded domains Ω ⊂ RN , with f ∈ Lr(Ω) for some
r > 1.
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Hardy-type inequalities for the drifting p-Laplace operator and applications 3

Arcoya et al. considered (1.1) in [7] on a bounded domain Ω with zero Dirichlet
data, when λ=0, p=2, 0 ≤ B < 1, f ≥ 0, and proved the existence of positive
solutions in suitable Sobolev spaces (depending on f and B). In the general case
p> 1, Cao-Verbitsky [21] characterized the existence of positive solutions u of (1.1)

in Ω = RN with lim infx→∞ u(x) = 0, λ=0 and B = q(p−1)
p−1−q < 0 for some 0 < q <

p − 1. In [9], Arcoya and Moreno-Mérida considered (1.1) with λ 6= 0 and p=2
and proved the existence (resp., non-existence) of positive solutions provided that

λ <
λ1

1+B (resp., λ ≥ λ1
1+B ), where λ1 denotes the lowest eigenvalue of the Laplace

operator.
Notice that every solution of (1.1) is a solution of the problem (P) with c(x) ≡ λ.

In this case, our results for (P) imply the non-existence of positive solutions for a
wider range of 1− p < B <∞, if

λ >

(
p− 1

p− 1 +B

)p−1

λµ1 (Ω, p),

where

λµ1 (Ω, p) = inf

{∫
Ω
|∇φ|p dµ∫

Ω
|φ|p dµ

: φ ∈W 1,p
0 (Ω;µ), φ 6= 0

}
(1.2)

is the lowest eigenvalue of the weighted p-Laplace operator. Here W 1,p
0 (Ω;µ) is the

completion of C∞
c (Ω) under the weighted Sobolev norm

‖φ‖1,p;µ =

(∫
Ω

|φ|p dµ+

∫
Ω

|∇φ|p dµ
) 1

p

.

We also consider the problem (P) in unbounded exterior domains Ω with a general
potential c ≥ 0 and v satisfying

v1 = lim sup
|x|→∞

|x||∇v(x)| <∞ and v2 = lim sup
|x|→∞

x · ∇v(x). (1.3)

We prove the non-existence of positive solutions of (P), if

lim inf
x→∞

|x|pc(x) >
(

p− 1

p− 1 +B

)p−1(
β2 +

v21
p2

+
2β

p
v2

)p
2

, β =
N − p

p
. (1.4)

We also show that the condition (1.4) is essentially sharp under appropriate
conditions (see remark 3.3).

As an another application of the Hardy-type inequalities, we examine positive
solutions u ∈ C2(Ω) to the non-autonomous quasilinear elliptic problem

−∆p,vu+ b(x)|∇u|p−1 ≥ c(x)up−1 in Ω, (Q)

with general continuous weights b ≥ 0 and c> 0 (not necessarily bounded), where
Ω is a bounded domain or an exterior domain in RN , 1 < p < N . Problems similar
to (Q), mostly in the case p=2 and v =0, have been studied in [2, 5, 6, 12, 13, 15,
16, 38].
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Berestycki, Hamel, and Nadirashvili [12] proved that u ≡ 0 is the unique non-
negative solution of

−∆u− b · ∇u− cu = 0 inRN , (1.5)

where b ∈ RN , c ∈ R with 4c − |b|2 > 0. As a special case of the Liouville-type
results for the problem (Q), we show that indeed the condition ppc − |b|p > 0
(which becomes 4c− |b|2 > 0 when p=2) is also sufficient to rule out the existence
of positive supersolutions to the more general equation

−∆pu− |∇u|p−2(b+∇v) · ∇u− cup−1 = 0 in Ω,

where Ω = RN or any exterior domain in RN 1 < p < N , and v satisfying (1.3)
(which also includes the case when v is constant).

Berestycki, Hamel, and Rossi [13] extended the results of [12] to elliptic equations
with non-constant coefficients. In particular, they proved that if the vector field b
and the function c are continuous, then the problem

−∆u+ b(x) · ∇u ≥ c(x)u inRN (1.6)

does not admit any positive solution, if the functions b and c are bounded and
satisfy

lim inf
|x|→∞

D(x) > 0, D(x) = c(x)− |b(x)|2

4
. (1.7)

In [38], Rossi generalized the non-existence results to the framework of fully
non-linear elliptic equations in general unbounded domains, showing that the
assumption (1.7) can be relaxed, in particular the case lim inf |x|→∞D(x) < 0 is
allowed (but all the above papers require lim sup|x|→∞D(x) > 0). Note also that
any non-existence result for positive solutions of the problem (Q) can be applied
for positive solutions to

−∆p,vu+ |∇u|p−2b(x) · ∇u ≥ c(x)up−1 in Ω, (R)

where this time b is a smooth vector field, because by Cauchy–Schwarz inequality
we have |∇u|p−2b(x)·∇u ≤ |b(x)||∇u|p−1. Recently in [3.14], as consequences of the
study of problem (Q), the authors also extended some of the above non-existence
results with some improvements to the general problem

−∆pu+ |∇u|p−2b(x) · ∇u ≥ c(x)up−1 in Ω, (1.8)

in exterior domains. In particular, the case

lim sup
|x|→∞

Dp(x) = 0, Dp(x) = c(x)− |b(x)|p

pp
,

is included.
We also discuss several Liouville-type theorems, extending the above results

to the general problems (Q) and (R) both in bounded and unbounded exterior
domains. In particular, applying our Liouville-type results to (1.8), we cover the
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Hardy-type inequalities for the drifting p-Laplace operator and applications 5

case lim|x|→∞Dp(x) = 0. Also, applying our result for the general problem (Q), in
the case when Ω is bounded and b(x) = b ≥ 0 and c(x) = c > 0 are constant, we
obtain the non-existence of positive solutions for (Q) if

c
1
p − b

p
> λµ1 (Ω, p)

1
p .

This result also seems to be new even for the case p=2 and v is a constant function.
The crucial point in our proofs is that if the problem (Q) has a positive solution in
an arbitrary domain Ω ⊂ RN , then the functions b and c satisfy

(∫
Ω

c(x)|φ|p dµ
) 1

p

≤
(∫

Ω

|∇φ|p dµ
) 1

p

+

(∫
Ω

b(x)p

pp
|φ|p dµ

) 1
p

,

for every φ ∈ C∞
c (Ω), where dµ(x) = ev(x)dx. The interesting aspect of this estimate

is that it does not depend on the solution itself.
At the end of this work, we briefly explain how our findings may be applied to

obtain Liouville-type theorems for a class of higher order differential equations. In
particular, we prove a Hardy-type inequality

∫
Ω

(
(−∆)mu

u

) 1
m

φ2 dx ≤
∫
Ω

|∇φ|2 dx

for every φ ∈ C∞
c (Ω), where m ≥ 1 is an integer and u is a positive smooth

polysuperharmonic function, that is, (−∆)iu ≥ 0 in Ω, i = 1, . . . ,m.

2. Hardy-type inequalities

This section discusses several Hardy-type inequalities. The proofs are based on the
following lemma.

Lemma 2.1. Let V : Ω → RN be a smooth vector field and φ ∈ C∞
c (Ω). Then∫

Ω

−
(
div V + V · ∇v + (p− 1)|V |

p
p−1

)
|φ|p dµ ≤

∫
Ω

|∇φ|p dµ. (2.1)

Moreover, for any t ∈ [0, 1], we have∣∣∣∣∫
Ω

(−div V − V · ∇v)φp dµ
∣∣∣∣p ≤ pp

(∫
Ω

|V |
tp

p−1 |φ|p dµ
)p−1(∫

Ω

|V |p(1−t)|∇φ|p dµ
)
.

(2.2)

Proof. Let φ ∈ C∞
c (Ω) and φε =

√
|φ|2 + ε2 − ε. Then φε ∈ C∞

c (Ω) and by the
divergence theorem, we have∫

Ω

(−div V )φpε dµ =

∫
Ω

(−div V )φpεe
v dx =

∫
Ω

V · (pφp−1
ε ∇φε + φpε∇v) dµ.
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6 A. Aghajani, J. Kinnunen and V. D. Rădulescu

Thus∫
Ω

(−div V − V · ∇v)φpε dµ = p

∫
Ω

φp−1
ε V · ∇φε dµ ≤ p

∫
Ω

|V |φp−1
ε |∇φε| dµ. (2.3)

Since 0 ≤ φε ≤ |φ|, we have

∇φε =
|φ|∇|φ|√
|φ|2 + ε2

.

By the fact that |∇|φ|| ≤ |∇φ| a.e., we have

φp−1
ε |∇φε| ≤ |φ|p−1|∇|φ|| ≤ |φ|p−1|∇φ|.

Thus from (2.3) and Young’s inequality, we obtain∫
Ω
(−div V − V · ∇v)φpε dµ ≤ p

∫
Ω
|V ||φ|p−1|∇φ| dµ

≤ (p− 1)
∫
Ω
|V |

p
p−1φpdµ+

∫
Ω
|∇φ|p dµ.

(2.4)

By the dominated convergence theorem as ε→ 0 we arrive at (2.1).
For any t ∈ [0, 1], Hölder’s inequality implies that

∫
Ω

|V |φp−1|∇φ| dµ ≤
(∫

Ω

|V |
tp

p−1φpdµ

)p−1
p (∫

Ω

|V |p(1−t)|∇φ|pdµ
) 1

p
.

Applying this in (2.4), we have∣∣∣∣∫
Ω

(−div V − V · ∇v)φp dµ
∣∣∣∣p ≤ pp

(∫
Ω

|V |
tp

p−1 |φ|p dµ
)p−1(∫

Ω

|V |p(1−t)|∇φ|p dµ
)
.

�

Proposition 2.2. Let Ω be a domain in RN and assume that E : Ω → R is a
positive smooth function. Then we have∫

Ω

−∆p,vE

Ep−1
|φ|p dµ ≤

∫
Ω

|∇φ|p dµ, (2.5)

for every φ ∈ C∞
c (Ω). Moreover, for any smooth function F : Ω → R and t ∈ [0, 1],

we have∣∣∣∣∫
Ω

(−∆p,vF )|φ|p dµ
∣∣∣∣p ≤ pp

(∫
Ω

|∇F |tp|φ|p dµ
)p−1 ∫

Ω

|∇F |(1−t)p(p−1)|∇φ|p dµ

(2.6)

for every φ ∈ C∞
c (Ω).
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Proof. We apply (2.1) with V = |∇w|p−2∇w. With this choice of V, we have

div V + V · ∇v + (p− 1)|V |
p

p−1 = ∆pw + |∇W |p−2∇w · ∇v + (p− 1)|∇w|p

= ∆p,vw + (p− 1)|∇w|p.

From (2.1), we obtain∫
Ω

−(∆p,vw + (p− 1)|∇w|p)φp dµ ≤
∫
Ω

|∇φ|p dµ.

By setting w = logE, we have

∆p,vw + (p− 1)|∇w|p =
∆p,vE

Ep−1
,

which leads to ∫
Ω

−∆p,vE

Ep−1
dµ ≤

∫
Ω

|∇φ|p dµ.

Moreover, by substituting V = |∇F |p−2∇F in (2.2) and applying div V +V ·∇v =
∆p,vF , we arrive at (2.6). �

Remark 2.3. Notice that if W : Ω → R is a function, which is measurable with
respect to the measure dµ = ev(x)dx and such that for smooth functions Eε > 0,
ε> 0, with −∆p,vEε > 0, we have

−∆p,vEε

Ep−1
ε

ε→0−−−→W pointwise a.e. inΩ, (2.7)

then by (2.5) and Fatou’s lemma we obtain∫
Ω

W |φ|pdµ ≤
∫
Ω

|∇φ|pdµ (2.8)

for every φ ∈ C∞
c (Ω). Note also that (2.8) holds for any W ∈ L1

loc(Ω;µ) such that
(2.7) holds (in this case we do not need −∆p,vEε > 0). Moreover, if W satisfies
(2.8) for measures dµε = evε(x)dx, where vε is smooth and vε → v pointwise a.e.
on Ω as ε→ 0, then (2.8) also holds true with the measure dµ = ev(x)dx provided
W ∈ L1

loc(Ω;µ).

The following elementary inequalities will be useful later. For the proof of part
(i) see lemma 2.1 in [30] or theorem 1 in [34] and for (ii) see [31].

Lemma 2.4. Let q> 2.

(i) There exists a constant kq > 0 such that

(a+ b)q ≥ aq + bq + qaq−1b+ kqab
q−1 (2.9)

for every a, b ≥ 0, where kq ∈ (0, q) when 2 < q < 3, kq = q when q ≥ 3.
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(ii) There exists a constant cq > 0 such that

|a− b|q ≥ |a|q − q|a|q−2ab+ cq|b|q, (2.10)

for every a, b ∈ R, where cq = min
0≤t≤1

2
((1− t)q− tq+qtq−1) is the optimal

constant.

Recall the classical Hardy inequality

∫
Ω

|∇φ|p dx ≥
(
N − p

p

)p ∫
Ω

|φ|p

|x|p
dx,

for every φ ∈ C∞
c (Ω), where Ω is a smooth bounded domain in RN (N ≥ 3) with

0 ∈ Ω, or Ω = RN , 1 < p < N . Moreover, the constant (N−p
p )p is best possible.

Many authors have studied Hardy-type inequalities and their generalizations to
derivatives of higher order with weights, for example see [19, 20, 24, 25, 32, 33, 36,
37]. As a consequence of proposition 2.2, we have the following version of Hardy’s
inequality.

Corollary 2.5. The following generalization of the Hardy inequality holds with
the measure dµ = ev(x)dx. When 0 ∈ Ω is a domain in RN , 1 < p < N , then we
have

(∫
Ω

|∇φ|p dµ
) 1

p

≥

∣∣∣∣∣∣∣∣
N − p

p

(∫
Ω

|φ|p

|x|p
dµ

) 1
p

+
1

p

∫
Ω

x·∇v
|x|p |φ|p dµ(∫

Ω
|φ|p
|x|p dµ

)p−1
p

∣∣∣∣∣∣∣∣ (2.11)

for every φ ∈ C∞
c (Ω). In particular, the following assertions hold true.

(a) If p ≥ 2 and ∫
Ω

x · ∇v
|x|p

|φ|p dµ ≥ 0

for some φ ∈ C∞
c (Ω), then

∫
Ω
|∇φ|p dµ ≥

(
N−p
p

)p ∫
Ω

|φ|p
|x|p dµ+

(
N−p
p

)p−1 ∫
Ω

x·∇v
|x|p |φ|p dµ

+ 1
pp

(∫
Ω

x·∇v
|x|p |φ|p dµ

)p

(∫
Ω

|φ|p
|x|p dµ

)p−1 +
kp(N−p)

pp

(∫
Ω

x·∇v
|x|p |φ|p dµ

)p−1

(∫
Ω

|φ|p
|x|p dµ

)p−2 ,

for some constant kp, where kp ∈ (0, p) when 2 < p < 3, kp = p when p ≥ 3
and k2 = 0.
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(b) If p ≥ 2 and ∫
Ω

x · ∇v
|x|p

|φ|p dµ ≤ 0

for some φ ∈ C∞
c (Ω), then

∫
Ω
|∇φ|p dµ ≥

(
N−p
p

)p ∫
Ω

|φ|p
|x|p dµ−

(
N−p
p

)p−1 ∫
Ω

x·∇v
|x|p |φ|p dµ

+
cp
pp

(∫
Ω

x·∇v
|x|p |φ|p dµ

)p

(∫
Ω

|φ|p
|x|p dµ

)p−1 ,

where cp = min
0≤t≤1

2
((1− t)p − tp + ptp−1).

(c) If ∫
Ω

x · ∇v
|x|p

|φ|p dµ = 0

for some φ ∈ C∞
c (Ω), then(

N − p

p

)p ∫
Ω

|φ|p

|x|p
dµ ≤

∫
Ω

|∇φ|p dµ.

Proof. First we assume that 0 6∈ Ω and apply proposition 2.2 with E(x) = |x|−m.
If 0 ∈ Ω we can mimic the proof starting with E(x) = (|x|2+ ε)−m/2 and then pass
to the limit as ε→ 0 using the fact that |x|−p ∈ L1

loc(Ω;µ) for 1 < p < N . Since

∆p(|x|α) = α|α|p−2(α(p− 1) +N − p)|x|α(p−1)−p,

we have

∆p,vE = ∆pE + |∇E|p−2∇v · ∇E
= −m|m|p−2(−m(p− 1) +N − p)|x|−m(p−1)−p

−m|m|p−2|x|−m(p−1)−px · ∇v.

This implies that

−∆p,vE

Ep−1
=
m|m|p−2(−m(p− 1) +N − p)

|x|p
+m|m|p−2x · ∇v

|x|p
.

By (2.5), we then have

m|m|p−2

(
(−m(p− 1) +N − p)

∫
Ω

|φ|p

|x|p
dµ+

∫
Ω

x · ∇v
|x|p

|φ|p dµ
)

≤
∫
Ω

|∇φ|p dµ.

(2.12)

for every φ ∈ C∞
c (Ω). For a fixed φ ∈ C∞

c (Ω), we set X = (N − p)A+B, where

A =

∫
Ω

|φ|p

|x|p
dµ and B =

∫
Ω

x · ∇v
|x|p

|φ|p dµ,
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then we note the left-hand side of (2.12) becomes

m|m|p−2((−m(p− 1) +N − p)A+B).

Then we note that m = X
pA is the number that maximizes the left-hand side of

(2.12) with the maximum value ( |X|
p )p 1

Ap−1 . Hence with this choice of m in (2.12),
we get ∣∣∣∣∣∣∣∣

N − p

p

(∫
Ω

|φ|p

|x|p
dµ

) 1
p

+
1

p

∫
Ω

x·∇v
|x|p |φ|pdµ(∫

Ω
|φ|p
|x|p dµ

)p−1
p

∣∣∣∣∣∣∣∣
p

≤
∫
Ω

|∇φ|p dµ. (2.13)

We apply lemma 2.4(i) with

a =
N − p

p

(∫
Ω

|φ|p

|x|p
dµ

) 1
p

and b =
1

p

∫
Ω

x·∇v
|x|p |φ|p dµ(∫

Ω
|φ|p
|x|p dµ

)p−1
p

.

to prove (a) and lemma 2.4(ii) to prove (b). For (c), the above inequality (2.13)
becomes (

N − p

p

)p ∫
Ω

|φ|p

|x|p
dµ ≤

∫
Ω

|∇φ|p dµ.

�

We mention that the above generalized Hardy type inequalities apply well when
the function v is a homogeneous function of order of some k ∈ R. In this case,
Euler’s formula yields x · ∇v(x) = kv(x). If k =0 then part (c) of corollary 2.5
holds for every φ ∈ C∞

c (Ω), also if v > 0 then (a) and (b) hold for every φ ∈ C∞
c (Ω)

if k > 0 or k < 0, respectively.
Many arguments in this section are based on proposition 2.2 by choosing appro-

priate functions E and F. We discuss more sophisticated versions of Hardy’s
inequalities in corollaries 2.6 and 2.7.

Corollary 2.6. If γ > p−N and dµγ = |x|γdx then(
N − p+ γ

p

)p ∫
Ω

|φ|p

|x|p
dµγ ≤

∫
Ω

|∇φ|p dµγ (2.14)

for every φ ∈ C∞
c (Ω).

Proof. Let vε(x) =
γ
2 log(|x|2 + ε), ε> 0, and note that

evε(x) = (|x|2 + ε)
γ
2 and x · ∇vε(x) =

γ|x|2

|x|2 + ε
.

By (2.13) with vε and using the facts that

evε(x)
ε→0−−−→ |x|γ and x · ∇vε(x)

ε→0−−−→ γ
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together with the local integrability of |x|γ−p for γ > p−N we obtain (2.14). �

Corollary 2.7. Let 1 < p < 2(N+γ)
N+γ+1 and γ ∈ (p−N, p). Then we have

(
N−p+γ

p

)p ∫
RN

|φ|p
|x|p dµ +(p− 1)

(
N−p+γ

p

)p−2 ∫
RN

|x|2−p|φ|p

(1+|x|)2 log(1+|x|) dµ

≤
∫
RN |∇φ|p dµ

for every φ ∈ C∞
c (RN ), where dµ = |x|γdx.

Proof. Let p> 1, p−N < γ < p, a > 1, v(x) = γ log |x| and

E(x) =
log(1 + |x|)

|x|a
.

After some computations, we obtain

−∆p,vE(x)

E(x)p−1 =
(

a
|x| −

1
(1+|x|) log(1+|x|)

)p−2

·
(

a(N+γ−p−a(p−1))

|x|2 − N+γ−1−2(p−1)a
|x|(1+|x|) log(1+|x|) +

p−1

(1+|x|)2 log(1+|x|)

)
.

Consider the case when a > 1, N+γ−p−a(p−1) ≥ 0 and N+γ−1−2(p−1)a ≥ 0,
which is the case if

p ≤ N + γ + a

1 + a
and 1 < a ≤ N + γ − 1

2(p− 1)
. (2.15)

Since log(1 + t) ≥ t
1+t for t ≥ 0, we obtain

−∆p,vE(x)

E(x)p−1 ≥
(

a−1
|x|

)p−2 (
(a−1)(N+γ−1−a(p−1))

|x|2 + p−1

(1+|x|)2 log(1+|x|)

)
= (a−1)p−1(N+γ−1−a(p−1))

|x|p + (p−1)(a−1)p−2

(1+|x|)2 log(1+|x|)|x|p−2 .

If we set a = N+γ
p we can see that (2.15) holds for any 1 < p < 2(N+γ)

N+γ+1 , and from
the calculations above, we get

−∆p,vE(x)

E(x)p−1
≥

(N−p+γ
p )p

|x|p
+

(p− 1)(N−p+γ
p )p−2

(1 + |x|)2 log(1 + |x|)|x|p−2
.

The claim follows from proposition 2.2. �

The uncertainty principle can be stated as(∫
RN

|x|2φ2 dx
)(∫

RN
|∇φ|2 dx

)
≥ N2

4

(∫
RN

φ2 dx

)2

(2.16)

for all φ ∈ L2(RN ), see [36]. The uncertainty principle in quantum mechanics asserts
that the momentum and position of a particle cannot be determined simultaneously,
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see Cazacu–Flynn–Lam [24] or the book of Balinsky–Evans–Lewis [11]. The follow-
ing corollary of proposition 2.2 is a general form of Lp-uncertainty principle with
the measure dµ(x) = ev(x)dx.

Corollary 2.8. Let 1 < p <∞. Then any φ ∈ Lp(RN ) satisfies∣∣∣∣∫
RN

N + x · ∇v
p

|φ|p dµ
∣∣∣∣p ≤

(∫
RN

|x|
p

p−1 |φ|p dµ
)p−1 ∫

Ω

|∇φ|p dµ. (2.17)

In particular, if v is constant, we have(
N

p

)p(∫
RN

|φ|p dx
)p

≤
(∫

RN
|x|

p
p−1 |φ|p dx

)p−1 ∫
Ω

|∇φ|p dx,

which coincides with (2.16) when p=2.

Proof. It suffices to prove (2.17) for φ ∈ C∞
c (RN ), then the conclusion follows by a

density argument. Let ε> 0. We apply (2.6) with t =1 and Fε(x) = (|x|2+ε)
p

2(p−1)

and obtain∣∣∣∣∫
Ω

∆p,vFε|φ|p dµ
∣∣∣∣p ≤ pp

(∫
Ω

|∇Fε|p|φ|p dµ
)p−1 ∫

Ω

|∇φ|p dµ. (2.18)

Using the facts that

∆p,vFε(x)
ε→0−−−→

(
p

p− 1

)p−1

(N + x · ∇v(x)) and |∇Fε(x)|
ε→0−−−→ p

p− 1
|x|

1
p−1 ,

and passing to the limit in (2.18), we obtain (2.17). �

The hydrogen uncertainty principle(∫
RN

φ2 dx

)(∫
RN

|∇φ|2 dx
)

≥ (N − 1)2

4

(∫
RN

φ2

|x|
dx

)2

(2.19)

for all φ ∈ L2(RN ) is connected both to the uncertainty principle and Hardy’s
inequality. Moreover, it is related to the ground state of a system with a single fixed
nucleus and one electron, or a hydrogen atom, see [24]. The following corollary of
proposition 2.2 is a general form of the hydrogen uncertainty principle.

Corollary 2.9. Let 1 < p < N + 1. Then any φ ∈ Lp(RN ) satisfies∣∣∣∣∫
RN

N − p+ 1 + x · ∇v
p

|φ|p

|x|p−1
dµ

∣∣∣∣p ≤
(∫

RN
|x|

p(2−p)
p−1 |φ|p dµ

)p−1 ∫
Ω

|∇φ|p dµ,

(2.20)

where dµ(x) = ev(x)dx. In particular, if v is constant, we have(
N − p+ 1

p

)p(∫
RN

|φ|p

|x|p−1
dx

)p

≤
(∫

RN
|x|

p(2−p)
p−1 |φ|p dx

)p−1 ∫
Ω

|∇φ|p dx,



565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

Hardy-type inequalities for the drifting p-Laplace operator and applications 13

which coincides with (2.19) when p=2.

Proof. It suffices to prove (2.20) for φ ∈ C∞
c (RN ) and the conclusion follows by

a density argument. Let ε> 0. As in the proof of corollary 2.8, we obtain (2.18).
Using the facts that

∆p,vFε(x)
ε→0−−−→

(
1

p− 1

)p−1
N − p+ 1 + x · ∇v

|x|p−1
and |∇Fε(x)|

ε→0−−−→ |x|
2−p
p−1

p− 1
,

and passing to the limit in (2.18), we obtain (2.20). �

We discuss the L2-Caffarelli–Kohn–Nirenberg inequality

C2(N, a, b)

(∫
RN

|φ|2

|x|a+b+1
dx

)2

≤
∫
RN

|∇φ|2

|x|2b
dx

∫
RN

|φ|2

|x|2a
dx (2.21)

for every φ ∈ C∞
0 (RN \ {0}), where C(N, a, b), a, b ∈ R ∪ {∞}, is a constant

independent of φ. The best constant C2(N, a, b) > 0 is known and the minimizers
are fully described, see [23]. For example, it is shown in [23] that C(N, a, b) =
1
2 |N − (a+ b+ 1)| when (a, b) ∈ A, where

A =
{
(a, b)|b+ 1− a > 0, b ≤ N−2

2

}
∪
{
(a, b)|b+ 1− a < 0, b ≥ N−2

2

}
.

The following corollary can be considered as a Lp form of (2.21) with the measure
dµ(x) = ev(x)dx.

Corollary 2.10. Let 1 < p <∞ and a, b ∈ R. Then∣∣∣∣∫
Ω

N − ((p− 1)a+ b+ 1) + x · ∇v
|x|(p−1)a+b+1

|φ|p dµ
∣∣∣∣p ≤ pp

(∫
Ω

|φ|p

|x|pa
dµ

)p−1 ∫
Ω

|∇φ|p

|x|pb
dµ

(2.22)

for every φ ∈ C∞
0 (RN \ {0}). In particular, if v is constant, we have∣∣∣∣N − (p− 1)a− b− 1

p

∣∣∣∣p(∫
Ω

|φ|p

|x|(p−1)a+b+1
dx

)p

≤
(∫

Ω

|φ|p

|x|pa
dx

)p−1 ∫
Ω

|∇φ|p

|x|pb
dx,

which coincides with (2.21) for p=2.

Proof. For the proof, we apply (2.2) in lemma 2.1 with V (x) = |x|−βx, β ∈ R.
Since div V (x) = (N − β)|x|−β and |V (x)| = |x|1−β we obtain, for any t ∈ [0, 1],

∣∣∣∣∫
Ω

N − β + x · ∇v
|x|β

|φ|p dµ
∣∣∣∣p ≤ pp

∫
Ω

|φ|p

|x|
tp(β−1)

p−1

dµ

p−1 ∫
Ω

|∇φ|p

|x|(1−t)p(β−1)
dµ.

(2.23)

Set a = t(β−1)
p−1 and b = (1− t)(β − 1), hence β = (p− 1)a+ b+ 1, then from (2.23)

we arrive at (2.22). �
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3. Non-existence results in unbounded domains

This section discusses Liouville theorems for positive solutions of (P) and (Q) in
unbounded domains by applying Hardy’s inequalities. The following auxiliary result
which may be of independent interest.

Proposition 3.1. Let Ω be an exterior domain in RN , 1 < p < N , dµ(x) =
ev(x)dx, where v satisfies (1.3). If a non-negative function g satisfies∫

Ω

g|φ|p dµ ≤
∫
Ω

|∇φ|p dµ (3.1)

for every non-negative φ ∈ C∞
c (Ω), then

lim inf
|x|→∞

|x|pg(x) ≤
(
β2 +

v21
p2

+
2β

p
v2

)p
2

, β =
N − p

p
. (3.2)

Proof of proposition 3.1: Assume that g satisfies (3.1) and for simplicity let
Ω = RN \BR0

, for some R0 > 0. Let d > 1, R > 2R0 and let ψ a smooth function

in Ω such that 0 ≤ ψ ≤ 1, x ∈ Ω, ψ=0 when R0 < |x| < R
2 and |x| > 2dR, ψ=1 in

R < |x| < dR, |∇ψ| ≤ 4
R when R

2 < |x| < R and |∇ψ| ≤ 4
dR when γR < |x| < 2dR.

We take

φ(x) = |x|−βe
−v(x)

p ψ(x), β =
N − p

p
,

as a test function in (3.1) and observe that∫
Ω
|∇φ|p dµ =

∫
R
2 <|x|<2dR

|∇φ|p dµ

=
∫
R
2 <|x|<R

|∇φ|p dµ+
∫
R<|x|<dR

|∇φ|p dµ+
∫
dR<|x|<2dR

|∇φ|p dµ

= I1(R) + I2(R) + I3(R).

We estimate each Ii(R), i = 1, 2, 3, separately. We note that

∇φ(x) = −e
−v(x)

p
(
β|x|−β−2ψ(x)x− |x|−β∇ψ(x) + 1

p |x|
−βψ(x)∇v(x)

)
= −e

−v(x)
p |x|−(β+1)

(
βψ(x) x

|x| − |x|∇ψ(x) + 1
pψ(x)|x|∇v(x)

)
.

Since 0 ≤ ψ ≤ 1, |∇ψ| ≤ 4
R and β + 1 = N

p , we obtain

|∇φ(x)|p ≤ e−v(x)|x|−N

(
β +

4|x|
R

+
1

p
|x||∇v(x)|

)p

.

By setting

M =
1

p
sup
x∈Ω

|x||∇v(x)|,

we have

|∇φ(x)|p ≤ (β + 4 +M)p|x|−Ne−v(x) = C1|x|−Ne−v(x),
R

2
< |x| < R, (3.3)
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where C 1 is independent of R. Similarly as above we get

|∇φ(x)|p ≤ C1|x|−Ne−v(x), dR < |x| < 2dR. (3.4)

Since ψ=1 in R < |x| < dR, we have

|∇φ(x)| = |x|−(β+1)e
−v(x)

p

∣∣∣∣β x

|x|
+

1

p
|x|∇v(x)

∣∣∣∣ , R < |x| < dR.

We also note that∣∣∣β x
|x| +

1
p |x|∇v(x)

∣∣∣2 = β2 + 1
p2
|x|2|∇v(x)|2 + 2β

p x · ∇v(x)

≤ β2 +
M1(d,R)2

p2
+ 2β

p M2(d,R) = A(R, d),

where

M1(d,R) = sup
R<|x|<dR

|x||∇v(x)| and M2(d,R) = sup
R<|x|<dR

x · ∇v(x).

It follows that

|∇φ(x)|p ≤ A(R, d)
p
2 e−v(x)|x|−N , R < |x| < dR. (3.5)

By the estimates above and using the fact that∫
R<|x|<T

|x|−N dx = CN log
T

R

together with (3.3) we obtain

I1(R) =
∫
R
2 <|x|<R

|∇φ|pdµ =
∫
R
2 <|x|<R

|∇φ|pev(x)dx

≤ C1

∫
R
2 <|x|<R

|x|−N = CNC1 log 2.

Similarly, by (3.4), we have

I3(R) ≤ CNC1 log 2

and by (3.5), we obtain

I2(R) =

∫
R<|x|<dR

|∇φ|p dµ ≤ CNA(R, d)
p
2 log d.

Hence, we conclude that∫
Ω

|∇φ|p dµ = I1(R) + I2(R) + I3(R) ≤ 2C1CN log 2 + CNA(R, d)
p
2 log d. (3.6)
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By the properties of φ, we have∫
Ω

c(x)|φ|p dµ ≥
∫
R<|x|<dR

c(x)|φ|p dµ =

∫
R<|x|<dR

c(x)|x|−βp dx

=

∫
R<|x|<dR

|x|pc(x)|x|−βp−p dx =

∫
R<|x|<dR

|x|pc(x)|x|−N dx

≥ CN inf
R<|x|<dR

|x|pc(x) log d.

By the above estimate, (3.6) and (3.1), we obtain

inf
R<|x|<dR

|x|pc(x) ≤ 2C1 log 2

log d
+A(R, d)

p
2 . (3.7)

By first letting d→ ∞ and then R→ ∞ in (3.7), we obtain

lim inf
x→∞

|x|pc(x) ≤
(
β2 +

v21
p2

+
2β

p
v2

)p
2

,

which proves (3.2).

3.1. Liouville-type results for the problem (P)

By applying propositions 2.2 and 3.1, we have the following non-existence result
for positive solutions to the problem (P).

Theorem 3.2. Consider the problem (P) in an exterior domain Ω in RN , 1 < p <
N , where v satisfies (1.3).

(i) If p− 1+B > 0, then the problem (P) does not admit any positive solution
provided

lim inf
|x|→∞

|x|pc(x) >
(

p− 1

p− 1 +B

)p−1(
β2 +

v21
p2

+
2β

p
v2

)p
2

, β =
N − p

p
.

(3.8)
In particular, the problem

−∆p,vu ≥ c(x)up−1 in Ω,

does not admit any positive solution, if

lim inf
x→∞

|x|pc(x) >
(
β2 +

v21
p2

+
2β

p
v2

)p
2

. (3.9)

(ii) Let E> 0 be a smooth function in an exterior domain Ω of RN , 1 < p < N ,
with −∆p,vE ≥ 0 in Ω, where v satisfies (1.3). Then

lim inf
|x|→∞

|x|p−∆p,vE(x)

E(x)p−1
≤
(
β2 +

v21
p2

+
2β

p
v2

)p
2

. (3.10)
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Proof. Let u be a positive solution of (P) in Ω. Let t > 0 and u(x) = wt(x)
t . Since

∇u(x) = w(x)t−1∇w(x)

and

∆pu(x) = (t− 1)(p− 1)w(x)(t−1)(p−1)−1|∇w(x)|p + w(t−1)(p−1)∆pw(x),

we obtain

−∆p,vw(x) ≥
c(x)

tp−1
w(x)p−1 + ((t− 1)(p− 1) +Bt)

|∇w(x)|p

w(x)
.

Set t = p−1
p−1+B to arrive at

−∆p,vw(x)

w(x)p−1
≥
(
p− 1 +B

p− 1

)p−1

c(x).

By multiplying both sides by |φ|p, φ ∈ C∞
c (Ω), and integration over Ω we get∫

Ω

−∆p,vw

wp−1
|φ|p dµ ≥

(
p− 1 +B

p− 1

)p−1 ∫
Ω

c(x)|φ|p dµ.

Then proposition 2.2 implies that∫
Ω

|∇φ|p dµ ≥
(
p− 1 +B

p− 1

)p−1 ∫
Ω

c(x)|φ|p dµ.

By proposition 3.1, we see that g(x) = (p−1−A
p−1 )p−1c(x) must satisfy (3.2), hence

there is no positive solution if

lim inf
|x|→∞

|x|pc(x) >
(

p− 1

p− 1−B

)p−1(
β2 +

v21
p2

+
2β

p
v2

)p
2

.

�

Remark 3.3. Notice that v1 ≥ |v2| implies

(
β2 +

v21
p2

+
2β

p
v2

)p
2

≥
∣∣∣∣N − p+ v2

p

∣∣∣∣p ,
and the equality holds if and only if v1 = |v2|. We claim that if

lim
|x|→∞

x · ∇v(x) = v2,

then the condition

α = lim sup
x→∞

|x|pc(x) <
(

p− 1

p− 1 +B

)p−1 ∣∣∣∣N − p+ v2
p

∣∣∣∣p , (3.11)
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suffices for the problem (P) to have a solution in an exterior domain ΩR = RN \BR

with R sufficiently large. Hence, in this case, (3.9) is essentially sharp. To prove
this, we search for t 6=0 such that u(x) = |x|t is a solution to (P) in RN \BR for R
sufficiently large. A direct computation gives

−∆p,vu(x)− c(x)u(x)p−1 −B |∇u(x)|p
u(x)

= |x|−p−t(p−1)
(
−(p− 1 +B)|t|p − (N − p+ x · ∇v(x))t|t|p−2 − |x|pc(x)

)
≥ 0

for |x| sufficiently large. Assume that N − p+ v2 > 0 (the other case is similar). By
(3.11), we may choose α1 > α and δ < v2 so that N − p+ δ > 0 and

α1 <

(
p− 1

p− 1 +B

)p−1(
N − p+ δ

p

)p

. (3.12)

By the definitions of α, v2, for |x| sufficiently large, we have |x|pc(x) < α1 and
x · ∇v(x) > δ, hence by the computation above we see that u(x) = |x|t for a t < 0
is a solution of (P) in ΩR for R large, if

h(t) = −(p− 1 +B)|t|p + (N − p+ δ)|t|p−1 − α1 > 0

for some t < 0. By (3.12), we have

h(t0) =

(
p− 1

p− 1 +B

)p−1(
N − p+ δ

p

)p

− α1 > 0,

with

t0 = − (p− 1)(N − p+ δ)

p(p− 1 +B)
< 0.

Thus, for R large, u(x) = |x|−t0 is a solution to (P) in RN \BR.

Example 3.4. Consider the problem

−∆p,vu ≥ |x|auq in Ω, (3.13)

where a ∈ R, 1 < p < N , q > p − 1 and Ω is an exterior domain in RN . If u is a
positive solution of (3.13) then by (3.9) in theorem 3.2 we get

(
β2 +

v21
p2

+
2β

p
v2

)p
2

≥ lim inf
|x|→∞

|x|p−∆p,vu(x)

u(x)p−1
≥ lim inf

|x|→∞
|x|a+pu(x)q−p+1.

Let us additionally assume that u is p-superharmonic at infinity, i.e., −∆pu(x) ≥ 0
for |x| > R, R large. It is well known that a p-superharmonic function u in an
exterior domain Ω satisfies

u(x) ≥ C|x|
p−N
p−1 , x ∈ Ω,
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(see for instance [39]), hence we must have a+p+(q−p+1)p−N
p−1 ≤ 0 or equivalently

q ≥ (N+a)(p−1)
N−p . Thus, Eq. (3.13) does not admit any positive p-superharmonic

solution if q < (N+a)(p−1)
N−p . By a similar argument, we see that the equation

−∆p,vu =
µu

|x|p
in Ω, µ > 0,

where Ω an exterior domain, does not admit any positive supersolution, if

µ >

(
β2 +

v21
p2

+
2β

p
v2

)p
2

.

Remark 3.5. In [3.14], it is shown that if v1 = lim sup|x|→∞ |x||b(x)| < ∞, then
problem

−∆pu+ |∇u|p−2b(x) · ∇u ≥ c(x)up−1 in Ω (3.14)

does not have any positive solution in exterior domains provided

lim inf
|x|→∞

|x|pc(x) >
(
N − p+ v1

p

)p

.

If b = ∇v for some smooth function v, then (3.14) can be written as

−∆p,vu ≥ c(x)up−1 in Ω.

Then noticing that |v2| ≤ v1 (v1, v2 defined in (1.3)), we have

(
β2 +

v21
p2

+
2β

p
v2

)p
2

≤
(
β2 +

v21
p2

+
2β

p
v1

)p
2

=

(
β +

v1
p

)p

=

(
N − p+ v1

p

)p

.

Hence, theorem 3.2 improves the previous results in [2, 3.14] when b = ∇v for some
smooth vector field v satisfying |v2| 6= v1. We see this in the next example.

Example 3.6. Consider (3.14) in an exterior domain Ω ⊂ RN , 1 < p < N , with
b = ∇v, where

v(x) =
x21
|x|2

e1, e1 = (1, 0, 0, . . . , 0),

for x = (x1, . . . , xN ). Then we see that

x · ∇v(x) = 0 and |x||∇v(x)| =
2|x1|

√
x22 + · · ·+ x2N
|x|2

≤ 1, x ∈ Ω.

Hence, v2 = 0 and v1 = 1. By theorem 3.2, we see that (3.14) does not admit any
positive smooth solution, if

lim inf
x→∞

|x|pc(x) >
(
β2 +

1

p2

)p
2

=

((
N − p

p

)2

+
1

p2

)p
2

.
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3.2. Results for the problem (Q)

In this subsection, we discuss Liouville-type results for positive solutions to the
problem (Q).

Proposition 3.7. Consider the problem (Q) is in an arbitrary domain Ω ⊂ RN ,
1 < p < N , with c ≥ 0 and b being continuous functions, and v satisfying (1.3). If
the problem has a positive solution in Ω, then(∫

Ω

c(x)|φ|p dµ
) 1

p

≤
(∫

Ω

|∇φ|p dµ
) 1

p

+

(∫
Ω

b(x)p

pp
|φ|p dµ

) 1
p

, (3.15)

and ∫
Ω

(
c(x)

(t+ 1)p−1
− |b(x)|p

pptp−1

)
|φ|p dµ ≤

∫
Ω

|∇φ|p dµ, t > 0, (3.16)

for every φ ∈ C∞
c (Ω), which also implies that

inf
suppφ

(
1− b(x)

p p
√
c(x)

)p ∫
Ω

c(x)|φ|p dµ ≤
∫
Ω

|∇φ|p dµ. (3.17)

Proof. Let u > 0 be a positive solution of (Q). As in the proof of theorem 3.2, let

t > 0 and u(x) = w(x)t+1

t+1 . Since

∆pu(x) = t(p− 1)w(x)k(p−1)−1|∇w(x)|p + w(x)t(p−1)∆pw(x),

we have

− t(p− 1)w(x)t(p−1)−1|∇w(x)|p − w(x)t(p−1)∆p,vw(x) + b(x)w(x)tp|∇w(x)|p

≥ c(x)
w(x)(t+1)(p−1)

(t+ 1)p−1
.

Dividing both sides of the above inequality by w(x)(t+1)(p−1), we get

−∆p,vw(x)

w(x)p−1 ≥ c(x)

(t+1)p−1 + t(p− 1) |∇w(x)|p
wp − b(x) |∇w(x)|p−1

w(x)p−1

= c(x)

(t+1)p−1 + t(p− 1)T (x)p − b(x)T (x)p−1,

where

T (x) =
|∇w(x)|
w(x)

.

Then noticing that for A,B > 0, we have

min
T>0

(AT p −BT p−1) = − (p− 1)p−1

pp
Bp

Ap−1

we obtain
−∆p,vw(x)

w(x)p−1
≥ c(x)

(t+ 1)p−1
− |b(x)|p

pptp−1
. (3.18)
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Hence, from proposition 2.2, we have∫
Ω

(
c(x)

(t+ 1)p−1
− |b(x)|p

pptp−1

)
|φ|p dµ ≤

∫
Ω

|∇φ|p dµ, t > 0, (3.19)

which proves (3.16).
Note also that, for x ∈ suppφ, we have

c(x)

(t+1)p−1 − |b(x)|p

pptp−1 = c(x)
(

1
(t+1)p−1 − |b(x)|p

ppc(x)
1

tp−1

)
≥ c(x)

(
1

(t+1)p−1 − B
tp−1

)
,

where

B = sup
suppφ

|b(x)|p

ppc(x)
.

Using the fact that, for 0 < B < 1, the function

g(t) =
1

(t+ 1)p−1
− B

tp−1
, t > 0,

achieves its maximum

g(t0) =
(
1−B

1
p
)p

at t0 =
B

1
p

1−B
1
p
,

then by the above computation we see that if u = wt0+1

t0+1 , then w satisfies

−∆p,vw(x)

w(x)p−1
≥ (1−B

1
p )pc(x).

From (3.19), we then have

(
1−B

1
p
)p ∫

Ω

c(x)|φ|p dµ ≤
∫
Ω

|∇φ|p dµ

for every φ ∈ C∞
c (Ω). This proves (3.17).

Moreover, if for a φ ∈ C∞
c (Ω) we multiply both sides of (3.18) by |φ|p, integrating

over Ω and applying the Hardy-type inequality (2.5) in proposition 2.2, we obtain∫
Ω

c(x)|φ|p dµ ≤ (t+ 1)p−1

∫
Ω

|∇φ|p dµ+
(t+ 1)p−1

tp−1

∫
Ω

b(x)p

pp
|φ|p dµ, (3.20)

which is true for all t > 0. Let φ ∈ C∞
c (Ω) and set

A =

∫
Ω

|∇φ|p dµ and B =

∫
Ω

b(x)p

pp
|φ|p dµ.
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Then (3.20) can be rewritten as∫
Ω

c(x)|φ(x)|p dµ ≤ A(t+ 1)p−1 +B
(t+ 1)p−1

tp−1
, t > 0.

The best possible choice for t would be the one which minimizes the right-hand
side of the above inequality. Note that for A> 0 and B ≥ 0, the function

f(t) = A(t+ 1)p−1 +B
(t+ 1)p−1

tp−1
, t > 0,

achieves its minimum

f(t0) = (A
1
p +B

1
p )p at t0 =

(
B

A

) 1
p

.

Therefore, by setting

t =

∫Ω b(x)p

pp |φ|p dµ∫
Ω
|∇φ|p dµ

 1
p

,

we arrive at∫
Ω

c(x)|φ|p dµ ≤

(∫
Ω

|∇φ|p dµ
) 1

p

+

(∫
Ω

b(x)p

pp
|φ|p dµ

) 1
p

p

,

which proves (3.15). �

Using the above results, we can formulate our non-existence results for the
problem (Q).

Theorem 3.8. Let 1 < p < N , b, c ∈ C(Ω), where Ω = RN \ BR0
, R0 > 0, is an

exterior domain in RN , with c(x) − b(x)p

pp > 0 for large |x| and v is smooth and

satisfies (1.3). Then the problem (Q) does not have any positive solution in Ω, if
either

lim inf
|x|→∞

|x|p
(

c(x)

(t+ 1)p−1
− b(x)p

pptp−1

)
>

(
β2 +

v21
p2

+
2β

p
v2

)p
2

, β =
N − p

p
, (3.21)

for some t> 0 or

sup
R>2R0

(
inf

R
2 <|x|<2dR

(
1− b(x)

p p
√
c(x)

)p

inf
R<|x|<dR

|x|pc(x)

)
= ∞, (3.22)

for some d> 1. In particular, if τ = lim sup|x|→∞ |x|b(x) < ∞, then the problem
(Q) does not have any positive solution, if

lim inf
|x|→∞

|x|pc(x) >

τ
p
+

(
β2 +

v21
p2

+
2β

p
v2

) 1
2

p

. (3.23)
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Proof. The proof of non-existence of positive solution under condition (3.21) is a
consequence of (3.16) and proposition 3.1. To prove the result under the condition
(3.22) note that by (3.17), if (Q) has a solution u > 0, then we have

inf
suppφ

(
1− b(x)

p p
√
c(x)

)p ∫
Ω

c(x)|φ|p dµ ≤
∫
Ω

|∇φ|p dµ (3.24)

for every φ ∈ C∞
c (Ω). Consider the same test function φ as in the proof of

proposition 3.1. By applying (3.6) for φ, from (3.24), we get

inf
suppφ

(
1− b(x)

p p
√
c(x)

)p ∫
Ω

c(x)|φ|p dµ ≤ 2C1CN log 2 + CNA(R, d)
p
2 log d ≤ Kd,N ,

where Kd,N is a constant independent of R. Since we have suppφ = {R
2 ≤ |x| ≤

2dR} and φ ≡ 1 in R < |x| < dR, we obtain

inf
R
2 <|x|<2γR

(
1− b(x)

p p
√
c(x)

)p

inf
R<|x|<γR

|x|pc(x) ≤ Kd,N . (3.25)

Hence, the problem does not admit any positive solution if (3.22) holds true.
To prove the last part, let

α = lim inf
|x|→∞

|x|pc(x).

If α = ∞, then (3.21) obviously holds and there is no positive solution. Thus, we
assume that α <∞. By

lim inf
|x|→∞

|x|p
(

c(x)

(t+ 1)p−1
− b(x)p

pptp−1

)
≥ α

(t+ 1)p−1
− τp

pptp−1
,

we see that (3.21) holds, if

α

(t+ 1)p−1
− τp

pptp−1
>

(
β2 +

v21
p2

+
2β

p
v2

)p
2

for some t > 0. Taking t = τ(pα
1
p − τ)−1 we find that the inequality above becomes

α >

τ
p
+

(
β2 +

v21
p2

+
2β

p
v2

)1
2

p

.

This concludes the proof. �
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Remark 3.9. By [12], the trivial solution u ≡ 0 is the unique non-negative solution
of the equation

−∆u− b · ∇u− cu = 0 in RN ,

where b ∈ RN , c ∈ R with 4c− |b|2 > 0. By [3.14], this is true for

−∆pu− |∇u|p−2b · ∇u− cu = 0 in Ω,

where Ω is an exterior domain in RN , 1 < p < N and c − |b|p
pp > 0. A simple

application of theorem 3.8 shows that the same result is true for the more general
equation

−∆pu− |∇u|p−2(b+∇v) · ∇u− cup−1 = 0 in Ω, (3.26)

where Ω is an exterior domain in RN , 1 < p < N , c− |b|p
pp > 0 and v satisfying(1.3).

Indeed, since ∣∣|∇u|p−2b · ∇u
∣∣ ≤ |b||∇u|p−1,

we note that any positive solution of (3.26) is also a solution of

−∆p,vu+ |b||∇u|p−1 ≥ cup−1 in Ω.

Note that if c − |b|p
pp > 0, then δ = 1 − |b|

p p√c
> 0. Thus we may apply (3.22) to

conclude the result, since

sup
R>2R0

(
inf

R
2 <|x|<2dR

(
1− b(x)

p p
√
c(x)

)p

inf
R<|x|<dR

|x|pc(x)

)
= δc sup

R>2R0

inf
R<|x|<dR

|x|p

= ∞.

Example 3.10. Consider the equation

−∆pu− |∇u|p−2

(
b+

γx

|x|2

)
· ∇u− cup−1 = 0 in Ω, (3.27)

where b ∈ RN , γ ∈ R and Ω is an exterior domain in RN , 1 < p < N . Since
γx

|x|2 = ∇(γ log |x|) and v(x) = γ log |x| satisfies (1.3), by the above remark, for

any γ ∈ R, the problem (3.27) does not have any positive supersolution provided

c− |b|p
pp > 0.

Remark 3.11. As in remark 3.3, we note that, by the inequality v1 ≥ |v2|, we
have τ

p
+

(
β2 +

v21
p2

+
2β

p
v2

)1
2

p

≥
(
τ + |N − p+ v2|

p

)p

and the equality holds iff v1 = |v2|. We show that if v2 = lim|x|→∞ x · ∇v and

α = lim sup
|x|→∞

|x|pc(x) <
(
τ + |N − p+ v2|

p

)p

, (3.28)
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then the problem (Q) has a positive solution in all exterior domains RN \ BR

with R sufficiently large. To see this, assume (3.28) holds and consider the case
N − p + v2 > 0 (the other case is similar). Let α1 > α, τ1 < τ and δ < v2 be so
that so that N − p+ δ > 0 and

α1 <

(
τ1 +N − p+ δ

p

)p

. (3.29)

We search for t > 0 such that u(x) = |x|−t is a solution to (Q) in RN \ BR for R
sufficiently large. A direct computation gives

−∆p,vu(x) + b(x)|∇u(x)|p−1 − c(x)u(x)p−1

= |x|−p−t(p−1)
(
−(p− 1)tp + tp−1 (N − p+ x · ∇v + |x|b(x))− |x|pc(x)

)
≥ 0

for |x| sufficiently large. By the definitions of α, τ, v2, we have |x|pc(x) < α1,
|x|b(x) > τ1, and x · ∇v > δ for |x| sufficiently large, hence the inequality above
holds once we have

g(t) = −(p− 1)tp + (N − p+ δ + τ1)t
p−1 − α1 ≥ 0

for some t > 0. Now if we set

t1 =
N − p+ δ + τ1

p
> 0

then

g(t1) =

(
N − p+ τ1 + δ

p

)p

− α1,

which is positive by (3.29). Thus, for R large, u(x) = |x|−t1 is a solution to (Q) in
RN \BR.

4. Non-existence results in bounded domains

In this section, we apply our main results to the problems (P) and (Q) in bounded
domains Ω ⊂ RN , 1 < p < N . For the sake of simplicity, we only discuss the case in
which c and b are constant functions. We consider the lowest eigenvalue λµ1 (Ω, p)
for the weighted p-Laplace equation given by (1.2).

Proposition 4.1. Let Ω be a bounded domain in RN , 1 < p < N , and assume
that v satisfies (1.3).

(i) The problem

−∆p,vu ≥ λup−1 +B
|∇u|p

u
inΩ, (4.1)

where p− 1 +B > 0 and λ> 0, does not have any positive solution, if

λ

(
p− 1 +B

p− 1

)p−1

> λµ1 (Ω, p).
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(ii) The problem

−∆pu+ b∇u|p−1 ≥ cup−1 in Ω, (4.2)

where b ≥ 0 and c> 0 does not have any positive solution in Ω, if

c
1
p − b

p
> λµ1 (Ω, p)

1
p .

Proof. Let u be a positive solution of problem 4.1 in Ω. As in the proof of
theorem 3.2, we see that B and λ have to satisfy

λ

(
p− 1−A

p− 1

)p−1

≤
∫
Ω
|∇φ|pdµ∫

Ω
|φ|p dµ

,

for every φ ∈ C∞
0 (Ω), φ 6=0, which implies that

λ

(
p− 1−A

p− 1

)p−1

≤ λµ1 (Ω, p).

Hence, the problem (4.1) does not have any positive solution if the inequality above
does not hold. This proves (i).

Then we consider (ii). Let u be a positive solution of (4.2) for some c, b > 0.
From proposition 3.7, we must have

(∫
Ω

c|φ|p dµ
) 1

p

≤
(∫

Ω

|∇φ|p dµ
) 1

p

+

(∫
Ω

bp

pp
|φ|p dµ

) 1
p

,

or equivalently (
c
1
p − b

p

)p

≤
∫
Ω
|∇φ|p dµ∫

Ω
|φ|p dµ

,

for every φ ∈ C∞
c (Ω), φ 6=0. This implies that

(
c
1
p − b

p

)p

≤ λµ1 (Ω, p).

Therefore, (4.2) does not have any positive solution if c
1
p − b

p > λµ1 (Ω, p)
1
p . �

Remark 4.2. Regarding the condition p−1+B > 0 in proposition 4.1, it is easy to
see that if p−1+B < 0, then the problem (P) has a positive solution in an arbitrary
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proper domain Ω ⊂ RN assuming the functions x · ∇v(x) and c are bounded in Ω.
Also, when p− 1 +B = 0, the same is true if for some δ > 0

N − p+ (x− x0) · ∇v(x) ≥ δ, x ∈ Ω, for somex0 6∈ Ω, (4.3)

or

N − p+ (x− x0) · ∇v(x) ≤ −δ, x ∈ Ω for somex0 6∈ Ω. (4.4)

To see this consider u(x) = |x− x0|t, t 6=0, with x0 6∈ Ω. As in remark 3.3, we see
that u is a solution to (P), if

−(p− 1 +B)|t|p + (N − p+ (x− x0) · ∇v(x))t|t|p−2 − |x− x0|pc(x) ≥ 0, x ∈ Ω,

which is obviously true for all large t > 0, if p − 1 + B < 0. When p − 1 + B = 0
then the above inequality holds true for large t > 0 if v satisfies (4.3), and for t < 0,
|t| large, if v satisfies (4.4).

5. Higher order differential equations

The final section illustrates how our findings can be applied to higher order
differential equations of the type

(−∆)mu ≥ c(x)uq in Ω.

In recent years, there has been a lot of interest in the existence or non-existence of
solutions to several kinds of higher order differential equations and systems on RN .
For instance, a differential equation or inequality of the form

(−∆)mu ≥ f(u) in Ω, (5.1)

where Ω = RN or an exterior domain in RN . A relevant special case of (5.1) is
f(u) = up with p> 0. It is well known that if 1 < p < N

N−2m then the latter
inequality in the whole space does not admit any non-negative polysuperharmonic
solution u, that is,

(−∆)iu ≥ 0 in Ω, i = 1, . . . ,m,

see, for example, corollary 3.6 in Caristi, D’Ambrosio, and Mitidieri [22], where
the authors have proved Liouville theorems for supersolutions of the polyhar-
monic Hénon–Lane–Emden system and also explored its connection with the
Hardy–Littlewood–Sobolev systems. For more results on the structure of positive
solutions or some related problems, we refer to [18, 26, 27] and the references
therein.

We start with the following Hardy-type inequality involving the operator (−∆)m

that can be proved using proposition 2.2.
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Corollary 5.1. Let m ≥ 1 be an integer, Ω be a domain in RN and u ∈ C2m(Ω)
a positive polysuperharmonic function. Then we have

∫
Ω

(
(−∆)mu

u

) 1
m

φ2 dx ≤
∫
Ω

|∇φ|2 dx (5.2)

for every φ ∈ C∞
c (Ω)

Proof. Let u be a smooth positive polysuperharmonic function. Proposition 2.2
with p=2 and v as a constant and E = (−∆)i−1u, i = 1, . . . ,m, implies that∫

Ω

(−∆)iu

(−∆)i−1u
|φ|2 dx ≤

∫
Ω

|∇φ|2 dx, (5.3)

for every φ ∈ C∞
c (Ω). We observe that

(
(−∆)mu

u

) 1
m

φ2 =
m∏
i=1

(
(−∆)iu

(−∆)i−1u
φ2
) 1

m

and by Holder’s inequality and (5.3) we obtain

∫
Ω

(
(−∆)mu

u

) 1
m

φ2 dx ≤
m∏
i=1

(∫
Ω

(−∆)iu

(−∆)i−1u
|φ|2 dx

) 1
m

≤
∫
Ω

|∇φ|2 dx.

�

Corollary 5.2. Assume that u ∈ C2m(Ω) satisfies(−∆)mu ≥ c(x)u in Ω

(−∆)iu > 0 in Ω, i = 0, 1, . . . ,m− 1,
(5.4)

where m ≥ 1 is an integer, Ω is an exterior domain in RN , N > 2m, and c ≥ 0.
Then

lim inf
|x|→∞

|x|2mc(x) ≤
(N − 2

2

)2m
. (5.5)

In particular, (5.4) does not admit any positive solution if

lim inf
|x|→∞

|x|2c(x) 1
m >

(N − 2)2

4
.

Proof. If u ∈ C2m(Ω) satisfies (5.4), then we have

(
(−∆)mu

u

) 1
m

≥ c(x)
1
m in Ω.
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and by corollary 5.1 we obtain∫
Ω

c(x)
1
m φ2 dx ≤

∫
Ω

|∇φ|2 dx,

for every φ ∈ C∞
c (Ω). By proposition 3.1 with p=2 and v(x) = 0, we have

lim inf
|x|→∞

|x|2c(x) 1
m ≤ (N − 2)2

4
,

which is equivalent to (5.5). �

The above result together with the following lemma can be applied to obtain
Liouville-type results for related higher order equations or inequalities in exterior
domains.

Lemma 5.3. Suppose that u> 0 is a smooth function such that

(−∆)iu > 0 in Ω, i = 1, . . . ,m,

where m ≥ 1 is an integer and Ω is an exterior domain Ω ⊂ RN , N > 2m. Then
there exists a positive constant C, depending only on u, Ω, and N, so that

u(x) ≥ C|x|2m−N for everyx ∈ Ω. (5.6)

Proof. We prove the claim by induction. The case m =1 is well known, see for
example [10], also see [3] for the case m =2. Assume the statement is true for
m − 1. Then since w = −∆u satisfies the induction hypothesis we get

−∆u = w(x) ≥ C|x|2(m−1)−N in Ω. (5.7)

Fix r0 > 0 such that RN \Br0
⊂ Ω. Select a γ > 0 so small that γ < C

2(m−1)(N−2m)

and u(x) ≥ γ|x|2m−N in a neighbourhood of ∂Br0
. Then for each ε> 0, there exists

Rε > r0 such that

u(x) + ε ≥ ε ≥ γ|x|2m−N for every x ∈ RN \BRε .

Notice that

−∆(u+ ε) = −∆u ≥ C|x|2(m−1)−N

≥ 2γ(m− 1)(N − 2m)|x|2(m−1)−N

= −∆(γ|x|2m−N ).

Applying the maximum principle in BR \Br0
, for each R > Rε, we get
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u(x) + ε ≥ γ|x|2m−N for every x ∈ RN \Br0
.

Letting ε→ 0, we obtain u(x) ≥ c|x|2m−N in RN \Br0
, which proves (5.6). �

Corollary. Consider the problem(−∆)mu ≥ c(x)uq in Ω,

(−∆)iu > 0 in Ω, i = 0, 1, . . . ,m− 1,
(5.8)

where m ≥ 1 is an integer, Ω is an exterior domain in RN , N > 2m and q> 1.
This problem does not admit any positive smooth solution if

lim
|x|→∞

|x|2qm−N(q−1)c(x) = ∞. (5.9)

In particular, if c(x) = |x|α then there is no positive solution when

q <
N + α

N − 2m
. (5.10)

Moreover, the problem(−∆)mu ≥ µu

|x|2m in Ω,

(−∆)iu > 0 in Ω, i = 0, 1, . . . ,m− 1,
(5.11)

does not have any positive smooth solution, if

µ >
(N − 2

2

)2m
.

Proof. Let u be a positive solution of (5.11). Thus

(−∆)mu ≥ c(x)uq = (c(x)uq−1)u in Ω.

Then by corollary 5.2, we have

lim inf
|x|→∞

|x|2(c(x)u(x)q−1)
1
m ≤ (N − 2)2

4
.

However, by lemma 5.3, we have

u(x) ≥ C|x|2m−N for every x ∈ Ω,

where C is independent of x ∈ Ω, which together q − 1 > 0 imply that

lim inf
|x|→∞

|x|2qm−N(q−1)c(x) <∞.

This implies that (5.11) does not have any positive solution if (5.9) holds.
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If c(x) = |x|α, then (5.9) reads as

lim inf
|x|→∞

|x|α+2qm−N(q−1) = ∞,

which holds true if q < N+α
N−2m .

The last assertion is an immediate consequence of corollary 5.2. �
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18 M. A. Burgos-Pérez, J. Garcia-Melián and A. Quaas. Some nonexistence theorems
for semilinear fourth order equations. Proc. Roy. Soc. Edinburgh Sect. A 149 (2019),
761–779.

19 A. Canale and F. Pappalardo. Weighted Hardy inequalities and Ornstein-Uhlenbeck type
operators perturbed by multipolar inverse square potentials. J. Math. Anal. Appl. 463
(2018), 895–909.

20 A. Canale, F. Pappalardo and C. Tarantino. A class of weighted Hardy inequalities and
applications to evolution problems. Ann. Mat. Pura Appl. (4) 199 (2020), 1171–1181.

21 D. Cao and I. Verbitsky. Nonlinear elliptic equations and intrinsic potentials of Wolff type.
J. Funct. Anal. 272 (2017), 112–165.

22 G. Caristi, L. D’Ambrosio and E. Mitidieri. Representation formulae for solutions to some
classes of higher order systems and related Liouville theorems. Milan J. Math. 76 (2008),
27–67.

23 F. Catrina and D. Costa. Sharp weighted-norm inequalities for functions with compact
support in RN \ 0. J. Differential Equations 246 (2009), 164–182.

24 C. Cazacu, J. Flynn and N. Lam. Sharp second order uncertainty principle. J. Funct. Anal.
283 (2022), Paper No. 109659.Q7

25 C. Cowan. Optimal Hardy inequalities for general elliptic operators with improvements.
Commun. Pure Appl. Anal. 9 (2010), 109–140.

26 C. Cowan. A Liouville theorem for a fourth order Hénon equation. Adv. Nonlinear Stud.
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