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1. Introduction23

An important notion in the finite dimensional theory of convex functions is that
of the Schur convexity. Roughly speaking, Schur–convex functions are real-valued
mappings which are monotone with respect to the majorization ordering. A rigor-
ous definition is stated in what follows. Let R

n
≥ denote the cone of vectors with

nonincreasing components, that is,

R
n
≥ = {x = (x1, x2, . . . , xn) ∈ R

n; x1 ≥ x2 ≥ · · · ≥ xn}.
The dual cone of the cone R

n
≥ is defined by

(Rn
≥)+ =

{
y ∈ R

n; (x, y) ≥ 0 for all x ∈ R
n
≥

}
.

A straightforward computation shows that

(Rn
≥)+ =

{
y ∈ R

n;
j∑

i=1

yi ≥ 0 for all j = 1, . . . , n − 1 and
n∑

i=1

yi = 0

}
.

†Corresponding author.
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We recall (see, e.g., [2,16]) that a function f : R
n → R is a Schur convex if it is

(Rn
≥)+-isotone, that is, a

x, y ∈ R
n
≥, y − x ∈ (Rn

≥)+ ⇒ f(x) ≤ f(y).

The Schur-convex functions were introduced by Schur [19] in 1923 and they
have many important applications in analytic inequalities. Hardy, Littlewood and
Pólya [8] were also interested in some inequalities that are related to the Schur-
convex functions. The notion of the Schur-convexity has shown its importance in
many domains. For instance, Merkle proved in [12] that if I ⊂ R is an interval and
f : I → R is differentiable, then f ′ is convex if and only if the mapping

F (x, y) =




f(y) − f(x)
y − x

if y �= x,

f ′(x) if y = x,

is a Schur convex. This property is applied in order to obtain some inequalities for1

the ratio of Gamma functions. We also refer to Hwang and Rothblum [10], who
study optimization problems over partitions of a finite set and obtain conditions3

that allow for simple constructions of partitions that are uniformly optimal for all
Schur-convex functions. Stochastic Schur convexity properties have been established5

by Shaked, Shanthikumar and Tong [20]. Exciting results such as Schur’s analytic
criteria for Schur convexity, equivalence with Muirhead’s inequality, majorization7

and stochastic matrix conditions in R
n, and Schur’s majorization inequality can

be found in the excellent book by Steele [21]. Recently, Guan [7] has proved that9

the complete elementary symmetric function cr = cr(x) =
∑

i1+···+in=r xi1
1 · · ·xin

n

and the function cr(x)/cr−1(x) are Schur-convex functions in R
n
+ = {(x1, . . . , xn);11

xi > 0}, where r is a positive integer and i1, . . . , in are nonnegative
integers.13

Zhang [23] proved that every Schur-convex function f : D ⊂ R
n → R is a sym-

metric function, that is, f(x) = f
(
xσ(1), . . . , xσ(n)

)
for any permutation σ ∈ Pn

and for all x = (x1, . . . , xn) ∈ D. The converse is not true (see, e.g., [16, p. 258]).
However, if I is an open interval and f : In → R is symmetric and of class C1, then
f is Schur-convex if and only if

(xi − xj)
(

∂f

∂xi
− ∂f

∂xj

)
≥ 0 on In,

for all i, j ∈ {1, . . . , n} (see [16, p. 259]).
Eigenvalues of real symmetric matrices exhibit remarkable convexity properties.15

Let Sn denote the set of all symmetric matrices X ∈ Mn,n(R). In [2, p. 108], it is
stated the following elementary property of eigenvalues of X ∈ Sn.17

The Schur Convexity Property. Let λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X) be the
eigenvalues (counted by multiplicity) of an arbitrary matrix X ∈ Sn. Assume that19

µ = (µ1, µ2, . . . , µn) ∈ R
n
≥. Then, the functional ϕ(X) =

∑n
i=1 µiλi(X) is sublinear.
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A direct consequence of this result is that the mapping ϕ : Sn → R is convex.1

In the particular case, µ1 = · · · = µk = 1, µk+1 = · · · = µn = 0 (1 ≤ k ≤ n),
we deduce that the sum of the largest k eigenvalues of a matrix X ∈ Sn is a3

convex function. An alternative proof is based on the observation that, for any
fixed 1 ≤ k ≤ n,5

λ1(X) + λ2(X) + · · · + λk(X) = sup
A∈A

tr(AAT X), c (1.1)

where

A =
{
A ∈ Mn,k(R); AT A = Ik

}
.

Since A is a compact set, the supremum in (1.1) is attained in A. We deduce that7

the mapping Sn � X 	→ λ1(X) + λ2(X) + · · · + λk(X) is convex, as a supremum
of linear functions on Sn. The extreme situations k = 1 and k = n show that both9

the largest eigenvalue of X and the trace of X are convex functions on Sn. We
also deduce, by taking differences, that

∑n
j=k+1 λj(X) is a concave function, for all11

1 ≤ k ≤ n − 1. In particular, the mapping Sn � X 	→ λn(X) is concave.
A classical result (see, e.g., [2, 17]) asserts that Schur-convex functions are pre-13

cisely restrictions to R
n
≥ of symmetric convex functions. This result is strictly related

to the class of convex functions f : Sn → R (like the functions
∑k

j=1 λj(X))15

depending only on the eigenvalues of X . In fact, if we write diag(λ) (where
λ = (λ1, . . . , λn) ∈ R

n) for the diagonal matrix with diagonal entries λ1, . . . , λn,17

and define a function Φ : R
n → R by Φ(λ) = f(diag(λ)), then Φ is convex and

symmetric: Φ(λ) = Φ(σ◦λ) for all permutation σ ∈ Pn. The converse is also true: if19

Φ : R
n → R is a symmetric convex function, then the function f : Sn → R defined

by f(X) = Φ(λ(X)) (where λ(X) = (λ1(X), . . . , λn(X))T ) is convex and satisfies21

f(U∗XU) = f(X) whenever U ∈ Mn,n(R) is a unitary matrix. The above result is
due to Davis [5].23

The above considerations show that it is natural to impose an adequate “symme-
try” assumption in order to obtain a Schur convexity property for linear operators25

defined on arbitrary Hilbert spaces. That is why we consider throughout this paper
linear selfadjoint operators defined on infinite dimensional Hilbert spaces.27

2. A Schur Convexity Property in Hilbert Spaces

In the first part of this section, we establish an infinite dimensional version of29

the Schur convexity property for linear, selfadjoint and compact operators defined
on separable Hilbert spaces. Next, we extend this property to the class of linear31

selfadjoint operators that can be approximated by operators of finite rank. Several
examples from mechanics and quantum mechanics illustrate both cases.33

2.1. Schur convexity property for selfadjoint, compact operators

Let H be a separable Hilbert space and assume that S : H → H is a linear, self-35

adjoint and compact operator. Since S is compact then, by the Riesz–Schauder
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theorem ([14, Theorem VI.15]), the spectrum σ(S) of S is a discrete set having no1

limit points except perhaps the origin. Moreover, any λ ∈ σ(S)\{0} is an eigenvalue
of finite multiplicity. Next, the classical spectral theory of compact selfadjoint oper-3

ators (see, e.g., [3, Proposition VI.9]) ensures that σ(S) ⊂ [m, M ] and m, M ∈ σ(S),
where m = inf{(Su, u); u ∈ H, ‖u‖ = 1} and M = sup{(Su, u); u ∈ H, ‖u‖ = 1}.5

In conclusion, the spectrum of S is discrete and it consists of a countable family of
eigenvalues (λn(S))n≥1 with the additional property that λn(S) → 0 as n → ∞. At7

this stage, the Hilbert–Schmidt theorem ([14, Theorem VI.16]) implies that there
is a complete orthonormal basis (en)n≥1 of H such that Sen = λnen for all n ≥ 1,9

where λn = λn(S). So, Sx =
∑∞

n=1 λn(x, en)en, for all x ∈ H .
We observe that for any fixed positive integer n, the set{

λ ∈ σ(S); |λ| ≥ 1
n

}

is either empty or finite. Thus, we can rearrange the eigenvalues of S such that

λ1(S) ≥ λ2(S) ≥ · · · ≥ λn(S) ≥ · · · > 0 > · · · ≥ λ−n(S) ≥ · · · ≥ λ−2(S) ≥ λ−1(S).

(2.1)

Moreover, the unique limit point of the sequence (λn(S))n∈Z
is 0. If S has a finite11

number of negative eigenvalues (say, n), we denote them by λ−1(S) ≤ · · · ≤ λ−n(S)
and we set λ−k(S) for all k ≤ n + 1. We make a similar convention if S has finitely13

many positive eigenvalues. If 0 is an eigenvalue of S, we denote λ0(S) = 0.
Denote by K1(H) the vector space of linear, selfadjoint and compact operators15

S : H → H .
We prove the following infinite dimensional variant of Schur’s convexity17

property.

Theorem 2.1. Let H be a separable Hilbert space and assume that S : H → H19

is an arbitrary compact selfadjoint operator. Assume that the eigenvalues of S are
arranged as in (2.1) and let (µn)n∈Z be real numbers such that µ1 ≥ µ2 ≥ · · · ≥21

µn ≥ · · · ≥ µ−n ≥ · · · ≥ µ−2 ≥ µ−1 and
∑∞

n=−∞ µn is an absolutely convergent
series.23

Then, the functional ψ : K1(H) → R defined by ψ(S) =
∑∞

n=−∞ µnλn(S) is
convex and lower semicontinuous.25

Proof. We first observe that since S ∈ K1(H) is not assumed to be a nuclear
operator, then the series

∑
n∈Z

λn(S) is not necessarily convergent. However, our
hypothesis that the series

∑∞
n=−∞ µn is absolutely convergent implies that the series∑∞

n=−∞ µnλn(S) is absolutely convergent, too, so the mapping ψ is well-defined.
Indeed, for all S ∈ K1(H),

|ψ(S)| ≤
∞∑

n=−∞
|µn| · |λn(S)| ≤ max{−λ−1(S), λ1(S)}

∞∑
n=−∞

|µn| < ∞.
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Any operator S ∈ K1(H) is the norm limit of a sequence of operators of finite
rank. Indeed, if (en)n∈Z is a complete orthonormal basis of H so that Sen = λn(S)en

for all n ∈ Z, with λn(S) arranged as in (2.1), then Sx =
∑∞

n=−∞ λn(S)(x, en)en,
for all x ∈ H . Set, for any m ≥ 1, Smx =

∑m
j=−m λj(S)(x, ej)ej , for all x ∈ H .

Then Sm → S in L(H) as m → ∞ and the (nontrivial) eigenvalues of Sm are
λ1(S) ≥ · · · ≥ λm(S) > 0 > λ−m(S) ≥ · · · ≥ λ−1(S). So, by the finite dimensional
Schur convexity property, the mapping

ψm : K1(H) → R, ψm(S) =
m∑

j=−m

µjλj(S)

is sublinear. So, for any S, T ∈ K1(H) and all α ∈ R,1

ψm(S + T ) ≤ ψm(S) + ψm(T ) and ψm(αS) = |α|ψm(S). (2.2)

On the other hand,

|ψ(S) − ψm(S)| =

∣∣∣∣∣∣
∑

|j|≥m+1

µjλj(S)

∣∣∣∣∣∣ ≤ max{−λ−m−1(S), λm+1(S)}
∑

|j|≥m+1

|µj |.

Therefore3

ψm(S) → ψ(S) as m → ∞. (2.3)

Thus, by (2.2) and (2.3), ψ is a sublinear functional. In particular, ψ is convex.5

It remains to argue that ψ is lower semicontinuous, that is, ψ(S) ≤ lim infn→∞
ψ(Sn) for all S ∈ K1(H), provided Sn ∈ K1(H) and ‖Sn − S‖ → 0 as n → ∞. The
key ingredient is [6, Theorem 4.2], which asserts that λj(S) = limn→∞ λj(Sn). Fix
an integer m ≥ 1 and choose arbitrarily 0 < ε < max{−λ−m(S), λm(S)}. It follows
that there exists N0 = N0(ε) ∈ N such that, for all n ≥ N0,

ψm(S) =
m∑

j=−m

µjλj(S) =
m∑

j=−m

µ+
j λj(S) −

m∑
j=−m

µ−
j λj(S)

≤
m∑

j=−m

µ+
j (λj(Sn) + ε) −

m∑
j=−m

µ−
j (λj(Sn) − ε)

=
m∑

j=−m

µjλj(Sn) + ε

m∑
j=−m

|µj | = ψm(Sn) + ε

m∑
j=−m

|µj |.

Taking ε → 0, we obtain ψm(S) ≤ ψm(Sn), for all positive integers m and n. So,
for all n ≥ 1,

ψ(S) = lim
m→∞ψm(Sn) ≤ lim

m→∞ψm(Sn) = ψ(Sn).

We deduce that ψ(S) ≤ lim infn→∞ ψ(Sn) and the proof is concluded.
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Examples. (1) Sturm–Liouville differential operators. Many eigenvalue problems1

in quantum mechanics as well as classical physics are described by the Sturm–3

Liouville problem.

− d

dx

(
p(x)

dy

dx

)
+ q(x)y = Λy in (0, L),

y(0) = y(L) = 0,

(2.4)
5

where y(x) is the quantum mechanical wave function or other physical quantity,
while p ∈ C1[0, L] (p > 0 in [0, L]) and q ∈ C[0, L] are given functions that are
determined by the nature of the system of interest. We can assume, without loss
of generality, that q ≥ 0 in [0, L]. Indeed, if not, we choose C ∈ R sufficiently
large such that q + C ≥ 0 in [0, L] (in such a case, Λ is replaced by Λ + C

in (2.4)). Fix f ∈ L2(0, L). Thus, by the Lax-Milgram lemma, there exists a
unique u ∈ H2(0, L) ∩ H1

0 (0, L) such that

− d

dx

(
p(x)

dy

dx

)
+ q(x)y = f in (0, L),

y(0) = y(L) = 0.

Let S : L2(0, L) → L2(0, L) be the operator defined by Sf = u. Then, by
[3, Theorem VIII.20], S is linear, selfadjoint, compact, and nonnegative. Let7

λ1(S) ≥ λ2(S) ≥ · · · ≥ λn(S) ≥ · · · > 0 denote the eigenvalues of S. Then
Λn(S) = 1/λn(S) is an eigenvalue corresponding to the Sturm–Liouville prob-9

lem (2.4). In the particular case p ≡ 1 and q ≡ 0, a straightforward computation
shows that λn(S) = L2(n2π2)−1.11

Let µn (n ≥ 1) be real numbers such that µi ≥ µj if i < j and such that
the series

∑∞
n=1 µn converges absolutely. So, by Theorem 2.1, the mapping

S 	→
∞∑

n=1

µnλn(S)

is convex and lower semicontinuous.
(2) The electron atom model. On the Hilbert space H = L2(R3), let x, y, z be the

components of the momentum of the electron and denote by r = (x, y, z) its
position. Consider on H the selfadjoint operator

S = ∆ +
α

|r| , |r| =
√

x2 + y2 + z2.

Notice that the potential V (|r|) = α/|r| is the energy of the electric field sur-
rounding the electron, α depends on the electron’s charge, and |r| is its distance
from the atom’s nucleus. As established in [15], S has no eigenvalues for any
α < 0 and, if α > 0, then all eigenvalues of S are

λn(S) =
α

4n2
, n = 1, 2, . . . .
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Let (µn)n≥1 be a sequence of real numbers such that µ1 ≥ µ2 ≥ · · · ≥
µn ≥ · · · and the series

∑∞
n=1 µn converges absolutely. So, by Theorem 2.1, the

mapping

S 	→
∞∑

n=1

µnλn(S)

is convex and lower semicontinuous.1

(3) Nonrelativistic model for 2-electron atom. Set H = L2(R6) and define on H the
selfadjoint operator

S = ∆1 +
α

|r1| + ∆2 +
β

|r2| ,

where α, β > 0, rk = (xk, yk, zk), and

∆k =
∂2

∂x2
k

+
∂2

∂y2
k

+
∂2

∂z2
k

, for all k = 1, 2.

Compare with [15], the eigenvalues of S are precisely

λn,m(S) =
α

4n2
+

β

4m2
, n, m = 1, 2, . . . .

The countable family of positive numbers (λn,m(S))n,m≥1 can be rearranged
in a sequence (γp(S))p≥1 such that γi(S) ≥ γj(S), provided i < j. Let (µp)p≥1

be a sequence of real numbers such that µ1 ≥ µ2 ≥ · · · ≥ µp ≥ · · · and the
series

∑∞
p=1 µp converges absolutely. Thus, by Theorem 2.1, the mapping

S 	→
∞∑

p=1

µpγp(S)

is convex and lower semicontinuous.
(4) Schrödinger operators with periodic potential. The basic equation of quantum3

mechanics is the Schrödinger equation

i�ψt = − �
2

2m
∆ψ + V (x)ψ. (2.5)5

Schrödinger [18] studied the stationary equation

λϕ = − �
2

2m
∆ϕ + V (x)ϕ, (2.6)7

which follows from (2.5) through ψ(x, t) = ϕ(x)e−iλt/�. From (2.6), Schrödinger
derived the spectrum of the hydrogen atom. In this case, V is the potential of the9

electrostatic attracting force of the atomic nucleus, while from the eigenvalues
λ of (2.6), one obtains the energy levels of the electron of the hydrogen atom.11

Solutions of Schrödinger’s equation have to fulfill strict conditions to be
useful in describing the electron. Some of the solutions are associated with
special values of the electron’s energy level, known as eigenvalues. We consider
in what follows the class of piecewise continuous potential functions V : R → R
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which are periodic of period 2π. Let S denote the one dimensional Schrödinger
operator associated to V defined on L2

per(R) with 2π-periodic conditions. This
operator is defined as follows: for any f ∈ L2

per(R) periodic of period 2π, let
u ∈ H1

per(R) be the unique solution of the problem{
−u′′ + V (x)u = f in (0, 2π)

u(0) = u(2π), u′(0) = u′(2π).

Then S is defined by L2
per(R) � f 	→ u = Sf ∈ L2

per(R). According to [15,
Theorem XIII.89], S has a countable family of eigenvalues λ1(S) > λ2(S) >

· · · > λn(S) > · · · and λn(S) → 0 as n → ∞. Assume that µn (n ≥ 1) are real
numbers such that µi ≥ µj if i < j and such that the series

∑∞
n=1 µn converges

absolutely. So, by Theorem 2.1, the mapping

S 	→
∞∑

n=1

µnλn(S)

is convex and lower semicontinuous.1

(5) Indefinite weight elliptic problems on the whole space. Consider the class of
measurable functions V : R

N → R (N ≥ 3) such that V + ∈ LN/2(RN ), where
V = V + − V −. We observe that this class contains potentials V satisfying
V +(x) ≤ C(1 + |x|2)−α for all x ∈ R

N , where α > 1 and C is a positive
constant. For some fixed λ > 0, let E be the completion of C∞

0 (RN ) with
respect to the norm

‖u‖2 =
∫

RN

[|∇u|2 + max
(
λV −, ω

)
u2

]
dx,

where ω(x) = K(1 + |x|2)−1 with K > 0 sufficiently small. Then, by [1,
Lemma 0], the operator S : E → E∗ ↪→ E defined by Sϕ = V +ϕ is compact3

and selfadjoint. Next, by [1, Theorem 1], there exist infinitely many eigenvalues
λ1(S) > λ2(S) ≥ · · · ≥ λn(S) ≥ · · · ≥ 0 of S with λn(S) → 0 as n → ∞. So,5

if µn (n ≥ 1) are real numbers such that µi ≥ µj if i < j and
∑∞

n=1 |µn| < ∞
then, by Theorem 2.1, the mapping S 	→ ∑∞

n=1 µnλn(S) is convex and lower7

semicontinuous.

2.2. A More general framework9

Consider the class K2(H) of linear selfadjoint operators S : H → H having a
countable family of eigenvalues and such that S can be approximated by operators11

of finite rank. For any operator S ∈ K2(H), passing eventually at a rearrangement,
let λ1(S) ≥ λ2(S) ≥ · · · ≥ λn(S) ≥ · · · denote the eigenvalues of S.13

Fix a family µ = (µ1, µ2, . . . , µn, . . .) of real numbers such that µi ≥ µj if
i < j. Consider the class K2,µ(H) of operators S ∈ K2(H) such that the series15 ∑∞

n=1 µnλn(S) converges.
Under these hypotheses, we establish the following infinite dimensional version17

of the Schur convexity property.
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Theorem 2.2. The functional ψ : K2,µ(H) → R defined by ψ(S) =
∑∞

n=1 µnλn(S)1

is convex and lower semicontinuous.

Proof. By the definition of K2,µ(H), for any operator belonging to this class there
exists a sequence (Sn)n≥1 of operators of finite rank such that ‖Sn − S‖ → 0 as
n → ∞. So, by [6, Theorem 4.2], we have limn→∞ λj(Sn) = λj(S), for all positive
integer j. Define, for all m ≥ 1,

ψm : K2,µ(H) → R, ψm(S) =
m∑

j=1

µjλj(S).

Therefore3

lim
n→∞

m∑
j=1

µjλj(Sn) =
m∑

j=1

µjλj(S) = ψm(S). (2.7)

On the other hand, since S ∈ K2,µ(H),5

lim
m→∞ψm(S) =

∞∑
j=1

µjλj(S) = ψ(S). (2.8)

Let S, T ∈ K2,µ(H) and assume that Sn, Tn are operators of finite rank such
that ‖Sn − S‖ → 0 and ‖Tn − T ‖ → 0 as n → ∞. Applying the Schur convexity
property, we obtain

ψm(Sn + Tn) ≤ ψm(Sn) + ψm(Tn), for all m, n ≥ 1.

Taking n → ∞ and using (2.7), we find

ψm(S + T ) ≤ ψm(S) + ψm(T ), for all m ≥ 1.

Next, by (2.8), we deduce that

ψ(S + T ) ≤ ψ(S) + ψ(T ), for all S, T ∈ K2,µ(H).

A similar argument shows that ψ is positive homogeneous.7

The lower semicontinuity of ψ follows with the same arguments as in the proof
of Theorem 2.1.9

Examples. (1) Schrödinger operators with arbitrary potential. Let H0 denote the
11 differential operator d2/dx2 on L2(0, 1) with the boundary conditions u(0) =

u(1) = 0 and assume that V ∈ L∞(0, 1) is an arbitrary potential. Let13

λn(S) be the nth eigenvalue of the operator S = H0 + V . Then, by,
[15, Theorem XIII.82.5],15

λn(S) = −n2π2 +
∫ 1

0

V (x) dx + o(1) as n → ∞. (2.9)

Fix the real numbers µn (n ≥ 1) such that µi ≥ µj if i < j and the series∑∞
n=1 µnλn(S) converges. Using the asymptotic estimate (2.9), we deduce that,
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for the last purpose, it is enough to choose µn so that µn = O (n−p), for some
p > 3. Then, by Theorem 2.2, the mapping

S 	→
∞∑

n=1

µnλn(S)

is convex and lower semicontinuous.1

(2) Wave functions on infinite depth wells. Fix arbitrarily the positive numbers a

and b. Define the following discontinuous potential energy of a particle in the
force field

V (x) =



−∞ if x < −b,

0 if −b < x < a,

−∞ if x > a.

Consider the Schrödinger equation,


�
2

2m
ψ′′ + V (x)ψ = λψ

ψ(−b) = ψ(a) = 0,

where m is the mass of the particle and � is Dirac’s constant (reduced Planck’s
constant). Compare with [13, p. 102], the definition of V forces ψ = 0 out-
side (−b, a). A straightforward computation shows that the eigenvalues of the
associated operator S are given by

λn(S) = − �
2π2

2m(a + b)2
n2.

Fix the real numbers µn (n ≥ 1) such that µi ≥ µj if i < j and the series∑∞
n=1 µnλn(S) converges. The above expression of eigenvalues shows that it is

enough to choose µn so that µn = O (n−p), for some p > 3. Applying Theorem
2.2, we deduce that the mapping

S 	→
∞∑

n=1

µnλn(S)

is convex and lower semicontinuous.
(3) Linear harmonic oscillator. Consider the Schrödinger equation on the whole3

real axis 


�
2

2m
ψ′′ + V (x)ψ = λψ

lim
|x|→∞

ψ(x) = 0 = 0.
(2.10)

5

In the particular case where V (x) = −mω2x2/2, the above problem describes
the linear harmonic oscillator. Compare with [13, p. 74], the energy levels of7

the corresponding linear operator S are given by λn(S) = −�ω(n + 1/2). So,
letting (µn)geq1 so that µi ≥ µj if i < j and such that the series

∑∞
n=1 µnλn(S)9
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converges, Theorem 2.2 implies that the mapping S 	→ ∑∞
n=1 µnλn(S) is convex1

and lower semicontinuous.
We point out that in the case of Morse potentials V (x) = V0(e−2x/a3

−2e−x/a) the number of eigenvalues of the problem (2.10) is finite.
(4) Periodic standing waves of Schrödinger’s equation. In his Ph.D. thesis defended

in 1923, de Broglie showed that an electron, or any other particle, has a wave
associated with it. The second equation established by de Broglie establishes
that the kinetic energy of a particle is directly proportional to its angular
frequency. De Broglie’s work resulted in the equation λ = �ω, where λ is the
kinetic energy of the associated wave and ω is the angular frequency of the
particle. With the same notations as in the previous example, we consider the
Schrödinger equation with periodic boundary conditions



�
2

2m
ψ′′ + V (x)ψ = λψ in (−b, a),

ψ(−b) = ψ(a),

ψ′(−b) = ψ′(a).

Outside the fundamental segment of length L = a + b, the standing wave ψ is
prolonged by periodicity such that ψ(x+L) = ψ(x), for all x ∈ R. In [13, p. 108],
it is provided a class of potentials V for which the associated bound state
energies to the above problem are given by

λn(S) = −2�π

L
n.

Thus, by Theorem 2.2, the mapping S 	→ ∑∞
n=1 µnλn(S) is convex and lower5

semicontinuous, provided (µn)n≥1 are chosen so that µi ≥ µj if i < j and the
series

∑∞
n=1 µnλn(S) converges.7

(5) Generalized model of the helium atom. Let S be the differential operator on
L2(R3n) given by

S =
3n∑
i=1

(
− ∆i

2mi
− n

mi

)
+

∑
i<j

(∇i · ∇j

M
+

1
|ri − rj |

)
,

where M and mi (1 ≤ i ≤ n) are arbitrary positive numbers. Compare with [15],
the above operator has been introduced by Zhislin and S can be viewed as the
Hamiltonian of a system consisting of a nucleus of mass M and n electrons of
masses m1, . . . , mn, after the center of the mass motion has been removed. This
model generalizes the elementary model of the helium atom which is described
by the operator S on L2(R6) given by

S = −∆1 − ∆2 − 2
|r1| −

2
|r2| +

1
|r1 − r2| .

In both cases (see Kato’s Theorem and Theorem XIII.7 in [15, p. 89]) the
operator S has a countable family of eigenvalues which can be supposed to9
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be arranged so that λi(S) ≥ λj(S) if i < j (notice that λ1(S) < −1 in the1

case of the elementary model of the helium atom). Fix the real numbers µn

(n ≥ 1) such that µi ≥ µj if i < j and the series
∑∞

n=1 µnλn(S) converges.3

Thus, by Theorem 2.2, the mapping S 	→ ∑∞
n=1 µnλn(S) is convex and lower

semicontinuous.5

(6) Schrödinger operators with unbounded potential. Let V ∈ L1
loc(R

N ) belonging
to the class of operators which are bounded from above and such that V (x) →
−∞ as |x| → ∞. Then, by [15, Theorem XIII.67], the Schrödinger operator
S = −∆ + V has a countable family of eigenvalues such that

λ1(S) ≥ · · · ≥ λn(S) ≥ · · · and λn(S) → −∞ as n → ∞.

Consider the real numbers µn (n ≥ 1) such that µi ≥ µj if i < j and the series∑∞
n=1 µnλn(S) converges. Applying Theorem 2.2, we deduce that the mapping7

S 	→ ∑∞
n=1 µnλn(S) is convex and lower semicontinuous.

(7) Quasilinear anisotropic Sturm–Liouville problems. Let α ≥ 0, p > 1, and 0 ≤9

a < b < ∞. Assume that q, s ∈ L∞(a, b) and ess infx∈(a,b) s(x) > 0. Consider
the quasilinear anisotropic eigenvalue problem11 


r−α

(
rα|u′|p−2u′)′ + q(r)|u|p−2u = λs(r)|u|p−2u in (a, b),

γ1

(|u|p−2u
)
(a) + γ2

(
rα|u′|p−2u′) (a) = 0,

γ3

(|u|p−2u
)
(b) + γ4

(
rα|u′|p−2u′) (b) = 0,

(2.11)

where γi ∈ R (i = 1, . . . , 4) such that γ2
1 + γ2

2 > 0 and γ2
3 + γ2

4 > 0.13

We distinguish two cases: the regular case where a > 0 or a = 0 and
0 ≤ α < p−1, and the singular case defined by a = 0, α ≥ p−1. In the singular15

case the boundary condition at the origin is u′(0) = 0. In both cases Walter
[22] proved that problem (2.11) has a countable number of simple eigenvalues17

λ1(S) > · · · > λn(S) > · · ·, limn→∞ λn(S) = −∞ and the corresponding
eigenfunction un has n − 1 simple zeroes in (a, b). Consider the real numbers19

µn (n ≥ 1) such that µi ≥ µj if i < j and the series
∑∞

n=1 µnλn(S) converges.
So, by Theorem 2.2, the mapping S 	→ ∑∞

n=1 µnλn(S) is convex and lower21

semicontinuous.

3. Conclusions23

In this paper, we have extended the Schur convexity property of the eigenvalues
of a symmetric matrix with real entries in the framework of infinite dimensional25

Hilbert spaces. First, we have considered the case of linear, selfadjoint, and compact
operators. Next, we have established a corresponding version of the Schur convexity27

property for linear selfadjoint operators that can be approximated by operators
of finite rank and having a countable family of eigenvalues. Our abstract results29

have been illustrated by various examples, including Sturm–Liouville problems,
Schrödinger operators with variable potential, the electron atom model, the linear31

harmonic oscillator, the generalized model of the helium atom, and wave functions
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on infinite depth wells. We have been concerned with linear operators with discrete1

spectrum and our results do not cover the case of operators with a continuous
spectrum.3
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