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Abstract. In this paper, we consider the existence of solutions for Choquard equation of the

form

—Au+V(jz))u = [la * (Q(z)) F(u)]Q(j]) f(u), = €R

where the nonlinear term f(s) has exponential growth, the radial potentials V, @ : Rt — R
are unbounded, singular at the origin or decaying to zero. By combining the variational methods,
Trudinger-Moser inequality and some new approaches to estimate precisely the minimax level of the
energy functional, we prove the existence of a nontrivial solution for the above problem under some
weaker assumptions. Our study extends and improves the results of [Albuquerque-Ferreira-Severo,
Milan J. Math. 89 (2021)] and [Alves-Shen, J. Differential Equations, 344 (2023)].
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1 Introduction and main results

In the present paper, we consider the existence of solutions for nonlinear Choquard equations
of the form
—Au+V(jz))u = [l * (Q(z) F(u)]Q(|z]) f(u), =z € R, (1.1)
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where f € C(R,R), F(t) := fot f(s)ds, the radial potentials V, @ : R — R are unbounded, singular
at the origin or decaying to zero at infinity. The Riesz potential I, with order « € (0,2) is defined

for x € R?\ {0} by

Ao I(*3%)
Ia(x) = ’$|27C¥ with Aa = W}:‘(%)

We recall here that T is the classical Gamma function and # denotes the convolution on R2.

Explicitly, we introduce the following assumptions on V and f:

(V1) V € C((0,400), (0,+00)), and there exist ag,a > —2 such that

\%4 v
lim sup Vir) < +oo, liminf ) 0;
rot 10 e
(F1) f € C(R,R), and
t
£ ( 2)| —0, forall 8> 0;
[t| =00 eﬁt

or

(F1") f € C(R,R), and there exists 5y > 0 such that

_f@)
|1t1|1_r>rcl>o e 0, for all 8> 5
and
(@)l .
FikoiT2 = +o0, forall B < Sp;
| f@)] ,

(F3) there exists p > 1 such that

fO)t > pF(t) >0, YteR\ {0}

(F4) there exists My > 0 and to > 0 such that

F(t) < Molf(t)l, V1t > to.

To facilitate the subsequent analysis, we introduce the following notations. Let

E = {u c L? (]Rz) :w is radial, |Vul| € LQ(RQ) and /

2 Vahde < +ox
RQ

and define
(u,v) :== / (Vu-Vo+V(|z))uww)dz, Vu,ve E; lul|? := /(u,u) VY uckE.
R2
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Then E is a Hilbert space with the above inner product (-, -) (see [I, Proposition 2.1]). Furthermore,

for s € [1,+00), we define
L*(R?,Q) := {u ‘RZ 5 R:uis mensurable,/ Q(|x\)ﬂ%\u|5dw < oo} :
R2

It is widely known that the term |z|* 2 % (Q(x)F(u)) can be regarded as the convolution
between the Riesz potential |2|*~2? and Q(x)F(u). Thus, problem is closely related to the
Choquard equation arising from the study of Bose-FEinstein condensation and can be exploited to
describe the finite-range many-body interactions between particles. For N > 3, the Choquard

equation under the convolution of the Riesz potential is simply of the form
—Au+u= (|x|°‘_N % [u|P) w2y, xeRN. (1.2)

In the relevant physical case in which N = 3, = 1 and p = 2, Equation turns into the
Choquard-Pekar equation, which was used by Pekar [2] to describe a polaron at rest in the quantum
field theory. It was also investigated by Choquard to characterize an electron trapped in its own hole
as an approximation to the Hartree-Fock theory for a one component plasma [3]. Subsequently, Lieb
[4] and Lions [5] obtained the existence and uniqueness of positive solutions to by variational
methods. It should be pointed out that Equation ([1.2) was also proposed by Moroz-Penrose-Tod
in [0] as a model for self-gravitating particles where it can be viewed as the classical Schrédinger-
Newton equation, see e.g. [7-9].

Problem has attracted a lot of interest in recent years and has been extensively inves-
tigated in the literature, such as, the existence and multiplicity of nontrivial solutions in [I0HI2],
the sign-changing solutions in [I3] 14] and the semiclassical solutions in [15, [16]. We also refer
to reference [I7] for a broad survey of the Choquard equations. We emphasize that all the re-
sults mentioned above require that the exponent % <p< %, which is deduced from the
Hardy-Littlewood-Sobolev inequality (see Lemma and the Sobolev embedding theorem.

Notably, the case N = 2 is very special, as the corresponding Sobolev embedding yields
H'(R?) c L*(R?) for all s € [2,+00), but H'(R?) ¢ L>*(R?). In dimension N = 2, in order to
address problems with exponential growth, one of the most important tools is the Trudinger-Moser
inequality, which can be seen as a substitute of the Sobolev inequality. The first version of the
Trundiger-Moser inequality in R? was established by Cao in [I8], see also [19, 20] and reads as

follow:

i) if 3> 0 and u € H'(R?), then
Bu? _ .
/]1{2 (e 1) dx < oo
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i) if w € HY(R?),||[Vull3 < 1, ||lulls £ M < oo, and 3 < 4, then there exists a constant C(M, 3),

which depends only on M and S, such that

/}R2 (eB“Q — 1) dz < C(M, B).

Based on Trundiger-Moser inequality, we say that f has subcritical growth on R? at t = 400 if
(F1) holds, and f has critical growth on R? at infinity if (F1’) holds. Now let us recall some related
works for with subcritical or critical exponential growth.

When Q(z) =1, reduces to the following Choquard equation

—Au+V(z)u= (Ip* F(u))f(u), z¢cR% (1.3)

Consider the case V(x) > Vj > 0 for all x € R%. In [21], Alves-Cassani-Tarsi-Yang studied ([T.3))

with the critical exponent Sy = 47 under (F3) and the following assumptions on f:

(f1) f(t)=0fort <0,0< f(t) < Ce*™ Vit > 0;

(f2) there exists p > § and C, > 0 such that f(t) ~ CptP, as t — 0;

(f3) there exist t; > 0, M; > 0 and g € (0, 1] such that 0 < t9F(t) < My f(t),V t > ty;
tf(t)F(t)

. . Cca(l+a)(2+a)? 2iay
—— > PP
(f1) 1thm g k with k& > l1)1>1£ 1672 2o e 4

, where V, := sup V(z).

lz|<p

They obtained nontrivial solutions for by using the mountain pass lemma and showing that
the mountain pass level shall be less than 2‘*'7‘” provided that the potential V' is periodic or satisfies
the Rabinowitz type condition introduced in [22]. We point out that the threshold of the mountain
pass level can be directly deduced from the condition (f4). By considering a sequence of measures
which have uniformly bounded total variation and using the Radon-Nicodym theorem, they [21]
showed that the weak limit of a Palais-Smale sequence for the energy functional associated with
is a solution, moreover, the weak limit is proved to be nonzero by using the condition (fy)
which constitutes the core of the proof. For the case that V' change sign, Qin-Tang [23] developed a
direct approach to deal with the equation with both critical exponential growth and strongly
indefinite features when 0 lies in a gap of the spectrum of the operator —A + V. They proved the
existence of nontrivial solutions for Equation under (F1'), (F2) with [ = 0, (F3), (F4) and the

following assumption:

o f() (14 a)(2+ @) 4o1a)m(14p)282/(240)
(f5) htrgégf e > Ne LT WEE e 0
1 and By > 0 is an embedding constant.

where p > 0 satisfies 2(2+ a)mp?BE <



(f5) in [23] plays the same role like (fy) in [2I]and enables taking advantage of the Moser functions

to pull down the critical value to a particular threshold value (2;;:) )™ and then showing that the

weak limit of a Palais-Smale sequence is nonvanishing. They also established the existence of
ground states and geometrically distinct solutions for the equation when the nonlinearity has
subcritical exponential growth.

Compare with equation , the weight function @ will cause difficulties in estimating the
threshold value of equation , and thus more efforts are required when studying the equation
(L.1). Albuquerque-Ferreira-Severo[l] established a new version of the Trudinger-Moser inequal-
ity (see [I, Proposition 2.9]), which will plays an important role in their arguments. Based on
the weighted Trudinger-Moser inequality, Albuquerque-Ferreira-Severo[l], by a standard argument,
proved that has a nontrivial weak solution provided that V; @ and f satisfy (V1), (F1'), (f3)

and the following assumptions:

Q1) Q € C((0,+), (0,+00)), and there exists by > —HTO‘ and b < % such that

lim sup Qgr) < +oo, limsup Q(Z’) < +o0;
r—o+ 10 r—+oo T
, .
N
(fﬁ) f € C<R+,R) and t1_1>%1+ W =0;

(f7) there exists # > 1 such that 0F(t) < f(t)t, ¥Vt >0;

o F(E)
(fs) ks = 1tlg+}&f Aol? > 0.

Later Shen-Radulescu-Yang [24] studied the equation (|1.1), where the potential V' and the weight

Q@ satisfy the following hypotheses:

(K) V,Q € C(R?) and there exist some positive constants v, 7,a, A and b such that

a b
<Vz)< A d 0 R
T ] S () <A and 0<Q(z) < T o]

where V(z), Q(z) ~ |z|™" as |z| = +oo and (7, 7) satisfies one of the following assumptions:

(i) 0<y<2and 24+ a)y/4 <7< +o0,0r 0 <y <47/(2+4a) < 2;
(ii)) y=2and 2+ a)/2 <7 < +o0;

(iii) v > 2 and (2+ «)/2 < 7 < +o00;

and f satisfies (F1'), (f3), (fs) as well as



(fo) f€CYR), f(t)=0forallt <0 and lim f(®)

t—0+ t/2 ’

(f10) there exists a constant § € [0, 1) such that %{tl)(t) >4, Vit>0.

They investigated the existence of nontrivial solutions of mountain-pass type for . Furthermore,
they also proved that the nontrivial solution is a bound state, namely a solution belonging to
H'(R?), for some particular (v, 7).

We emphasize that hypothesis (fg) is usually used to estimate the minimax level of the energy
functional associated to the critical exponential growth problems. In [1l 24], hypothesis (fs) is
crucial to overcome the obstacles caused by the critical exponential term. Indeed, by (fs), mountain-
pass level ¢ can be controlled by a fine threshold w (bp = 0 in [24]) under which the
compactness can be restored for the critical case (see [I, Proposition 6.2] and [24, Lemma 3.3]).

Inspired by the works mentioned above, two natural questions arise:

(Q1) Can we establish the existence of nontrival solution of by using new
assumptions on the weight function @ that are different from (Q1’) and (Q2')?

(Q2) As we can see (fg) is an essential technical condition for the critical exponen-
tial growth problems. When studying in critical exponential case, can we weaken
(fs) to more general conditions?

The main purpose of this article is to address the above questions. Based on the above obser-
vations and inspired by the work [25], we shall further study the existence of nontrivial solutions

for equation (1.1)) under subcritical and critical exponential growth. Besides (V1), (F1), (F1’) and

(F2)-(F4), we introduce the following assumptions:

(Ql) @ €C((0,400), (0,+00)), and there exists by > —25% such that

4
24«
lim sup @ < 400, limsup M = 0;
rosot+  T00 r—-+00 V(T)
(Q2) there holds
o sQ(s)ds

(F5) k:=liminf LF() 0.

t—+o0 650t2

Obviously, (F5) is much weaker than (fs) used in [I, 24]. Our approach is based on delicate

estimates for the upper bound for the mountain-pass minimax level c.

Remark 1.1. [t is clearly to see that (Q2) implies (Q2). Since b < W in (Q1'), it is also

easy to verify that (V1) and (Q1') imply (Q1). However, there are many functions V(r) and Q(r
y fy ( ply ) y



satisfying (V1), (Q1) and (Q2) but not (Q1'). For example, V(r) = log(1 +r) and Q(r) = r°
satisfy (V1), (Q1) and (Q2) when o € (—2%%,0] but not (Q1') when o = 0.

Definition 1.2. We say that u is a least energy solution to (1.1)) if u € E such that ®(u) = m :=

i}\l/tf(p’ where
M :={u € E\ {0} : ®(u) =0} (1.4)

Specifically, we are ready to state the main results in the present paper.

Theorem 1.3. Assume that V,Q and f satisfy (V1), (Q1) and (F1)-(F3). Then (L.1) has a least

energy solution u € E \ {0}.

Theorem 1.4. Assume that V,Q and f satisfy (V1), (Q1), (Q2), (F1'), (F2), (F3), (F4) and (F5).
Then has a least energy solution u € E \ {0}.

Remark 1.5. (F5) is a very mild condition involving the behavior of the nonlinearity f at infinity.
Since (F5) is much weaker than (fs) used in [1,[24], Theorem[L.4] seems to be an innovative result to
some extent, which improves and extends the existing results in the direction concerning Choquard

equations.

Remark 1.6. We give an explicit examples of nonlinear term satisfying our assumptions (F1),

(F2) and (F3) as follows:

2 o o
fi(t) = ‘” 1t)“2" teP/2 4 Bt "2 1P/ (B> 0) and F(t / fi(s)ds = [t 2" ePr/2,

The example of nonlinear term satisfying our assumptions (F1'), (F2), (F3), (F4) and (F5) can be

given as follows:

2
fa(t) = ‘” \ty*teﬁot + 2Bt T 2 pebot? (Bo > 0) and Fy(t /f2 )ds = [t 2 oBot?,

When Q(|z|) = FI m in (L.1)), where 0 < p < §, it transforms into the following Schrodinger

equation with Stein-Weiss Potential

“Aut V(e = — (/R F(u(y))dy> f(u), in R2, (1.5)

Jz[r \ g2 & — y[2=e]yl

There exists bg = —p > —% > —252 such that (Q1) and (Q2) hold.

Corollary 1.7. Assume that V and f satisfy (V1) and (F1)-(F3). Then (1.5) has a least energy
solution u € E \ {0}.



Corollary 1.8. Assume that V and f satisfy (V1), (F1'), (F2), (F3), (F4) and (F5). Then (L.5)

has a least energy solution u € E\ {0}.

Remark 1.9. When V(x) =constant, there exists ag = 0, a = 0 such that (V1) holds. Thus
Theorem and Corollary extend and cover the main result in [20].

The paper is organized as follows. In Section 2, we give the variational setting and some
preliminary lemmas. Section 3 is devoted to the subcritical exponential growth case where Theorem
[1.3]is proved. In Section 4, we consider the critical exponential growth case, and complete the proof
of Theorem [L.4l

Throughout the sequel, we denote the usual Lebesgue space with norm [|ull, = ([ge ]u\pdac)%
by LP(R?), where 1 < p < o0, B, := {x € R? : |z| < r} for all » > 0, and C; denotes different

positive constant in different place.

2 Variational framework and preliminaries

Under assumptions (F1') and (F2), fix 8 > fp, we know that for any ¢ > 0, there exists

01 >0, 024> 0,034 > 0 such that

IF(5)] < O1]t]F + a4(P —D)|t]9, ViEER, (2.1)
IF()] < 01t 2% + 0aq(eP — 1[t[7T, ViEeR (2.2)

and
IF(t)] < 034(e® — 1)Jt[7+!, V|t > 1. (2.3)

Similarly, under assumptions (F1) and (F2), we know that (2.1), (2.2) and (2.3) hold for fixed
B8 > 0.

Lemma 2.1. (Hardy-Littlewood-Sobolev inequality,[27]) Let s,r > 1 and 0 < o < 2 with 252 +
% + % =2, g € L¥(R?), h € L"(R?). There exists a sharp constant C(a, s,7), independent of g, h,
such that

[, (e g)hda < (el (24)
In particular,

[, U g)hie < Collllyasr 1 Hlaro (25)

where Cp :=C(a,4/(2+ a),4/(2 + «)).



Lemma 2.2. (Cauchy-Schwarz type inequality,[28]) For g, h € LL _(R?), there holds

o labibiaz < | [ (o lablolae [ (o s i)z g 26)

Lemma 2.3. ([29]) Assume that (V1) holds. Then for any ro > 0,
lu(z)| < Collul|lz|~ @D/, VueE, |z| >ro>0. (2.7)

In the following lemma, we establish the embeddings E — L*(R? Q) for all s > 2 under

conditions (V1) and (Q1) and give a simple proof.

Lemma 2.4. Assume that (V1) and (Q1) hold. Then the embeddings E — L*(R% Q) are contin-

wous and compact for all 2 < s < oo. Therefore there exists vs > 0 such that

1

(/ Q(|x|)2ia|u|5dx> | <llull, VYuekE, 2<s<oo. (2.8)
R2

Proof. Fixed s € [2,400). For any u € E, let u(x) = u(z) — u(z/|z|) := u(z) — ug. Then ug € R
and @ € H}(B;). By Poincaré inequality, the Holder inequality and Sobolev imbedding theorem,

one has

/ |u|®dz < C(e) </ IVu\Qda:) S Vo>l (2.9)
Bl Bl

Since by > —2%‘, we can choose p > 1 such that p;%’a > —2. Let p’ :==p/(p —1). Then it follows

from the Holder inequality and (2.9)) that

4bg 4pbg. % ’ i
/ |z|2Fe |ul’de < / || 2Fe dx / |a|P *dx
B1 By B

1
s P B
< O <4pb0) Va3
2+m

1
27 P s

2+ 24«

Hence from ([2.10) and Lemma we have

4bg 1 Abg
[, e < 2 [ ol o+l d
B1 B

1 Abg. 2%
25 / 2] Tl d + ——fuol” < Calull”. (2.11)
By 2+ 2%a
By using Lemma one has
/ V(lz])|ul*dz < CS_QHUHS_Q/ V(|z)u*dz < Cslul®. (2.12)
By By



Thus, it follows from (V1), (Q1), (2.11) and (2.12)) that

[ e = [ QUap=luras+ | Q(el)Helul'ar

c
1

< Csllul®, VuekE. (2.13)

4b,
< 04/ |x|2+(31|u]5dx+05/ V(|2|)|ul*dz
By

This shows that holds, i.e. the embeddings E < L*(R?, Q) are continuous for all 2 < s < co.

Next, we prove that the above embeddings are also compact. Let {u,} C E be such that
lun|| < C7. Without loss of generality, we may assume u,, — 0. We claim u, — 0 in L*(R?, Q) for
all 2 < s < 0.

For any ¢ > 0, it follows from (Q1) and Lemma [2.3| that there exists R. > 1 such that

Q) Fe iz < € / V(2] lun|*da
B

Bf,_ Re
< 2O fun? / V(ja))uldz
B%E
< CE 2 |lun|F < eC5T20E. (2.14)

Since u, — 0, then u, — 0 in LY (R?) for o € [1,400). It follows that

4b
/ QUa) T funldz < Cs / 12|75 u*d
13125 Re

4pbg

24 » 5
2TR o ’ P
< (78 ‘?i‘;figiiii‘* (:J/p |1Ln|p 5(11{)
24+« Br,
— o(1). (2.15)

From (2.14) and (2.15)), we can deduce that u, — 0 in L*(R?,Q) for all 2 < s < oo due to the
arbitrariness of € > 0.

O]

Lemma 2.5. ([25] Theorem 1.2]) Assume that V and Q satisfy (V1) and (Q1). Then the following
conclusions hold.

i) If 6>0 and u € E, then

/]R2 Q(\x!)ﬂ% <ef8“2 — 1) dz < oo.

i) If0< B < w, then there exists a constant C > 0 such that

4
sup Q(|x|)2+e (eBUQ — 1) dz < C.
uEE,[[ul|<1 /R?
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In view of Lemma it is easy to see that the energy functional associated to problem (|1.1))

1 1

O(u) = 3 /R2 [\Vu|2 + V(|x|)u2] dxz — 3 /R2 Lo * (Q(|z])F(u))]Q(|z|) F(u)dx, v € E (2.16)

is well defined under (V1), (Q1), (F1) (or (F1")) and (F2), and by using standard arguments, we

can show that ® € C!(E,R) with derivative given by

(®'(u), ) :/11@2 [Vu- Vo + V(a|up]de — /R2 Lo+ (QUz) F(w)]Q(|2]) f (u)pdx (2.17)

for all ¢ € E. Now we say that u € F is a weak solution to problem (1.1)) if, for all ¢ € C5°(R?) it
holds that (®'(u), ) = 0.

Finally, let
X = {u € I2 (R?): |Vu| € I2(R?) and /R V(| yulde < —i—oo} .
Then X is a Hilbert space when endowed with inner product
(1, 0)x = /R (V- Vo + V(|| uo]da.

Next, inspired by [25], we will show that E is a natural constraint to look for critical points of ®,

namely the critical points of the functional restricted to E are true critical points in X.

Lemma 2.6. Assume that (V1), (Q1), (F1) (or (F1")) hold. If @ is a critical point of ® restricted

to E, then u is a critical point of ® on X.

Proof. We only proof the case where (F1’) holds, as the case where (F1) holds is similar. Set

Tole) = [ (Vo Vot Viahuglds - [ (L + @UeDF@)Qe) f(ahpde. (219

We first prove that T3 is a bounded linear functional on X. Let ¢ € C*°([0, 4+00), [0, 1]) be a cut-off

function verifying
Y(r)=1,Vrel0,1]; ¥(r)=0, Vre[2,+o0); and [¢'(r)] <2, Vre[0,+00). (2.19)

By (V1), (2.19), Poincaré inequality, the Holder inequality and Sobolev imbedding theorem, one

has

/Bl‘@(mﬂsdm < / ‘w(’x’)§0($)’sdm

B>

s

< ou(f 2 Vive)Pds )’

< Cu </B (\(leMQ + \¢Vg0|2) dx) ’

11



IN

Cis (/ \90|2d:c+/ |V80|2d55>
Bo\B1 By
%
< Cig / V(Jz])ofdx + / Vo[t
Bs\B; By

< Cuillellx, Vs>1, peX. (2.20)

Since by > —”—a we can choose p > 1 such that p57% 4b0 > —2. Let p’ :==p/(p —1). Then it follows

from (V1), (Q1) and the Holder inequality that

JLeen=ilar = [ QUeh=eloldr s [ Qe lolds

B

IN

e

Crr / 12| 3% [z + Cis / V(j2])lpl2dz
By B
4 Cis / V(j2))lol?dz
BC

4pbg 2p
< O ([ wlFRac)" ([l
B1 1

< Culelx, VeeX. (2.21)

By (F1'), (F2), (2:20), (2:21)), Lemma [2.4 and Theorem one has
/ Lo (QUl2)) F(u)))Q(|2]) f () pda

24a

< (/ 1Q(|2]) F 2+ad:c> (/ 1Q(|z])f ¢\2+adx> ;
< Gy </R el [+ (209 1) ja] | dm) 220
(ot s (2 ) ar) ©
< (RQ‘Q(’$|)E2|2iad$)2T+(/ Qi) (%7 ~ 1) fa B dx>]
x[ / 2|Q<rm|>w|2iadm> < / ) (24 1) o[ )]
< (m%nﬁam%dw) Qe (e85 1) dx)

24«

(/ﬂ§2@<x|>2+4a|u12+8adx) ] [(/ (lo) 2*“\U|2+adx>8
+ ([, tan (50 -) dx)] ([, @eh=telelar) ©

< CQgH(pH)(, A p < X. (2.22)

From and -, we obtain
Ta(e)l < (@, )|+ ‘/RQ[Ia * (Q(|z|) F())]Q(|=|) f(u)pdx

12



< lallxllellx + Casliellx < Caullellx,  VeeX. (2.23)

The above shows that Ty is a bounded linear functional on X. The Riesz Representation Theorem

in the Hilbert space X guarantees the existence of a unique v € X such that
Ta(p) = (p,0)x, VeeX. (2.24)

Let O(2) the group of orthogonal transformations in R?. Then, by using a change of variables, we

get
Tu(gp) = Tuly) and [lgellx = llellx, Ve € X; VgeO(2),
which, together with , yields
(¢.90)x =Talg™'v) = Talp) = (p.0)x, Vo € X, V g € O(2). (2.25)

By uniqueness, one has gv = 0,V g € O(2). This shows that v € E. Since @ is a critical point of ®

restricted to E, it follows that 0 = T () = ||]|3. Hence,

Tﬂ(@) = (907 @)X = (9070))( =0,V p e X,

i.e. u is a critical point of ® on X. ]

3 The subcritical case

We establish the same conclusion in Lemma below. So, to avoid repetition, we omit the

proof of Lemma [3.1] here, which can be deduced obviously from Lemma

Lemma 3.1. Assume that (V1), (Q1), (F1) and (F2) hold. Then there exists a sequence {u,} C E
satisfying
O(un) = ¢, [ (un) |1+ unll) — 0, (3.1)

where ¢ is given by

¢= inf e (v(1)),
I'={y €C([0,1], E) : v(0) = 0, ®((1)) < 0}.

Lemma 3.2. Assume that (Q1), (F1) and (F2) hold. Let u, — u in E. Then for every v € E,

lim [ Lo (Q(|2]) F (un)))Q(|2]) f (un)vdr = /R2 Lo+ (QUz) F()Q(l2]) f(w)vde. — (3.2)

n—oo R2
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Proof. Since u,, — @ in E, we can choose C; > 0 such that [ju,| < Ci. Set 8 € (0,7a(2 + a +

20b9)/(2 + a)C?). Then from (2.2)), the Holder inequality and Lemma ii), we have

[ 1D Ftun) 7w
R2

IN

4
/ Q(\a:|)z+% (C2|un|2+Ta + Oyl — 1)|un|)2+" de
RQ

IA

_4 _4 _4
1057 [, QUalHetun s + 4057 [ Qabete (9% - 1) punfsinas
R R

IA

_4 Ta - ﬁ
4022+a/ Q(|$|)ﬁ!un|2dm+4022+a (/ Q(L/E')Z%a (ea o 1> dx) +
R? k2

«( [ @ahelun Pac)

_4 _4 4
< A0 lunl|® + 4057 O3 lug || 7=
4 4 4 4
< ACTTU NS0T + 405 Cy3 O™ = K7 (3.3)
By Lemma , we know that v € L¥(R?,Q) for s > 2. And then for any ¢ > 0, we can choose

R, > 0 such that

(/ Q(\x\)ﬁwzdx> 2 <e. (3.4)
R\ Br,

From (2.5), (2-1), (3.3), (3.4), the Holder inequality and Lemma [2.5}ii), one obtains

/ Lo Q) F (un)Q(|2]) f (un)v|dz
R2\Bg,

( / rQ(|x\>f<un>v\ziadx>
R2\Bgr,

24«

24« i

Co (/R2 |Q(|x|)F(un)|2jadx> 4

IN

24«

4
< CoK, (/ Q(|z|) == <02|un|% 10, (eﬂu% _ 1)) Zhe |v\ziadx>
R2\Bg,
e} - 24a
4 2he 4 —1 2 e !
< al( [ QledFehalar) ([ Qe (e 1) s
R2\Bp, R2\Br,
1
4 2
( / Qum)m\vﬁdx)
R2\Bg,
2 2a 2«&;704 4 2 %
< (Bl ® v ca) T ([ Qb P
R2\Bpg,
S C5€. (3.5)
Similarly, we can deduce that
/ o+ (Q(la)) F@)]Q(a]) f(@)olde < Cie. (3.6)
R2\Bgr,
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Since v € L?(R2,Q), it follows that there exists d. > 0 such that

(/AQ(’LUDZiaUde)é < e if meas(A4) < . (3.7)
for all measurable set A C Br. . Hence it follows from ||u,|| < Cj that there exists M. > 0 such
that

meas({x € Bg, : |up(z)| > M:}) <., meas({x € Bpg, : |u(z)| > M.}) < .. (3.8)
Let

A, :={x € By, : |up(x)| > M.}, Ao :={x € Bg, : |u(z)| > M.},
Dy :={x € By, : |u(z)| = M.}.
Then it follows from (22.5)), (2.1)), (3.3)), (3.7)), (3.8]), the Hélder inequality and Lemma ii) that

/ o * (@) F () Q) f (1 )]
AnUDg

2o 24a
4 4 4 4
< & [ QebraiEeas) ([ j@Uahsla)
R2 An,UDg
4 4 4 2+T°‘
< Gk, (/ Q(|x])zHe (CzlunI% + Oy (eﬂul‘% — 1))””‘ |v|2+ad$>
An,UDg
4 2a 4
< O (/ Q(|z|) 2+ |uy | 2Fe [v| 2Ha dx
AnUDg
4 e
4 e 4
[ Qe (- 1) i)
AnUDO
e e
2ta — 24«
< Gy </ Q(!xl)”iclunlzda:> et </ Q(lz)) == (ea 1<2+a>ﬁui_1) dx) " ]
AnUDO AnUDO
R
([ ataspan)
ApUDg
< O (w4 c) ([ Qe e
AnUDg
s Gee (3.9)

Similarly, we can show that

/A o+ Q=) F())]Q(|]) f ()v|dz < Cee. (3.10)
Choose K. > max{l1,ty} such that
K ( / rcz<|x\>f<un>v\2+4adx> <e (3.11)
Br,
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and
/ Lo+ (QUz) F(@)xja)> x)|Q(2]) f(w)v]dz < e. (3.12)
Br.\Ao
Then from (2.5)), (2.3) and (3.11]) the Holder inequality and Lemma [2.5}ii), one has

/BRE\(ATLUDQ)

dx

Lo * (QU2 D) F (un) Xjun > k)1 Q|2]) f (un)v

24 24a

< G ( / |@<\x|>F<un>|2+‘*adx> ( / |@<\x|>f<un>v|2i‘adx>
|un|>Ke Br \(4»UDo)
< CoKZ! ( /|K Q) (7% = 1) jual? dx) ( /B . |Q<\x|>f<un>v|mdx>
-1 s (oo 4B ‘ = 4 :
< Cuk: (/lunz&@w (c 1)dx) (/lunZKng:m ot dx>
< /B |Q<|x|>f<un>v|2¢adx>
-1 _4
< Cuk: ( / rQ<|x\>f<un>v\2+adx)
BRE
S 0118. (3.13)
Let
F(u, U ;
60(8) = -+ QU F ) e ) = [ LTI Mt gy (310
and
F(u a ;
6w) = = (QUDF@ e o) = [ LTI g, (3.5

Then from ([2.2)), (3.14) and (3.15]), one has

[Cn () = C(2)]

1QUYNF (un W)X, i< . = QU F@w)INjai<r. |
S/ 2—a dy
R2 |z — y|

< ( [ QU)o ~ 1QUSDF @l '_’ady> h
lz—y|<R

4—2a

1 4—a
x S —;
</|a:—y|§R |z — y|(4=e)/2 y)

+ </ ’|Q(‘y|)F(Un(y))|X\un(y)|§K5 — QYD) F(u(y))|xja(y) <k.
lz—y|>R

24«
4 4

)
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2—a

1 T4
X —dy
</|z y|>R |I - |4 )

- i-a ia AT o e
< ( [ @D o) . ~ [QUDF @) o dy> (rt)
lz—yl<R o
24a
+C (/ Qb+ [ a \)ﬁwd) (&)
y «@ u’l’b y a Uy, y -
) lz—y|>R lz—y|>R R2
47 e =
o T4 2
< (aRz) o(1) + C12C. <R2> Vo eR? (3.16)
which implies that
(n() = (), ¥V € R, (3.17)
From and (| -, we have
_ (U]
)] < / 2 P
44—« ﬁ 1 4412;
< Q F(u, Un ; o d / —dy
( /x_y@' (1y1) F ()X <. y) ( R )
2+Oé 2—a

1 4
F(un y Tad —— 4
4 < /x_ym'Q('y') (1 () X <1 |7y ( T y>

[e3
— 2

_ ( /x_y@ QU F (tn(9) X .| = dy)4 : (45)

24«
4
2—a

+ </ IQ(IyI)F(un(y))xm(y)gKEIQiady> T
lz—y|>1

4-9%a 24a
< o Q)| max [P (1) 7 v < /,z_y>lQ<'y’>”4°““n’2> L
<Ci3 g(lf:)l() 1Q(|y)| + C14C:, ¥ x € R?. (3.18)
It follows that
60 ) Q) ()X 000,00
<[ max 1001+ 1) max Q0] max 10| (o) € L) (B, ¥ o € B, (3.19)

Since u,, — @ in E, we can deduce that u, — @ a.e. * € R?. By (3.17), we can deduce that

Cn(@)Q|2]) f (Un(2)) Xjun (2)1< 2. 0(x) = C(@)Q|2]) f(@(2)) Xja(@) <. v(®) a-e. x € Br.\ Do.

Therefore, (3.17)), together with (3.19) and Lebesgue dominated convergence theorem lead to

lim Lo+ (QUz) F (un) Xjun|<x)Q|2]) f (un)vda
"0 J Br \(A,UDy)
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= / Lo * (Q(lz) F ()X ja)<x.)]Q(|2]) f(w)vdz. (3.20)
Br.\Ao

It follows from (3.5), (3.6), (3.9), (3.10), (3.12), (3.13) and (3.20) that (3.2) holds due to the

arbitrariness of € > 0.

By a standard argument, we can get the following lemma.

Lemma 3.3. Assume that (V1), (Q1l) and (F1)-(F3) hold. Then any sequence {u,} satisfying
(3.1) s bounded in E.

Lemma 3.4. Assume that (V1), (Q1) and (F1)-(F3) hold. Then ® satisfies (C). condition.

Proof. Applying Lemmas and we deduce that there exists a sequence {u,} C E satisfying
(3.1) and ||u,| < Cj for some constant C; > 0. Since |lu,| < C1, by Lemmas we may thus
assume, passing to a subsequence if necessary, that u,, — @ in E, u,, — @ in L*(R?, Q) for s € [2,00),

and u, — @ a.e. on R%. By (2.16) and (4.1), we can deduce that
/]R2 Lo (QUl2)) F (un))|Q(|2]) F(un) < Cis. (3.21)

Hence it follows from (3.21]), (3.21)), (2.3]), Lemma [2.5}ii), u,, — 0 in L*(R2, Q) for s > 2 and Holder
inequality that

J.

Lo (Q|z) F'(un))]Q(2]) f (un) (un — ﬂ)’dx

< ([ ]ra @b FuQiah F) dx>é

x </R [ (Qal) f ()t = @)IQUJ ) () (1, — u)‘dx>é
< VG ( [ letab s, —Z> d> |
< Cu (/R Q(!x\)ziv\unﬁdx> G (/R Qlal) =y — ude)w

o ([ Qe (H5% -1)as) ([ et o)
o </R Qe len - u|2dx>m8a)2 +Cur </R Q)T fup — u|+dx>
— o). -

Which yields that
lim [ [Io * (Q([z|)F(un))]Q(|2]) f (un)(up — u)dz = 0. (3.23)

n—oo R2
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Similarly, we can deduce that

Jm [ e QU F@DIQ(2]) f (@) (un — @)z = 0. (3.24)
By (3.1), it is obvious that
(' (uy,) — @ (@), up, — @) = o(1). (3.25)
From ((3.23), and (3.2F)), we can get
lun = al* = (@' (un) — ¥'(a), un — @) — /R2 (Lo (Q(lz ) F (un) Q) f (un) (un — @)dz

+/ Lo+ (QUlz) F()]Q(|2]) f (@) (un — u)da
RQ
= o(1).

The following lemma allows us to find a least energy solution for (1.1) with positive level.

Lemma 3.5. Assume that (V1), (Q1), (F1), (F2) and (F3) hold. Then
i) oo := inf{||lul| : w € M} > 0;
ii) m := inf{®(u) : u € M} > 0.

Proof. (i) Choose 3 € (0,m(24 a+bg)/2). For any u € M, if |ju|| < 1, by (2.1 and (2.2), we have

= [ o QU F @)U fwyuds

e 2+ta
T * 4 1
< ([ 1@tebrwisias) * ([ iqehstulna)
R2 R2
4 n o
< Cu [ [ Qe (uf + (e 1) o) ]
RQ
24a e
4 2 . - -
< Cu ([ Qe lutar) T o ([ @Ua (250 - 1) ar)
R2 R2
24a
4 4
(L)
R2
< Coollul™ + Corul T = Cozlu**. (3.26)

Thus there exists Cog > 0 such that |Ju|| > Ca3, V u € M, |ju|| < 1. Taking oy = min{Cas, 1},
then ||ul| > 09, V u € M.
(ii) For any u € M, by (F3) and item i), it is easy to see that

1
2p

1
o2,

I

d(u) = B(u) <<b’<u>,u>z*‘2‘j|rurr2z

2p
Thus we can deduce that item ii) holds. O
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Proof of Theorem [1.3l First, we prove that M # (). Applying Lemmas and we deduce
that there exists a sequence {v,} C F satisfying (3.1]) and ||v,|| < Ca4 for some constant Cay > 0.
Hence, there exists v € E such that, up to a subsequence, v, — v in E, v,, — v in L*(R?) for s > 2

and v, — v a.e. in R?. By Lemma [3.4] we know that v, — v in E. Thus

®(v) = lim ®(v,) =c >0, ®(v)= lim ®'(v,) =0.

n—o0 n—oo

Which imply that v # 0 and v € M.
Next, we prove that m := i/r\l/lfq)(u) is achieved. By Lemma we have m > 0. Let {u,} C M

be such that ®(u,) — m. It is easy to check that

.+ 0(1) =B(un) = B(un) — zlu@'(““’ )

= w2 — * T U T Up )Up — U T
= o [lunll” + M/WUQ (Q(lz) F (un))]Q(|]) [f (un)un — pF (un)] d

Which imply that {u,} is bounded in E. Hence, there exists u € E such that, up to a subsequence,
Up — uin B, u, — uin L¥(R?,Q) for s > 2 and u,, — v a.e. in R?. As in the proof of Lemma

we can deduce that u, — v in E. Thus

®(u) = lim ®(u,) =m >0, @'(u)= lim ®'(u,) =0.

n—o0 n—o0

4 The critical case

Lemma 4.1. Assume that (V1), (Q1), (F1") and (F2) hold. Then there exists a sequence {u,} C E
satisfying

(un) ¢, (|2 (un)[[(1 + [[unl) = O, (4.1)
where c is given by

= inf D(~(t
¢ = Inf max (v(1)),
I'={y€C([0,1], E) : 7(0) = 0, ®(v(1)) < 0}.

Proof. Let vs be defined by (2.8). By (F1’) and (F2), there exists C; > 0,C3 > 0 such that

85
IF(t)|7% < C1t® + Cylt]? (ezT%tz - 1) , VYteR (4.2)
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In view of Lemma [2.5}ii), we have

[ Qe (B8 ) a = [ gl (B ) g,

Cs, YV |lull < /7(24 a+2bo)/5060. (4.3)

IN

From (2.8), and (£3)), we obtain
/}R2 I+ (Q(|z)) F(u)]Q(|z|) F(u)dz

24«

< ([ 1Qtehrwisiar)
24a
< [Cl/ Q(|z) 2+au dx+02/ Q(|z|) 2+a|u\ <e2+a 71> dx] ’
< o [ eehcar) ©
RQ
Ha 24a
w05 ([ @Uabelatas) | [ @Uahee (F - 1) as]
< Colll**®, ¥ ull < V7@ T o + 200) /5. (4.4

Hence, it follows from (2.16|) and ( . ) that

D(u) = %Huw—; [ o+ (@) PO)IQ(ia) Flu)da

1
> Slull® = Collul***, ¥ Jlull < V(2 + a + 2bo) /560 (4.5)

Therefore, there exist kg > 0 and 0 < pg < \/77(2 + a + 2by) /55y such that

O(u) > kKo, VYueS:={ueckFE:|ul|l=p} (4.6)
Now we choose wy € E \ {0}, it is easy to show that tlim O (twp) = —oo due to (F3). Hence, we
—00

can choose T' > 0 such that e := Twg € {u € E : ||u|]| > po} and ®(e) < 0, then in view of the

mountain-pass lemma, we deduce that there exists a sequence {u,} C F satisfying (4.1]). ]

Lemma 4.2. Assume that (V1), (Q1), (F1'), (F2) and (F3) hold. Then any sequence {u,} satis-
fying (4.1) is bounded in E.

Lemma 4.3. Assume that (Q1), (F1'), (F2), (F3), (F4) hold. Let u, — u in E and

/R2 (Lo # (Q(|]) F (un))]Q(|]) f (un)un < Ko (4.7)

for some constant Kg > 0. Then there hold:

i) for every ¢ € ENCS(R?)

lim [ [y (Q(|]) F(un))]Q(|2]) f (un)pdz = /R2[Ia * Q) F()]Q(|z]) f(w)pde;  (4.8)

n—oo R2
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i)
lim [ (Lo + (Q(|z]) F (un))|Q(|z]) F (up)dz = /RZ Lo+ (Q(|z]) F(0))]Q(|z]) F(u)da. (4.9)

n—oo R2

Proof. The proof of item ii) is similar to [I, Claim 6.3], so we omit the details here. Next, inspired

by [23, Lemma 4.8], we prove i). By the Fatou’s Lemma and (4.7)), we have

/R2 (Lo * (Q(|]) F(u))]Q(|]) f(w)u < Ko. (4.10)

Let Q = suppy. For any given ¢ > 0, let M, := Kgl||¢|/coc™". Then it follows from (F4), (4.7) and
(4.10f) that for n large,

/ o (Q|2]) F'(un))]Q(|2]) f (un) plda
|un |>Me

IN

sia * T z|) f (up ) up |dz
M, /|un>M5HI‘1 Q) F (un))]Q(z]) f (tn)un|d

lelloo
M

IN

KO =& (411)
and

/||>M Fa * Q) F(@)]Q1]) ()
m * z|)F(u x|) f(u)u|dz
M, /|u|ZM8”Ia QU F(@))Q(le) f(@)ald

lelloo
M,

IN

KO =E&. (412)

Let D. = {z € Q: |u(z)| = Mc}. Since |Q(|z]) f (un)Xju,|<rr.| = Q) f(@)Xjaj<rr.| a-e. in Q\ De

and

Q) () 0| < max @) s £(8)] < o0, ¥z €0,

the Lebesgue dominated convergence theorem leads to
_4 IR S
lim Q(|]) f (un) |2+ d =/ QUz)) f(u)|z+ede.  (4.13)
O J(@\De)nf|un|< M-} (\De)n{|al<M.}

Choose K. > tg such that

24
4

[l (MI()(?)) E </(Q\D )n{lal<M.} |Q(|x|)f(a)’ﬁadx> <€ (4.14)
and
/||<M Lo (QUz ) F (@)X ja> k)N Q(2]) f (@) pldr < e (4.15)
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Then from (F4), (4.13]) and (4.14)), one has

/ e QUEDF () 1) QU f ()]
(lun|<M)N(|al#Me)

HSDIIoo/Q\D Lo (QU2) F (un) X > k) QU2 ] f () Xy | < 1.

lelloe [0 (QU)F (), 2101 F ) o,

dx

IN

N[

IN

1
2

X </R2 Lo * (\Q(\xf)f(un)\X(Q\De)m{|un|<Ms})]\Q(\x’)f(un)\X(Q\De)m{|un|<M€}dx>

IN

l¢lloeCo (/I ok Lo * (Q(Iw!)F(un))]Q(lfﬁl)F(un))

4 1
< ([ @tehstmnonnguniesns| o)

Jun

lellocCo (ﬁ? /| s <c2<|:c|>F<un>>1Q<rm|>f<un>un>

% / i 1Q(]) f ()| 7 dee
(@\De)n{[a|<M:}

WﬁoKo % _ 4
0o 2Had
< el CO< K. > </(Q\Da)ﬂ{|ﬂ|§Me} QD7 x+0(1))
< e+o(l). (4.16)

IN

24«
4

24«
4

For any x € R?, we define (,(z) and ((x) as in (3.14)) and (3.15)), then from (F1'), (F2), (3.16) and
(3.18), we also have

(n(2) = (), Vo eR? (4.17)
and
[Gn(@)] < C7 e [Qly)| + Cs, ¥V = € R%. (4.18)

It follows that
|Gn (@) Q2) f (un (€)X jun <. ()0 ()]
< <C7 e QDI+ Cs> Il max |Q(J)] nax [f(t)] < o0, Ve (4.19)
Since u, — @ in E, we can deduce that u, — @ a.e. € R?. By (4.17)), we can deduce that
Cn(@)Q(|]) f (tn (%)) Xy <. ()0 (2) = C(2)Q(|]) f () X<, (x) () ae. z € QN Dy,

Therefore, (4.19) and Lebesgue dominated convergence theorem lead to

lim - Hax QU F (un) Xjun <k )Q(2]) f (un) pd
7700 S (fun | <Me)N(| £ Me)
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= /_|<M Lo+ (QUlz) F () xja < x)]Q(x]) f (@) pdz. (4.20)

Since u, — @ in E, we can deduce that u, — @ a.e. z € R? and then, by Eropo theorem, we have

up, = u, x € Q\ A, where m(A) < e. For large n, one has

{zr e Q\ A:|u(x)| = M} C {xEQ\A: |un ()| >J\§E}

And then from Lemmas and

[ s @Ueh P IQUeD Sume]an
(lun|<Me)N(|al=Me)

B / ; o (Q(M)F(Un))]Q(lfo(un)@’dx
(Jun]SMe)N(|a|=Mc))N(Q\A)

Lo * (Q(|x|)F(un)X\un|§K5)]Q(|x’)f(un)90‘dw

+
(Jun| <Me)N(Ja|=M:)NA

el (@) 1 Q) )|
(lun|<Me)N(Ju|=Me)NA

Hsalloo/ Lo * (Q(|2]) F (un)]Q(|2]) f (un)|dx
(Jun|>M. /2)N(2\A)

IN

24a

4 sra
2+ d:[)) 4

24«
4

el ([ @D Fw i) ([ Qs tn)xguicanng

Hielle [
(/.

s ¥ T x|) f(up)uy|de
M. /un|>Mg/2'”a (Q2)F (wa))Q(|2]) f (tn)un|d

NI

T * QU F () o QU () o0

z
dx)

[

Lo * (Q2]) f (un) X (jun | <M yn )] QU ) f () X (fun | < M) A

IN

2ta 24a

+CllelosCo / Q)52 da / Ql]) f () |7
|un|<Ke (lun|<M)NA

0 [V ( /| e <c2<|x|>F<un>>1Q<rm|>f<un>un|dx>

x ( / Qe )| ae)
(lun|<Me)NA

[

4 4
24« d(L‘

< Cye. (4.21)

It follows from (4.11)), (4.12), (4.20), (4.15), (4.16)) and (4.21]) that (4.8) holds due to the arbitrari-

ness of € > 0. O
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As in [30], we define Moser type functions wy,(z) supported in By := B4(0) as follows:

(

Viegn,  0< |z <d/n;
1
wp(z) = Nr: 10:5/(%0’ d/n < |z| < d; (4.22)
0, |z| > d.
By an elemental computation, we have
|V, || = / |Vw,|2dz =1 (4.23)
d d/n
and
. 2d**a0
/ |z| w2 de = (2+a0)26m (4.24)
where
1 1 1
O = — - > 0. (4.25)

(24 ap)logn (24 ag)n?t@logn  n2tao

Lemma 4.4. Assume that (V1), (Q1), (Q2) and (F1')-(F5) hold. Then there exists n € N such

that
(24 a4+ 2by)m
< 7 —_— .
¢ < max O (twy) < 5% (4.26)
Proof. By (V1), we can deduce that there exists d > 0 such that
Vir)y<(r+1)r%, VOo<r<d (4.27)
and
2 2b 1)d*teo 1
(2+a+2)(r +1) <. (4.28)
(2 + a0)3 3
By (F5), we know that there exists ¢, > 0 such that
K B +2
tF(t) 2 5, Wizt (4.29)

From (V1), (F5), (2.16)), (4.23)), (4.24) and (4.27)), we have

t2

v = 5 (19wl [ vleudar) =5 [ o Qe P Ftw,)ds
t

IN

(uwnuz / <r+1>rw\a°widw)—; [ = @ P (e, o
d d/n

oot () ([ eom)

To show (4.26)) we have three cases to distinguish. From now on, in the sequel, all inequalities hold

for large n € N.
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Casei). te€ [0, (2+042+,8§bo)7r} Then it follows (F5), (Q2) and (4.30) that

2

B(twy) < = [1 +

5 (4.31)

2(1 + 1)d*tao 5 ] - (24 a + 2bg)m
(24 a9)? B 350 '

Clearly, there exists n € N such that (4.26]) holds.

280
follows (Q2) and (4.29)) that

b [ ()] ([ e

2
27('27127& 2 :‘472 ﬂflﬂ 2 logn d/n ?
> — 0 d
~  (2d)*7« t2logn 4 ¢ /0 rQ(r)dr

2
mn® e K2 Bo 1342 d/n
> 7 1Bot% logn / d
= (@) 2+ a+ 2bo)(1+r)logn” ; rQ(r)dr

Case ii). t € [ (2ot 2bo)m \/(HQHZ%)(H“)’T} Then ty/logn/v/2m > t, for large n € N, it

- 7T2I€250<3d2+a+2b0 o1 Bot? logn‘ (4‘32)
T 242 4 o+ 2bp) (1 + K)n2tat2bologn
It follows from (4.25)), (4.30]) and (4.32)) that
2
2 2 1 2+ap 9 22—« /1 2 d/n
B(tw,) < = [1 L 2Ar+1)d 2 5n] e [F < \/Ogn>] / rO(r)dr
2 (2+ ag) (2d)?—« Vo 0
< ﬁ . 2(T + 1)d*+ao B 772/£2B0C§d2+0‘+2b0 o Bot? logn
-2 (24 ap)?logn| 2422+ a+ 2b)(1 + k)n?tat2bologn
= (). (4.33)
Let t, > 0 such that ¢/,(¢,) = 0. Then
2+a 2 32 +2 72+0+2b
T U m B d g™ Pot?logn, (4.34)
(24 ap)?logn 2372+ a + 2by)(1 + Kk)n2tat2bo
It follows that
2 2 202 2d2+a+2b0 1
poBratdogr T —— Hot +O<2>. (4.35)
Bo Bologn 2 0‘(2+a+2b0)(1+/€) log“n
It follows from (4.28)), (4.33) and (4.35)), we have
t2 2(T +1)d>t ™ 2(T +1)d>t
vnlt) < wntn) =2 |14 SEDE i
2 (24 ap)3logn 2y logn (2+ ag)3logn
_ 1[@24a+2b)r o« o TR BECR Pt 1 2(7 + 1)d?tao
) 5o Bologn ~°23-0(2+ a + 20)(1 + ) 2+ ag)®logn

26y logn log2 n
(2+a+2by)m ™ [(2—1—04—1—21)0)(7'4— 1)d?tao 1}
_|_ —_
260 Bologn

(2+ao)? 2
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2 32 -2 2+a+2bo 1
T TR B5EE 0 ( >

— 1
26ologn 2 23=a(2+ o+ 2b0)(1 + k) log® n
9 9 202 2 12+a+2bg 1
(2+a+2b)r o« 1g37mﬁ§d < : > (4.36)
20 2Bplogn T 2372+ a+ 2by)(1 + k) log?n
Hence, combining (4.33) with -, one has
2 2b
B(t) < (t) < W(t) < 02T (437

250

Case iii). t € ( (2+a;r702bo)w(1 + k), —i—oo). Then tv/logn/v/2m > t, for large n € N, it follows

(T25). (29) and (30) that

2

27 2(r +1) d2+a0 2n2-a ty/Togn 2 d/n
P(t < — |1 F d
) < 5 |1 2 — e P (R ([ remer
_ -1 2
¢ B[ A e (o) s [ g0
- 2] (2 + ag)? 2d 2-a 27 4 0
< ﬁ _1 N 2(T + 1)d?+ao o /iQngQ‘HHQbO o7 Bot? logn
-2 (24 ag)?logn| 24-apZtatboi2logn
< iy 2(7 4+ 1)d**t%0 | (2 + a + 2bo)7(1 + k) w252C§d2+0‘+2b0Bon(2+a+2b0)”
- 2+ ap)3logn 289 24=a(2 + o + 2bg)(1 + k) logn
( )% log g
2 2b
< 2+ a+ 2b)m (4.38)

360 ’
which implies that there exists 7 € N such that (4.26]) holds. In the above derivation process, we

use the fact that the function

hi(t) :=

t* ) 2T+ 1)d*t*0 ] wdRPFartotih 6ot logn
2 (2+ag)3logn| 24-apZtat2bo2logn

is decreasing on t € (\/ (2-5-0?70%0)7r(1 + k), +oo>, since its stagnation points tend to (2+af+2bo)7r

as n — 0.

O]

Lemma 4.5. Assume that (V1), (Q1), (Q2), (F1'), (F2), (F3) and (F5) hold. Then ® satisfies

(C)¢ condition.

Proof. Applying Lemmas and we deduce that there exists a sequence {u,} C E satisfying
(4.1) and |luy,|| < Cip for some constant Cigp > 0. Since ||uy| < Cho, by Lemma we may thus
assume, passing to a subsequence if necessary, that u,, — % in E, u, — @ in L*(R?, Q) for s € [2, 00)

and u, — @ a.e. on R2. Tt follows from and . that

/R2 (Lo * (Q(|]) F (un)]Q(|]) f (tn)un < Cr1. (4.39)
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In view of Lemma for any ¢ € ENC°(R?), we have

lim [ Lo+ (Q(|z]) F(un))]Q(|2]) f (un)pdz = /R2[Ia # (Q[z)) F()]Q(|x]) f () pdx.  (4.40)

n—oo R2

By (4.1) and (4.40)), it is easy to deduce that ®'(u) = 0. Then by (F3), one has

(7)) = B(7) — ;(@'(u),w > 0.

By and Lemma we have
lim [ [Io* (Q(|z]) F(un))]Q(|]) F (un)da = /RQ o+ (Q(lz) F(w)Q(Jz) F(u)dz.  (4.41)

n—oo R2

Thus

ctoll) = B(un) = gllum— >+ gl - /R Lo # Q) F@)]Q(12]) F(m)dz + (1)

\Y
iy
=5
S

|
£
T
_|_
2
=

Hence, it follows from ([2.16), (4.1]), (4.26]) and (4.41)) that

(2 + o+ 2b0)7r
Bo

Lemma implies that € > 0. Now we choose ¢ € (1,2) such that

|tn — ul|? < 2¢+ o(1) := (1—38) +o(1). (4.42)

(14 2)%(1 - 38)¢>
1-2

By (2.16]) and (4.1), we can deduce that

<1. (4.43)

/]R2 Lo (QUl2]) F (un))|Q(|2]) F(un) < Cha. (4.44)

Let ¢ = q/(¢—1). Then ¢’ > 2. Hence it follows from (4.42)), ({.43), (#-44), (2-1), Lemma [2.5}i),

u, — 0 in L¥(R?, Q) for s > 2, Holder inequality and Young inequality that

J.

</R2 Lo * (Q(|z]) F(un)]Q(|2]) F (uy,)

X
R2
2+«

e ([ @t stun)wn - 0] ar)

4o 8
4 (24a)?2 4 (2+a)?2
Cu < [ atehss |un|2dx> ( [, @) - a|2dx>
R2 R2
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Lo (QUz ) F (un))]Q(|2]) f (un) (un — ‘)‘d:v

d:v) ’

T Q) )t~ D)) (1)~ ) )

IN

=

IN

IN



24« 2+«

— T , ¢
+Cy (/ Q(’CIJD#% (3%50(1+a)ui — 1) dx> / </ Q(|x|)2%a|un _ U\;fadg;> iq
R2 -

4o 8
4 (24a)?2 4 (24a)2
Cry ( [ atehs |un|2dx) ( [, @el) 5 - a|2dx)
R2 R2

<
24a
+C14 </ QU%’DQ% (6%60(1%)2(7‘”_5)262%60(1%)28711}2 - 1) dx) ’
RQ
24«
4 4q” 4q’
<( [ @ahHelu, - a#a)
R2
4o - 8 3
4 24« 24«
< ou( [, Qe hunpas) ™ ([ Qe - afar)
R2 R2
ey [1 [ Qe (eggo<1+5)z||unu||2[<unumunup _ 1) a
q Jr2
/ 227& 4q’ %:ri;l
+1,/ Q(|z|) == <e§‘q+%ﬁo<1+€>261“2 - 1> dx} ’ (/ Q(yg;|)z+4a|un—u|2ixdx> !
q Jr2 R2
8 24+«
4 _12 (2+0)? 4 _ 4d 4q
< Ci5 (/ Q(|z|) 2+ |uy, — ul dm) + Ci6 (/ Q(|z|)Fe |uy — u]2+&dm>
R2 R2
= o(1). (4.45)
Which yields that
Jim [ [T+ (@el) ()N () 0y = W) = 0. (4.40)
Similarly, we can deduce that
Jm [ L+ QU P@)IQ(]) (@) — W = 0, (447)
By , it is obvious that
(@ (up) — @' (1), uy — u) = o(1). (4.48)

From (£46), (I-47) and (48), we can get

lun —al* = (@' (un) — (@), un — @) — / Lo # (Q(|]) F (un))]Q(|]) f (un ) (un — w)dz

RQ
+/ Lo+ (Q(|]) F ()] Q(|]) f (@) (un — u)d
R2

= o(1).

Lemma 4.6. Assume that (V1), (Q1), (F1"), (F2) and (F3) hold. Then
i) oo := inf{||lul| : w € M} > 0;
ii) m := inf{®(u) : u € M} > 0.
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The proof is similar to Lemma [3.5, so we omit it here.

Proof of Theorem [1.4l First, we prove that M # (). Applying Lemmas and we deduce
that there exists a sequence {v,} C F satisfying (4.1) and ||v,| < Ci7 for some constant Cy7 > 0.
Hence, there exists v € E such that, up to a subsequence, v, — v in E, v, — v in L*(R?, Q) for

s> 2 and v, — v a.e. in R2. By Lemma we know that v,, — v in E. Thus

®(v) = lim P(v,) =c >0, ®'(v)= lim ¥ (v,) =0.

n—0o0 n—oo

Which imply that v # 0 and v € M.

Next, we prove that m := i/I\l/tf ®(u) is achieved. By Lemma we have m > 0. Let {u,} C M
be such that ®(u,) — m. As in the proof of Lemma we can deduce that {u,} is bounded in
E. Hence, there exists u € E such that, up to a subsequence, u,, — u in E, u, — u in L*(R?, Q)

for s > 2 and u, — u a.e. in R%. In view of Lemma for any ¢ € ENC°(R?), we have

lim [ [T * (Q([2]) F(un))]Q(|2]) f (un)pda = /RQ[I(X * (QUz)F(u)Q(|x]) f(u)pde.  (4.49)

n—o0 R2

By (@.1) and (4.49), it is easy to deduce that ®'(u) = 0. From the weak lower semicontinuous of

norm and Fatou’s Lemma, we can deduce that

m = lim ®(u,) m<@%ﬂb@@ﬁw@)

=1l
= i (gl 5 [ QU P )IQU D) (it — F )

1

p—1, 9
> - _
TR

[ a * (@l P)IQel) )= P () o

:MM—iWWMO:szm

This shows that v € M and ®(u) = m. O

Acknowledgments

This work is supported by the Hunan Province Graduate Research Innovation Project (No.
(CX20240163) and China Scholarship Council (N0.202406370154). V.D. Radulescu is supported by
grant “Nonlinear Differential Systems in Applied Sciences” of the Romanian Ministry of Research,
Innovation and Digitization, within PNRR-III-C9-2022-18 /22. This research turned into supported
by the AGH University of Krakow under grant no. 16.16.420.054, funded by the Polish Ministry

of Science and Higher Education.

30



References

[1]

[12]

[13]

[14]

[15]

[16]

F.B.S. Albuquerque, M.C. Ferreira, U.B. Severo, Ground State Solutions for a Nonlocal Equation in
R? Involving Vanishing Potentials and Exponential Critical Growth, Milan J. Math. 89 (2021) 263-294.

S.I. Pekar, Untersuchung iiber die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.

E.H. Lieb, B. Simon, The Hartree-Fock theory for Coulomb systems, Commun. Math. Phys. 53 (1977)
185-194.

E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud.

Appl. Math. 57 (1977) 93-105.
P.L. Lions, The Choquard equation and related questions, Nonlinear Anal. 4 (1980) 1063-1073.

.M. Moroz, R. Penrose, P. Tod, Spherically-symmetric solutions of the Schrédinger-Newton equations,

Class. Quantum Gravity 15 (1998) 2733-2742.

P. Choquard, J. Stubbe, M. Vuffray, Stationary solutions of the Schrodinger-Newton model-an ODE
approach, Differ. Integral Equ. 21 (2008) 665-679.

R. Penrose, On gravity’s role in quantum state reduction, Gen. Relativ. Gravit. 28 (1996) 581-600.

P. Tod, I.M. Moroz, An analytical approach to the Schrodinger-Newton equations, Nonlinearity 12
(1999) 201-216.

L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch.

Ration. Mech. Anal. 195 (2010) 455-467.

V. Moroz, J.V. Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations,

Trans. Am. Math. Soc. 367 (2015) 6557-6579.

D.D. Qin, V.D. Radulescu, X.H. Tang, Ground states and geometrically distinct solutions for periodic
Choquard-Pekar equations, J. Differential Equations, 275 (2021) 652-683.

M. Ghimenti, J.V. Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal. 271 (2016)
107-135.

J.K. Xia, Z.-Q. Wang, Saddle solutions for the Choquard equation, Calc. Var. Partial Differential
Equations, 58 (2019) 85.

V. Moroz, J.V. Schaftingen, Semi-classical states for the Choquard equation, Calc. Var. Partial Differ-
ential Equations, 52 (2015) 199-235.

J. Zhang, Q.F. Wu, D.D. Qin, Semiclassical solutions for Choquard equations with Berestycki-Lionstype
conditions, Nonlinear Anal. 188 (2019) 22-49.

31



[17]

[18]

[19]

[20]

[25]

[26]

[27]

V. Moroz, J. van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl. 19
(2017) 773-813.

D.M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in R?, Comm. Partial

Differ. Equ. 17 (1992) 407-435.

S. Adachi, K. Tanaka, Trudinger type inequalities in R and their best exponents, Proc. Am. Math.
Soc. 128 (2000) 2051-2057.

D. Cassani, F. Sani, C. Tarsi, Equivalent Moser type inequalities in R? and the zero mass case, J.

Funct. Anal. 267 (2014) 4236-4263.

C.0O. Alves, D. Cassani, C. Tarsi, M.B. Yang, Existence and concentration of ground state solutions for

a critical nonlocal Schrédinger equation in R2, J. Differential Equations, 261 (2016) 1933-1972.

P.H. Rabinowitz, On a class of nonlinear Schrédinger equations, Z. Angew. Math. Phys. 43 (1992)
270-291.

D.D. Qin, X.H. Tang, On the planar Choquard equation with indefinite potential and critical exponen-
tial growth, J. Differential Equations, 285 (2021) 40-98.

L.J. Shen, V.D. Radulescu, M.B. Yang, Planar Schrodinger-Choquard equations with potentials van-
ishing at infinity: The critical case, J. Differential Equations, 329 (2022) 206-254.

X.Y. Lin, X.H. Tang, Schrédinger equations in R? with critical exponential growth and concave non-

linearities, J. Math Anal Appl. 514 (2022) 126252.

C.0. Alves, L.J. Shen, Critical Schrodinger equations with Stein-Weiss convolution parts in R2, J.
Differential Equations, 344 (2023) 352-404.

E. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society,
Providence, RI, 1997.

L. Mattner, Strict definiteness of integrals via complete monotonicity of derivatives, Trans. Am. Math.

Soc. 349 (1997) 3321-3342.

J. Su, Z.-Q. Wang, M. Willem, Nonlinear Schrodinger equations with unbounded and decaying radial
potentials, Commun. Contemp. Math. 9 (2007) 571-583.

D.G. de Figueiredo, O.H. Miyagaki, B. Ruf, Elliptic equations in R? with nonlinearities in the critical
growth range, Calc. Var. Partial Differential Equations, 3 (1995) 139-153.

32



	Introduction and main results
	Variational framework and preliminaries
	The subcritical case
	The critical case

