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In this article, we investigate the following non-linear Schrödinger (NLS) equation
with Neumann boundary conditions:

−∆u+ λu = f(u) in Ω,
∂u

∂ν
= 0 on ∂Ω

coupled with a constraint condition:∫
Ω
|u|2dx = c,

where Ω ⊂ RN (N ≥ 3) denotes a smooth bounded domain, ν represents the unit
outer normal vector to ∂Ω, c is a positive constant, and λ acts as a Lagrange
multiplier. When the non-linearity f exhibits a general mass supercritical growth at
infinity, we establish the existence of normalized solutions, which are not necessarily
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positive solutions and can be characterized as mountain pass type critical points of
the associated constraint functional. Our approach provides a uniform treatment of
various non-linearities, including cases such as f(u) = |u|p−2u, |u|q−2u+ |u|p−2u,
and −|u|q−2u+ |u|p−2u, where 2 < q < 2 + 4

N
< p < 2∗. The result is obtained

through a combination of a minimax principle with Morse index information for
constrained functionals and a novel blow-up analysis for the NLS equation under
Neumann boundary conditions.

Keywords: bounded domains; Neumann boundary conditions; non-linear Schrödinger
equation; variational methods; normalized solutions

2020 Mathematics Subject Classification: 35A15; 35J20; 35J60; 35Q55

1. Introduction and main results

This article is concerned with the following Neumann problem for non-linear
Schrödinger (NLS) equation:−∆u+ λu = f(u) in Ω,

∂u

∂ν
= 0 on ∂Ω

(1.1)

with a mass constraint ∫
Ω

|u|2dx = c, (1.2)

where Ω ⊂ RN (N ≥ 3) is a smooth bounded domain, c> 0 is a given constant, ν
stands for the unit outer normal to ∂Ω, and λ serves as a Lagrange multiplier.

The features of problem (1.1)–(1.2) are the following:

(i) The presence of the Neumann boundary condition is quite rare in the
analysis of solutions with prescribed mass.

(ii) The reaction exhibits a general mass supercritical growth at infinity.
(iii) The proof relies on powerful techniques, such as Morse theory and a new

blow-up analysis for the NLS equation.
(iv) The analysis presented in this article can be extended to other classes

of stationary problems, including biharmonic elliptic equations and
Schrödinger–Poisson equations.

The analysis of solutions with prescribed mass is particularly significant from a
physical point of view, in relationship with phenomena arising in non-linear optics,
the theory of water waves, etc. Indeed, solutions with prescribed L2-norm are espe-
cially relevant since this quantity is preserved along the time evolution. Moreover,
the variational characterization of such solutions is often a strong help to analyse
their orbital stability and instability properties, see [15, 33, 34, 54, 55].

The investigation of non-linear Neumann problem (1.1) finds applications in
various fields. One of the main motivations stems from the analysis of standing
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L2-supercritical NLS equations under Neumann boundary conditions 3

waves in the form ψ(t, x) = e−iλtu(x), where λ ∈ R and u : RN → R, for the
time-dependent NLS equation:

i∂tψ +∆ψ + g(|ψ|)ψ = 0, (t, x) ∈ R× Ω (1.3)

subject to Neumann boundary conditions. The model (1.3) plays an important role
in non-linear optics and Bose–Einstein condensates (see [3, 5, 23, 24, 40]). It is
evident that ψ(t, x) is a solution to (1.3) if and only (u, λ) constitutes a coupled
solution to (1.1) with f(u) = g(|u|)u. We study Eq. (1.1) by searching for solutions
satisfying the mass constraint

∫
Ω
|u|2dx = c. In this context, λ remains unknown

and emerges as a Lagrange multiplier, a feature deemed meaningful from a physi-
cal standpoint due to mass conservation. The solutions under a L2 constraint are
commonly referred to as normalized solutions. These normalized solutions to (1.1)
can be obtained as critical points of the energy functional J : H1(Ω) → R defined
by:

J(u) :=
1

2

∫
Ω

|∇u|2dx−
∫
Ω

F (u)dx

on the L2-sphere constraint:

Sc :=

{
u ∈ H1(Ω) :

∫
Ω

|u|2dx = c

}
,

where F (u) =
∫ u

0
f(t)dt.

When Ω = RN , problem (1.1)–(1.2) is transformed into −∆u+ λu = f(u) in RN ,∫
RN

|u|2dx = c.
(1.4)

Extensive studies have been conducted in recent years for this problem, particularly
when considering non-linearities satisfying f(u) ∼ |u|p−2u as |u| → +∞, where
p ∈ (2∗, 2

∗) with 2∗ := 2 + 4
N and 2∗ := 2N

N−2 . Within this L2-supercritical range,
the corresponding energy functional is unbounded from below on the constraint set
Sc. The pioneering work in this direction was carried out by Jeanjean [31], where
a scaled functional and mountain pass arguments were introduced to address the
L2-supercritical problems. Bartsch and Soave [6] developed a natural constraint
approach to investigate the L2-supercritical NLS equations and systems on RN .
For more related results on RN , we refer to [4, 7, 30, 33, 34, 56] and the associated
references.

The exploration of normalized solutions for the NLS on bounded domains was
initialled in [46]. When f(u) = |u|p−2u with p being L2-supercritical but Sobolev
subcritical, Noris et al. [46] demonstrated the existence of a positive normalized
solution on a unit ball with Dirichlet boundary conditions. The case for general
bounded domains was addressed in [49]. For NLS systems, one can refer to [47].

In [48], Pellacci et al. investigated normalized solutions of the NLS under both
Dirichlet and Neumann boundary conditions, focusing on the concentration of solu-
tions at specific points of Ω as the prescribed mass c varies. Specifically, for the
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Neumann problem (1.1)–(1.2) with f(u) = up−1 for p ∈ (2∗, 2
∗), they employed the

Lyapunov–Schmidt reduction method to prove the existence of positive normalized
solutions when c ∈ (0, c0) for some c0 > 0. The solutions concentrate at a point
ξ0 ∈ Ω as c→ 0, where ξ0 is either a non-degenerate critical point of the mean cur-
vature H of the boundary ∂Ω or the maximum point of the distance function from
∂Ω. However, the nature of these solutions—whether they correspond to local min-
imizers or mountain pass-type critical points of the associated functional—remains
unclear.

Additionally, it is noteworthy that earlier works on L2-subcritical
Schrödinger–Poisson type systems under Neumann boundary conditions can
be found in [2, 50, 51], where the authors established the existence of infinitely
many normalized solutions using the Ljusternik–Schnirelmann theory.

The methodologies used for bounded domains differ significantly from those uti-
lized in the entire space. In fact, the approaches for RN heavily rely on the scaling

transform (t ? u)(x) = t
N
2 u(tx) and the associated Pohozaev identity. However,

due to the lack of invariance under translations and dilation, as well as the emer-
gence of uncontrollable boundary terms in the Pohozaev identity (particularly for
non-convex domains), neither of these techniques is applicable to general bounded
domains.

The normalized solutions are also explored within the framework of ergodic mean
field game (MFG) systems, offering another key motivation for studying Eq. (1.1).
MFGs were introduced in influential works by Huang, Caines, and Malham‘e [29]
and Lasry and Lions [37], independently. The primary objective of MFG is to estab-
lish a framework for characterizing Nash equilibria in differential games involving
an infinite number of agents that are indistinguishable from one another. For more
details, we refer interested readers to [18, 19, 53] and the references therein. From a
mathematical perspective, such equilibria can be characterized by an elliptic system
that combines a Kolmogorov equation and a Hamilton–Jacobi–Bellman equation.
Moreover, this system has to satisfy normalization in L1(Ω) as follows:

−∆v +H(∇v) + λ = h(m(x)) in Ω,

−∆m− div(m∇H(∇v)) = 0 in Ω,
∂v

∂ν
= 0,

∂m

∂ν
+m∇H(∇v) · ν = 0 on ∂Ω,∫

Ω

mdx = 1,

∫
Ω

vdx = 0.

(1.5)

The Neumann boundary conditions are based on the assumption that agents’ tra-
jectories are restricted to Ω by bouncing off the boundary in a normal direction. For
the quadratic Hamilton case H(∇v) = |∇v|2, by using a Hopf–Cole transformation
φ = e−v/

∫
e−v =

√
m, (1.5) is reduced to

−∆φ = λφ− h(φ2)φ in Ω,
∂φ

∂ν
= 0 on ∂Ω,∫

Ω

|φ|2dx = 1,

(1.6)
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L2-supercritical NLS equations under Neumann boundary conditions 5

which can be viewed as a single NLS equation with prescribed mass. In fact, we
can check that (1.6) is equivalent to (1.1) by taking a simple transformation φ =
1√
c
u and f(u) = h(u

2

c )u. In [19], Cirant et al. investigated the existence of the

viscous ergodic MFG system with Neumann boundary conditions. They proved the
existence of global minimizers in L2-subcritical and critical cases, as well as local
minimizers in L2-supercritical cases.

When f satisfies the L2-supercritical growth, the constraint functional J |Sc
exhibits a mountain pass geometry structure. Hence, it is natural to seek mountain
pass type normalized solutions to the Neumann problem (1.1)–(1.2). However, in
this scenario, the functional J becomes unbounded from below on Sc, rendering the
method in [19] ineffective. To the best of our knowledge, there are currently no ref-
erences addressing this issue. The primary aim of this article is to develop a novel
variational technique to explore the existence of mountain pass type normalized
solutions for (1.1)–(1.2) under the L2-supercritical growth conditions.

Furthermore, notice that the current existence results of normalized solutions
for (1.4) mainly rely on the following global Ambrosetti–Rabinowitz type condition

0 < αF (t) ≤ f(t)t for t 6= 0, where α ∈ (2∗, 2
∗) , (1.7)

(see [6, 30, 31]) or combined non-linearities (see [4, 7, 33, 34, 54–56]). Recently,
normalized solutions of (1.4) have also been studied when (1.7) is replaced by
certain global monotonicity conditions, as discussed in [10, 17, 35, 42]. However,
the exploration of normalized solutions on bounded domains with more diverse non-
linearities beyond power non-linearity is currently limited. Our method is designed
to be flexible and applies to a broad range of non-linearities, including f(u) =
|u|p−2u, |u|q−2u+ |u|p−2u, and −|u|q−2u+ |u|p−2u, where 2 < q < 2+ 4

N < p < 2∗,
in a unified manner. Our results do not require the presence of condition (1.7) or
the global monotonicity conditions. Additionally, motivated by the arguments in
[49], diverging from the prevalent focus on positive solutions in existing literature,
we establish the existence of mountain pass type normalized solutions that are not
necessarily positive.

Before stating our results, let us impose the following assumptions on f :

(f 1) f ∈ C1(R), lim
|t|→0

f(t)
t = 0;

(f 2) there exist constants p ∈ (2∗, 2
∗) and a0 > 0 such that

lim
|t|→∞

f(t)

|t|p−2t
= a0;

(f 3) there exist constants µ ≥ a0(p− 1) and M > 0 such that

µ|t|p−2 ≤ f ′(t), ∀|t| ≥M.

Our main result is the following theorem.

Theorem 1.1. Suppose (f1)–(f3) hold. Then there exists a constant c∗ > 0 such
that for any 0 < c < c∗, problem (1.1)–(1.2) has a normalized solution pair (u, λ) ∈
H1(Ω)× R of mountain pass type.
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Remark 1.2. If f(t)t > 0 for t 6=0, it allows us to establish the positivity of
the Lagrange multiplier λ. In fact, under this condition, we can obtain a positive
normalized solution u of (1.1). Subsequently, integrating Eq. (1.1) and using the
Neumann boundary value condition, we can deduce that λ> 0.

A significant challenge in proving theorem 1.1 arises from establishing the bound-
edness of Palais–Smale sequences. To overcome this obstacle, we combine with a
parameterized minimax principle with Morse index information for constrained
functionals established recently in [13] (see also [12, 16]) and a new blow-up anal-
ysis for the NLS equation under Neumann boundary conditions. In applying this
method, the sign condition

∫
Ω
F (u) ≥ 0 for all u ∈ H1(Ω) is crucial to ensure

the applicability of the monotonicity trick (see theorem 3.4 in §3). However, in
our specific problem,

∫
Ω
F (u) is not necessarily non-negative when u is not suffi-

ciently large. Our strategy to tackle this challenge is to utilize a cut-off function
and decompose f into two parts, ensuring that one of the parts satisfies this sign
condition and allows for the application of the monotonicity trick.

To address the original Neumann problem after deriving solutions for approxi-
mation problems, we will propose an innovative blow-up analysis tailored for the
NLS subject to Neumann boundary conditions. In contrast to the blow-up argu-
ments applied in the Dirichlet case (see [20, 49]), the blow-up analysis for NLS with
Neumann boundary conditions, subject to the L2-constraint, proves to be consid-
erably more intricate. In fact, in Neumann problems, the solution is not necessarily
required to vanish at the boundary ∂Ω, and local extremum points of solutions can
exist on the boundary. This is in stark contrast to Dirichlet problems where such
extremum points are found in the interior of Ω.

We note that several studies have conducted blow-up analyses of the NLS under
Neumann boundary conditions. It is well known that combining blow-up arguments
with suitable Liouville-type theorems is highly effective for deriving a priori esti-
mates. In [39], Lin et al. delivered a comprehensive blow-up analysis to establish
the boundedness for positive solutions to the following Neumann problem:

−d∆u+ u = g(u) in Ω,
∂u

∂ν
= 0 on ∂Ω,

(1.8)

where d > 0 and g satisfies Sobolev subcritical growth conditions. The Sobolev crit-
ical case was subsequently addressed by Adimurthi et al. [1]. In [28], Hu et al. used
a blow-up argument for a non-linear Neumann problem involving the p-Laplacian
to obtain a priori estimates. For further details on blow-up analyses of elliptic
problems under Neumann boundary conditions, the reader is referred to [11, 36].

Blow-up analysis can also establish a connection between the boundedness of
solutions and their Morse indices. Consider the following problem:

−∆u = g(x, u) in Ω,
∂u

∂ν
= 0 on ∂Ω,

(1.9)
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where g satisfies superlinear and subcritical growth conditions. Harrabi et al. [27]
proved that the L∞ bounds for solutions to (1.9) are equivalent to bounds on their
Morse indices.

In contrast to the arguments presented in [27], our discussion is conducted
under a mass constraint and involves a family of non-linearities arising from vary-
ing Lagrange multipliers, along with a dense set used in the monotonicity trick.
The most significant distinction, however, is that our blow-up analysis requires an
exponential decay estimate for the solution sequence. This difference necessitates
substantial modifications to the blow-up arguments in the Neumann case.

As we discussed earlier, we present a compelling argument to establish that the
solution sequence not only exhibits the commonly observed exponential decay away
from the boundary ∂Ω, as found in the fixed frequency NLS in the Neumann case
(see [43, 44]), but more significantly, it demonstrates uniform exponential decay
away from the blow-up points.

To conduct the blow-up analysis and subsequently derive a contradiction, a
critical step involves demonstrating that the solution sequence exhibits uniform
exponential decay, especially when the blow-up points are situated on the bound-
ary ∂Ω. However, in such cases, we can typically only establish that the solution
sequence exponentially decays uniformly away from the blow-up points within a
smaller domain in Ω, which is distant from the boundary. Specifically, as detailed
in §4, through a comparison argument, we can only provide an estimation that the
solution sequence exponentially decays uniformly away from the blow-up points
in the domain Ω̃θ\ ∪k

i=1 (B
Rλ

− 1
2

n

(P i
n) ∩ Ω̃θ) (Ωθ is defined in §4, Ω̃θ := Ω\Ωθ and

k ∈ {1, 2}). To be precise, it is demonstrated that there exist constants C1 > 0 and
C2 > 0 such that

un(x) ≤ C1e
C1Rλ

1
p−2
n

k∑
i=1

e−C2λ
1
2
n |x−Pi

n|, ∀x ∈ Ω̃θ\ ∪k
i=1 (B

Rλ
−1

2
n

(P i
n) ∩ Ω̃θ),

where un satisfies (4.1), R> 0 is a constant, P i
n is a local extremum point,

i ∈ {1, . . . , k}. However, this conclusion falls short of addressing our problem
adequately. The limitation arises from the challenging nature of estimating the
exponential decay of the solution in the neighbourhood near the boundary ∂Ω.

To overcome this limitation, we formulate a diffeomorphism, denoted as Φ :
Ωθ → Ωθ, in a manner that expands the equation to encompass a new domain,
namely, Ω ∪ Ωθ, which combines the original domain Ω with an adjoining tubular
neighbourhood Ωθ (see §4). Employing the comparison theorem, we deduce that the
solution exhibits exponential decay away from the boundary of the newly defined
domain Ω∪Ωθ. Subsequently, through a similar argument as mentioned earlier, we
observe that the solution exponentially decays uniformly away from the blow-up
points in Ω\ ∪k

i=1 (BRλ
−1/2
n

(P i
n) ∩ Ω). This establishes the intended conclusion we

strive to attain.
This article is organized as follows. In §2, we provide the mountain pass geometry

of the parameterized functionals Jρ uniformly for ρ ∈ [12 , 1]. Subsequently, in §3,
we show the existence of a mountain pass critical point uρ with Morse index infor-
mation for Jρ|Sc for almost every ρ ∈ [ 12 , 1]. In §4, we perform a blow-up analysis
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of solutions with bounded Morse index for the Neumann problem. Finally, in §5,
we prove theorem 1.1. For convenience, we denote by ‖ · ‖r the norm of the spaces
Lr(Ω)(1 ≤ r ≤ +∞), by ‖ · ‖ the norm in H1(Ω).

2. Mountain pass geometry

This section is dedicated to establishing the uniform mountain pass geometry for a
parameterized functional. To achieve this goal, we first decompose f into two parts.
By (f1)–(f2), we deduce that there exists R0 > 0 such that f(t)t > 0 for |t| ≥ R0.
Utilizing this observation, we define

f1(t) := η(t)f(t) and f2(t) := (1− η(t))f(t),

where η is a smooth cut-off function such that

η(t) =

1, |t| ≥ R0 + 1,

0, |t| < R0

with |η′(t)| ≤ 2 for R0 < |t| < R0 + 1. Clearly, f1(t)t ≥ 0 for all t 6= 0.
Define Jρ : H1(Ω) → R by

Jρ(u) :=
1

2

∫
Ω

|∇u|2dx−
∫
Ω

F2(u)dx−ρ
∫
Ω

F1(u)dx, u ∈ H1(Ω), ρ ∈
[
1

2
, 1

]
, (2.1)

where F1(u) =
∫ u

0
f1(t)dt and F2(u) =

∫ u

0
f2(t)dt.

We recall the Gagliardo–Nirenberg inequality (see [45]): for every N ≥ 3 and
p ∈ (2, 2∗), there exists a constant CN,r,Ω depending on N, r and Ω such that

‖u‖r ≤ CN,r,Ω‖u‖1−γr
2 ‖u‖γr

H1(Ω)
, ∀u ∈ H1(Ω),

where

γr :=
N(r − 2)

2r
.

Define Bα := {u ∈ Sc :
∫
Ω
|∇u|2 ≤ α}, ∀α > 0. We have the following result.

Lemma 2.1. Assume (f1)–(f3). Then there exists c∗ > 0 such that for any c ∈
(0, c∗), we can find α∗ > 0 such that

sup
u∈Bα∗

J 1
2
(u) < inf

u∈∂B2α∗
J1(u).

Proof. By (f1)–(f2), for any ε, δ > 0 and q ∈ (2, 2∗), there exist constants C
′
ε, Cδ > 0

such that

F2(u) ≥ − ε

2
|u|2 − C ′

ε

q
|u|q, (2.2)

F (u) ≤ δ

2
|u|2 + Cδ

p
|u|p. (2.3)
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Let u ∈ Bα and v ∈ ∂B2α, where α is to be determined. By (2.2)–(2.3), along with
the Gagliardo–Nirenberg inequality, we obtain

J1(v)− J 1
2
(u)

≥ 1

2

∫
Ω

|∇v|2 − 1

2

∫
Ω

|∇u|2 −
∫
Ω

F (v) +

∫
Ω

F2(u)

≥ 1

2

∫
Ω

(
|∇v|2 − |∇u|2

)
dx− δ + ε

2
c−

CδC
p
N,p

p
c
p(1−γp)

2 ‖v‖pγp −
C ′

εC
q
N,q

q

× c
q(1−γq)

2 ‖u‖qγq

≥ α

2
− δ + ε

2
c−

CδC
p
N,p

p
c
p(1−γp)

2 (2α+ c)
pγp
2 −

C ′
εC

q
N,q

q
c
q(1−γq)

2 (α+ c)
qγq
2 .

Due to the arbitrariness of ε and δ, we conclude that for some c∗ > 0 and any
c ∈ (0, c∗), taking α∗ = 4c, we have

J1(v)− J 1
2
(u) ≥ c− 9

pγp
2
C1C

p
N,p

p
c
p
2 − 5

qγq
2
C ′

1C
q
N,q

q
c
q
2 > 0.

Hence, the conclusion follows. �

For any c ∈ (0, c∗), we define

mρ := inf
u∈B2α∗

Jρ(u), ∀ρ ∈
[
1

2
, 1

]
.

Then, following the approach outlined in [47, proposition 3.4] (see also [8, theorem
1.6]), we can derive the following result.

Lemma 2.2. Assume (f1)–(f3) and c ∈ (0, c∗). Then mρ is achieved by some u∗ρ ∈
B2α∗ \ ∂B2α∗ .

Proof. Fix c ∈ (0, c∗). By lemma 2.1, for any ρ ∈
[
1
2 , 1
]
, we have

sup
u∈Bα∗

Jρ(u) ≤ sup
u∈Bα∗

J 1
2
(u) < inf

u∈∂B2α∗
J1(u) ≤ inf

u∈∂B2α∗
Jρ(u).

Let {uρ,n} ⊂ B2α∗ be a minimizing sequence for Jρ at the levelmρ. Clearly, {uρ,n} is
bounded in H1(Ω). Consequently, there exist a subsequence of {uρ,n}, still denoted
by {uρ,n}, and some u∗ρ ∈ H1(Ω) such that uρ,n ⇀ u∗ρ in H1(Ω) and uρ,n → u∗ρ
strongly in Lr(Ω) for r ∈ [1, 2∗). This implies that u∗ρ ∈ B2α∗ and thus Jρ(u

∗
ρ) ≥ mρ.

By (f1)–(f2), together with the Hölder inequality and the Lebesgue dominated
convergence theorem, we have∫

Ω

(
F (uρ,n)− F (u∗ρ)

)
dx =

∫
Ω

F (uρ,n − u∗ρ)dx+ on(1) → 0.

Therefore, we obtain

Jρ(u
∗
ρ) ≤ lim inf

n→+∞
Jρ(uρ,n) = mρ.
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10 X. Chang, V. D. Radulescu and Y. Zhang

Combining this with the previous inequality, we deduce that Jρ(u
∗
ρ) = mρ and

‖∇
(
uρ,n − u∗ρ

)
‖22 → 0. This implies that uρ,n → u∗ρ in H1(Ω) and hence u∗ρ is a

minimizer of Jρ. Thus, the desired conclusion follows. �

Now we can show the mountain pass geometry of Jρ uniformly for ρ ∈ [ 12 , 1].

Lemma 2.3. Assume (f1)–(f3). Then, for any c ∈ (0, c∗), there exist w1, w2 ∈ Sc

such that

cρ := inf
γ∈Γ

max
t∈[0,1]

Jρ(γ(t)) > max{Jρ(w1), Jρ(w2)}, ∀ρ ∈
[
1

2
, 1

]
,

where

Γ := {γ ∈ C([0, 1],Sc) : γ(0) = w1, γ(1) = w2}. (2.4)

Proof. Let Br(x) denote a ball in RN , centred at x ∈ RN with radius r > 0. Take
φ ∈ C∞

0 (B1(0)) with φ> 0 in B1(0) such that
∫
B1(0)

φ2 = 1. For n ∈ N, x0 ∈ Ω,

define

ϕn(x) := c
1
2n

N
2 φ(n(x− x0)), x ∈ Ω.

We can verify that ϕn ∈ Sc and supp(ϕn) ⊂ B 1
n
(x0) ⊂ Ω for sufficiently large n.

By (f1)–(f2), taking R0 > 0 larger if necessary, there exist constants
CR0

, C ′
R0
, Cp > 0 such that

F1(t) ≥
Cpa0
2p

|t|p, ∀|t| ≥ 2R0, F1(t) ≥ −CR0
, ∀|t| ≤ 2R0,

F2(t) ≥ −C ′
R0
,∀t ∈ R.

Set Ωn,2R0
:= {x ∈ Ω : |ϕn| ≤ 2R0}. Then, for sufficiently large n such that

max
x∈Ω

|ϕn| > 2R0, we have for all ρ ∈ [12 , 1],

Jρ(ϕn) ≤
1

2

∫
Ω

|∇ϕn(x)|2 + (CR0
+ C ′

R0
)|Ω| − ρ

∫
Ω\Ωn,2R0

Cpa0
2p

|ϕn|p

=
cn2

2

∫
B1(0)

|∇φ(x)|2 + (CR0
+ C ′

R0
)|Ω|+ 2pCPa0

4p
Rp

0|Ω|

− CPa0
4p

c
p
2n

pN−2N
2

∫
B1(0)

|φ(x)|p → −∞.

Hence, there exists n0 > 0 sufficiently large such that

Jρ(ϕn0
) < J1(u

∗
1
2
) ≤ Jρ(u

∗
1
2
), ∀ρ ∈

[
1

2
, 1

]
.

Choose w1 = u∗1
2

and w2 = ϕn0
. Clearly, u∗1

2
∈ B2α∗ \ ∂B2α∗ , ϕn0

6∈ B2α∗ . By

continuity, for any γ ∈ Γ, there exists tγ ∈ [0, 1] such that γ(tγ) ∈ ∂B2α∗ . Thus, by
lemma 2.1, it follows that
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max
t∈[0,1]

Jρ(γ(t)) ≥ Jρ(γ(tγ)) ≥ inf
u∈∂B2α∗

Jρ(u) > sup
u∈Bα∗

J 1
2
(u)

≥ Jρ(u
∗
1
2
) = max{Jρ(w1), Jρ(w2)}, ∀ρ ∈

[
1

2
, 1

]
.

The proof is now complete. �

3. Existence of MP solutions for a dense set

In this section, we establish the existence of a bounded Palais–Smale sequence at
level cρ for almost every ρ ∈ [12 , 1]. Our approach involves applying a recently
developed min-max principle on the L2-sphere, as detailed in [13]. This princi-
ple integrates the monotonicity trick presented in [32] with the min-max theorem
enriched by second-order insights from Fang and Ghoussoub [21], which is also
elaborated upon in [25, Chapter 11].

For a domain D ⊂ RN and φ, u ∈ H1(D), we consider

Qλ,ρ(φ;u;D) :=

∫
D

|∇φ|2dx+ λ

∫
D

|φ|2dx−
∫
D

f ′2(u)φ
2dx−

∫
D

ρf ′1(u)φ
2dx,

where λ ∈ R, ρ ∈ [12 , 1]. The Morse index of u, denote by m(u), is the maximum
dimension of a subspaceW ⊂ H1(D) such thatQλ,ρ(φ;u;D) < 0 for all φ ∈W\{0}.

To state the abstract minimax theorem, we recall a general setting introduced
in [9]. Let (E, 〈·, ·〉) and (H, (·, ·)) be two infinite dimensional Hilbert spaces such
that

E ↪→ H ↪→ E′

with continuous injections. The continuous injection E ↪→ H has a norm at most
1 and E is identified with its image in H. For u ∈ E, we denote ‖u‖2 = 〈u, u〉 and
|u|2 = (u, u). For a ∈ (0,+∞), we define S(a) := {u ∈ E, |u|2 = a}. We denote by
‖ · ‖∗ and ‖ · ‖∗∗, respectively, the operator norm of L(E,R) and of L(E,L(E,R)).

Definition 3.1. [13] Let φ : E → R be a C2-functional on E and α ∈ (0, 1]. We
say that φ′ and φ′′ are α-Hölder continuous on bounded sets if for any R> 0 one
can find M =M(R) > 0 such that for any u1, u2 ∈ B(0, R):

‖φ′(u1)− φ′(u2)‖∗ ≤M‖u1 − u2‖α, ‖φ′′(u1)− φ′′(u2)‖∗∗ ≤M‖u1 − u2‖α. (3.1)

Definition 3.2. [13] Let φ be a C2-functional on E, for any u ∈ E define the
continuous bilinear map:

D2φ(u) := φ′′(u)− φ′(u) · u
|u|2

(·, ·).

Definition 3.3. [13] For any u ∈ S(a) and θ > 0, we define an approximate
Morse index by

m̃θ(u) := sup
{
dim L|L is a subspace of TuS(a) such that D2φ(u)[φ, φ] < −θ‖φ‖2,
∀ϕ ∈ L\{0}} .
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If u is a critical point for the constrained functional φ|S(a) and θ=0, then m̃θ(u)
is the Morse index of u as a constrained critical point.

Theorem 3.4. ([13], theorem 1.5). Let I ⊂ (0,+∞) be an interval and consider a
family of C2 functionals Φρ : E → R of the form:

Φρ(u) = A(u)− ρB(u), ρ ∈ I,

where B(u) ≥ 0 for every u ∈ E, and

either A(u) → +∞ or B(u) → +∞ as u ∈ E and ‖u‖ → +∞.

Suppose moreover that Φ′
ρ and Φ′′

ρ are α-Hölder continuous on bounded sets for
some α ∈ (0, 1]. Finally, suppose that there exist w1, w2 ∈ S(a) (independent of ρ)
such that, set

Γ := {γ ∈ C([0, 1], S(a)) : γ(0) = w1, γ(1) = w2},

we have

cρ := inf
γ∈Γ

max
t∈[0,1]

Φρ(γ(t)) > max{Φρ(w1),Φρ(w2)}, ∀ρ ∈ I. (3.2)

Then, for almost every ρ ∈ I, there exist sequence {un} ⊂ S(a) and ζn → 0+ such
that, as n→ ∞,

(i) Φρ(un) → cρ;
(ii) ‖Φ′

ρ|S(a)(un)‖ → 0;
(iii) {un} is bounded in E;
(iv) m̃ζn(u) ≤ 1.

Define hρ(t) = ρf1(t) + f2(t) for t ∈ R and ρ ∈ [12 , 1]. In the following, we obtain
the main result of this section.

Theorem 3.5. Assume (f1)–(f3) and c ∈ (0, c∗). Then, for almost every ρ ∈ [12 , 1],
there exists a critical point uρ of Jρ on Sc at level cρ, which solves the following
problem

−∆uρ + λρuρ = hρ(uρ) in Ω,
∂uρ
∂ν = 0 on ∂Ω

(3.3)

for some λρ ∈ R. Moreover, the Morse index of {uρ} satisfies m(uρ) ≤ 2.
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Proof. We will apply theorem 3.4 to the family of functionals Jρ, where E = H1(Ω),
H = L2(Ω), S(a) = Sc and Γ is defined by (2.4). Specifically, we set

A(u) =
1

2

∫
Ω

|∇u|2dx−
∫
Ω

F2(u)dx and B(u) =

∫
Ω

F1(u)dx.

Thus, we have Jρ(u) = A(u) − ρB(u). Given that u ∈ Sc and considering the
boundedness of

∫
Ω
F2(u)dx, we deduce that

A(u) → ∞ as ‖u‖ → +∞.

Moreover, by assumptions (f1)–(f2), it follows that J ′
ρ and J ′′

ρ are locally Hölder
continuous on Sc. By lemma 2.3, we can apply theorem 3.4 to produce a bounded
Palais–Smale sequence {un} ⊂ H1(Ω) for the constrained functional Jρ|Sc at level
cρ for almost every ρ ∈ [12 , 1]. Additionally, there exists a sequence ζn → 0+ such
that m̃ζn(un) ≤ 1.

Since ‖J ′
ρ|Sc(un)‖ → 0, and by the boundedness of {un}, there exists a sequence

{λn} ⊂ R such that for any ϕ ∈ H1(Ω), we have∫
Ω

∇un∇ϕdx+ λn

∫
Ω

unϕdx−
∫
Ω

hρ(un)ϕdx = o(1). (3.4)

This implies that ∫
Ω

|∇un|2dx+ λnc−
∫
Ω

hρ(un)undx→ 0.

Using (f1)–(f2) again, we deduce that {λn} is bounded. Therefore, up to a sub-
sequence, we may assume that λn → λρ ∈ R and un ⇀ uρ weakly in H1(Ω). By
(3.4), we obtain ∫

Ω

∇uρ∇ϕdx+ λρ

∫
Ω

uρϕdx−
∫
Ω

hρ(uρ)ϕdx = 0,

which implies that uρ weakly solves (3.3). By the compact embedding H1(Ω) ↪→
Lr(Ω) for r ∈ [1, 2∗) and standard arguments, we obtain that un → uρ strongly in
H1(Ω).

It remains to show that m(uρ) ≤ 2. Since TuSc has codimension 1, noting that
d2|ScJρ and TunSc vary with continuity, by m̃ζn(un) ≤ 1 it follows that m̃0(uρ) ≤ 1.
Then, we can use similar arguments as in [12, proposition 3.5] to show m(uρ) ≤ 2.
In fact, since the tangent space TuSc has codimension 1, it suffices to show that
uρ ∈ Sc has Morse index at most 1 as a constrained critical point. If this were
not the case, by definition 3.3, we may assume by contradiction that there exists a
subspace W0 ⊂ TuSc with dimW0 = 2 such that

D2Jρ(uρ)[w,w] < 0 for all w ∈W0\{0}. (3.5)
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Since W 0 is finite-dimensional, there exists a constant β > 0 such that

D2Jρ(uρ)[w,w] < −β for all w ∈W0\{0} with ‖w‖ = 1.

Using the homogeneity of D2Jρ(uρ), we deduce that

D2Jρ(uρ)[w,w] < −β‖w‖2 for all w ∈W0\{0}.

Now, since J ′
ρ and J ′′

ρ are α-Hölder continuous on bounded sets for some α ∈ (0, 1],
it follows that there exists a sufficient small δ1 > 0 such that, for any v ∈ Sc

satisfying ‖v − uρ‖ ≤ δ1,

D2Jρ(v)[w,w] < −β
2
‖w‖2 for all w ∈W0\{0}. (3.6)

Hence, using the fact that ‖un − uρ‖ ≤ δ1 for sufficiently large n ∈ N, and in view
of (3.5), (3.6), and ζn → 0+, we obtain

D2Jρ(un)[w,w] < −β
2
‖w‖2 < ζn‖w‖2 for all w ∈W0\{0}

for any such large n. Since dimW0 > 1, this provides a contradiction with
theorem 3.4 (iv), recalling that ζn → 0. �

Remark 3.6. Note that for any ρ ∈ [12 , 1], the constant function uc :=
(

c
|Ω|

) 1
2
is

always a solution of (3.3) on Sc for λ =
hρ(uc)

uc
. Under the assumptions (f1)–(f2),

we can compute the constraint Morse index m̃0(uc) corresponding to Jρ, as demon-
strated in [16, proposition 2.1] (see also [14, proposition 4.1]). Specifically, for any
c ∈ (0, c∗) with some proper c∗ > 0, we have m̃0(uc) = 0 for all ρ ∈ [12 , 1]. This
implies that uc is a local minimizer of Jρ for every ρ ∈ [ 12 , 1]. Based on this obser-
vation, we may select w1 = uc in lemma 2.3 to construct the uniform mountain
pass geometry for Jρ. Furthermore, the mountain pass type solution u obtained in
theorem 1.1 cannot be a constant function, as this would contradict the fact that
uc is a local minimizer.

4. Blow-up analysis

In this section, we develop a blow-up analysis for the sequence {uρn}. The goal of
this analysis is to prove that {uρn} is bounded in H1(Ω). Consequently, we aim to
show that {uρn} converges strongly in H1(Ω) to a constrained critical point of J 1

as ρn → 1−.
For simplicity, we denote un := uρn , λn := λρn , cn := cρn in the following

discussion. Here, un weakly solves the following problem
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−∆un + λnun = hρn(un) in Ω,

∂un
∂ν = 0 on ∂Ω,∫
Ω
|un|2dx = c,

(4.1)

where λn ∈ R and ρn → 1−. By theorem 3.5, we have m(un) ≤ 2. Using standard
regularity arguments, we obtain un ∈ C2(Ω).

Lemma 4.1. There exists a constant C such that λn ≥ C for all n.

Proof. We assume by contradiction that λn → −∞. Let V be a subspace of H1(Ω)
with dimension k, where k > 2. Define ΩM0

:= {x ∈ Ω : |un(x)| ≤ M0}, where
M0 = max{M,R0 + 1} and R0 is given in §2. By assumptions (f1) and (f3), there
exist constants CM0

, C ′
M0

> 0 such that for any φ ∈ H1(Ω),∫
Ω

h′ρn(un)φ
2dx =

∫
ΩM0

h′ρn(un)φ
2dx+

∫
Ω\ΩM0

h′ρn(un)φ
2dx

≥
∫
ΩM0

−CM0
φ2dx+

∫
Ω\ΩM0

h′ρn(un)φ
2dx

≥
∫
ΩM0

−CM0
φ2dx+

∫
Ω\ΩM0

(
ρnµ|un|p−2 − C ′

M0

)
φ2dx.

Taking ϕ ∈ V \ {0}, we obtain

Qλn,ρn(ϕ;un; Ω) ≤
∫
Ω

|∇ϕ|2dx+ λn

∫
Ω

φ2dx+

∫
ΩM0

CM0
ϕ2dx

−
∫
Ω\ΩM0

(
µ|un|p−2 − C ′

M0

)
ϕ2dx

≤ ‖ϕ‖2 +
(
λn + CM0

+ C ′
M0

− 1
)∫

Ω

ϕ2dx.

This implies that Qλn,ρn(ϕ;un; Ω) is negative definite on V for sufficiently large n,
which contradicts the fact that m(un) ≤ 2. �

Lemma 4.2. If λn → +∞, then ‖un‖L∞ → +∞.

Proof. By (4.1) and assumptions (f1)–(f2), there exists a constant C1 > 0 such
that

λnc ≤
∫
Ω

f(un)un ≤ c+

∫
Ω

C1|un|pdx ≤ c+ C1|Ω|‖un‖pL∞ .

This implies that

‖un‖L∞ ≥
(

c

C1|Ω|

) 1
p

(λn − 1)
1
p → +∞.

�
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In the following, we will analyse the asymptotic behaviour of the solution to
(4.1) as λn → +∞. For simplicity, we may assume without loss of generality that
max
x∈Ω

un(x) > 0.

We begin by providing a local description of the blow-up points.

Lemma 4.3. Suppose that λn → +∞. Let Pn ∈ Ω be such that, for some Rn → ∞,

|un(Pn)| = max
BRnε̃n (Pn)∩Ω

|un(x)| where ε̃n = a
− 1

2
0 |un(Pn)|−

p−2
2 → 0.

Set εn = λ
−1

2
n . Then (

ε̃n
εn

)2

→ λ̃ ∈ (0, a0]. (4.2)

Suppose moreover that

lim sup
n→+∞

dist(Pn, ∂Ω)

ε̃n
= +∞. (4.3)

Then, passing to a subsequence if necessary, we have

(i) Pn → P ∈ Ω;

(ii) dist(Pn,∂Ω)
εn

→ +∞ as n→ +∞, and the scaled sequence

vn(x) := a
1

p−2
0 ε

2
p−2
n un(εnx+ Pn) for x ∈ Ωn :=

Ω− Pn

εn
(4.4)

converges to some v ∈ H1(RN ) in C2
loc(RN ), where v satisfies

−∆v + v = |v|p−2v in RN ,

|v(0)| = max
x∈RN

v,

v(x) → 0 as |x| → +∞;

(4.5)

(iii) there exists φn ∈ C∞
0 (Ω), with suppφn ⊂ BRεn(Pn) for some R> 0, such

that Qλn,ρn(φn;un; Ω) < 0;
(iv) for all R> 0 and q ≥ 1,

lim
n→∞

λ
N−2
2 − q

p−2
n

∫
BRεn (Pn)

|un|qdx = lim
n→∞

∫
BR(0)

|vn|qdy =

∫
BR(0)

|v|qdy.

Instead of (4.3), we suppose that

lim sup
n→+∞

dist(Pn, ∂Ω)

ε̃n
< +∞. (4.6)
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Then, passing to a subsequence if necessary, the following results hold:

(i) Pn → P ∈ ∂Ω;

(ii) dist(Pn,∂Ω)
εn

→ d0 ≥ 0 as n → +∞, and the scaled sequence {vn} defined

in (4.4) converges to some v ∈ H1(RN
+ ) in C2

loc(RN
+ ) as n → ∞, where v

satisfies



−∆v + v = |v|p−2v in RN
+ ,

∂v

∂xN
= 0 on ∂RN

+ ,

|v(0)| = max
x∈RN+

v,

v(x) → 0 as |x| → +∞;

(4.7)

(iii) there exists φn ∈ C∞
0 (Ω), with suppφn ⊂ BRεn(Pn) ∩ Ω for some R> 0,

such that Qλn,ρn(φn;un; Ω) < 0;
(iv) for all R> 0 and q ≥ 1,

lim
n→∞

λ
N−2
2 − q

p−2
n

∫
BRεn (Pn)∩Ω

|un|qdx = lim
n→∞

∫
BR(0)∩Ωn

|vn|qdy

=

∫
BR(0)∩RN+

|v|qdy.

Proof. Since un may change sign, Pn can be either a positive local maximum or a
negative local minimum point. For simplicity, we focus on the case where Pn is a
positive local maximum point; the arguments for the negative local minimum case
are analogous.

By (4.1), we get

0 ≤ −∆un(Pn)

un(Pn)
=
f2(un(Pn)) + ρnf1(un(Pn))

un(Pn)
− λn.

Using (f2) and lemma 4.1, we deduce that

λn
|un(Pn)|p−2

→ λ̃ ∈ [0, a0] as n→ ∞.

Next, we show that λ̃ > 0.
Define the rescaled function

ũn(x) := a
1

p−2
0 ε̃

2
p−2
n un(ε̃nx+ Pn) for x ∈ Ω̃n :=

Ω− Pn

ε̃n
.

Clearly, ũn satisfies
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−∆ũn + λnε̃

2
nũn = a

1
p−2
0 ε̃

2p−2
p−2
n hρn(a

− 1
p−2

0 ε̃
− 2

p−2
n ũn) in Ω̃n,

|ũn(x)| ≤ |ũn(0)| = 1 in Ω̃n,
∂ũn
∂ν

= 0 on ∂Ω̃n.

(4.8)

Let dn = dist(Pn, ∂Ω). Then

dn
ε̃n

:= L ∈ [0,+∞] and Ω̃n →

 RN if L = +∞;

H if L < +∞,

where H denotes a half-space such that 0 ∈ H and d(0, ∂H) = L. By regularity
arguments, up to a subsequence, ũn → ũ in C2

loc(D), where ũ solves


−∆ũ+ λ̃ũ = |ũ|p−2ũ in D,

|ũ(x)| ≤ |ũ(0)| = 1 in D,
∂ũ

∂ν
= 0 on ∂D,

(4.9)

where D is either RN or H.
We claim that m(ũ) ≤ 2. To see this, suppose for contradiction that there exists

k > 2 such that there are k positive functions φ1, . . . , φk ∈ H1(D), orthogonal in
L2(Ω), satisfying

∫
D

|∇φi|2dx+ λ̃

∫
D

φ2dx−
∫
D

(p− 1)|ũ|p−2φ2dx < 0 (4.10)

for every i ∈ {1, . . . , k}.
Define the rescaled functions

φi,n(x) := ε̃
−N−2

2
n φi

(
x− Pn

ε̃n

)
.

Additionally, let

Ω̃n,M0
:= {x ∈ Ω̃n : |a

− 1
p−2

0 ε̃
− 2

p−2
n ũn| ≤M0}, Ω̃c

n,M0
:= Ω̃n\Ω̃n,M0

,

where M 0 is as given in lemma 4.1.
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By direct computations, there exist constants C̃M0
, C̃ ′

M0
> 0 such that the

following estimates hold:

∫
Ω

f ′1(un)φ
2
i,ndx =

∫
Ω̃n

ε̃2nφ
2
i f

′
1(a

− 1
p−2

0 ε̃
− 2

p−2
n ũn)dx

=

∫
Ω̃n,M0+1

[ε̃2nφ
2
i f

′(a
− 1

p−2
0 ε̃

− 2
p−2

n ũn)η(a
− 1

p−2
0 ε̃

− 2
p−2

n ũn)

+ ε̃2nφ
2
i f(a

− 1
p−2

0 ε̃
− 2

p−2
n ũn)η

′(a
− 1

p−2
0 ε̃

− 2
p−2

n ũn)]dx

+

∫
Ω̃c
n,M0

ε̃2nφ
2
i f

′(a
− 1

p−2
0 ε̃

− 2
p−2

n ũn)η(a
− 1

p−2
0 ε̃

− 2
p−2

n ũn)dx

≥
∫
Ω̃n,M0

∩supp{φi}
−C̃M0

ε̃2nφ
2
i dx

+

∫
Ω̃c
n,M0

ε̃2nφ
2
iµ|a

− 1
p−2

0 ε̃
− 2

p−2
n ũn|p−2dx

=

∫
Ω̃n,M0

∩supp{φi}
−C̃M0

ε̃2nφ
2
i dx

+

∫
Ω̃n

ε̃2nφ
2
iµ|a

− 1
p−2

0 ε̃
− 2

p−2
n ũn|p−2dx

−
∫
Ω̃n,M0

ε̃2nφ
2
iµ|a

− 1
p−2

0 ε̃
− 2

p−2
n ũn|p−2dx

and

∫
Ω

f ′2(un)φ
2
i,ndx =

∫
Ω̃n

ε̃2nφ
2
i f

′
2(a

− 1
p−2

0 ε̃
− 2

p−2
n ũn)dx

=

∫
Ω̃n,M0

∩supp{φi}
[ε̃2nφ

2
i f

′(a
− 1

p−2
0 ε̃

− 2
p−2

n ũn)

× (1− η(a
− 1

p−2
0 ε̃

− 2
p−2

n ũn))

− ε̃2nφ
2
i f(a

− 1
p−2

0 ε̃
− 2

p−2
n ũn)η

′(a
− 1

p−2
0 ε̃

− 2
p−2

n ũn)]dx

≥
∫
Ω̃n,M0

∩supp{φi}
−C̃ ′

M0
ε̃2nφ

2
i dx.

Note that a
− 1

p−2
0 ũn ≤ ε̃

2
p−2
n M0 for x ∈ Ω̃n,M0

, by (4.10), it follows that



894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

20 X. Chang, V. D. Radulescu and Y. Zhang

Qλn,ρn(φi,n;un; Ω) =

∫
Ω

|∇φi,n|2dx+ λn

∫
Ω

φ2i,ndx−
∫
Ω

f ′2(un)φ
2
i,ndx− ρn

×
∫
Ω

f ′1(un)φ
2
i,ndx

≤
∫
Ω̃n

|∇φi|2dx+ λnε̃
2
n

∫
Ω̃n

φ2i dx

+

∫
Ω̃n,M0

∩supp{φi}
(ρnC̃M0

+ C̃ ′
M0

)ε̃2nφ
2
i dx

− ρn

∫
Ω̃n

ε̃2nφ
2
iµ|a

− 1
p−2

0 ε̃
− 2

p−2
n ũn|p−2dx+ ρn

×
∫
Ω̃n,M0

φ2iµa
−1
0 |ũn|p−2dx

→
∫
D

|∇φi|2dx+ λ̃

∫
D

φ2dx−
∫
D

a−1
0 µ|ũ|p−2φ2dx

≤
∫
D

|∇φi|2dx+ λ̃

∫
D

φ2dx−
∫
D

(p− 1)|ũ|p−2φ2dx < 0.

This implies that m(un) ≥ k > 2 for sufficiently large n, thereby yielding a
contradiction. Thus, the claim is valid.

Having established that ũ is a finite Morse non-trivial solution of (4.9), we can
apply either [22, theorem 2] or [57, proposition 2.1]. This allows us to conclude that
the occurrence of λ̃ = 0 is ruled out, regardless of whether D is a half-space or a
whole space. Consequently, we can assert that λ̃ ∈ (0, a0].

In the sequel, we consider the sequence {vn} defined by (4.4). Clearly, vn satisfies
−∆vn + vn = a

1
p−2
0 ε

2p−2
p−2
n hρn(a

− 1
p−2

0 ε
− 2

p−2
n vn) in Ωn,

|vn(x)| ≤ |vn(0)| = ( εnε̃n )
2

p−2 → λ̃
− 1

p−2 in Ωn,
∂vn
∂ν

= 0 on ∂Ωn.

(4.11)

Up to a subsequence, we have vn → v in C2
loc(D), where D is either RN or a half

space H, and v solves
−∆v + v = |v|p−2v in D,

|v(x)| ≤ |v(0)| = λ̃
− 1

p−2 in D,
∂v

∂ν
= 0 on ∂D.

(4.12)

Arguing as above implies that m(v) ≤ 2.
More precisely, we distinguish the following three cases:

(1) If lim sup
n→+∞

dist(Pn,∂Ω)
ε̃n

= +∞, then D = RN . Using m(v) ≤ 2, by standard

regularity arguments, v ∈ C2(RN ), |v(x)| → 0 as |x| → +∞. If v ≥ 0,
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then using the strong maximum principle and [20, theorem 1.1] we know
that v > 0,m(v) = 1, and it coincides with the unique radial ground-state
solution U 0 to −∆u+u = up−1 in RN . If v is sign-changing, then m(v) = 2
and v admits exactly one local maximum point and one local minimum point
in Ω.

(2) If there exists a constant a > 0 such that

0 < a ≤ lim sup
n→+∞

dist(Pn, ∂Ω)

ε̃n
< +∞,

we may assume that lim
n→+∞

dist(Pn,∂Ω)
ε̃n

= d > 0. Then, up to subsequences,

vn → v in C2
loc({xN > −d}), and v weakly solves

−∆v + v = |v|p−2v in {xN > −d},
|v(x)| ≤ |v(0)| = λ̃

− 1
p−2 in {xN > −d},

∂v

∂xN
= 0 on {xN = −d}.

Let ṽ(x) = v(x′, xN − d), where x′ = (x1, x2, . . . , xN−1). It is straight-
forward to verify that ṽ is a finite Morse index solution to the following
system: 

−∆ṽ + ṽ = |ṽ|p−2ṽ in {xN > 0},
|ṽ(x)| ≤ |ṽ(0, . . . , 0, d)| = λ̃

− 1
p−2 in {xN > 0},

∂ṽ

∂xN
= 0 on {xN = 0}.

Next, we extend ṽ by reflection with respect to {xN = 0}. Specifically, for
(x′, xN ) ∈ RN , we define

v̂(x′, xN ) :=

 ṽ(x′, xN ) if xN ≥ 0,

ṽ(x′,−xN ) if xN < 0.

Consequently, v̂ satisfies the equation
−∆v̂ + v̂ = |v̂|p−2v̂ in RN ,

|v̂(x)| ≤ |v̂(0, . . . , 0,−d)| = |v̂(0, . . . , 0, d)| = λ̃
− 1

p−2 in RN ,
∂ṽ

∂xN
= 0 on {xN = 0}.

Thus, v̂ is a bounded function that solves the equation −∆v̂+ v̂ = |v̂|p−2v̂ in
RN in the weak sense. By applying Schauder interior and boundary estimates
(see [26]), we conclude that v̂ ∈ C2,α

loc (RN ) for α ∈ (0, 1), and the regularity
extends up to the hyperplane {xN = 0}. Since v̂ is symmetric across {xN =
0}, it follows that the second derivatives of v̂ are continuous everywhere,
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including at the boundary {xN = 0}. Consequently, by applying elliptic
regularity theory and considering that v̂ is a solution with finite Morse index,
we can show that v̂ ∈ C2(RN ) and |v̂(x)| → 0 as |x| → +∞. Therefore, ṽ
must be a sign-changing solution, a situation that can occur according to [41,
theorem 1]. In fact, if v̂ is a positive solution, then by applying [20, theorem
1.1] once again, we deduce that v̂ coincides with the unique radial ground-
state solution U 0 to −∆u+u = up−1 in RN . It is well known that U 0 has a
unique global maximum and is a radially strictly decreasing function. This
would contradict the fact that max

x∈RN
v̂ = |v̂(0, . . . , 0,−d)| = |v̂(0, . . . , 0, d)|.

(3) If lim sup
n→+∞

dist(Pn,∂Ω)
ε̃n

= 0, then, up to a subsequence, Ωn → RN
+ ({xN > 0}).

By similar arguments as above, vn → v in C2
loc(RN

+ ), where v is a finite
Morse index of the following equation

−∆v + v = |v|p−2v in {xN > 0},
∂v

∂xN
= 0 on {xN = 0},

|v(y)| ≤ |v(0)| = λ̃
− 1

p−2 .

Extending v by reflection with respect to {xN = 0} and defining

v̂(x′, xN ) :=

v(x′, xN ) if xN ≥ 0,

v(x′,−xN ) if xN < 0.

Then v̂ satisfies 
−∆v̂ + v̂ = |v̂|p−2v̂ in RN ,

|v̂(x)| ≤ |v̂(0)| inRN ,
∂v

∂xN
= 0 on {xN = 0}.

Using arguments analogous to those in case (1), we deduce that if v̂ is
positive, then m(v̂) = 1, and thus v̂ coincides with U 0. Using [41, theorem
1], it is established that v̂ may exhibit sign-changing behaviour, and in such
instance, m(v) = 2.

All in all, we get that (ii) holds. Employing similar reasoning to [20, theorem 3.1],
we conclude that (iii) and (iv) are also satisfied. �

We now proceed to provide a comprehensive global blow-up analysis. The follow-
ing result offers a detailed global description of the asymptotic behaviour of {un}
as λn → +∞.

Lemma 4.4. There exists k ∈ {1, 2} and sequences of points {P 1
n}, . . . , {P k

n}, such
that

|un(P i
n)| = max

B
Rnλ

−1/2
n

(Pi
n)∩Ω

|un| for some Rn → ∞, for every i, (4.13)
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λn|P i
n − P j

n|2 → +∞, ∀i 6= j, as n→ ∞, (4.14)

and moreover,

lim
R→∞

(
lim sup
n→+∞

λ
− 1

p−2
n max

dn(x)≥Rλ
−1/2
n

|un(x)|

)
= 0, (4.15)

where dn(x) = min{|x − P i
n| : i = 1, . . . , k} is the distance function from

{P 1
n , . . . , P

k
n} for x ∈ Ω.

Proof. Take P 1
n ∈ Ω such that un(P

1
n) = max

Ω
|un(x)|. If (4.15) is satisfied for P 1

n ,

then we get k =1. It is evident that P 1
n satisfies (4.13).

Otherwise, if P 1
n does not satisfy (4.15), we suppose that there exists δ > 0 such

that

lim
R→∞

(
lim sup
n→+∞

λ
− 1

p−2
n max

|x−P1
n|≥Rλ

−1/2
n

|un(x)|

)
≥ 4δ. (4.16)

For sufficiently large R, up to a subsequence, it holds

λ
− 1

p−2
n max

|x−P1
n|≥Rλ

−1/2
n

|un(x)| ≥ 2δ. (4.17)

Let P 2
n ∈ Ω\B

Rλ
−1/2
n

(P 1
n) such that

|un(P 2
n)| = max

Ω\B
Rλ

−1/2
n

(P1
n)

|un|.

Then, (4.17) yields that |un(P 2
n)| → +∞ as n→ +∞.

We claim that

λn|P 1
n − P 2

n |2 → +∞. (4.18)

If (4.18) is not true, then up to subsequence λ
1
2
n |P 1

n − P 2
n | → R′ ≥ R. Define

vn,1(x) := a
1

p−2
0 λ

− 1
p−2

n un(λ
−1/2
n x+ P 1

n).

As in lemma 4.3, we can deduce that vn,1 → v in C2
loc(D), where D = RN or D is

a half-space. Then, up to subsequences,

λ
− 1

p−2
n un(P

2
n) = vn,1(λ

1/2(P 2
n − P 1

n)) → v(x′), |x′| ≥ R′ > R.

Since v(x) → 0 as |x| → ∞, taking R larger if necessary, it follows that

|v(x)| ≤ a
1

p−2
0 δ, ∀|x| ≥ R.

This contradicts to (4.17), which proves the claim (4.18).
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In the following, we shall show that

|un(P 2
n)| = max

Ω∩B
Rn,2λ

−1/2
n

(P2
n)

|un(x)|, for some Rn,2 → +∞. (4.19)

Let ε̃n,2 = a
− 1

2
0 |un(P 2

n)|−
p−2
2 . Clearly, ε̃n,2 → 0. By (4.17), we get ε̃n,2 ≤

(2δ)−
p−2
2 λ

−1
2

n . From (4.18), we can assert that

R̃n,2 :=
|P 1

n − P 2
n |

2ε̃n,2
≥ (2δ)

p−2
2

2
λ

1
2
n |P 1

n − P 2
n | → +∞ as n→ ∞.

On the other hand, for any x ∈ BR̃n,2ε̃n,2
(P 2

n) and R> 0, we have

|x− P 1
n | ≥ |P 2

n − P 1
n | − |x− P 2

n | ≥
1

2
|P 2

n − P 1
n | ≥ Rλ

− 1
2

n

for arbitrarily large n. Consequently,

Ω ∩BR̃n,2ε̃n,2
(P 2

n) ⊂ Ω\B
Rλ

−1
2

n

(P 1
n),

which implies that

|un(P 2
n)| = max

Ω∩B
R̃n,2ε̃n,2

(P2
n)

|un|. (4.20)

We define

ũn,2 := a
1

p−2
0 ε̃

2
p−2
n,2 un(ε̃n,2x+ P 2

n), x ∈ Ω̃n,2 :=
Ω− P 2

n

ε̃n,2
.

Set dn,2 = dist(P 2
n , ∂Ω). Then, passing to subsequences if necessary,

ε̃n,2
dn,2

→ L2 ∈ [0,+∞] and Ω̃n,2 →

 RN if L2 = +∞,

H if L2 < +∞.

Then ũn,2 satisfies the following equation
−∆ũn,2 + λnε̃

2
n,2ũn,2 = a

1
p−2
0 ε̃

2p−2
p−2
n,2 hρn(a

− 1
p−2

0 ε̃
− 2

p−2
n,2 ũn,2) in Ω̃n,2,

|ũn,2(x)| ≤ |ũn,2(0)| = 1 in Ω̃n,2,
∂ũn,2
∂ν

= 0 on ∂Ω̃n,2.

Since P 2
n is a local maximum or a local minimum point, by lemma 4.1, we get

λn
|un(P 2

n)|p−2
→ λ̃(2) ∈ [0, a0], as n→ ∞.
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Using the similar argument as in lemma 4.3, we deduce λ̃(2) > 0, namely

lim
n→+∞

λ
1
2
n ε̃n,2 > 0.

Set

vn,2 := a
1

p−2
0 ε

2
p−2
n un(εnx+ P 2

n) for x ∈ Ωn,2 :=
Ω− P 2

n

εn
,

where εn = λ
−1

2
n is defined in (4.4). Up to a subsequence, there exists a function

v(2) ∈ H1(D) such that vn,2 → v(2) in C2
loc(D), where D is either RN or a half

space. Moreover, v(2) solves the following problem
−∆v(2) + v(2) = |v(2)|p−2v(2) in D,

|v(2)(x)| ≤ |v(2)(0)| = (λ̃(2))
− 1

p−2 in D,
∂v(2)

∂ν
= 0 on ∂D.

(4.21)

Then, by a similar discussion as above, we conclude that either
dn,2
εn

→ +∞ or
dn,2
εn

remains bounded. Define Rn,2 = R̃n,2λ
1
2
n ε̃n,2. Clearly, Rn,2 → +∞ as n → +∞.

Hence, (4.19) holds.
If (4.15) does not hold, we can apply similar arguments as before to show that

there exists P 3
n such that (4.13)–(4.14) are satisfied. For P i

n, i = 1, 2, 3, applying
lemma 4.3 again, we can find φin ∈ C∞

0 (Ω) with suppφin ⊂ BRεn(P
i
n) ∩ Ω for some

R> 0, such that∫
Ω

|∇φin| 2dx+

∫
Ω

[(λ− (p− 1)ρnu
p−2
n )(φin)

2]dx < 0.

In light of (4.14), we observe that φ1n, φ
2
n, φ

3
n are mutually orthogonal for sufficiently

large n, which implies lim
n→+∞

m(un) ≥ 3. This leads to a contradiction with the fact

that m(un) ≤ 2. �

In the subsequent analysis, we show that un exhibits exponential decay away
from the blow-up points.

Lemma 4.5. Let {P 1
n}, . . . , {P k

n} be given in lemma 4.4. Then there exist constants
C1 > 0, C2 > 0 such that, for some R> 0,

un(x) ≤ C1e
C1Rλ

1
p−2
n

k∑
i=1

e−C2λ
1
2
n |x−Pi

n|, ∀x ∈ Ω\ ∪k
i=1 (B

Rλ
− 1

2
n

(P i
n) ∩ Ω). (4.22)

Proof. The proof is inspired by [38, lemma 2.1] and [20, theorem 3.2]. For any θ > 0,
we set

Ωθ := {x ∈ Ω : dist(x, ∂Ω) < θ},
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and define the inner normal bundle

(∂Ω)θ := {(x, y) : x ∈ ∂Ω, y ∈ (−θ, 0]νx},

where νx is the unit outer normal of ∂Ω at x.
Since ∂Ω is a smooth compact submanifold of RN , by the tubular neighbourhood

theorem, it follows that there exists a diffeomorphism ΦIb from Ωθ onto (∂Ω)θ. More
precisely, for any x ∈ Ωθ, it is easily seen that there exists a unique x̄ ∈ ∂Ω such
that dist(x, x̄) = dist(x, ∂Ω). Hence, we can define ΦIb(x) := (x̄,−dist(x, x̄)νx̄) for
any x ∈ Ωθ. Clearly, ΦIb(x) = x for x ∈ ∂Ω.

Similarly, let

Ωθ := {x ∈ RN\Ω, dist(x, ∂Ω) < θ},

and define the outer normal bundle

(∂Ω)θ := {(x, y) : x ∈ ∂Ω, y ∈ [0, θ)νx}.

Then there exists a diffeomorphism ΦOb : Ωθ → (∂Ω)θ defined by ΦOb(x) :=
(x̂, dist(x, x̂)νx̂),∀x ∈ Ωθ. Here x̂ ∈ ∂Ω is the unique element in ∂Ω such that
dist(x, x̂) = dist(x, ∂Ω). Moreover, ΦOb|∂Ω = Identity.

Consider the reflection ΦC : (∂Ω)θ → (∂Ω)θ defined by ΦC((x, y)) := (x,−y).
Then, Φ := Φ−1

Ib ◦ Φ−1
C ◦ ΦOb is a diffeomorphism from Ωθ onto Ωθ and Φ|∂Ω =

Identity. Furthermore, we take x = Φ(z) = (Φ1(z), . . . ,ΦN (z)) for z ∈ Ωθ, z =
Ψ(x) = Φ−1(x) = (Ψ1(x), . . . ,ΨN (x)) for x ∈ Ωθ, and

gij =
N∑
l=1

∂Φl

∂zi

∂Φl

∂zj
, gij =

n∑
l=1

∂Ψi

∂xl

∂Ψj

∂xl
(Φ(z)).

Then gij |∂Ω = gij |∂Ω = δij , where δij is the Kronecker symbol. For simplicity,
denote G = (gij), g(x) = det(gij) and ûn(x) = un(Φ(x)) for x ∈ Ωθ. Then ûn
satisfies  −Lûn +

√
gλnûn =

√
ghρn(ûn) in Ωθ,

∂ûn
∂ν

= 0 on ∂Ω,

where

Lûn =
N∑
i=1

∂

∂xi

√
g

N∑
j=1

gij
∂ûn
∂xj

 .

Next we define

ūn :=

un(x), x ∈ Ω,

ûn(x), x ∈ Ωθ,
ḡij :=

δij , x ∈ Ω̄,

gij , x ∈ Ωθ,
ḡij :=

δij , x ∈ Ω̄,

gij , x ∈ Ωθ,
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and ḡ := det(ḡij). Let A(x, ξ) = (A1(x, ξ), . . . , AN (x, ξ)) for ξ = (ξ1, . . . , ξN ) with

Ai(x, ξ) =
√
ḡ

N∑
j=1

ḡijξj .

Then ūn weakly solves

−div (A(x,∇ūn)) + λn
√
ḡūn =

√
ḡgρn(ūn) in Ω ∪ Ωθ. (4.23)

Given that Φ is a diffeomorphism, the functions gij(x),
∂gii
∂xi

and
∂gij
∂xi

are all

smooth on the domain Ωθ. Consequently, there exists a constant C0 > 0 such that

|∂gii∂xi
|, |∂gij∂xi

| ≤ C0 are both bounded by C 0 for x ∈ Ωθ. Moreover, according to the

Taylor expansion, as θ approaches 0, the functions gij and g ij tend to 0, while gii
and g ii tend to 1, and the determinant g(x ) converges to 1.

For any x̃ ∈ Ω, there exists β > 0 such that Bβ(x̃) ⊂ Ω ∪ Ωθ. For x ∈ Bβ(x̃)\x̃,
denote σ = |x− x̃|. Then, for any smooth increasing function φ(σ), we have∣∣∣∣∣

N∑
i=1

∂

∂xi
(
√
ggij)

∂φ

∂xj

∣∣∣∣∣ =
∣∣∣∣∣

N∑
i=1

∂

∂xi
(
√
ggij)

xj − x̃j
σ

φ′

∣∣∣∣∣
≤

N∑
i=1

∣∣∣∣ max
x∈Ω∪Ωθ

∂

∂xi
(
√
ggij)

∣∣∣∣φ′ diam(Ω ∪ Ωθ)

σ

≤ CΦ,Ωφ
′

σ

for some CΦ,Ω > 0, where φ′ = dφ(σ)
dσ . Moreover, for θ > 0 small enough, there exist

small constants δ0, δ1 such that∣∣∣∣√ggii ∂2φ∂x2i

∣∣∣∣ = ∣∣∣∣√ggii(φ′σ + φ′′
(xi − x̃i)

2

σ2
− φ′

(xi − x̃i)
2

σ3

)∣∣∣∣
≤ (1 + δ0)

(
φ′

σ
+ |φ′′| (xi − x̃i)

2

σ2
+ φ′

(xi − x̃i)
2

σ3

)
,

and ∣∣∣∣√ggij ∂2φ

∂xj∂xi

∣∣∣∣ = ∣∣∣∣√ggij (φ′′ (xi − x̃i)(xj − x̃j)

σ2
− φ′

(xi − x̃i)(xj − x̃j)

σ3

)∣∣∣∣
≤ |√ggij |

(
1

2
|φ′′| (xi − x̃i)

2

σ2
+

1

2
φ′
(xi − x̃i)

2

σ3

)
+ |√ggij |

(
1

2
|φ′′| (xj − x̃j)

2

σ2
+

1

2
φ′
(xj − x̃j)

2

σ3

)
≤ δ1

(
1

2
|φ′′| (xi − x̃i)

2

σ2
+

1

2
φ′
(xi − x̃i)

2

σ3

)
+ δ1

(
1

2
|φ′′| (xj − x̃j)

2

σ2
+

1

2
φ′
(xj − x̃j)

2

σ3

)
, for i 6= j.
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Then ∣∣∣∣∣∣
N∑
i=1

∂

∂xi

√
g

N∑
j=1

gij
∂φ

∂xj

∣∣∣∣∣∣ ≤ 2|φ′′|+ 2(N − 1)

σ
φ′ +

CΦ,Ωφ
′

σ
. (4.24)

From now, let us fix θ∗ ∈ (0, θ) such that 1
2 ≤ √

g ≤ 3
2 and (4.24) holds. Define

A∗
n := {x ∈ Ω ∪ Ωθ∗ : dn(x) ≥ Rλ−1/2

n }.

In view of (4.5), for every ε ∈ (0, 1) small, to be chosen later, there exist R∗ > 0
and nR ∈ N large such that

max
{x∈Ω:dn(x)≥Rλ

−1/2
n }

|un| ≤ λ
1

p−2
n ε, ∀R > R∗, ∀n ≥ nR.

Let An := {x ∈ Ω : dn(x) ≥ Rλ
−1/2
n }. Clearly,

|un(x)|p−2 ≤ λnε
p−2, x ∈ An, ∀n ≥ nR.

Note that there exists a constant nθ > 0 large enough such that for n > nθ, for
any i ∈ {1, . . . , k}, we have B

λ
−1/2
n R

(P i
n) ⊂ Ωθ∗ ∪ Ωθ∗ . Then we can deduce that

An ⊂ A∗
n, for n > max{nθ, nR} := nθR. From the definition of ūn, we get

|ūn(x)|p−2 ≤ λnε
p−2, x ∈ A∗

n, ∀n > nθR.

Using (f1)–(f2), we conclude that

−div (A(x,∇ūn)) +
λn
2
ūn ≤ 0, ∀x ∈ A∗

n (4.25)

holds for sufficiently small ε> 0.
For any x0 ∈ An such that Br(x0) ⊂ A∗

n, consider the function

φn(σ) = φn(|x− x0|) = λ
1

p−2
n

cosh (γλ
1
2
n σ)

cosh (γλ
1
2
n r)

.

Clearly, φ′(ρ) > 0 and φ′′(ρ) > 0. By direct computations, we obtain

2|φ′′n|+
2(N − 1)

σ
φ′n +

CΦ,Ω

σ
φ′n − λn

2
φn

= λnφn

2γ2 + (2(N − 1) + CΦ,Ω)γ
2 tanh (γλ

1
2
n σ)

γλ
1
2
n σ

− 1

2


≤ λnφn

(
2γ2 + (2(N − 1) + CΦ,Ω)γ

2 − 1

2

)
≤ 0,

(4.26)
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for any γ ∈ (0, γ∗], where γ∗ = (4N +2CΦ,Ω)
−1

2 . Then, fixing γ ∈ (0, γ∗], by (4.24)
and (4.26) it follows that

div(A(x,∇φn))−
λn
2
φn =

N∑
i=1

∂

∂xi

√
ḡ

N∑
j=1

ḡij
∂φ

∂xj

− λn
2
φn ≤ 0, ∀x ∈ Br(x0).

(4.27)

In addition, for x ∈ ∂Br(x0), we have (φn − ūn) ≥ λ
1

p−2
n (1− ε) > 0. Then, together

with (4.25) and (4.27), by the comparison principle ([52, theorem 10.1]) it follows

that ūn ≤ φn in Br(x0), which implies that un(x0) ≤ λ
1

p−2
n e−γλ

1
2
n r.

Take r = dist(x0, ∂A
∗
n). We distinguish the following two cases:

(i) dist(x0, ∂A
∗
n) = dist(x0, B

Rλ
−1/2
n

(P i
n)) for some i ∈ {1, . . . , k};

(ii) dist(x0, ∂A
∗
n) = dist(x0, ∂(Ω ∪ Ωθ∗)).

For case (i), we have |x0 − P i
n| = r +Rλ

− 1
2

n . Then

un(x0) ≤ eγRλ
1

p−2
n e−γλ

1
2
n r−γR = eγRλ

1
p−2
n e−γλ

1
2
n |x0−Pi

n|.

For case (ii), we deduce that

un(x0) ≤ λ
1

p−2
n e−γλ

1
2
n θ∗ ≤ λ

1
p−2
n e

−γλ
1
2
n

θ∗
diam(Ω)

|x0−Pi
n|
.

Hence, since x 0 is arbitrary, we conclude that there exist C1, C2 > 0 such that

un(x) ≤ C1e
C1Rλ

1
p−2
n

k∑
i=1

e−C2λ
1
2
n |x−Pi

n|, ∀x ∈ An.

This completes the proof. �

5. Proof of theorem 1.1

In this section, we complete the proof of theorem 1.1. We have previously estab-
lished a sequence of mountain pass type critical points {uρn} of Jρn on Sc, which
have uniformly bounded Morse indices. These critical points are constructed for
a sequence ρn → 1−. Building on the blow-up analysis conducted in §4, we now
present the following proposition.

Proposition 5.1. Let {un} ⊂ H1(Ω) be a sequence of solutions to (4.1),
corresponding to some {λn} ⊂ R and ρn → 1−. Suppose that∫

Ω

|un|2dx = c, m(un) ≤ 2, ∀n,
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for some c> 0, and the energy levels {cn := Jρn(un)} are bounded. Then, the
sequence of solution pairs {(un, λn)} is bounded in H1(Ω)×R. Moreover, {un} is a
bounded Palais–Smale sequence for the functional J constrained on Sc at level c1.

Proof. First, we show that {λn} is bounded. Suppose, by contradiction, that λn →
+∞. By lemma 4.4, there exist at most k blow-up limits {P 1

n}, . . . , {P k
n} with k ≤ 2

in Ω. In the following, we denote by {vin} the scaled sequence around {P i
n}, and

by vi the limits of {vin}. Note that for these blow-up points {P 1
n}, . . . , {P k

n}, it may
hold

λ
1
2
n dist(P

i
n, ∂Ω) → +∞ or λ

1
2
n dist(P

i
n, ∂Ω) → d ≥ 0.

Without loss of generality, assume there exists an integer k1 ∈ {0, 1, . . . , k} such
that

λ
1
2
n dist(P

i
n, ∂Ω) → +∞ for every i ∈ {1, . . . , k1},

and

λ
1
2
n dist(P

j
n, ∂Ω) → d ≥ 0 for every j ∈ {k1 + 1, . . . , k}.

On the one hand, we can deduce that for any R> 0,

∣∣∣∣λN
2 − 2

p−2
n

∫
Ω

u2ndx−
k1∑
i=1

∫
BR(0)

|vin|2dx−
k∑

i=k1+1

∫
BR(0)∩Ωn

|vin|2dx
∣∣∣∣→ +∞. (5.1)

In fact, since p ∈ (2∗, 2
∗), the first term satisfies

∣∣∣∣λN
2 − 2

p−2
n

∫
Ω

u2ndx

∣∣∣∣ = λ
N
2 − 2

p−2
n c→ +∞.

By lemma 4.4, we have

k1∑
i=1

∫
BR(0)

|vin|2dx→
k∑

i=1

∫
BR(0)

|vi|2dx,

and

k∑
i=k1+1

∫
BR(0)∩Ωn

|vin|2dx→
k∑

i=1

∫
BR(0)∩RN+

|vi|2dx,

which imply that (5.1) holds.
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On the other hand, by lemma 4.5, there exist constants C,C ′ > 0 such that

∣∣∣∣λN
2 − 2

p−2
n

∫
Ω

u2ndx−
k1∑
i=1

∫
BR(0)

|vin|2dx−
k∑

i=k1+1

∫
BR(0)∩Ωn

|vin|2dx
∣∣∣∣

= λ
N
2 − 2

p−2
n

∫
Ω\∪k

i=1
(B

Rλ
−1/2
n

(Pi
n)∩Ω)

u2ndx

≤ C1e
2C1Rλ

N
2
n

k∑
i=1

∫
RN \∪k

i=1
B
Rλ

−1/2
n

(Pi
n)

e−2C2λ
1
2
n |x−Pi

n|dx

≤ CeCR
k∑

i=1

∫
RN \BR(0)

e−2C2|y|dy ≤ C ′ = C ′(R).

Taking n→ +∞, we obtain a contradiction to (5.1). Hence, {λn} is bounded.
Now, we show that {un} is bounded in H1(Ω). By contradiction, we suppose

that ‖un‖ → ∞. Using standard arguments, we have ‖un‖L∞ → ∞. Take Pn ∈ Ω

such that |un(Pn)| = ‖un‖L∞ . Let ε̃n = a
− 1

2
0 |un(Pn)|−

p−2
2 and define

ũn(x) := a
1

p−2
0 ε̃

2
p−2
n un(ε̃nx+ Pn) for x ∈ Ω̃n :=

Ω− Pn

ε̃n
.

Clearly, ũn satisfies (4.8). Using the boundedness of {λn}, we get λnε̃
2
n → 0 as

n → ∞. Then, up to a subsequence, ũn → ũ in C2
loc(D), where ũ is a finite Morse

index solution of 
−∆ũ = |ũ|p−2ũ in D,

|ũ(x)| ≤ |ũ(0)| = 1 in D,
∂ũ
∂ν = 0 on ∂D,

(5.3)

where D is either RN or a half space. By invoking [22, theorem 2] and [57, propo-
sition 2.1], respectively, we conclude that ũ ≡ 0. This contradicts to the fact that
|ũ(0)| = 1. Therefore, we deduce that {un} is a bounded sequence in H1(Ω).
Consequently, employing standard arguments, we establish that {un} is a bounded
Palais–Smale sequence for J |Sc at level c1. �

Completion of proof of theorem 1.1. Let {un} be the sequence given in proposi-
tion 5.1 for some c ∈ (0, c∗). By the compact embedding H1(Ω) ↪→ Lr(Ω) for
r ∈ [1, 2∗), and using similar arguments as in §3, we can deduce that un → u
strongly in H1(Ω). This, in turn, implies that u is a mountain pass type normalized
solution of (1.1). �
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933–959.



1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

L2-supercritical NLS equations under Neumann boundary conditions 33

17 X. J. Chang, M. T. Liu and D. K. Yan. Normalized ground state solutions of nonlinear
Schrödinger equations involving exponential critical growth. J. Geom. Anal. 33 (2023), 20.

18 M. Cirant. Multi-population mean field games systems with Neumann boundary conditions.
J. Math. Pures Appl. 103 (2015), 1294–1315.

19 M. Cirant, A. Cosenza and G. Verzini. Ergodic mean field games: Existence of local
minimizers up to the Sobolev critical case. Calc. Var. Partial Differ. Equ. 63 (2024), 134.

20 P. Esposito and M. Petralla. Pointwise blow-up phenomena for a Dirichlet problem. Comm.
Partial Differential Equations 36 (2011), 1654–1682.

21 G. Fang and N. Ghoussoub. Morse-type information on Palais-Smale sequences obtained
by min-max principles. Comm. Pure Appl. Math. 47 (1994), 1595–1653.

22 A. Farina. On the classification of solutions of the Lane-Emden equation on unbounded
domains of RN . J. Math. Pures Appl. 87 (2007), 537–561.

23 G. Fibich and F. Merle. Self-focusing on bounded domains. Phys. D 155 (2001), 132–158.

24 D. J. Frantzeskakis. Dark solitons in atomic Bose-Einstein condensates: From theory to
experiments. J. Phys. A: Math. Theor. 43 (2010), 68.

25 N. Ghoussoub. Duality and perturbation methods in critical point theory, Cambridge
Tracts in Mathematics and Mathematical Physics, Vol. 107 (Cambridge University Press,
Cambridge, 1993).

26 D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order.
Reprint of the 1998 edition Classics in Mathematics (Springer-Verlag, Berlin, 2001).

27 A. Harrabi, M. O. Ahmedou, S. Rebhi and A. Selmi. A priori estimates for superlinear and
subcritical elliptic equations: The Neumann boundary condition case. Manuscripta Math.
137 (2012), 525–544.

28 Z. Hu, L. Wang and P. H. Zhao. A priori estimates and existence for quasilinear elliptic
equations with nonlinear Neumann boundary conditions. Electron. J. Differential Equations
187 (2016), 1–8.
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