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Abstract. In this paper, we consider the existence of solutions for Choquard equation of the

form

−∆u+ V (|x|)u = [Iα ∗ (Q(|x|)F (u))]Q(|x|)f(u), x ∈ R2,

where the nonlinear term f(s) has exponential growth, the radial potentials V, Q : R+ → R

are unbounded, singular at the origin or decaying to zero. By combining the variational methods,

Trudinger-Moser inequality and some new approaches to estimate precisely the minimax level of the

energy functional, we prove the existence of a nontrivial solution for the above problem under some

weaker assumptions. Our study extends and improves the results of [Albuquerque-Ferreira-Severo,

Milan J. Math. 89 (2021)] and [Alves-Shen, J. Differential Equations, 344 (2023)].
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1 Introduction and main results

In the present paper, we consider the existence of solutions for nonlinear Choquard equations

of the form

−∆u+ V (|x|)u = [Iα ∗ (Q(|x|)F (u))]Q(|x|)f(u), x ∈ R2, (1.1)
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where f ∈ C(R,R), F (t) :=
∫ t
0 f(s)ds, the radial potentials V,Q : R+ → R are unbounded, singular

at the origin or decaying to zero at infinity. The Riesz potential Iα with order α ∈ (0, 2) is defined

for x ∈ R2 \ {0} by

Iα(x) =
Aα

|x|2−α
with Aα =

Γ(2−α
2 )

2απΓ(α2 )
.

We recall here that Γ is the classical Gamma function and ∗ denotes the convolution on R2.

Explicitly, we introduce the following assumptions on V and f :

(V1) V ∈ C((0,+∞), (0,+∞)), and there exist a0, a > −2 such that

lim sup
r→0+

V (r)

ra0
< +∞, lim inf

r→+∞

V (r)

ra
> 0;

(F1) f ∈ C(R,R), and

lim
|t|→∞

|f(t)|
eβt2

= 0, for all β > 0;

or

(F1′) f ∈ C(R,R), and there exists β0 > 0 such that

lim
|t|→∞

|f(t)|
eβt2

= 0, for all β > β0

and

lim
|t|→∞

|f(t)|
eβt2

= +∞, for all β < β0;

(F2) lim
t→0

∣∣∣∣f(t)tα/2

∣∣∣∣ = l ∈ [0,+∞);

(F3) there exists µ > 1 such that

f(t)t ≥ µF (t) > 0, ∀ t ∈ R \ {0};

(F4) there exists M0 > 0 and t0 > 0 such that

F (t) ≤M0|f(t)|, ∀ |t| ≥ t0.

To facilitate the subsequent analysis, we introduce the following notations. Let

E :=

{
u ∈ L2

loc(R2) : u is radial, |∇u| ∈ L2(R2) and

∫
R2

V (|x|)u2dx < +∞
}

and define

(u, v) :=

∫
R2

(∇u · ∇v + V (|x|)uv) dx, ∀ u, v ∈ E; ∥u∥2 :=
√
(u, u) ∀ u ∈ E.
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Then E is a Hilbert space with the above inner product (·, ·) (see [1, Proposition 2.1]). Furthermore,

for s ∈ [1,+∞), we define

Ls(R2, Q) :=

{
u : R2 → R : u is mensurable,

∫
R2

Q(|x|)
4

2+α |u|sdx <∞
}
.

It is widely known that the term |x|α−2 ∗ (Q(x)F (u)) can be regarded as the convolution

between the Riesz potential |x|α−2 and Q(x)F (u). Thus, problem (1.1) is closely related to the

Choquard equation arising from the study of Bose-Einstein condensation and can be exploited to

describe the finite-range many-body interactions between particles. For N ≥ 3, the Choquard

equation under the convolution of the Riesz potential is simply of the form

−∆u+ u =
(
|x|α−N ∗ |u|p

)
up−2u, x ∈ RN . (1.2)

In the relevant physical case in which N = 3, α = 1 and p = 2, Equation (1.2) turns into the

Choquard-Pekar equation, which was used by Pekar [2] to describe a polaron at rest in the quantum

field theory. It was also investigated by Choquard to characterize an electron trapped in its own hole

as an approximation to the Hartree-Fock theory for a one component plasma [3]. Subsequently, Lieb

[4] and Lions [5] obtained the existence and uniqueness of positive solutions to (1.2) by variational

methods. It should be pointed out that Equation (1.2) was also proposed by Moroz-Penrose-Tod

in [6] as a model for self-gravitating particles where it can be viewed as the classical Schrödinger-

Newton equation, see e.g. [7–9].

Problem (1.2) has attracted a lot of interest in recent years and has been extensively inves-

tigated in the literature, such as, the existence and multiplicity of nontrivial solutions in [10–12],

the sign-changing solutions in [13, 14] and the semiclassical solutions in [15, 16]. We also refer

to reference [17] for a broad survey of the Choquard equations. We emphasize that all the re-

sults mentioned above require that the exponent N+α
N ≤ p ≤ N+α

N−2 , which is deduced from the

Hardy-Littlewood-Sobolev inequality (see Lemma 2.1) and the Sobolev embedding theorem.

Notably, the case N = 2 is very special, as the corresponding Sobolev embedding yields

H1(R2) ⊂ Ls(R2) for all s ∈ [2,+∞), but H1(R2) ̸⊆ L∞(R2). In dimension N = 2, in order to

address problems with exponential growth, one of the most important tools is the Trudinger-Moser

inequality, which can be seen as a substitute of the Sobolev inequality. The first version of the

Trundiger-Moser inequality in R2 was established by Cao in [18], see also [19, 20] and reads as

follow:

i) if β > 0 and u ∈ H1(R2), then ∫
R2

(
eβu

2 − 1
)
dx <∞;
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ii) if u ∈ H1(R2), ∥∇u∥22 ≤ 1, ∥u∥2 ≤ M < ∞, and β < 4π, then there exists a constant C(M,β),

which depends only on M and β, such that∫
R2

(
eβu

2 − 1
)
dx ≤ C(M,β).

Based on Trundiger-Moser inequality, we say that f has subcritical growth on R2 at t = ±∞ if

(F1) holds, and f has critical growth on R2 at infinity if (F1′) holds. Now let us recall some related

works for (1.1) with subcritical or critical exponential growth.

When Q(x) ≡ 1, (1.1) reduces to the following Choquard equation

−∆u+ V (x)u = (Iα ∗ F (u))f(u), x ∈ R2. (1.3)

Consider the case V (x) ≥ V0 > 0 for all x ∈ R2. In [21], Alves-Cassani-Tarsi-Yang studied (1.3)

with the critical exponent β0 = 4π under (F3) and the following assumptions on f :

(f1) f(t) = 0 for t ≤ 0, 0 ≤ f(t) ≤ Ce4πt
2
, ∀ t > 0;

(f2) there exists p > α
2 and Cp > 0 such that f(t) ∼ Cpt

p, as t→ 0;

(f3) there exist t1 > 0,M1 > 0 and q ∈ (0, 1] such that 0 < tqF (t) ≤M1f(t), ∀ t ≥ t1;

(f4) lim
t→∞

tf(t)F (t)

e8πt2
≥ k with k > inf

ρ>0

α(1 + α)(2 + α)2

16π2ρ2+α
e

2+α
4

Vρρ2 , where Vρ := sup
|x|≤ρ

V (x).

They obtained nontrivial solutions for (1.3) by using the mountain pass lemma and showing that

the mountain pass level shall be less than 2+α
8 provided that the potential V is periodic or satisfies

the Rabinowitz type condition introduced in [22]. We point out that the threshold of the mountain

pass level can be directly deduced from the condition (f4). By considering a sequence of measures

which have uniformly bounded total variation and using the Radon-Nicodym theorem, they [21]

showed that the weak limit of a Palais-Smale sequence for the energy functional associated with

(1.3) is a solution, moreover, the weak limit is proved to be nonzero by using the condition (f4)

which constitutes the core of the proof. For the case that V change sign, Qin-Tang [23] developed a

direct approach to deal with the equation (1.3) with both critical exponential growth and strongly

indefinite features when 0 lies in a gap of the spectrum of the operator −∆+ V . They proved the

existence of nontrivial solutions for Equation (1.3) under (F1′), (F2) with l = 0, (F3), (F4) and the

following assumption:

(f5) lim inf
t→∞

f(t)

eβ0t2
>

√
α(1 + α)(2 + α)√
2πAαρ1+α/2

e4(2+α)π(1+ρ)2B2
0/(2+ρ) where ρ > 0 satisfies 2(2+α)πρ2B2

0 <

1 and B0 > 0 is an embedding constant.
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(f5) in [23] plays the same role like (f4) in [21]and enables taking advantage of the Moser functions

to pull down the critical value to a particular threshold value (2+α)π
2β0

and then showing that the

weak limit of a Palais-Smale sequence is nonvanishing. They also established the existence of

ground states and geometrically distinct solutions for the equation (1.3) when the nonlinearity has

subcritical exponential growth.

Compare with equation (1.3), the weight function Q will cause difficulties in estimating the

threshold value of equation (1.1), and thus more efforts are required when studying the equation

(1.1). Albuquerque-Ferreira-Severo[1] established a new version of the Trudinger-Moser inequal-

ity (see [1, Proposition 2.9]), which will plays an important role in their arguments. Based on

the weighted Trudinger-Moser inequality, Albuquerque-Ferreira-Severo[1], by a standard argument,

proved that (1.1) has a nontrivial weak solution provided that V,Q and f satisfy (V1), (F1′), (f3)

and the following assumptions:

(Q1′) Q ∈ C((0,+∞), (0,+∞)), and there exists b0 > −2+α
2 and b < a(2+α)

4 such that

lim sup
r→0+

Q(r)

rb0
< +∞, lim sup

r→+∞

Q(r)

rb
< +∞;

(Q2′) lim inf
r→0+

Q(r)

rb0
> 0;

(f6) f ∈ C(R+,R) and lim
t→0+

f(t)

tα/2
= 0;

(f7) there exists θ > 1 such that θF (t) ≤ f(t)t, ∀ t ≥ 0;

(f8) κ∗ := lim inf
t→+∞

F (t)

eβ0t2
> 0.

Later Shen-Rădulescu-Yang [24] studied the equation (1.1), where the potential V and the weight

Q satisfy the following hypotheses:

(K) V,Q ∈ C(R2) and there exist some positive constants γ, τ, a, A and b such that

a

1 + |x|γ
≤ V (x) ≤ A and 0 < Q(x) ≤ b

1 + |x|τ
,

where V (x), Q(x) ∼ |x|−τ as |x| → +∞ and (γ, τ) satisfies one of the following assumptions:

(i) 0 < γ < 2 and (2 + α)γ/4 ≤ τ < +∞, or 0 < γ ≤ 4τ/(2 + α) < 2;

(ii) γ = 2 and (2 + α)/2 ≤ τ < +∞;

(iii) γ > 2 and (2 + α)/2 ≤ τ < +∞;

and f satisfies (F1′), (f3), (f8) as well as
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(f9) f ∈ C1(R), f(t) ≡ 0 for all t ≤ 0 and lim
t→0+

f(t)

tα/2
= 0;

(f10) there exists a constant δ ∈ [0, 1) such that F (t)f ′(t)
f2(t)

≥ δ, ∀ t > 0.

They investigated the existence of nontrivial solutions of mountain-pass type for (1.1). Furthermore,

they also proved that the nontrivial solution is a bound state, namely a solution belonging to

H1(R2), for some particular (γ, τ).

We emphasize that hypothesis (f8) is usually used to estimate the minimax level of the energy

functional associated to the critical exponential growth problems. In [1, 24], hypothesis (f8) is

crucial to overcome the obstacles caused by the critical exponential term. Indeed, by (f8), mountain-

pass level c can be controlled by a fine threshold π(2+α+2b0)
2β0

(b0 = 0 in [24]) under which the

compactness can be restored for the critical case (see [1, Proposition 6.2] and [24, Lemma 3.3]).

Inspired by the works mentioned above, two natural questions arise:

(Q1) Can we establish the existence of nontrival solution of (1.1) by using new

assumptions on the weight function Q that are different from (Q1′) and (Q2′)?

(Q2) As we can see (f8) is an essential technical condition for the critical exponen-

tial growth problems. When studying (1.1) in critical exponential case, can we weaken

(f8) to more general conditions?

The main purpose of this article is to address the above questions. Based on the above obser-

vations and inspired by the work [25], we shall further study the existence of nontrivial solutions

for equation (1.1) under subcritical and critical exponential growth. Besides (V1), (F1), (F1′) and

(F2)-(F4), we introduce the following assumptions:

(Q1) Q ∈ C((0,+∞), (0,+∞)), and there exists b0 > −2+α
2 such that

lim sup
r→0+

Q(r)

rb0
< +∞, lim sup

r→+∞

Q(r)
4

2+α

V (r)
= 0;

(Q2) there holds

lim inf
r→0+

∫ r
0 sQ(s)ds

r2+b0
=: ζ0 > 0;

(F5) κ := lim inf
t→+∞

tF (t)

eβ0t2
> 0.

Obviously, (F5) is much weaker than (f8) used in [1, 24]. Our approach is based on delicate

estimates for the upper bound for the mountain-pass minimax level c.

Remark 1.1. It is clearly to see that (Q2′) implies (Q2). Since b < a(2+α)
4 in (Q1′), it is also

easy to verify that (V1) and (Q1′) imply (Q1). However, there are many functions V (r) and Q(r)
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satisfying (V1), (Q1) and (Q2) but not (Q1′). For example, V (r) = log(1 + r) and Q(r) = rσ

satisfy (V1), (Q1) and (Q2) when σ ∈
(
−2+α

2 , 0
]
but not (Q1′) when σ = 0.

Definition 1.2. We say that u is a least energy solution to (1.1) if u ∈ E such that Φ(u) = m :=

inf
M

Φ, where

M := {u ∈ E \ {0} : Φ′(u) = 0}. (1.4)

Specifically, we are ready to state the main results in the present paper.

Theorem 1.3. Assume that V,Q and f satisfy (V1), (Q1) and (F1)-(F3). Then (1.1) has a least

energy solution u ∈ E \ {0}.

Theorem 1.4. Assume that V,Q and f satisfy (V1), (Q1), (Q2), (F1′), (F2), (F3), (F4) and (F5).

Then (1.1) has a least energy solution u ∈ E \ {0}.

Remark 1.5. (F5) is a very mild condition involving the behavior of the nonlinearity f at infinity.

Since (F5) is much weaker than (f8) used in [1, 24], Theorem 1.4 seems to be an innovative result to

some extent, which improves and extends the existing results in the direction concerning Choquard

equations.

Remark 1.6. We give an explicit examples of nonlinear term satisfying our assumptions (F1),

(F2) and (F3) as follows:

f1(t) =
α+ 2

2
|t|

α−2
2 teβt

2/2 + β|t|
α+2
2 teβt

2/2 (β > 0) and F1(t) =

∫ t

0
f1(s)ds = |t|

α+2
2 eβt

2/2.

The example of nonlinear term satisfying our assumptions (F1′), (F2), (F3), (F4) and (F5) can be

given as follows:

f2(t) =
α+ 2

2
|t|

α−2
2 teβ0t2 + 2β0|t|

α+2
2 teβ0t2 (β0 > 0) and F2(t) =

∫ t

0
f2(s)ds = |t|

α+2
2 eβ0t2 .

When Q(|x|) = 1√
Aα|x|µ

in (1.1), where 0 ≤ µ < α
2 , it transforms into the following Schrödinger

equation with Stein-Weiss Potential

−∆u+ V (|x|)u =
1

|x|µ

(∫
R2

F (u(y))

|x− y|2−α|y|µ
dy

)
f(u), in R2. (1.5)

There exists b0 = −µ > −α
2 > −2+α

2 such that (Q1) and (Q2) hold.

Corollary 1.7. Assume that V and f satisfy (V1) and (F1)-(F3). Then (1.5) has a least energy

solution u ∈ E \ {0}.
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Corollary 1.8. Assume that V and f satisfy (V1), (F1′), (F2), (F3), (F4) and (F5). Then (1.5)

has a least energy solution u ∈ E \ {0}.

Remark 1.9. When V (x) ≡constant, there exists a0 = 0, a = 0 such that (V 1) holds. Thus

Theorem 1.4 and Corollary 1.8 extend and cover the main result in [26].

The paper is organized as follows. In Section 2, we give the variational setting and some

preliminary lemmas. Section 3 is devoted to the subcritical exponential growth case where Theorem

1.3 is proved. In Section 4, we consider the critical exponential growth case, and complete the proof

of Theorem 1.4.

Throughout the sequel, we denote the usual Lebesgue space with norm ∥u∥p =
(∫

R2 |u|pdx
) 1

p

by Lp(R2), where 1 ≤ p < ∞, Br := {x ∈ R2 : |x| < r} for all r > 0, and Ci denotes different

positive constant in different place.

2 Variational framework and preliminaries

Under assumptions (F1′) and (F2), fix β > β0, we know that for any q ≥ 0, there exists

θ1 > 0, θ2,q > 0, θ3,q > 0 such that

|f(t)| ≤ θ1|t|
α
2 + θ2,q(e

βt2 − 1)|t|q, ∀ t ∈ R, (2.1)

|F (t)| ≤ θ1|t|
2+α
2 + θ2,q(e

βt2 − 1)|t|q+1, ∀ t ∈ R (2.2)

and

|F (t)| ≤ θ3,q(e
βt2 − 1)|t|q+1, ∀ |t| ≥ 1. (2.3)

Similarly, under assumptions (F1) and (F2), we know that (2.1), (2.2) and (2.3) hold for fixed

β > 0.

Lemma 2.1. (Hardy-Littlewood-Sobolev inequality,[27]) Let s, r > 1 and 0 < α < 2 with 2−α
2 +

1
s + 1

r = 2, g ∈ Ls(R2), h ∈ Lr(R2). There exists a sharp constant C(α, s, r), independent of g, h,

such that ∫
R2

(Iα ∗ g)hdx ≤ C(α, s, r)∥g∥s∥h∥r. (2.4)

In particular, ∫
R2

(Iα ∗ g)hdx ≤ C0∥g∥4/(2+α)∥h∥4/(2+α), (2.5)

where C0 := C(α, 4/(2 + α), 4/(2 + α)).
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Lemma 2.2. (Cauchy-Schwarz type inequality,[28]) For g, h ∈ L1
loc(R2), there holds∫

R2

(Iα ∗ |g|)|h|dx ≤
[∫

R2

(Iα ∗ |g|)|g|dx
∫
R2

(Iα ∗ |h|)|h|dx
] 1

2

. (2.6)

Lemma 2.3. ([29]) Assume that (V1) holds. Then for any r0 > 0,

|u(x)| ≤ C0∥u∥|x|−(a+2)/4, ∀ u ∈ E, |x| ≥ r0 > 0. (2.7)

In the following lemma, we establish the embeddings E ↪→ Ls(R2, Q) for all s ≥ 2 under

conditions (V1) and (Q1) and give a simple proof.

Lemma 2.4. Assume that (V1) and (Q1) hold. Then the embeddings E ↪→ Ls(R2, Q) are contin-

uous and compact for all 2 ≤ s <∞. Therefore there exists γs > 0 such that(∫
R2

Q(|x|)
4

2+α |u|sdx
) 1

s

≤ γs∥u∥, ∀ u ∈ E, 2 ≤ s <∞. (2.8)

Proof. Fixed s ∈ [2,+∞). For any u ∈ E, let ū(x) = u(x) − u(x/|x|) := u(x) − u0. Then u0 ∈ R

and ū ∈ H1
0 (B1). By Poincaré inequality, the Hölder inequality and Sobolev imbedding theorem,

one has ∫
B1

|ū|ϱdx ≤ C(ϱ)

(∫
B1

|∇ū|2dx
) ϱ

2

, ∀ ϱ ≥ 1. (2.9)

Since b0 > −2+α
2 , we can choose p > 1 such that p 4b0

2+α > −2. Let p′ := p/(p− 1). Then it follows

from the Hölder inequality and (2.9) that∫
B1

|x|
4b0
2+α |ū|sdx ≤

(∫
B1

|x|
4pb0
2+α dx

) 1
p
(∫

B1

|ū|p′sdx
) 1

p′

≤ C1

(
2π

2 + 4pb0
2+α

) 1
p

∥∇ū∥s2

= C1

(
2π

2 + 4pb0
2+α

) 1
p

∥∇u∥s2. (2.10)

Hence from (2.10) and Lemma 2.3, we have∫
B1

|x|
4b0
2+α |u|sdx ≤ 2s−1

∫
B1

|x|
4b0
2+α (|ū|s + |u0|s) dx

= 2s−1

∫
B1

|x|
4b0
2+α |ū|sdx+

2sπ

2 + 4pb0
2+α

|u0|s ≤ C2∥u∥s. (2.11)

By using Lemma 2.3, one has∫
Bc

1

V (|x|)|u|sdx ≤ Cs−2
0 ∥u∥s−2

∫
Bc

1

V (|x|)u2dx ≤ C3∥u∥s. (2.12)
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Thus, it follows from (V1), (Q1), (2.11) and (2.12) that∫
R2

Q(|x|)
4

2+α |u|sdx =

∫
B1

Q(|x|)
4

2+α |u|sdx+

∫
Bc

1

Q(|x|)
4

2+α |u|sdx

≤ C4

∫
B1

|x|
4b0
2+α |u|sdx+ C5

∫
Bc

1

V (|x|)|u|sdx

≤ C6∥u∥s, ∀ u ∈ E. (2.13)

This shows that (2.8) holds, i.e. the embeddings E ↪→ Ls(R2, Q) are continuous for all 2 ≤ s <∞.

Next, we prove that the above embeddings are also compact. Let {un} ⊂ E be such that

∥un∥ ≤ C7. Without loss of generality, we may assume un ⇀ 0. We claim un → 0 in Ls(R2, Q) for

all 2 ≤ s <∞.

For any ε > 0, it follows from (Q1) and Lemma 2.3 that there exists Rε > 1 such that∫
Bc

Rε

Q(|x|)
4

2+α |un|sdx ≤ ε

∫
Bc

Rε

V (|x|)|un|sdx

≤ εCs−2
0 ∥un∥s−2

∫
Bc

Rε

V (|x|)u2ndx

≤ εCs−2
0 ∥un∥s ≤ εCs−2

0 Cs
7 . (2.14)

Since un ⇀ 0, then un → 0 in Lϱ
loc(R

2) for ϱ ∈ [1,+∞). It follows that∫
BRε

Q(|x|)
4

2+α |un|sdx ≤ C8

∫
BRε

|x|
4b0
2+α |un|sdx

≤ C8

2πR
2+

4pb0
2+α

ε

2 + 4pb0
2+α


1
p (∫

BRε

|un|p
′sdx

) 1
p′

= o(1). (2.15)

From (2.14) and (2.15), we can deduce that un → 0 in Ls(R2, Q) for all 2 ≤ s < ∞ due to the

arbitrariness of ε > 0.

Lemma 2.5. ([25, Theorem 1.2]) Assume that V and Q satisfy (V1) and (Q1). Then the following

conclusions hold.

i) If β > 0 and u ∈ E, then∫
R2

Q(|x|)
4

2+α

(
eβu

2 − 1
)
dx <∞.

ii) If 0 < β < 4π(2+α+2b0)
2+α , then there exists a constant C > 0 such that

sup
u∈E,∥u∥≤1

∫
R2

Q(|x|)
4

2+α

(
eβu

2 − 1
)
dx ≤ C.
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In view of Lemma 2.5, it is easy to see that the energy functional associated to problem (1.1)

Φ(u) =
1

2

∫
R2

[
|∇u|2 + V (|x|)u2

]
dx− 1

2

∫
R2

[Iα ∗ (Q(|x|)F (u))]Q(|x|)F (u)dx, u ∈ E (2.16)

is well defined under (V1), (Q1), (F1) (or (F1′)) and (F2), and by using standard arguments, we

can show that Φ ∈ C1(E,R) with derivative given by

⟨Φ′(u), φ⟩ =
∫
R2

[∇u · ∇φ+ V (|x|)uφ] dx−
∫
R2

[Iα ∗ (Q(|x|)F (u))]Q(|x|)f(u)φdx (2.17)

for all φ ∈ E. Now we say that u ∈ E is a weak solution to problem (1.1) if, for all φ ∈ C∞
0 (R2) it

holds that ⟨Φ′(u), φ⟩ = 0.

Finally, let

X :=

{
u ∈ L2

loc(R2) : |∇u| ∈ L2(R2) and

∫
R2

V (|x|)u2dx < +∞
}
.

Then X is a Hilbert space when endowed with inner product

(u, v)X =

∫
R2

[∇u · ∇v + V (|x|)uv]dx.

Next, inspired by [25], we will show that E is a natural constraint to look for critical points of Φ,

namely the critical points of the functional restricted to E are true critical points in X.

Lemma 2.6. Assume that (V1), (Q1), (F1) (or (F1′)) hold. If ū is a critical point of Φ restricted

to E, then ū is a critical point of Φ on X.

Proof. We only proof the case where (F1′) holds, as the case where (F1) holds is similar. Set

Tū(φ) :=

∫
R2

[∇ū · ∇φ+ V (|x|)ūφ] dx−
∫
R2

[Iα ∗ (Q(|x|)F (ū))]Q(|x|)f(ū)φdx. (2.18)

We first prove that Tū is a bounded linear functional on X. Let ψ ∈ C∞([0,+∞), [0, 1]) be a cut-off

function verifying

ψ(r) = 1, ∀ r ∈ [0, 1]; ψ(r) = 0, ∀ r ∈ [2,+∞); and |ψ′(r)| ≤ 2, ∀ r ∈ [0,+∞). (2.19)

By (V1), (2.19), Poincaré inequality, the Hölder inequality and Sobolev imbedding theorem, one

has ∫
B1

|φ(x)|sdx ≤
∫
B2

|ψ(|x|)φ(x)|sdx

≤ C13

(∫
B2

|∇(ψφ)|2dx
) s

2

≤ C14

(∫
B2

(
|φ∇ψ|2 + |ψ∇φ|2

)
dx

) s
2

11



≤ C15

(∫
B2\B1

|φ|2dx+

∫
B2

|∇φ|2dx

) s
2

≤ C16

(∫
B2\B1

V (|x|)|φ|2dx+

∫
B2

|∇φ|2dx

) s
2

≤ C16∥φ∥sX , ∀ s ≥ 1, φ ∈ X. (2.20)

Since b0 > −2+α
2 , we can choose p > 1 such that p 4b0

2+α > −2. Let p′ := p/(p− 1). Then it follows

from (V1), (Q1) and the Hölder inequality that∫
R2

Q(|x|)
4

2+α |φ|2dx =

∫
B1

Q(|x|)
4

2+α |φ|2dx+

∫
Bc

1

Q(|x|)
4

2+α |φ|2dx

≤ C17

∫
B1

|x|
4b0
2+α |φ|2dx+ C18

∫
Bc

1

V (|x|)|φ|2dx

≤ C17

(∫
B1

|x|
4pb0
2+α dx

) 1
p
(∫

B1

|φ|2p′dx
) 1

p′

+ C18

∫
Bc

1

V (|x|)|φ|2dx

≤ C19∥φ∥2X , ∀ φ ∈ X. (2.21)

By (F1′), (F2), (2.20), (2.21), Lemma 2.4 and Theorem 2.5, one has∣∣∣∣∫
R2

[Iα ∗ (Q(|x|)F (ū))]Q(|x|)f(ū)φdx
∣∣∣∣

≤ C0
(∫

R2

|Q(|x|)F (ū)|
4

2+αdx

) 2+α
4
(∫

R2

|Q(|x|)f(ū)φ|
4

2+αdx

) 2+α
4

≤ C20

(∫
R2

∣∣∣Q(|x|)
[
ū2 +

(
e2β0ū2 − 1

)
|ū|
]∣∣∣ 4

2+α
dx

) 2+α
4

×
(∫

R2

∣∣∣Q(|x|)
[
|ū|+

(
e2β0ū2 − 1

)]
|φ|
∣∣∣ 4
2+α

dx

) 2+α
4

≤ C21

[(∫
R2

∣∣Q(|x|)ū2
∣∣ 4
2+α dx

) 2+α
4

+

(∫
R2

∣∣∣Q(|x|)
(
e2β0ū2 − 1

)
|ū|
∣∣∣ 4
2+α

dx

) 2+α
4

]

×

[(∫
R2

|Q(|x|)ūφ|
4

2+α dx

) 2+α
4

+

(∫
R2

∣∣∣Q(|x|)
(
e2β0ū2 − 1

)
|φ|
∣∣∣ 4
2+α

dx

) 2+α
4

]

≤ C22

[(∫
R2

Q(|x|)
4

2+α |ū|
8

2+αdx

) 2+α
4

+

(∫
R2

Q(|x|)
4

2+α

(
e

16β0
2+α

ū2

− 1
)
dx

) 2+α
8

(∫
R2

Q(|x|)
4

2+α |ū|
8

2+αdx

) 2+α
8

]
×

[(∫
R2

Q(|x|)
4

2+α |ū|
8

2+αdx

) 2+α
8

+

(∫
R2

Q(|x|)
4

2+α

(
e

16β0
2+α

ū2

− 1
)
dx

) 2+α
8

](∫
R2

Q(|x|)
4

2+α |φ|
8

2+αdx

) 2+α
8

≤ C23∥φ∥X , ∀ φ ∈ X. (2.22)

From (2.18) and (2.22), we obtain

|Tū(φ)| ≤ |(ū, φ)|+
∣∣∣∣∫

R2

[Iα ∗ (Q(|x|)F (ū))]Q(|x|)f(ū)φdx
∣∣∣∣
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≤ ∥ū∥X∥φ∥X + C23∥φ∥X ≤ C24∥φ∥X , ∀ φ ∈ X. (2.23)

The above shows that Tū is a bounded linear functional on X. The Riesz Representation Theorem

in the Hilbert space X guarantees the existence of a unique v̄ ∈ X such that

Tū(φ) = (φ, v̄)X , ∀ φ ∈ X. (2.24)

Let O(2) the group of orthogonal transformations in R2. Then, by using a change of variables, we

get

Tū(gφ) = Tū(φ) and ∥gφ∥X = ∥φ∥X , ∀ φ ∈ X; ∀ g ∈ O(2),

which, together with (2.24), yields

(φ, gv̄)X = Tū(g
−1φ) = Tū(φ) = (φ, v̄)X , ∀ φ ∈ X, ∀ g ∈ O(2). (2.25)

By uniqueness, one has gv̄ = v̄,∀ g ∈ O(2). This shows that v̄ ∈ E. Since ū is a critical point of Φ

restricted to E, it follows that 0 = Tū(v̄) = ∥v̄∥2X . Hence,

Tū(φ) = (φ, v̄)X = (φ, 0)X = 0, ∀ φ ∈ X,

i.e. ū is a critical point of Φ on X.

3 The subcritical case

We establish the same conclusion in Lemma 4.1 below. So, to avoid repetition, we omit the

proof of Lemma 3.1 here, which can be deduced obviously from Lemma 4.1.

Lemma 3.1. Assume that (V1), (Q1), (F1) and (F2) hold. Then there exists a sequence {un} ⊂ E

satisfying

Φ(un) → c, ∥Φ′(un)∥(1 + ∥un∥) → 0, (3.1)

where c is given by

c = inf
γ∈Γ

max
t∈[0,1]

Φ(γ(t)),

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0,Φ(γ(1)) < 0} .

Lemma 3.2. Assume that (Q1), (F1) and (F2) hold. Let un ⇀ ū in E. Then for every v ∈ E,

lim
n→∞

∫
R2

[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)vdx =

∫
R2

[Iα ∗ (Q(|x|)F (ū))]Q(|x|)f(ū)vdx. (3.2)
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Proof. Since un ⇀ ū in E, we can choose C1 > 0 such that ∥un∥ ≤ C1. Set β ∈ (0, πα(2 + α +

2b0)/(2 + α)C2
1 ). Then from (2.2), the Hölder inequality and Lemma 2.5-ii), we have∫
R2

|Q(|x|)F (un)|
4

2+αdx

≤
∫
R2

Q(|x|)
4

2+α

(
C2|un|

2+α
2 + C2(e

βu2
n − 1)|un|

) 4
2+α

dx

≤ 4C
4

2+α

2

∫
R2

Q(|x|)
4

2+α |un|2dx+ 4C
4

2+α

2

∫
R2

Q(|x|)
4

2+α

(
eβu

2
n − 1

) 4
2+α |un|

4
2+αdx

≤ 4C
4

2+α

2

∫
R2

Q(|x|)
4

2+α |un|2dx+ 4C
4

2+α

2

(∫
R2

Q(|x|)
4

2+α

(
eα

−14βu2
n − 1

)
dx

) α
2+α

×
(∫

R2

Q(|x|)
4

2+α |un|2dx
) 2

2+α

≤ 4C
4

2+α

2 γ22∥un∥2 + 4C
4

2+α

2 C3γ
2
2∥un∥

4
2+α

≤ 4C
4

2+α

2 γ22C
2
1 + 4C

4
2+α

2 C3γ
2
2C

4
2+α

1 =: K
4

2+α

1 . (3.3)

By Lemma 2.4, we know that v ∈ Ls(R2, Q) for s ≥ 2. And then for any ε > 0, we can choose

Rε > 0 such that (∫
R2\BRε

Q(|x|)
4

2+α v2dx

) 1
2

< ε. (3.4)

From (2.5), (2.1), (3.3), (3.4), the Hölder inequality and Lemma 2.5-ii), one obtains∫
R2\BRε

|[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)v|dx

≤ C0
(∫

R2

|Q(|x|)F (un)|
4

2+αdx

) 2+α
4

(∫
R2\BRε

|Q(|x|)f(un)v|
4

2+αdx

) 2+α
4

≤ C0K1

(∫
R2\BRε

Q(|x|)
4

2+α

(
C2|un|

α
2 + C2

(
eβu

2
n − 1

)) 4
2+α |v|

4
2+αdx

) 2+α
4

≤ C4

(∫
R2\BRε

Q(|x|)
4

2+α |un|2dx

) α
2+α

+

(∫
R2\BRε

Q(|x|)
4

2+α

(
eα

−14βu2
n − 1

)
dx

) α
2+α

 2+α
4

×

(∫
R2\BRε

Q(|x|)
4

2+α |v|2dx

) 1
2

≤ C4

(
γ22∥un∥

2α
2+α + C3

) 2+α
4

(∫
R2\BRε

Q(|x|)
4

2+α |v|2dx

) 1
2

≤ C5ε. (3.5)

Similarly, we can deduce that∫
R2\BRε

|[Iα ∗ (Q(|x|)F (ū))]Q(|x|)f(ū)v|dx ≤ C6ε. (3.6)
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Since v ∈ L2(R2, Q), it follows that there exists δε > 0 such that(∫
A
Q(|x|)

4
2+α v2dx

) 1
2

< ε if meas(A) ≤ δε (3.7)

for all measurable set A ⊂ BRε . Hence it follows from ∥un∥ ≤ C1 that there exists Mε > 0 such

that

meas({x ∈ BRε : |un(x)| ≥Mε}) ≤ δε, meas({x ∈ BRε : |ū(x)| ≥Mε}) ≤ δε. (3.8)

Let

An := {x ∈ BRε : |un(x)| ≥Mε}, A0 := {x ∈ BRε : |ū(x)| ≥Mε},

D0 := {x ∈ BRε : |ū(x)| =Mε}.

Then it follows from (2.5), (2.1), (3.3), (3.7), (3.8), the Hölder inequality and Lemma 2.5-ii) that∫
An∪D0

|[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)v|dx

≤ C0
(∫

R2

|Q(|x|)F (un)|
4

2+αdx

) 2+α
4
(∫

An∪D0

|Q(|x|)f(un)v|
4

2+αdx

) 2+α
4

≤ C0K1

(∫
An∪D0

Q(|x|)
4

2+α

(
C2|un|

α
2 + C2

(
eβu

2
n − 1

)) 4
2+α |v|

4
2+αdx

) 2+α
4

≤ C7

(∫
An∪D0

Q(|x|)
4

2+α |un|
2α
2+α |v|

4
2+αdx

+

∫
An∪D0

Q(|x|)
4

2+α

(
eβu

2
n − 1

) 4
2+α |v|

4
2+αdx

) 2+α
4

≤ C7

[(∫
An∪D0

Q(|x|)
4

2+α |un|2dx
) α

2+α

+

(∫
An∪D0

Q(|x|)
4

2+α

(
eα

−1(2+α)βu2
n − 1

)
dx

) α
2+α

] 2+α
4

×
(∫

An∪D0

Q(|x|)
4

2+α |v|2dx
) 1

2

≤ C7

(
γ22∥un∥

2α
2+α + C3

) 2+α
4

(∫
An∪D0

Q(|x|)
4

2+α |v|2dx
) 1

2

≤ C8ε. (3.9)

Similarly, we can show that∫
A0

|[Iα ∗ (Q(|x|)F (ū))]Q(|x|)f(ū)v|dx ≤ C6ε. (3.10)

Choose Kε > max{1, t0} such that

K−1
ε

(∫
BRε

|Q(|x|)f(un)v|
4

2+αdx

) 2+α
4

< ε (3.11)
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and ∫
BRε\A0

[Iα ∗ (Q(|x|)F (ū)χ|ū|>Kε
)]|Q(|x|)f(ū)v|dx < ε. (3.12)

Then from (2.5), (2.3) and (3.11) the Hölder inequality and Lemma 2.5-ii), one has∫
BRε\(An∪D0)

∣∣∣[Iα ∗ (Q(|x|)F (un)χ|un|≥Kε
)]Q(|x|)f(un)v

∣∣∣dx
≤ C0

(∫
|un|≥Kε

|Q(|x|)F (un)|
4

2+αdx

) 2+α
4
(∫

BRε\(An∪D0)
|Q(|x|)f(un)v|

4
2+αdx

) 2+α
4

≤ C9K
−1
ε

(∫
|un|≥Kε

∣∣∣Q(|x|)
(
eβu

2
n − 1

)
|un|2

∣∣∣ 4
2+α

dx

) 2+α
4
(∫

BRε

|Q(|x|)f(un)v|
4

2+αdx

) 2+α
4

≤ C10K
−1
ε

(∫
|un|≥Kε

Q(|x|)
4

2+α

(
eα

−14βu2
n − 1

)
dx

)α
4
(∫

|un|≥Kε

Q(|x|)
4

2+α |un|4dx

) 1
2

×

(∫
BRε

|Q(|x|)f(un)v|
4

2+αdx

) 2+α
4

≤ C11K
−1
ε

(∫
BRε

|Q(|x|)f(un)v|
4

2+αdx

) 2+α
4

≤ C11ε. (3.13)

Let

ζn(x) :=
1

Aα
(Iα ∗ (|Q(|x|)F (un)|χ|un|≤Kε

))(x) =

∫
R2

|Q(|y|)F (un(y))|χ|un(y)|≤Kε

|x− y|2−α
dy (3.14)

and

ζ(x) :=
1

Aα
(Iα ∗ (|Q(|x|)F (ū)|χ|ū|≤Kε

))(x) =

∫
R2

|Q(|y|)F (ū(y))|χ|ū(y)|≤Kε

|x− y|2−α
dy. (3.15)

Then from (2.2), (3.14) and (3.15), one has

|ζn(x)− ζ(x)|

≤
∫
R2

∣∣∣|Q(|y|)F (un(y))|χ|un(y)|≤Kε
− |Q(|y|)F (ū(y))|χ|ū(y)|≤Kε

∣∣∣
|x− y|2−α

dy

≤

(∫
|x−y|≤R

∣∣∣|Q(|y|)F (un(y))|χ|un(y)|≤Kε
− |Q(|y|)F (ū(y))|χ|ū(y)|≤Kε

∣∣∣ 4−α
α

dy

) α
4−α

×

(∫
|x−y|≤R

1

|x− y|(4−α)/2
dy

) 4−2α
4−α

+

(∫
|x−y|>R

∣∣∣|Q(|y|)F (un(y))|χ|un(y)|≤Kε
− |Q(|y|)F (ū(y))|χ|ū(y)|≤Kε

∣∣∣ 4
2+α

dy

) 2+α
4
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×

(∫
|x−y|>R

1

|x− y|4
dy

) 2−α
4

≤

(∫
|x−y|≤R

∣∣∣|Q(|y|)F (un(y))|χ|un(y)|≤Kε
− |Q(|y|)F (ū(y))|χ|ū(y)|≤Kε

∣∣∣ 4−α
α

dy

) α
4−α (4π

α
R

α
2

) 4−2α
4−α

+ Cε

(∫
|x−y|>R

Q(|y|)
4

2+α |un|2 +
∫
|x−y|>R

Q(|y|)
4

2+α |ū|2dy

) 2+α
4 ( π

R2

) 2−α
4

≤
(
4π

α
R

α
2

) 4−2α
4−α

o(1) + C12Cε

( π
R2

) 2−α
4
, ∀ x ∈ R2, (3.16)

which implies that

ζn(x) → ζ(x), ∀ x ∈ R2. (3.17)

From (2.2) and (3.14), we have

|ζn(x)| ≤
∫
R2

∣∣∣|Q(|y|)F (un(y))|χ|un(y)|≤Kε

∣∣∣
|x− y|2−α

dy

≤

(∫
|x−y|≤1

|Q(|y|)F (un(y))χ|un(y)|≤Kε
|
4−α
α dy

) α
4−α

(∫
|x−y|≤1

1

|x− y|(4−α)/2
dy

) 4−2α
4−α

+

(∫
|x−y|>1

|Q(|y|)F (un(y))χ|un(y)|≤Kε
|

4
2+αdy

) 2+α
4
(∫

|x−y|>1

1

|x− y|4
dy

) 2−α
4

=

(∫
|x−y|≤1

|Q(|y|)F (un(y))χ|un(y)|≤Kε
|
4−α
α dy

) α
4−α (4π

α

) 4−2α
4−α

+

(∫
|x−y|>1

|Q(|y|)F (un(y))χ|un(y)|≤Kε
|

4
2+αdy

) 2+α
4

π
2−α
4

≤ max
B(x,1)

|Q(|y|)| max
|t|≤Kε

|F (t)|π
α

4−α

(
4π

α

) 4−2α
4−α

+ Cε

(∫
|x−y|>1

Q(|y|)
4

2+α |un|2
) 2+α

4

π
2−α
4

≤C13 max
B(x,1)

|Q(|y|)|+ C14Cε, ∀ x ∈ R2. (3.18)

It follows that

∣∣ζn(x)Q(|x|)f(un(x))χ|un(x)|≤Mε
v(x)

∣∣
≤
[(
C13 max

y∈BRε+1

|Q(|y|)|+ C14

)
max
x∈BRε

|Q(|x|)| max
|t|≤Mε

|f(t)|
]
|v(x)| ∈ L1(BRε), ∀ x ∈ BRε . (3.19)

Since un ⇀ ū in E, we can deduce that un → ū a.e. x ∈ R2. By (3.17), we can deduce that

ζn(x)Q(|x|)f(un(x))χ|un(x)|≤Mε
v(x) → ζ(x)Q(|x|)f(ū(x))χ|ū(x)|≤Mε

v(x) a.e. x ∈ BRε \D0.

Therefore, (3.17), together with (3.19) and Lebesgue dominated convergence theorem lead to

lim
n→∞

∫
BRε\(An∪D0)

[Iα ∗ (Q(|x|)F (un)χ|un|≤Kε
)]Q(|x|)f(un)vdx
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=

∫
BRε\A0

[Iα ∗ (Q(|x|)F (ū)χ|ū|≤Kε
)]Q(|x|)f(ū)vdx. (3.20)

It follows from (3.5), (3.6), (3.9), (3.10), (3.12), (3.13) and (3.20) that (3.2) holds due to the

arbitrariness of ε > 0.

By a standard argument, we can get the following lemma.

Lemma 3.3. Assume that (V1), (Q1) and (F1)-(F3) hold. Then any sequence {un} satisfying

(3.1) is bounded in E.

Lemma 3.4. Assume that (V1), (Q1) and (F1)-(F3) hold. Then Φ satisfies (C)c condition.

Proof. Applying Lemmas 3.1 and 3.3, we deduce that there exists a sequence {un} ⊂ E satisfying

(3.1) and ∥un∥ ≤ C1 for some constant C1 > 0. Since ∥un∥ ≤ C1, by Lemmas 2.4, we may thus

assume, passing to a subsequence if necessary, that un ⇀ ū in E, un → ū in Ls(R2, Q) for s ∈ [2,∞),

and un → ū a.e. on R2. By (2.16) and (4.1), we can deduce that∫
R2

[Iα ∗ (Q(|x|)F (un))]Q(|x|)F (un) ≤ C15. (3.21)

Hence it follows from (3.21), (3.21), (2.3), Lemma 2.5-ii), un → 0 in Ls(R2, Q) for s ≥ 2 and Hölder

inequality that∫
R2

∣∣∣[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)(un − ū)
∣∣∣dx

≤
(∫

R2

∣∣∣[Iα ∗ (Q(|x|)F (un))]Q(|x|)F (un)
∣∣∣dx) 1

2

×
(∫

R2

∣∣∣[Iα ∗ (Q(|x|)f(un)(un − ū))]Q(|x|)f(un)(un − ū)
∣∣∣dx) 1

2

≤
√
C15

(∫
R2

∣∣∣Q(|x|)f(un)(un − ū)
∣∣∣ 4
2+α

dx

) 2+α
4

≤ C16

(∫
R2

Q(|x|)
4

2+α |un|2dx
) 4α

(2+α)2
(∫

R2

Q(|x|)
4

2+α |un − ū|2dx
) 8

(2+α)2

+C16

(∫
R2

Q(|x|)
4

2+α

(
e

8β
2+α

u2
n − 1

)
dx

) 2+α
8
(∫

R2

Q(|x|)
4

2+α |un − ū|
8

2+αdx

) 2+α
8

≤ C17

(∫
R2

Q(|x|)
4

2+α |un − ū|2dx
) 8

(2+α)2

+ C17

(∫
R2

Q(|x|)
4

2+α |un − ū|
8

2+αdx

) 2+α
8

= o(1). (3.22)

Which yields that

lim
n→∞

∫
R2

[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)(un − ū)dx = 0. (3.23)
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Similarly, we can deduce that

lim
n→∞

∫
R2

[Iα ∗ (Q(|x|)F (ū))]Q(|x|)f(ū)(un − ū)dx = 0. (3.24)

By (3.1), it is obvious that

⟨Φ′(un)− Φ′(ū), un − ū⟩ = o(1). (3.25)

From (3.23), (3.24) and (3.25), we can get

∥un − ū∥2 = ⟨Φ′(un)− Φ′(ū), un − ū⟩ −
∫
R2

[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)(un − ū)dx

+

∫
R2

[Iα ∗ (Q(|x|)F (ū))]Q(|x|)f(ū)(un − ū)dx

= o(1).

The following lemma allows us to find a least energy solution for (1.1) with positive level.

Lemma 3.5. Assume that (V1), (Q1), (F1), (F2) and (F3) hold. Then

i) σ0 := inf{∥u∥ : u ∈ M} > 0;

ii) m := inf{Φ(u) : u ∈ M} > 0.

Proof. (i) Choose β ∈ (0, π(2 +α+ b0)/2). For any u ∈ M, if ∥u∥ < 1, by (2.1) and (2.2), we have

∥u∥2 =

∫
R2

[Iα ∗ (Q(|x|)F (u))]Q(|x|)f(u)udx

≤
(∫

R2

|Q(|x|)F (u)|
4

2+αdx

) 2+α
4
(∫

R2

|Q(|x|)f(u)u|
4

2+αdx

) 2+α
4

≤ C18

[∫
R2

Q(|x|)
4

2+α

(
|u|2 +

(
eβu

2 − 1
) 4

2+α |u|2
)
dx

] 2+α
2

≤ C19

(∫
R2

Q(|x|)
4

2+α |u|2dx
) 2+α

2

+ C19

(∫
R2

Q(|x|)
4

2+α

(
e(2+α)−18βu2 − 1

)
dx

) 2+α
4

×
(∫

R2

Q(|x|)
4

2+α |u|4dx
) 2+α

4

≤ C20∥u∥2+α + C21∥u∥2+α = C22∥u∥2+α. (3.26)

Thus there exists C23 > 0 such that ∥u∥ ≥ C23, ∀ u ∈ M, ∥u∥ < 1. Taking σ0 = min {C23, 1},

then ∥u∥ ≥ σ0, ∀ u ∈ M.

(ii) For any u ∈ M, by (F3) and item i), it is easy to see that

Φ(u) = Φ(u)− 1

2µ
⟨Φ′(u), u⟩ ≥ µ− 1

2µ
∥u∥2 ≥ µ− 1

2µ
σ20.

Thus we can deduce that item ii) holds.
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Proof of Theorem 1.3. First, we prove that M ≠ ∅. Applying Lemmas 3.1 and 3.2, we deduce

that there exists a sequence {vn} ⊂ E satisfying (3.1) and ∥vn∥ ≤ C24 for some constant C24 > 0.

Hence, there exists v ∈ E such that, up to a subsequence, vn ⇀ v in E, vn → v in Ls(R2) for s ≥ 2

and vn → v a.e. in R2. By Lemma 3.4, we know that vn → v in E. Thus

Φ(v) = lim
n→∞

Φ(vn) = c > 0, Φ′(v) = lim
n→∞

Φ′(vn) = 0.

Which imply that v ̸= 0 and v ∈ M.

Next, we prove that m := inf
M

Φ(u) is achieved. By Lemma 3.5, we have m > 0. Let {un} ⊂ M

be such that Φ(un) → m. It is easy to check that

m+ o(1) =Φ(un) = Φ(un)−
1

2µ
⟨Φ′(un), un⟩

=
µ− 1

2µ
∥un∥2 +

1

2µ

∫
R2

[Iα ∗ (Q(|x|)F (un))]Q(|x|) [f(un)un − µF (un)] dx

≥µ− 1

2µ
∥un∥2.

Which imply that {un} is bounded in E. Hence, there exists u ∈ E such that, up to a subsequence,

un ⇀ u in E, un → u in Ls(R2, Q) for s ≥ 2 and un → u a.e. in R2. As in the proof of Lemma 3.4,

we can deduce that un → u in E. Thus

Φ(u) = lim
n→∞

Φ(un) = m > 0, Φ′(u) = lim
n→∞

Φ′(un) = 0.

4 The critical case

Lemma 4.1. Assume that (V1), (Q1), (F1′) and (F2) hold. Then there exists a sequence {un} ⊂ E

satisfying

Φ(un) → c, ∥Φ′(un)∥(1 + ∥un∥) → 0, (4.1)

where c is given by

c = inf
γ∈Γ

max
t∈[0,1]

Φ(γ(t)),

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0,Φ(γ(1)) < 0} .

Proof. Let γs be defined by (2.8). By (F1′) and (F2), there exists C1 > 0, C2 > 0 such that

|F (t)|
4

2+α ≤ C1t
2 + C2|t|2

(
e

8β0
2+α

t2 − 1
)
, ∀ t ∈ R. (4.2)
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In view of Lemma 2.5-ii), we have∫
R2

Q(|x|)
4

2+α

(
e

16β0
2+α

u2

− 1
)
dx =

∫
R2

Q(|x|)
4

2+α

(
e

16β0
2+α

∥u∥2(u/∥u∥)2 − 1
)
dx

≤ C3, ∀ ∥u∥ ≤
√
π(2 + α+ 2b0)/5β0. (4.3)

From (2.8), (4.2) and (4.3), we obtain∫
R2

[Iα ∗ (Q(|x|)F (u))]Q(|x|)F (u)dx

≤
(∫

R2

|Q(|x|)F (u)|
4

2+αdx

) 2+α
2

≤
[
C1

∫
R2

Q(|x|)
4

2+αu2dx+ C2

∫
R2

Q(|x|)
4

2+α |u|2
(
e

8β0
2+α

u2

− 1
)
dx

] 2+α
2

≤ C4

(∫
R2

Q(|x|)
4

2+αu2dx

) 2+α
2

+C5

(∫
R2

Q(|x|)
4

2+α |u|4dx
) 2+α

4
[∫

R2

Q(|x|)
4

2+α

(
e

16β0
2+α

u2

− 1
)
dx

] 2+α
4

≤ C6∥u∥2+α, ∀ ∥u∥ ≤
√
π(2 + α+ 2b0)/5β0. (4.4)

Hence, it follows from (2.16) and (4.4) that

Φ(u) =
1

2
∥u∥2 − 1

2

∫
R2

[Iα ∗ (Q(|x|)F (u))]Q(|x|)F (u)dx

≥ 1

2
∥u∥2 − C6∥u∥2+α, ∀ ∥u∥ ≤

√
π(2 + α+ 2b0)/5β0. (4.5)

Therefore, there exist κ0 > 0 and 0 < ρ0 <
√
π(2 + α+ 2b0)/5β0 such that

Φ(u) ≥ κ0, ∀ u ∈ S := {u ∈ E : ∥u∥ = ρ0}. (4.6)

Now we choose w0 ∈ E \ {0}, it is easy to show that lim
t→∞

Φ(tw0) = −∞ due to (F3). Hence, we

can choose T > 0 such that e := Tw0 ∈ {u ∈ E : ∥u∥ > ρ0} and Φ(e) < 0, then in view of the

mountain-pass lemma, we deduce that there exists a sequence {un} ⊂ E satisfying (4.1).

Lemma 4.2. Assume that (V1), (Q1), (F1′), (F2) and (F3) hold. Then any sequence {un} satis-

fying (4.1) is bounded in E.

Lemma 4.3. Assume that (Q1), (F1′), (F2), (F3), (F4) hold. Let un ⇀ ū in E and∫
R2

[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)un ≤ K0 (4.7)

for some constant K0 > 0. Then there hold:

i) for every φ ∈ E ∩ C∞
0 (R2)

lim
n→∞

∫
R2

[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)φdx =

∫
R2

[Iα ∗ (Q(|x|)F (ū))]Q(|x|)f(ū)φdx; (4.8)

21



ii)

lim
n→∞

∫
R2

[Iα ∗ (Q(|x|)F (un))]Q(|x|)F (un)dx =

∫
R2

[Iα ∗ (Q(|x|)F (ū))]Q(|x|)F (ū)dx. (4.9)

Proof. The proof of item ii) is similar to [1, Claim 6.3], so we omit the details here. Next, inspired

by [23, Lemma 4.8], we prove i). By the Fatou’s Lemma and (4.7), we have∫
R2

[Iα ∗ (Q(|x|)F (ū))]Q(|x|)f(ū)ū ≤ K0. (4.10)

Let Ω = suppφ. For any given ε > 0, let Mε := K0∥φ∥∞ε−1. Then it follows from (F4), (4.7) and

(4.10) that for n large, ∫
|un|≥Mε

|[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)φ|dx

≤ ∥φ∥∞
Mε

∫
|un|≥Mε

|[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)un|dx

≤ ∥φ∥∞
Mε

K0 = ε (4.11)

and ∫
|ū|≥Mε

|[Iα ∗ (Q(|x|)F (ū))]Q(|x|)f(ū)φ|dx

≤ ∥φ∥∞
Mε

∫
|ū|≥Mε

|[Iα ∗ (Q(|x|)F (ū))]Q(|x|)f(ū)ū|dx

≤ ∥φ∥∞
Mε

K0 = ε. (4.12)

Let Dε = {x ∈ Ω : |ū(x)| =Mε}. Since |Q(|x|)f(un)χ|un|≤Mε
| → |Q(|x|)f(ū)χ|ū|≤Mε

| a.e. in Ω \Dε

and

|Q(|x|)f(un)χ|un|≤Mε
| ≤ max

x∈Ω
Q(|x|) max

|t|≤Mε

|f(t)| <∞, ∀ x ∈ Ω,

the Lebesgue dominated convergence theorem leads to

lim
n→∞

∫
(Ω\Dε)∩{|un|≤Mε}

|Q(|x|)f(un)|
4

2+αdx =

∫
(Ω\Dε)∩{|ū|≤Mε}

|Q(|x|)f(ū)|
4

2+αdx. (4.13)

Choose Kε > t0 such that

∥φ∥∞C0
(
M0K0

Kε

) 1
2

(∫
(Ω\Dε)∩{|ū|≤Mε}

|Q(|x|)f(ū)|
4

2+αdx

) 2+α
4

< ε (4.14)

and ∫
|ū|<Mε

[Iα ∗ (Q(|x|)F (ū)χ|ū|>Kε
)]|Q(|x|)f(ū)φ|dx < ε. (4.15)
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Then from (F4), (4.13) and (4.14), one has∫
(|un|≤Mε)∩(|ū|̸=Mε)

∣∣∣[Iα ∗ (Q(|x|)F (un)χ|un|≥Kε
)]Q(|x|)f(un)φ

∣∣∣dx
≤ ∥φ∥∞

∫
Ω\Dε

∣∣∣[Iα ∗ (Q(|x|)F (un)χ|un|≥Kε
)]Q(|x|)f(un)χ|un|≤Mε

∣∣∣dx
≤ ∥φ∥∞

(∫
R2

[Iα ∗ (Q(|x|)F (un)χ|un|≥Kε
)]Q(|x|)F (un)χ|un|≥Kε

) 1
2

×
(∫

R2

[Iα ∗ (|Q(|x|)f(un)|χ(Ω\Dε)∩{|un|≤Mε})]|Q(|x|)f(un)|χ(Ω\Dε)∩{|un|≤Mε}dx

) 1
2

≤ ∥φ∥∞C0

(∫
|un|≥Kε

[Iα ∗ (Q(|x|)F (un))]Q(|x|)F (un)

) 1
2

×
(∫

R2

∣∣∣Q(|x|)f(un)χ(Ω\Dε)∩{|un|≤Mε}

∣∣∣ 4
2+α

dx

) 2+α
4

≤ ∥φ∥∞C0

(
M0

Kε

∫
|un|≥Kε

[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)un

) 1
2

×

(∫
(Ω\Dε)∩{|ū|≤Mε}

|Q(|x|)f(un)|
4

2+αdx

) 2+α
4

≤ ∥φ∥∞C0
(
M0K0

Kε

) 1
2

(∫
(Ω\Dε)∩{|ū|≤Mε}

|Q(|x|)f(ū)|
4

2+αdx+ o(1)

) 2+α
4

< ε+ o(1). (4.16)

For any x ∈ R2, we define ζn(x) and ζ(x) as in (3.14) and (3.15), then from (F1′), (F2), (3.16) and

(3.18), we also have

ζn(x) → ζ(x), ∀ x ∈ R2 (4.17)

and

|ζn(x)| ≤ C7 max
B(x,1)

|Q(|y|)|+ C8, ∀ x ∈ R2. (4.18)

It follows that ∣∣ζn(x)Q(|x|)f(un(x))χ|un|≤Mε
(x)φ(x)

∣∣
≤
(
C7 max

B(x,1)
|Q(|y|)|+ C8

)
∥φ∥∞max

x∈Ω
|Q(|x|)| max

|t|≤Mε

|f(t)| <∞, ∀ x ∈ Ω. (4.19)

Since un ⇀ ū in E, we can deduce that un → ū a.e. x ∈ R2. By (4.17), we can deduce that

ζn(x)Q(|x|)f(un(x))χ|un|≤Mε
(x)φ(x) → ζ(x)Q(|x|)f(ū(x))χ|ū|≤Mε

(x)φ(x) a.e. x ∈ Ω \Dε,

Therefore, (4.19) and Lebesgue dominated convergence theorem lead to

lim
n→∞

∫
(|un|≤Mε)∩(|ū|̸=Mε)

[Iα ∗ (Q(|x|)F (un)χ|un|≤Kε
)]Q(|x|)f(un)φdx
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=

∫
|ū|<Mε

[Iα ∗ (Q(|x|)F (ū)χ|ū|≤Kε
)]Q(|x|)f(ū)φdx. (4.20)

Since un ⇀ ū in E, we can deduce that un → ū a.e. x ∈ R2 and then, by EΓopoB theorem, we have

un ⇒ ū, x ∈ Ω \A, where m(A) < ε. For large n, one has

{x ∈ Ω \A : |ū(x)| =Mε} ⊂
{
x ∈ Ω \A : |un(x)| >

Mε

2

}
.

And then from Lemmas 2.1 and 2.2,∫
(|un|≤Mε)∩(|ū|=Mε)

∣∣∣[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)φ
∣∣∣dx

=

∫
(|un|≤Mε)∩(|ū|=Mε))∩(Ω\A)

∣∣∣[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)φ
∣∣∣dx

+

∫
(|un|≤Mε)∩(|ū|=Mε)∩A

∣∣∣[Iα ∗ (Q(|x|)F (un)χ|un|≤Kε
)]Q(|x|)f(un)φ

∣∣∣dx
+

∫
(|un|≤Mε)∩(|ū|=Mε)∩A

∣∣∣[Iα ∗ (Q(|x|)F (un)χ|un|>Kε
)]Q(|x|)f(un)φ

∣∣∣dx
≤ ∥φ∥∞

∫
(|un|>Mε/2)∩(Ω\A)

|[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)|dx

+∥φ∥∞C0
(∫

R2

∣∣∣Q(|x|)F (un)χ|un|≤Kε

∣∣∣ 4
2+α

dx

) 2+α
4
(∫

R2

∣∣∣Q(|x|)f(un)χ(|un|≤Mε)∩A

∣∣∣ 4
2+α

dx

) 2+α
4

+∥φ∥∞
(∫

R2

∣∣∣[Iα ∗ (Q(|x|)F (un)χ|un|>Kε
)]Q(|x|)F (un)χ|un|>Kε

∣∣∣dx) 1
2

×
(∫

R2

∣∣∣[Iα ∗ (Q(|x|)f(un)χ(|un|≤Mε)∩A)]Q(|x|)f(un)χ(|un|≤Mε)∩A

∣∣∣dx) 1
2

≤ 2∥φ∥∞
Mε

∫
|un|>Mε/2

|[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)un|dx

+Cε∥φ∥∞C0

(∫
|un|≤Kε

Q(|x|)
4

2+αu2ndx

) 2+α
4
(∫

(|un|≤Mε)∩A

∣∣∣Q(|x|)f(un)
∣∣∣ 4
2+α

dx

) 2+α
4

+Cε

√
M0

Kε

√
C0

(∫
|un|>Kε

|[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)un|dx

) 1
2

×

(∫
(|un|≤Mε)∩A

∣∣∣Q(|x|)f(un)
∣∣∣ 4
2+α

dx

) 2+α
4

≤ C9ε. (4.21)

It follows from (4.11), (4.12), (4.20), (4.15), (4.16) and (4.21) that (4.8) holds due to the arbitrari-

ness of ε > 0.
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As in [30], we define Moser type functions wn(x) supported in Bd := Bd(0) as follows:

wn(x) =
1√
2π



√
log n, 0 ≤ |x| ≤ d/n;

log(d/|x|)√
logn

, d/n ≤ |x| ≤ d;

0, |x| ≥ d.

(4.22)

By an elemental computation, we have

∥∇wn∥2 =
∫
Bd\Bd/n

|∇wn|2dx = 1 (4.23)

and ∫
R2

|x|a0w2
ndx =

2d2+a0

(2 + a0)2
δn, (4.24)

where

δn :=
1

(2 + a0) log n
− 1

(2 + a0)n2+a0 log n
− 1

n2+a0
> 0. (4.25)

Lemma 4.4. Assume that (V1), (Q1), (Q2) and (F1′)-(F5) hold. Then there exists n̄ ∈ N such

that

c ≤ max
t≥0

Φ(twn̄) <
(2 + α+ 2b0)π

2β0
. (4.26)

Proof. By (V1), we can deduce that there exists d > 0 such that

V (r) ≤ (τ + 1)ra0 , ∀ 0 < r ≤ d (4.27)

and

(2 + α+ 2b0)(τ + 1)d2+a0

(2 + a0)3
<

1

3
. (4.28)

By (F5), we know that there exists tκ > 0 such that

tF (t) ≥ κ

2
eβ0t2 , ∀ t ≥ tκ. (4.29)

From (V1), (F5), (2.16), (4.23), (4.24) and (4.27), we have

Φ(twn) =
t2

2

(
∥∇wn∥22 +

∫
R2

V (|x|)w2
ndx

)
− 1

2

∫
R2

[Iα ∗ (Q(|x|)F (twn))]Q(|x|)F (twn)dx

≤ t2

2

(
∥∇wn∥22 +

∫
Bd

(τ + 1)|x|a0w2
ndx

)
− 1

2

∫
Bd/n

[Iα ∗ (Q(|x|)F (twn))]Q(|x|)F (twn)dx

≤ t2

2

[
1 +

2(τ + 1)d2+a0

(2 + a0)2
δn

]
− 2π2n2−α

(2d)2−α

[
F

(
t
√
log n√
2π

)]2(∫ d/n

0
rQ(r)dr

)2

. (4.30)

To show (4.26) we have three cases to distinguish. From now on, in the sequel, all inequalities hold

for large n ∈ N.
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Case i). t ∈
[
0,
√

(2+α+2b0)π
2β0

]
. Then it follows (F5), (Q2) and (4.30) that

Φ(twn) ≤
t2

2

[
1 +

2(τ + 1)d2+a0

(2 + a0)2
δn

]
≤ (2 + α+ 2b0)π

3β0
. (4.31)

Clearly, there exists n̄ ∈ N such that (4.26) holds.

Case ii). t ∈
[√

(2+α+2b0)π
2β0

,
√

(2+α+2b0)(1+κ)π
β0

]
. Then t

√
log n/

√
2π ≥ tκ for large n ∈ N, it

follows (Q2) and (4.29) that

2π2n2−α

(2d)2−α

[
F

(
t
√
log n√
2π

)]2(∫ d/n

0
rQ(r)dr

)2

≥ 2π2n2−α

(2d)2−α

2π

t2 log n

κ2

4
eπ

−1β0t2 logn

(∫ d/n

0
rQ(r)dr

)2

≥ π2n2−α

(2d)2−α

κ2β0
(2 + α+ 2b0)(1 + κ) log n

eπ
−1β0t2 logn

(∫ d/n

0
rQ(r)dr

)2

≥ π2κ2β0ζ
2
0d

2+α+2b0

24−α(2 + α+ 2b0)(1 + κ)n2+α+2b0 log n
eπ

−1β0t2 logn. (4.32)

It follows from (4.25), (4.30) and (4.32) that

Φ(twn) ≤ t2

2

[
1 +

2(τ + 1)d2+a0

(2 + a0)2
δn

]
− 2π2n2−α

(2d)2−α

[
F

(
t
√
log n√
2π

)]2(∫ d/n

0
rQ(r)dr

)2

≤ t2

2

[
1 +

2(τ + 1)d2+a0

(2 + a0)3 log n

]
− π2κ2β0ζ

2
0d

2+α+2b0

24−α(2 + α+ 2b0)(1 + κ)n2+α+2b0 log n
eπ

−1β0t2 logn

=: ψn(t). (4.33)

Let tn > 0 such that ψ′
n(tn) = 0. Then

1 +
2(τ + 1)d2+a0

(2 + a0)3 log n
=

πκ2β20ζ
2
0d

2+α+2b0

23−α(2 + α+ 2b0)(1 + κ)n2+α+2b0
eπ

−1β0t2 logn. (4.34)

It follows that

t2n =
(2 + α+ 2b0)π

β0
− π

β0 log n
log

πκ2β20ζ
2
0d

2+α+2b0

23−α(2 + α+ 2b0)(1 + κ)
+O

(
1

log2 n

)
. (4.35)

It follows from (4.28), (4.33) and (4.35), we have

ψn(t) ≤ ψn(tn) =
t2n
2

[
1 +

2(τ + 1)d2+a0

(2 + a0)3 log n

]
− π

2β0 log n

[
1 +

2(τ + 1)d2+a0

(2 + a0)3 log n

]
=

1

2

[
(2 + α+ 2b0)π

β0
− π

β0 log n
log

πκ2β20ζ
2
0d

2+α+2b0

23−α(2 + α+ 2b0)(1 + κ)

] [
1 +

2(τ + 1)d2+a0

(2 + a0)3 log n

]
− π

2β0 log n
+O

(
1

log2 n

)
=

(2 + α+ 2b0)π

2β0
+

π

β0 log n

[
(2 + α+ 2b0)(τ + 1)d2+a0

(2 + a0)3
− 1

2

]
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− π

2β0 log n
log

πκ2β20ζ
2
0d

2+α+2b0

23−α(2 + α+ 2b0)(1 + κ)
+O

(
1

log2 n

)
<

(2 + α+ 2b0)π

2β0
− π

2β0 log n
log

πκ2β20ζ
2
0d

2+α+2b0

23−α(2 + α+ 2b0)(1 + κ)
+O

(
1

log2 n

)
. (4.36)

Hence, combining (4.33) with (4.36), one has

Φ(twn) ≤ ψn(t) ≤ ψn(tn) <
(2 + α+ 2b0)π

2β0
. (4.37)

Case iii). t ∈
(√

(2+α+2b0)π
β0

(1 + κ),+∞
)
. Then t

√
log n/

√
2π ≥ tκ for large n ∈ N, it follows

(4.25), (4.29) and (4.30) that

Φ(twn) ≤ t2

2

[
1 +

2(τ + 1)d2+a0

(2 + a0)2
δn

]
− 2π2n2−α

(2d)2−α

[
F

(
t
√
log n√
2π

)]2(∫ d/n

0
rQ(r)dr

)2

≤ t2

2

[
1 +

2(τ + 1)d2+a0

(2 + a0)2
δn

]
− 2π2n2−α

(2d)2−α

(
t2 log n

2π

)−1
κ2

4
eπ

−1β0t2 logn

(∫ d/n

0
rQ(r)dr

)2

≤ t2

2

[
1 +

2(τ + 1)d2+a0

(2 + a0)3 log n

]
− π3κ2ζ20d

2+α+2b0

24−αn2+α+2b0t2 log n
eπ

−1β0t2 logn

≤
[
1 +

2(τ + 1)d2+a0

(2 + a0)3 log n

]
(2 + α+ 2b0)π(1 + κ)

2β0
− π2κ2ζ20d

2+α+2b0β0n
(2+α+2b0)κ

24−α(2 + α+ 2b0)(1 + κ) log n

≤ (2 + α+ 2b0)π

3β0
, (4.38)

which implies that there exists n̄ ∈ N such that (4.26) holds. In the above derivation process, we

use the fact that the function

hn(t) :=
t2

2

[
1 +

2(τ + 1)d2+a0

(2 + a0)3 log n

]
− π3κ2ζ20d

2+α+2b0

24−αn2+α+2b0t2 log n
eπ

−1β0t2 logn

is decreasing on t ∈
(√

(2+α+2b0)π
β0

(1 + κ),+∞
)
, since its stagnation points tend to

√
(2+α+2b0)π

β0

as n→ ∞.

Lemma 4.5. Assume that (V1), (Q1), (Q2), (F1′), (F2), (F3) and (F5) hold. Then Φ satisfies

(C)c condition.

Proof. Applying Lemmas 4.1 and 4.2, we deduce that there exists a sequence {un} ⊂ E satisfying

(4.1) and ∥un∥ ≤ C10 for some constant C10 > 0. Since ∥un∥ ≤ C10, by Lemma 2.4, we may thus

assume, passing to a subsequence if necessary, that un ⇀ ū in E, un → ū in Ls(R2, Q) for s ∈ [2,∞)

and un → ū a.e. on R2. It follows from (2.17) and (4.1) that∫
R2

[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)un ≤ C11. (4.39)
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In view of Lemma 4.3, for any ϕ ∈ E ∩ C∞
0 (R2), we have

lim
n→∞

∫
R2

[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)φdx =

∫
R2

[Iα ∗ (Q(|x|)F (ū))]Q(|x|)f(ū)φdx. (4.40)

By (4.1) and (4.40), it is easy to deduce that Φ′(ū) = 0. Then by (F3), one has

Φ(ū) = Φ(ū)− 1

µ
⟨Φ′(ū), ū⟩ ≥ 0.

By (4.39) and Lemma 4.3, we have

lim
n→∞

∫
R2

[Iα ∗ (Q(|x|)F (un))]Q(|x|)F (un)dx =

∫
R2

[Iα ∗ (Q(|x|)F (ū))]Q(|x|)F (ū)dx. (4.41)

Thus

c+ o(1) = Φ(un) =
1

2
∥un − ū∥2 + 1

2
∥ū∥2 − 1

2

∫
R2

[Iα ∗ (Q(|x|)F (ū))]Q(|x|)F (ū)dx+ o(1)

=
1

2
∥un − u∥2 +Φ(ū) + o(1)

≥ 1

2
∥un − u∥2 + o(1).

Hence, it follows from (2.16), (4.1), (4.26) and (4.41) that

∥un − u∥2 ≤ 2c+ o(1) :=
(2 + α+ 2b0)π

β0
(1− 3ε̄) + o(1). (4.42)

Lemma 4.4 implies that ε̄ > 0. Now we choose q ∈ (1, 2) such that

(1 + ε̄)2(1− 3ε̄)q2

1− ε̄
< 1. (4.43)

By (2.16) and (4.1), we can deduce that∫
R2

[Iα ∗ (Q(|x|)F (un))]Q(|x|)F (un) ≤ C12. (4.44)

Let q′ = q/(q − 1). Then q′ > 2. Hence it follows from (4.42), (4.43), (4.44), (2.1), Lemma 2.5-ii),

un → 0 in Ls(R2, Q) for s ≥ 2, Hölder inequality and Young inequality that∫
R2

∣∣∣[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)(un − ū)
∣∣∣dx

≤
(∫

R2

∣∣∣[Iα ∗ (Q(|x|)F (un))]Q(|x|)F (un)
∣∣∣dx) 1

2

×
(∫

R2

∣∣∣[Iα ∗ (Q(|x|)f(un)(un − ū))]Q(|x|)f(un)(un − ū)
∣∣∣dx) 1

2

≤ C13

(∫
R2

∣∣∣Q(|x|)f(un)(un − ū)
∣∣∣ 4
2+α

dx

) 2+α
4

≤ C14

(∫
R2

Q(|x|)
4

2+α |un|2dx
) 4α

(2+α)2
(∫

R2

Q(|x|)
4

2+α |un − ū|2dx
) 8

(2+α)2
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+C14

(∫
R2

Q(|x|)
4

2+α

(
e

4q
2+α

β0(1+ε̄)u2
n − 1

)
dx

) 2+α
4q
(∫

R2

Q(|x|)
4

2+α |un − ū|
4q′
2+αdx

) 2+α
4q′

≤ C14

(∫
R2

Q(|x|)
4

2+α |un|2dx
) 4α

(2+α)2
(∫

R2

Q(|x|)
4

2+α |un − ū|2dx
) 8

(2+α)2

+C14

(∫
R2

Q(|x|)
4

2+α

(
e

4q
2+α

β0(1+ε̄)2(un−ū)2e
4q

2+α
β0(1+ε̄)2ε−1ū2

− 1
)
dx

) 2+α
4q

×
(∫

R2

Q(|x|)
4

2+α |un − ū|
4q′
2+αdx

) 2+α
4q′

≤ C14

(∫
R2

Q(|x|)
4

2+α |un|2dx
) 4α

(2+α)2
(∫

R2

Q(|x|)
4

2+α |un − ū|2dx
) 8

(2+α)2

+C14

[
1

q

∫
R2

Q(|x|)
4

2+α

(
e

4q2

2+α
β0(1+ε̄)2∥un−ū∥2[(un−ū)/∥un−ū∥]2 − 1

)
dx

+
1

q′

∫
R2

Q(|x|)
4

2+α

(
e

4qq′
2+α

β0(1+ε̄)2ε−1ū2

− 1

)
dx

] 2+α
4q
(∫

R2

Q(|x|)
4

2+α |un − ū|
4q′
2+αdx

) 2+α
4q′

≤ C15

(∫
R2

Q(|x|)
4

2+α |un − ū|2dx
) 8

(2+α)2

+ C16

(∫
R2

Q(|x|)
4

2+α |un − ū|
4q′
2+αdx

) 2+α
4q′

= o(1). (4.45)

Which yields that

lim
n→∞

∫
R2

[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)(un − ū)dx = 0. (4.46)

Similarly, we can deduce that

lim
n→∞

∫
R2

[Iα ∗ (Q(|x|)F (ū))]Q(|x|)f(ū)(un − ū)dx = 0. (4.47)

By (4.1), it is obvious that

⟨Φ′(un)− Φ′(ū), un − ū⟩ = o(1). (4.48)

From (4.46), (4.47) and (4.48), we can get

∥un − ū∥2 = ⟨Φ′(un)− Φ′(ū), un − ū⟩ −
∫
R2

[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)(un − ū)dx

+

∫
R2

[Iα ∗ (Q(|x|)F (ū))]Q(|x|)f(ū)(un − ū)dx

= o(1).

Lemma 4.6. Assume that (V1), (Q1), (F1′), (F2) and (F3) hold. Then

i) σ0 := inf{∥u∥ : u ∈ M} > 0;

ii) m := inf{Φ(u) : u ∈ M} > 0.
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The proof is similar to Lemma 3.5, so we omit it here.

Proof of Theorem 1.4. First, we prove that M ≠ ∅. Applying Lemmas 4.1 and 4.2, we deduce

that there exists a sequence {vn} ⊂ E satisfying (4.1) and ∥vn∥ ≤ C17 for some constant C17 > 0.

Hence, there exists v ∈ E such that, up to a subsequence, vn ⇀ v in E, vn → v in Ls(R2, Q) for

s ≥ 2 and vn → v a.e. in R2. By Lemma 4.5, we know that vn → v in E. Thus

Φ(v) = lim
n→∞

Φ(vn) = c > 0, Φ′(v) = lim
n→∞

Φ′(vn) = 0.

Which imply that v ̸= 0 and v ∈ M.

Next, we prove that m := inf
M

Φ(u) is achieved. By Lemma 4.6, we have m > 0. Let {un} ⊂ M

be such that Φ(un) → m. As in the proof of Lemma 4.2, we can deduce that {un} is bounded in

E. Hence, there exists u ∈ E such that, up to a subsequence, un ⇀ u in E, un → u in Ls(R2, Q)

for s ≥ 2 and un → u a.e. in R2. In view of Lemma 4.3, for any ϕ ∈ E ∩ C∞
0 (R2), we have

lim
n→∞

∫
R2

[Iα ∗ (Q(|x|)F (un))]Q(|x|)f(un)φdx =

∫
R2

[Iα ∗ (Q(|x|)F (u))]Q(|x|)f(u)φdx. (4.49)

By (4.1) and (4.49), it is easy to deduce that Φ′(u) = 0. From the weak lower semicontinuous of

norm and Fatou’s Lemma, we can deduce that

m = lim
n→∞

Φ(un) = lim
n→∞

(
Φ(un)−

1

µ
⟨Φ′(un), un⟩

)
= lim

n→∞

(
µ− 1

2µ
∥un∥2 +

1

2µ

∫
R2

[Iα ∗ (Q(|x|)F (un))]Q(|x|) [f(un)un − µF (un)] dx

)
≥µ− 1

2µ
∥u∥2 + 1

2µ

∫
R2

[Iα ∗ (Q(|x|)F (u))]Q(|x|) [f(u)u− µF (u)] dx

=Φ(u)− 1

µ
⟨Φ′(u), u⟩ = Φ(u) ≥ m.

This shows that u ∈ M and Φ(u) = m.
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