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Abstract. This survey paper deals with the unitary treatment of some classes of
linear partial differential equations on Klein surfaces. We are mainly concerned with
the study of harmonic functions with Dirichlet or Neumann boundary condition. In
such a way, the present paper extends several classical results to the abstract setting
of dianalytic manifolds of complex dimension 1. The analysis developed in this paper
offers perspectives to the qualitative analysis of other classes of linear or nonlinear
elliptic equations on Klein surfaces.

1. Introduction

In the preface to the first edition of Courant-Hilbert’s “Methoden der mathematis-
chen Physik” (see [COH]), R. Courant noted the danger that mathematical research
would lose the initial link between the problems and methods of analysis and the
physical and geometric intuition, the tendencies being to refine the methods and to
extreme generalize the existing concepts.

Over the years, these trends led to an increasing distinction between pure and ap-
plied mathematicians, who severely criticized each other. This constructive criticism
gave rise to the theory of real numbers and to many topological concepts including
non-orientable surfaces. It is obvious that some areas that use mathematical methods
but their object is derived from physical and geometric intuition are disadvantaged
in such a discussion.

The present paper is a piece of the bridge between the theoretical approach of the
pure mathematician and the practical interest of the engineer, physicist and applied
mathematician. The main purpose is to bring together various geometrical and phys-
ical concepts relating to surfaces that have motivated the development of the theory
of Klein surfaces.

Riemann surfaces, in the form of domains spread out over the complex plane were
introduced in Riemann’s dissertation whose methods were developed much further
in the first edition of Riemann’s paper on Abelian functions “Theorie der Abel’schen
Functionen” (see [RIE]), in 1857. Riemann’s works provided the basic tools to classify
all compact orientable surfaces and, more generally, to study the topology of mani-
folds. They are equally important for the development of algebraic geometry and the
geometric treatment of complex analysis. As for the importance that was attached
to this topic, it suffices to say that Albert Einstein’s “general theory of relativity” is
wholly based on Riemann’s ideas.

In his “Extremale quasikonforme Abbildungen und quadratische Differentiale” (see
[TEI]) Teichmüller considered the cases of oriented bordered Riemann surfaces and
non-orientable Riemann surfaces. He defined the double of a oriented bordered Rie-
mann surfaces or of a non-orientable Riemann surfaces. These are closed Riemann
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surfaces with genus depending on the original surfaces. He introduced the notions of
meromorphic functions, n-differentials and divisors on bordered non-orientable Rie-
mann surfaces.

Teichmüller defined, through two examples, the notion of conformal invariant for
non-orientable regions. It is important to note that according to Teichmüller’s defi-
nition, a conformal mapping (even in the orientable case) preserves only the angles,
but not necessarily the orientation. Thus, such a mapping is also defined in the
non-orientable case. Teichmüller exhibited complete systems of conformal invariants
for some special surfaces. For example, a simply connected domain with two distin-
guished points in the interior has one conformal invariant, namely the Green function.

Teichmüller considered special cases of the fact that one deals with non-orientable
surfaces by passing to the orientation double cover. To treat the most general surfaces,
he considered a symmetrization process on the corresponding doubles. This idea was
used to solve the main problem of extremality, known as the Teichmüller theorem.
By using the two-sheeted covering (an annulus) of the Möbius strip, he gets the
Teichmüller distance. He showed that problems on the projective plane with two
distinguished points can be reduced to similar problems on the sphere with four
distinguished points. In two examples of non-orientable surfaces, Möbius strip and
the projective plane, the problem of finding the conformal invariants is lifted to the
oriented double cover. Teichmuller considered problems on the Klein bottle and lifted
them to problems concerning the case of the torus. The torus is the two-sheeted
orientation covering of the Klein bottle.

The genesis and development of the idea of symmetry are related to Lie’s and
Klein’s research which were inspired by their deep interest in the theory of groups
and in various aspects of the notion of symmetry. According to Klein’s Erlangen
program, a geometry is determined by a “domain of action” (the plane, space, etc.)
and a “group of automorphisms” (or a symmetry group) acting on the domain. When
we change the symmetry group we change the geometric scheme under consideration,
namely we obtain a new “geometry”.

Thus, the main difference between, say, Euclidean and hyperbolic geometry is not
the possibility of constructing one or more lines passing through a point and not
intersecting a given line, but the difference in the structure of the respective groups
of symmetries of Euclidean and hyperbolic geometry. Therefore the object of the
geometry is the study of those properties of a domain which are preserved by the
transformations in a symmetry group. The description of all possible geometries is
an open problem.

In the same way, classifying non-classical topological compact surfaces is the same
thing as classifying all orientation reversing involutions of a classical compact surface.

This brings us to the interesting question of the possible global forms of various
(say, two-dimensional) geometric systems (Euclidean, hyperbolic, elliptic) first stated
(in connection with Euclidean geometry) by the outstanding geometer W. K. Clifford.
Today this question is known as the Clifford-Klein problem and the possible global
forms of geometries are called Clifford-Klein forms.

It is known that there are only two spatial forms of two-dimensional elliptic geom-
etry (the sphere and the elliptic plane), but there are as many as five forms of two-
dimensional Euclidean geometry (the ordinary Euclidean plane, the infinite Möbius
strip, the infinite cylinder, the torus and the so-called Klein bottle). Finally, there
are infinitely many forms of two-dimensional hyperbolic geometry.
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In this context, non-orientable surfaces are a possible geometric system capable
of “modelling” the real shape of the universe surrounding us. For more details,
see Munzner’s video [MUN], about the different topological structures that a three-
dimensional universe could have and Weeks’s book [WEE], which fills the gap between
the simplest examples, such as the Mobius strip and the Klein bottle, and the sophis-
ticated mathematics found in upper-level college courses.

Spencer and Schiffer in their advanced monograph “Functionals of Finite Riemann
Surfaces”, extended the investigation of finite Riemann surfaces from the point of
view of functional analysis, that is, the study of the various Abelian differentials of
the surface in their dependence on the surface itself.

The methodology that Schiffer and Spencer employed is characterized by Ahlfors’
next comment: “such a surface has a double, obtained by reflection across the bound-
ary, and one of the main features of the book is the systematic use of this symmetriza-
tion process”.

The notion of Klein surface goes back to Felix Klein due to his closing remarks in
[KLE1882], even though one does not find a definition of a Klein surface there. Klein
surfaces generalize Riemann surfaces and they are dianalytic manifolds of complex
dimension 1. Roughly speaking, a Klein surface is a surface on which the notion of
angle between two tangent vectors at a given point is well-defined, and so is the angle
between two intersecting curves on the surface.

Basic function theory on Klein surfaces and the relation between compact Klein
surfaces and real algebraic function fields were developed in the monograph “Foun-
dations of the Theory of Klein surfaces” (see [ALG]) by N. Alling and N. Greenleaf.
They showed that every Klein surface can be represented as the quotient of a Rie-
mann surface by a conjugate analytic involution. Thus, it is natural to extend on
Klein surfaces the most fundamental problems in engineering, physics and other sci-
ences. Alling and Greenleaf were the ones who introduced the name “Klein surface”.

Our approach is an alternative theory to the standard theory given by Alling and
Greenleaf and aims at the natural imbedded of calculus on Klein surfaces in the
well known Cartan’s model of calculus on manifolds. We have developed this theory
because of the unusual behavior from the analytical point of view of the Alling and
Greenleaf’s results. For instance, functions are not usual functions but equivalence
classes of families of meromorphic functions relative to dianalytic atlases. Such a
family defines an usual function if and only if all its members are the same real
constant. The meromorphic differentials are also equivalence classes of families of
functions satisfying some compatibility conditions that lead to the impossibility of
defining a consistent integral on Klein surfaces (see [ALG, Theorem 1.10.4]).

We follow Schiffer and Spencer’s method to study the objects on Klein surfaces by
means of the complex double, whose existence and uniqueness are demonstrated in
[ALG].

We are enabled to bring together systematically and concisely the concepts of
the Green and Neumann functions, the harmonic kernel function and the harmonic
measure and to build from them an elegant generalization for the basic ideas of
boundary value problems on Klein surfaces.

The main objectives of study in this paper are the Dirichlet problem and the
Neumann problem for harmonic functions on Klein surfaces. The technique is based
on the fact that according to a classical result due to Klein, the boundary value
problems on a Klein surface can be reduced to similar problems on its complex double.
This process has many advantages, starting from the fact that complex double is a
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symmetric Riemann surface, that is, a Riemann surface endowed with a fixed point
free antianalytic involution. Consequently, we obtain harmonic functions on a Klein
surface by adding together a pair of harmonic functions on the symmetric Riemann
surface, whose singularities lye at symmetric points. In our study, we use methods
that have wide applicability in function theory and partial differential equations.

The symmetric conditions on the boundary determine symmetric solutions on the
complex double, which lead to solutions for the similar problems on the Klein surface.
Specifically, in the case of Klein surfaces, the formula for the solution of the Dirichlet
problem is expressed in terms of an analogue of the Green function, which has the
symmetry in argument and parameter. In these terms, we extend the use of the Green
function to the study of the harmonic measure on a Klein surface. That is why we
distinguish the method to solve the Dirichlet problem for harmonic functions on a
Klein surface, once the harmonic measure on a symmetric Riemann surface is known.
This procedure generates an explicit formula for the solution of the Dirichlet problem
on a Klein surface, which is similar to the Poisson integral. At the same time, we
rewrite the Radon–Nikodym derivative of harmonic measure against the symmetric
arc length.

The corresponding solution of the Neumann problem for harmonic functions on a
Klein surface is expressed in terms of an analogue of a Neumann function.

The harmonic kernel function is related to the classical domain functions, such as
the Green function and the Neumann function on a Klein surface. In such a way it is
possible to solve both boundary value problems of potential theory on a Klein surface,
once the harmonic kernel function on a symmetric Riemann surface is known.

We refer to Krantz [KRA1, KRA3, KRA4, KRA5] for an excellent exposition of
various topics at the interplay between complex analysis and partial differential equa-
tions.

The study of objects on Klein surfaces is an important part of surface topology
due to the applications of these surfaces in several fields of science such as quantum
physics, chemistry and biology. Indeed, for a physicist, Möbius’s band and Klein’s
bottle are essential elements in the so-called annulment of divergences (see [KAT]).
In chemistry, the recent synthesis and the “half-cutting” of a molecular Möbius strip
(see [WHRH]) was considered as a spectacular event, described as “the most topo-
logically stimulating molecular structure synthesized to date” it catalyzed the birth
of extrinsic graph theory, dealing with topological chirality, a field now burgeoning in
mathematics.

The study of liquid crystals is another field where Klein surfaces have surprisingly
materialized themselves. In the so-called nematic liquids, the molecules form ribbons
which may or may not be orientable (see [BOU]). A systematic topological analysis
highlighted the double topological character of distortions in liquid crystals differen-
tiated for “energetic reasons” (see [BDPPT]). If we consider the potential function of
some form of internal energy of the ribbons, then the normal derivative on the border
characterizes the flow of energy across the border. It may be necessary to determine
this potential knowing the respective flow or the values of the potential on the border.
These are boundary value problems which will be solved in this paper.

The natural tendency of some macromolecules to store energy through distortions,
a fact well known to chemists, might be the cause itself for the formation of non-
orientable strings, thus making obvious the practical need of dealing with boundary
value problems related to them.
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A unified principle for science that works with dualism is presented in terms of
torsion fields and the non-orientable surfaces, namely the Klein Bottle, the Möbius
strip and the projective plane, in (see [RAP]). This principle is applied to the complex
numbers and cosmology, to non-linear systems integrating the issue of hyperbolic
divergences with the change of orientability, to the biomechanics of vision and the
mammal heart, to the morphogenesis of crustal shapes on Earth in connection to the
wavefronts of gravitation, elasticity and electromagnetism, to pattern recognition of
artificial images and visual recognition, to neurology and the topographic maps of
the sensorium, to perception, in particular of music.

As it is noticed in (see [JSS]), these are the types of problems which contribute
to a unifying treatment of orientable and non-orientable surfaces, not only from the
topological point of view (see [BEGG] and [SES]) but also from an analytical point
of view (see [SCS] and [ALG]).

2. Klein surfaces and symmetric Riemann surfaces

Klein surfaces are the most general two-manifolds that support harmonic functions.
In order to be able to extend results about boundary value problems for harmonic
functions on Riemann surfaces to Klein surfaces, we have to review some results on
the topology of surfaces, Klein surfaces, and the uniformization of Riemann surfaces.
The history of Klein surfaces is going back to Klein (see [KLE1882]) who considered
the group of conformal maps of the Klein bottle and other non-orientable surfaces. In
their monograph, Schiffer and Spencer (see [SCS]) did the first modern study of the
surfaces endowed with dianalytic structures. Much of the material of this Section will
be presented without proofs and will be completed with references to proofs. The
main reference to topology of surfaces is the monograph of Ahlfors and Sario (see
[AHS]).

A connected topological Hausdorff space X is a surface with boundary if every

point P̃ ∈ X has an open neighborhood Ũ , which is homeomorphic to a relatively

open subset of the closed upper half-plane. A homeomorphism h : Ũ → h(Ũ) is called

a local parameter at the point P̃ ∈ Ũ . The boundary ∂X of X consists of those points

P̃ ∈ X , such that h(P̃ ) ∈ R, for all the local parameters h at the point P̃ . The pair

(Ũ , h) is called a chart. Let hi : Ũi → hi(Ũi) and hj : Ũj → hj(Ũj) be two local

parameters, such that Ũi ∩ Ũj 6= ∅, i, j ∈ I. The mapping hi ◦ h−1
j : hj(Ũi ∩ Ũj) →

hi(Ũi ∩ Ũj) is called a transition function.
Let A and B be nonempty open sets in the closed upper half-plane. A continuous

map of A into B is analytic on A (resp., antianalytic on A) if it extends to an
analytic (resp., antianalytic) function on some neighborhood of A in C into C. If f
or the complex conjugate of f is analytic on each connected component of the set A,
then f is called dianalytic on A.

An atlas of the surface X is a family A = {(Ũi, hi) |i ∈ I } of charts, where (Ũi)i∈I
is an open cover of X . The atlas A is dianalytic if all of its transition functions
are dianalytic. Two dianalytic atlases A and B are called equivalent if A ∪B is a
dianalytic atlas as well. An equivalence class A of dianalytic atlases of X is called a
dianalytic structure on X.

A Klein surface is a surface X with boundary endowed with a dianalytic structure
A and will be denoted by X. Observe that a classical Riemann surface is an orientable
Klein surface with empty boundary.
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The main tool in our study is the complex double of a Klein surface. Details about
the history of this concept may be found in [SCS] and for some of its applications see
[ALG], [BEGG] and [SES].

Let X be a Klein surface endowed with the maximal atlas A = {(Ũi, hi) |i ∈ I }.
We recall the construction of the complex double of X, which we shall use in order
to apply results about Riemann surfaces to Klein surfaces. We consider the disjoint

union S = ∪
i∈I
Ũi. Let (Ũi, hi) and (Ũj, hj) be two charts, such that Ũi ∩ Ũj 6= ∅. For

a point P̃ ∈ Ũi ∩ Ũj, the set S has two points which both correspond to the point P̃ ,

namely the point P̃ ∈ Ũi and the same point P̃ ∈ Ũj.We denote the latter one with

P̃ ∗. Next, we identify the points P̃ and P̃ ∗, if the corresponding transition function
is analytic. If ∂X 6= ∅, then there are two points lying over each boundary point of
X. Identifying these two points, we obtain a surface O2 which is called the complex
double of the surface X. The two points of O2 which lie over the same point of X are
called symmetric points of O2. For more details, see Alling and Greenleaf [ALG].

Similar to the orientable case (see [LEH]), it is obtained that the cover group of
the double cover π : O2 → X is generated by an orientation reversing involution. For
details, see Seppala and Sorvali [SES].

The next theorem relates a Klein surface to its complex double. We refer to [ALG]
for the proof and more details.

Theorem 1. Given a Klein surface X, there exist a double cover π : O2 → X of the
Klein surface X by a Riemann surface O2 and an antianalytic involution k : O2 → O2,
with π ◦ k = π, such that X is dianalytically equivalent with O2/ 〈k〉, where 〈k〉 is the
group generated by k. Conversely, given a pair (O2, k) consisting of a Riemann surface
X and an antianalytic involution k, the orbit space O2/ 〈k〉 admits a unique structure
of Klein surface, such that f : O2 → O2/ 〈k〉 is a morphism of Klein surfaces, provided
that one regards O2 as a Klein surface.

The mapping π is a local homeomorphism at all points P ∈ O2, for which π(P ) /∈
∂X. At points lying over the boundary of X, the mapping π is a folding map similar
to the mapping x+ iy → x+ i |y| at the real axes. For more details about the folding
map and the morphisms of Klein surfaces, see [ALG] and [ANC].

By Poincaré’s uniformization theorem, each compact Riemann surface of algebraic
genus g > 2 can be represented as an orbit space H/Γ+ of the upper half complex
plane H. Next, H is endowed with the conformal structure induced by the group
M of the Möbius transformations and the acting group Γ+ is a Fuchsian group, that
is, a discrete subgroup of M. The group Γ+ can be chosen with no elements of finite
order. For details, we refer to Poincaré [POI].

In his unpublished thesis, Preston proved the real counterpart of Poincaré’s uni-
formization theorem: for a Klein surface X of algebraic genus g > 2, there exists a
non-euclidean crystallographic (NEC in short) group Γ, that is, a discrete subgroup
of the extended modular group, such that X and H/Γ are isomorphic as Klein sur-
faces. This NEC group can be assumed having no orientation preserving mapping
of finite order. For details, see [PRE] and [ROS1].

By Klein’s definition, a symmetric Riemann surface, (O2, k), is a Riemann surface
O2, together with an orientation reversing involution k : O2 → O2. The involution k
is called a symmetry of O2. For more details about symmetries of a topologic surface,
see [SES].
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A set D of O2 is called symmetric if k(D) = D. Thus, given Ω a subset of X, then
π−1(Ω) = D is a symmetric subset of O2.

A function f defined on a symmetric set is called a symmetric function if it is
k-invariant, that is, f = f ◦ k.

Next, we identify X with the orbit space O2/ 〈k〉 obtained by identifying P with

k(P ), for all P ∈ O2. If Ũ is a parametric disk on X, then π−1(Ũ) = U ∪ k(U) is a
pair of symmetric disks of O2, hence it is natural to consider restrictions on U ∪ k(U)
for the local study of the objects on O2. Since k is an involution without fixed points,
one can suppose that U ∩ k(U) = ∅.

We identify the points of O2, respectively X, with their images on C from the
corresponding local parameters, with respect to the relation between the dianalytic
atlas on X and the analytic atlases on O2. Let z be the local parameter on U. Then

k(z) is the local parameter on k(U) and z̃ = k̃(z) = π(z) = π(k(z)) = {z, k(z)} is the

local parameter on Ũ .
Let F(X) be the vector space of the complex functions on the Klein surface X

and Fs(O2) the vector space of the symmetric functions on O2. By Theorem 1, we
conclude that there exists an isomorphism π∗ : F (X) → Fs(O2), between the vector
spaces F (X) and Fs(O2). Indeed, let F : X → C be a complex function on X, that
can take the value ∞ only on finite sets. Its lifting f to O2 is given by

(1) f(z) = f(k(z)) = F (z̃), z ∈ O2, z̃ = π(z).

Then, it is easy to see that the function π∗, defined by π∗(F ) = f is an isomorphism.
Also, to any function g : O2 → C, we can associate a function f = g + g ◦ k which

is a symmetric function on O2. Thus, (1) defines a function F on X.

Let γ̃ be a piecewise smooth Jordan curve on a parametric disk Ũ . The curve γ̃

has exactly two lifts from π−1(Ũ). If γ̃(0) = z̃0 = {z0, k(z0)} and if γ is the lift of γ̃
on O2 from z0, then k ◦ γ is the lift of γ̃ on O2 from k(z0). We refer to [AHL] for
details about covering surfaces. By definition of γ, we obtain π ◦ γ = π ◦ k ◦ γ, hence
for any continuous real-valued function F defined on γ̃, the function f = F ◦ π is a
continuous real-valued symmetric function on γ ∪ k(γ).

The Euclidean lengths of the two curves γ and its symmetric k ◦ γ, that is their
lengths with respect to the metric ds = |dz|, may be different. We modify this metric
and get a new metric dσ on O2, such that the lengths of γ and k ◦ γ, with respect to
the metric dσ, will be the same. We define a symmetric metric on O2 by

dσ =
1

2
(ds+ ds ◦ k) .

Then the dσ-lengths of γ and k ◦ γ are equal. By definition, the length of γ̃ is the
common dσ-length of γ and k ◦ γ. Then

dΣ(z̃) = dσ(z) = dσ(k(z)), z̃ = π(z) ∈ X

is a metric on X. The metric dΣ is invariant with respect to the group of conformal
or anticonformal transition functions of X.

By definition, ∫
γ̃

FdΣ =

∫
γ

fdσ =

∫
k◦γ

fdσ.

For more details about measure and integration on Klein surfaces, see [BAR].
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Any Riemann surface O2 of class C1 is endowed with a Riemannian metric deter-
mined by the line element

ds = ν |dz + µdz| ,
where ν is a positive function. If µ is identically zero, then the metric

ds(z) = ν(z) |dz|
and the local parameter z are called isothermal.

It is known that the isothermal metric ds defines a natural analytic structure on O2.
Similar to the orientable case, the isothermal metric dσ defines a dianalytic structure
on the Klein surface X. See [AHS] and [LEH], for details.

Next, we give an example of a symmetric isothermal metric (see Schiffer and
Spencer [SCS]).

Example 1. The simplest example of a Klein surface is provided by the Möbius strip.
Consider R > 1 and the annulus

AR =

{
z ∈ C

∣∣∣∣ 1

R
< |z| < R

}
of the z-plane. The Möbius strip, denoted by M, is obtained from AR by identifying
the points z and −1/z. Let k : AR → AR defined by k(z) = −1/z. Then (AR, k) is
a symmetric Riemann surface and the quotient space AR/ 〈k〉 is a Möbius strip. The
Möbius strip is obtained by cutting the ring along the real axis in the z-plane and
joining the two halves together along corresponding boundaries. Thus, the annulus
AR with points z and −1/z identified is a canonical form for the Möbius strip. The
Euclidean metric

ds = |dz|
is not symmetric. We define a symmetric isothermal metric on AR by

dσ =
1

2

(
|dz|+

∣∣∣∣d(−1

z

)∣∣∣∣)
=

1

2

(
1 +

1

|z|2

)
|dz| .

By definition, the metric on the Möbius strip is

dΣ(z̃) = dσ(z) = dσ(k(z)

thus,

dΣ(z̃) =
1

2

(
1 +

1

|z|2

)
|dz| .

The area element da on AR is

da(z) =
1

4

(
1 +

1

|z|2

)2

dm(x, y),

where m is the Lebesgue measure in the complex plane. Then the area element dA on
the Möbius strip is

dA(z̃) = da(z) = da(k(z)),

hence

dA(z̃) =
1

4

(
1 +

1

|z|2

)2

dm(x, y).



BOUNDARY VALUE PROBLEMS ON KLEIN SURFACES 9

Let γ : [a, b] → AR be a piecewise continuously differentiable curve and let f :
γ([a, b])→ C be a continuous function. The integral of f on the curve γ, denoted by∫
γ

fdσ, is defined by

∫
γ

fdσ =
1

2

b∫
a

f(γ(t))

(
1 +

1

|γ(t)|2

)
|γ′(t)| dt

and ∫ ∫
M

FdA =
1

8

∫ ∫
AR

f(z)

(
1 +

1

|z|2

)2

dm(x, y).

Let γ be a σ-rectifiable Jordan arc γ, parametrized in terms of the arc σ-length.
Therefore, γ : z = z(s) = x(s)+ iy(s), s ∈ [0, l], where l is the σ-length of γ. Then the

unit inward normal vector to γ at z(s) is nσ =

(
−dy
dσ
,
dx

dσ

)
and we denote by

∂

∂nσ
the inward normal derivative, with respect to the symmetric metric dσ. In this way,
our approach is consistent with Nevanlinna [NEV2], Bergman [BER] and Schiffer and
Spencer [SCS]. For more details about the normal derivative and Green’s identities
in terms of dσ, see [BAG1].

3. The Dirichlet problem for harmonic functions

This section is devoted to the study of harmonic functions with Dirichlet boundary
condition on a Klein surface. The similar analysis in the complex plane has been
developed in Krantz [KRA1, Section 1.2].

The notion of harmonic function, as being a solution of the Laplace equation, makes
sense on a Klein surface. Moreover, a Klein surface is the most general two-manifold
in which this notion of harmonic function makes sense. For details, see [ALG]. We
notice that the notion of analytic function is meaningless on a Klein surface.

The Dirichlet problem on an arbitrary Riemann surface can be solved because the
property that a function that is harmonic remains invariant under bi-holomorphic
mappings. For the existence of a harmonic function which vanishes on the boundary
and has a finite number of isolated singularities with given singular parts in a relatively
compact region, which is contained in a chart of a Riemann surface, we refer to Ahlfors
and Sario [AHS].

Any Klein surface X can be regularly imbedded in a border free surface using a
duplication process (see [AHS]). Therefore, for the boundary problems involving a
part of ∂X we can consider it as a part of the boundary of a region on a border free
surface.

Let O2 be a region in the complex plane, bounded by a finite number of analytic
Jordan curves. Then O2 = O2∪∂O2 can be conceived as a bordered Riemann surface
(see [AHL], [SCS]). Because the Klein surfaces X and O2/ 〈k〉 are dianalytically
equivalent, a boundary value problem on a region Ω of the Klein surface X, can be
replaced by a similar problem on a symmetric region D of its double O2, as follows.

Consider the Dirichlet problem on X for harmonic functions

(2)

{
∆U = 0 on Ω
U = F on ∂Ω.
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where Ω is a region of X bounded by a finite number of σ- rectifiable Jordan curves
and F is a continuous real-valued function on ∂Ω.

We define D = π−1(Ω) and f = F ◦ π on ∂D. Then D is a symmetric region of
O2, bounded by a finite number of σ-rectifiable Jordan curves on O2, some of which
may contain part of ∂O2. Since π ◦ k = π, we obtain f = f ◦ k on ∂D, hence f is a
symmetric, continuous real-valued function on ∂D. The Dirichlet problem (2) on X
is equivalent with the following Dirichlet problem for harmonic functions on O2

(3)

{
∆u = 0 on D
u = f on ∂D.

For details about the Dirichlet problem on bordered Riemann surfaces, see Ahlfors
and Sario [AHS].

The Dirichlet problem turned out to be fundamental in many areas of mathematics
and physics. For example, if D is a thin, heat-conducting metal plate and f is
a continuous temperature distribution on ∂D, then the solution u of problem (3)
represents the resulting steady-state heat distribution on D (see [COH], [KRA2]).

Using the maximum principle for harmonic functions, it follows that the Dirichlet
problem (3) with continuous boundary values has a unique solution for any region
D with only regular points. For some basic monotonicity, analytic and variational
methods of the theory of partial differential equations of elliptic type, we refer to
[RAD].

The symmetric conditions on the boundary imply symmetric solutions for the prob-
lem (3). For more details, see Schiffer and Spencer [SCS].

Proposition 2. A solution u of the problem (3) is a symmetric function on D.

Proof. Let u be a solution of the problem (3). We define ũ : D → R by ũ =
1

2
(u+ u ◦ k) . Then ∆ũ = 0 on D. By hypothesis, f = f ◦ k on ∂D, hence

ũ =
1

2
(f + f ◦ k) = f on ∂D.

Thus, ũ is also a solution of the problem (3). The uniqueness of the solution yields
ũ = u on D, therefore u = u ◦ k on D. �

3.1. The symmetric Green function. Let D be a symmetric region bounded by
a finite number of σ-rectifiable Jordan curves on the symmetric Riemann surface O2.

Fix a point ζ ∈ D. The function υ (z, ζ) = − ln |z − ζ| is harmonic at all points
z 6= ζ. Let w be the solution of the Dirichlet problem on D, with the boundary
condition w(z) = υ(z, ζ) on ∂D. The unique function GD(z, ζ) = υ (z, ζ) − w(z)
defined on D\ {ζ} is called the Green function of the region D, with singularity at ζ
(see [AHS]).

We assume that u and v are continuously twice differentiable in D and once on the
boundary ∂D. We will use the following Green formula:∫

∂D

(
u
∂v

∂nσ
− v ∂u

∂nσ

)
dσ = −

∫ ∫
D

(u∆v − v ∆u) dxdy,

where dσ is the arc σ-length element on ∂D and the derivatives on the left are taken
with respect to the inward normal on ∂D. For more details, see [NEV2].

The next theorem is similar to the Cauchy integral formula for harmonic functions
in terms of the metric dσ.



BOUNDARY VALUE PROBLEMS ON KLEIN SURFACES 11

Proposition 3. (Green representation formula) Let D be a symmetric region bounded
by a finite number of σ-rectifiable Jordan curves and let u be a harmonic function in
D and continuously differentiable on its boundary ∂D. Then, for all ζ in D,

(4) u(ζ) =
1

2π

∫
∂D

(
u(z)

∂υ(z, ζ)

∂nσ
− υ(z, ζ)

∂u(z)

∂nσ

)
dσ,

where the derivatives are taken with respect to the inward normal on ∂D.

Proof. Fix a point ζ ∈ D and a positive number ε that is less than the Euclidean
distance of ζ to ∂D. Define Dε = D \D(ζ, ε). Let Cε be the negatively oriented circle
of radius ε, centered at ζ. We apply the Green formula for Dε, with the harmonic
functions u and υ. It follows that

(5)

∫
∂D

(
u
∂υ

∂nσ
− υ ∂u

∂nσ

)
dσ = −

∫
Cε

(
u
∂υ

∂nσ
− υ ∂u

∂nσ

)
dσ.

The curve −Cε is parameterized by z = z(θ) = ζ + εeiθ, 0 6 θ 6 2π. We deduce that

−
∫
Cε

υ
∂u

∂nσ
dσ =

∫
−Cε

υ
∂u

∂nσ
dσ = −ε

2π∫
0

υ(z(θ), ζ)
∂u(z(θ))

∂ρ
dθ.

As the function u has continuous partial derivatives in D, there is a constant C such

that

∣∣∣∣∂u∂ρ
∣∣∣∣ 6 C on Cε. Then, on Cε, we obtain∣∣∣∣∣∣

∫
−Cε

υ
∂u

∂nσ
dσ

∣∣∣∣∣∣ 6 2πCε |ln ε| .

We observe that the right-hand side of the last inequality tends to zero as ε tends to
zero. Therefore

lim
ε→0

∫
−Cε

υ
∂u

∂nσ
dσ = 0.

Using the mean value property, we have∫
Cε

u
∂υ

∂nσ
dσ = −

2π∫
0

u(z(θ))dθ = −2πu(ζ).

Then relation (5) becomes∫
∂D

(
u
∂υ

∂nσ
− υ ∂u

∂nσ

)
dσ = 2πu(ζ).

The proof is now complete. �

Following Nevannlina (see [NEV2]), we obtain that the values of u inside D are
determined from its values and the values of the normal derivative of the Green
function on the boundary ∂D.
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Theorem 4. Let D be a symmetric region, whose boundary ∂D consists of a finite
number of σ-rectifiable Jordan curves. If u is harmonic on D and continuously dif-
ferentiable on ∂D, then for all ζ in D,

(6) u(ζ) =
1

2π

∫
∂D

u(z)
∂GD(z, ζ)

∂nσ
dσ.

Proof. Applying Green’s formula for D with the harmonic functions u and w, we
obtain

(7)

∫
∂D

(
υ
∂u

∂nσ
− u ∂w

∂nσ

)
dσ = 0.

Dividing (7) by 2π, and adding this identity to the Green representation formula, we
obtain (6). �

The function

Pζ(z) =
1

2π

∂GD(z, ζ)

∂nσ
is called the Poisson kernel of the Laplace operator and the Dirichlet problem on the
region D.

We define G
(k)
D (z, ζ̃) as

G
(k)
D (z, ζ̃) =

1

2
[GD(z, ζ) +GD(z, k(ζ))]

on D\ {ζ, k(ζ)} .
Let ws be the solution of the Dirichlet problem on D, with the boundary condition

ws(z) =
1

2
[υ(z, ζ) + υ(z, k(ζ)] on ∂D. Then

G
(k)
D (z, ζ̃) =

1

2
[υ(z, ζ) + υ(z, k(ζ)]− ws(z).

Therefore, G
(k)
D (z, ζ̃) is a harmonic function of z in D\ {ζ, k(ζ)} , with singularities

−1

2
ln |z − ζ| and −1

2
ln |z − k(ζ)| at ζ and k(ζ), respectively. Also, G

(k)
D (z, ζ̃) = 0 for

all z on ∂D.
We can derive the following result (see [BAG1]):

Proposition 5. For every symmetric region D, the function G
(k)
D (·, ζ̃) is symmetric

on D, that is, for all z ∈ D,

G
(k)
D (z, ζ̃) = G

(k)
D (k(z), ζ̃).

Consequently, the function G
(k)
D (z, ζ̃) is called the symmetric Green function of the

region D, with singularities at ζ and k(ζ).
An explicit form for the symmetric Green function of the annulus is obtained in

[BAG1]. For additional information on this topic we refer to [SCS].

3.2. The symmetric harmonic measure. Let D be a symmetric region bounded
by a finite number of σ-rectifiable Jordan curves on O2 and B(∂D) the σ-algebra of
Borel sets of ∂D. The σ-algebra of symmetric Borel sets of ∂D is denoted by Bs(∂D)
and Bs(∂D) = {U ∪ k(U) |U ∈ B(∂D)} .

The harmonic measure for D is a function ωD : D × Bs(∂D)→ [0, 1] such that:

(1) for each ζ ∈ D, the map B 7→ ωD(ζ, B) is a Borel probability measure on ∂D;



BOUNDARY VALUE PROBLEMS ON KLEIN SURFACES 13

(2) if f : ∂D → R is a continuous function, then the solution of the Dirichlet
problem, forD and the boundary function f , is the generalized Poisson integral
of f on D given by

(8) PDf(ζ) =

∫
∂D

f(z)dωD(ζ, z), ζ ∈ D.

For details, see [RAN].

Remark 1. The uniqueness of ωD is a consequence of the Riesz representation the-
orem.

An extensive study of the harmonic measure is developed in [GAM].
A method of determining the harmonic measure is given by the following charac-

terization (see [RAN]):

Proposition 6. The function ωD(·, B), is the solution of the generalized Dirichlet
problem with boundary function f = 1B.

The harmonic measure for D is related to another conformal invariant, the Green
function for the symmetric region D.

Using Theorem 4 and the fact that Borel measures are determined by their actions
on continuous functions, we obtain a representation of the harmonic measure in terms
of the inward normal derivative of the Green function with respect to dσ.

Proposition 7. Let D be a symmetric region, whose boundary ∂D consists of a finite
number of σ-rectifiable Jordan curves. If ζ ∈ D, then for any z ∈ ∂D,

dωD(ζ, z) =
∂GD(z, ζ)

∂nσ
· dσ(z)

2π
.

Thus, the harmonic measure for ζ ∈ D is absolutely continuous to arc σ-length on
∂D and on ∂D, the density being

dωD
dσ

=
1

2π

∂GD(z, ζ)

∂nσ
= Pζ(z).

Let ω
(k)
D : D × Bs(∂D)→ [0, 1] be the function defined by

ω
(k)
D (ζ̃ , B) =

1

2
[ωD(ζ, B) + ωD(k(ζ), B)] ,

where ζ̃ = {ζ, k(ζ)}, ζ ∈ D, B ∈ Bs(∂D); see [ROS2].

Remark 2. The symmetry of the region D implies that the function ω
(k)
D (ζ̃ , B) is

symmetric with respect to B on Bs(∂D), that is, for any B ∈ Bs(∂D),

ω
(k)
D (ζ̃ , B) = ω

(k)
D (ζ̃ , k(B)).

The function ω
(k)
D (ζ̃ , B) is called the symmetric harmonic measure for D.

The function

P
(k)

ζ̃
(z) =

1

2π

∂G
(k)
D (z, ζ̃)

∂nσ
, z ∈ D

is called the symmetric Poisson kernel for the region D.
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3.3. The Dirichlet problem on the complex double. The following Poisson
integral formula both reproduces and creates harmonic functions on the complex
double. Roughly speaking, the next theorem yields the formula for the solution of
the Dirichlet problem (3) on a symmetric region D, in terms of the symmetric Green
function.

Theorem 8. Let D be a symmetric region bounded by a finite number of σ-rectifiable
Jordan curves and let f be a symmetric, continuous function on ∂D. There is a
unique symmetric function u on D, which is harmonic in D, continuous on D, such
that u = f on ∂D. Moreover, for all ζ in D,

(9) u(ζ) =
1

2π

∫
∂D

f(z)
∂G

(k)
D (z, ζ)

∂nσ
dσ, ζ ∈ D.

Proof. By Theorem 4, for all ζ ∈ D,

u(ζ) =
1

2π

∫
∂D

u(z)
∂GD(z, ζ)

∂nσ
dσ.

Replacing ζ with k(ζ) we obtain

u(k(ζ)) =
1

2π

∫
∂D

u(z)
∂GD(z, k(ζ))

∂nσ
dσ.

Adding the last two equations and dividing by 2, we obtain

u(ζ) + u(k(ζ))

2
=

1

4π

∫
∂D

u(z)

[
∂GD(z, ζ)

∂nσ
+
∂GD(z, k(ζ))

∂nσ

]
dσ,

for all ζ ∈ D. By Proposition 2, u is a symmetric function on D, then the left-hand
side of the last equality is u(ζ). We conclude that for all ζ in D,

u(ζ) =
1

4π

∫
∂D

u(z)

[
∂GD(z, ζ)

∂nσ
+
∂GD(z, k(ζ))

∂nσ

]
dσ.

The uniqueness of the solution of the Dirichlet problem for harmonic functions implies
relation (9). �

Theorem 8 is the equivalent of the Poisson formula for the solution of the Dirichlet
problem on the disc in the complex plane, see Krantz [KRA5, Section 7.3]. In such a
way, Theorem 8 creates a function that agrees with f on the boundary of the domain
D and is harmonic inside.

The formula for the solution to the Dirichlet problem on the annulus is obtained
in [BAG2].

In a similar way, we obtain the following representation of the solution of the
problem (3) on a symmetric region D, in terms of the symmetric harmonic measure.

Theorem 9. Let D be a symmetric region bounded by a finite number of σ-rectifiable
Jordan curves and let f be a symmetric, continuous function on ∂D. There exists a
unique symmetric function u on D, which is harmonic on D, continuous on D, such
that u = f on ∂D. For all ζ in D, we have

(10) u(ζ) =

∫
∂D

f(z)dω
(k)
D (ζ̃ , z).
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Proof. Let ζ be a point in D. By (8), for all ζ ∈ D,

u(ζ) =

∫
∂D

f(z)dω(ζ, z)dσ.

Replacing ζ with k(ζ) we get

u(k(ζ)) =

∫
∂D

u(z)dω(k(ζ), z)dσ.

Adding the last two equations and dividing by 2, we obtain

u(ζ) + u(k(ζ))

2
=

1

2

∫
∂D

f(z) [dω(ζ, z) + dω(k(ζ), z)] ,

for all ζ in D. By Proposition 2, u is a symmetric function on D, then the left-hand
side of the last equality is u(ζ) and we conclude that for all ζ in D,

u(ζ) =

∫
∂D

f(z)dω
(k)
D (ζ̃ , z).

The proof is now complete. �

By Proposition 7, we obtain the Radon-Nikodym derivative of symmetric harmonic
measure for D against σ-arc length.

Proposition 10. Let D be a symmetric region whose boundary ∂D consists of a finite
number of σ-rectifiable Jordan curves. If ζ ∈ D, then for any z ∈ ∂D,

dω
(k)
D (ζ̃ , z) =

∂G
(k)
D (z, ζ̃)

∂nσ
· dσ(z)

2π
.

This result shows that the symmetric harmonic measure for D is absolutely con-
tinuous to arc σ-length on ∂D and on ∂D, the density being

dω
(k)
D

dσ
=

1

2π

∂G
(k)
D (z, ζ̃)

∂nσ
= P

(k)

ζ̃
(z).

3.4. The Dirichlet problem on the Klein surface. Let X be a Klein surface and
let Ω be a region bounded by a finite number of σ-rectifiable Jordan curves. The Klein
surface X is the factor manifold of the symmetric Riemann surface O2 with respect
to the group 〈k〉. Then, Ω is obtained from the symmetric region D by identifying
the corresponding symmetric points.

The Green function of Ω with singularity at ζ̃ is defined by

GΩ(z̃, ζ̃) = G
(k)
D (z, ζ̃) = G

(k)
D (k(z), ζ̃),

where z̃ = π(z).

By definition, the function GΩ(z̃, ζ̃) is continuous on Ω, harmonic on Ω\
{
ζ̃
}

and

has the singularity at ζ̃ = π(ζ).

Remark 3. By Proposition 5, it follows that GΩ(z̃, ζ̃) is well-defined on Ω.
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An explicit form for the Green function of the Möbius strip is obtained in [BAG1].
The harmonic measure for Ω, ωΩ : Ω× B(∂Ω)→ [0, 1], is defined by

ωΩ(ζ̃ , B̃) = ω
(k)
D (ζ̃ , B) = ω

(k)
D (ζ̃ , k(B)).

for all ζ̃ ∈ Ω and B̃ = π(B) ∈ B(∂Ω).
The function

Pζ̃(z̃) = P
(k)

ζ̃
(z) = P

(k)

ζ̃
(k(z)), z ∈ D

is called the Poisson kernel for the region Ω.

Remark 4. By Remark 2, it follows that the function ωΩ is well-defined. By Propo-
sition 5, it follows that the function Pζ̃ is well-defined, too.

The symmetric solutions on O2 determine the solutions of the similar problems on
the Klein surface X.

Consequently, we obtain the solution of the Dirichlet problem on the region Ω, with
respect to the Green function of Ω.

Theorem 11. Let F be a continuous real-valued function on the border ∂Ω. The
solution of the Dirichlet problem (2) with the boundary function F is the function U
defined on Ω, by the relation u = U ◦ π, where π is the canonical projection of O2 on
X and u is the solution (9) of the Dirichlet problem (3) on the symmetric region D,
with the boundary function f, given by f = F ◦ π.

Proof. By definition, ∆U(ζ̃) = ∆u(ζ) = 0, for all ζ̃ ∈ Ω, where ζ̃ = π(ζ). Thus, U is
a harmonic function on Ω. The symmetry of the function f on ∂D implies

U(ζ̃) = u(ζ) = f(ζ) = f(k(ζ)) = F (ζ̃),

for all ζ̃ ∈ ∂Ω. Due to the uniqueness of the solution, the function U defined on Ω by

U(ζ̃) = u(ζ) = u(k(ζ)),

for all ζ̃ in Ω, where ζ̃ = π(ζ), is the solution of the Dirichlet problem (2) on Ω. �

In a similar way, we obtain the solution of the problem (2) on the region Ω, with
respect to the harmonic measure for the region Ω.

Theorem 12. Let F be a continuous real-valued function on the border ∂Ω. The
solution of the problem (2) with the boundary function F is the function U defined on
Ω, by the relation u = U ◦ π, where π is the canonical projection of O2 on X and u
is the solution (10) of the problem (3) on the symmetric region D, with the boundary
function f, given by f = F ◦ π.

By Proposition 10, we obtain the Radon-Nikodym derivative of harmonic measure
for Ω against Σ-arc length.

Proposition 13. Let Ω be a region bounded by a finite number of σ-rectifiable Jordan

curves. If ζ̃ ∈ Ω, then for all z̃ ∈ ∂Ω,

dωΩ(ζ̃ , z̃) = dω
(k)
D (ζ̃ , z) = dω

(k)
D (ζ̃ , k(z)).

This result implies that the harmonic measure for Ω is absolutely continuous to arc
Σ-length on ∂Ω and on ∂Ω, the density being

dωΩ

dΣ
= Pζ̃(z̃).
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4. The Neumann problem for harmonic functions

This section is devoted to the study of harmonic functions with Neumann boundary
condition on a Klein surface. The similar analysis in the complex place has been
developed by Schiffer and Spencer [SCS].

Consider the Neumann problem for harmonic functions

(11)

 ∆U = 0 on Ω
∂U

∂nΣ

= G on ∂Ω,

where Ω is a region of X bounded by a finite number of σ-rectifiable Jordan curves
and G is a continuous real-valued function on ∂Ω.

We define D = π−1(Ω) and g = G ◦ π on ∂D. Since π ◦ k = π, we obtain that D is
a symmetric region bounded by a finite number of σ-rectifiable Jordan curves on O2,
some of which may contain part of ∂O2 and g is a symmetric, continuous real-valued
function on the boundary ∂D.

The Neumann problem on X is equivalent with the following Neumann problem
on O2

(12)

 ∆u = 0 on D
∂u

∂nσ
= g on ∂D.

Since k is an antianalytic involution, the symmetry of D and the symmetry of g on
∂D, imply that the prescribed values of the normal derivative satisfy the compatibility
condition ∫

∂D

gdσ = 0.

Therefore the Neumann problem on O2 for the region D and the boundary function
g has solutions. For details, see [NEV1].

Proposition 14. If the problem (12) admits a solution, then it is unique up to an
additive constant.

Proof. Let u1 and u2 be solutions of the problem (12). If u = u1 − u2, then u is

harmonic on D and
∂u

∂nσ
= 0 on ∂D. Applying Green’s first identity, we get∫ ∫

D

(
u2
x + u2

y

)
dxdy = 0.

Therefore u is constant on D. �

Proposition 15. The solution of the problem (12) is a symmetric function on D.

Proof. Let u be a solution of the problem (12). We define ũ : D → R by ũ =
1

2
(u+ u ◦ k). By hypothesis g = g ◦ k on ∂D, then

∂ũ

∂nσ
=

∂u

∂nσ
= g on ∂D and ∆ũ

= 0 on D. Thus, ũ is also a solution of the problem (12). By Proposition 14, there
is a constant c such that ũ = u + c on D. Thus u ◦ k = u + 2c on D and using the
symmetry of the region D, we obtain u = u ◦ k + 2c on D. Hence c = 0, that is,
u ◦ k = u on D. �
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4.1. The symmetric Neumann function. Let ζ be a point inside D. A Neumann
function ND(z, ζ) for the region D, with singularity at ζ, in terms of the metric dσ,
is the function

ND(z, ζ) = υ(z, ζ)− h(z, ζ), z ∈ D, z 6= ζ,

where h(z, ζ) is a solution of the following Neumann problem in terms of the metric
dσ:  ∆h(z, ζ) = 0 , z ∈ D

∂h

∂nσ
(z, ζ) =

∂υ

∂nσ
(z, ζ)− 2π

l
, z ∈ ∂D,

where l =

∫
∂D

dσ is the σ-length of ∂D.

Remark 5. The boundary value of the inward normal derivative of the Neumann

function is a constant equal to
2π

l
.

Theorem 16. Let D be a symmetric region bounded by a finite number of σ-rectifiable
Jordan curves. If u is harmonic in D and continuously differentiable on ∂D then, up
to an additive constant,

u(ζ) = − 1

2π

∫
∂D

∂u(z)

∂nσ
ND(z, ζ)dσ, ζ ∈ D.

Proof. Fix a point ζ ∈ D and a positive number ε that is less than the Euclidean
distance of ζ to ∂D. Define Dε = D \ D(ζ, ε). Let Cε be the negatively oriented
circle of radius ε, centered at ζ. Applying Green formula for Dε with the harmonic
functions h and u, we obtain

(13)

∫
∂D

(
h
∂u

∂nσ
− u ∂h

∂nσ

)
dσ = 0.

Dividing (13) by 2π and adding this identity to the Green representation formula, it
follows that

u(ζ) = − 1

2π

∫
∂D

N(z, ζ)
∂u

∂nσ
dσ +

1

l

∫
∂D

udσ.

Thus, u is determined up to the additive constant
1

l

∫
∂D

u(z)dσ. �

Let N
(k)
D (z, ζ̃) be the function defined by

N
(k)
D (z, ζ̃) =

1

2
[ND(z, ζ) +ND(z, k(ζ))] , z ∈ D \ {ζ, k(ζ)} ,

where ND(z, k(ζ)) is a Neumann function for the region D, with singularity at k(ζ)

and ζ̃ = {ζ, k(ζ)} . Therefore

N
(k)
D (z, ζ̃) =

1

2
[υ(z, ζ) + υ(z, k(ζ))]− hs(z, ζ̃), z 6= ζ, z 6= k(ζ),

where hs is a harmonic function on D that satisfies

∂hs
∂nσ

(z, ζ̃) =
1

2

[
∂υ

∂nσ
(z, ζ) +

∂υ

∂nσ
(z, k(ζ))

]
− 2π

l
.
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Therefore, N
(k)
D (z, ζ̃) is a harmonic function of z in D \ {ζ, k(ζ)}, with singularities

at ζ and k(ζ) and
∂N

(k)
D

∂nσ
(z, ζ̃) =

2π

l
, for all z ∈ ∂D.

An explicit form for the function N
(k)
D (z, ζ̃) of the annulus and of the Möbius strip

are obtained in [ROS3].

Proposition 17. If D is a symmetric region, then the function N
(k)
D (z, ζ̃) is symmet-

ric with respect to z on D, that is, for any z ∈ D,

N
(k)
D (z, ζ̃) = N

(k)
D (k(z), ζ̃).

Proof. Let h∗(·, ζ) be a harmonic function in D, such that

∂h∗

∂nσ
(z, ζ) =

1

2

(
∂υ

∂nσ
(z, ζ) +

∂υ

∂nσ
(k(z), ζ)

)
− 2π

l
, z ∈ ∂D.

Therefore
∂h∗

∂nσ
(z, ζ) =

∂h∗

∂nσ
(k(z), ζ), for all z ∈ ∂D.

By Proposition 15, h∗(·, ζ) is a symmetric function. Hence the function

M
(k)
D (z, ζ̃) =

1

2
[υ(z, ζ) + υ(k(z), ζ)]− h∗(z; ζ)

is a symmetric function, harmonic in D \
{
ζ̃
}

and
∂M

(k)
D

∂n
(z, ζ̃) =

2π

l
. So, N

(k)
D (z, ζ̃)

and M
(k)
D (z, ζ̃) are solutions of the same Neumann problem. Thus, by Proposition

14, there is a constant c such that N
(k)
D (z, ζ̃) = M

(k)
D (z, ζ̃) + c. Since M

(k)
D (z, ζ̃) is a

symmetric function, we obtain that N
(k)
D (z, ζ̃) is also a symmetric function. �

Let ζ0 be a point of D. A Neumann function ND(z, ζ) is not a conformal invariant,
but the difference ND(z, ζ) − ND(z, ζ0) is a Neumann function and has a vanishing
normal derivative on ∂D, hence it is a conformal invariant. We redefine the difference

ND(z, ζ, ζ0) = ND(z, ζ)−ND(z, ζ0)

to be a Neumann function for the region D on the Riemann surface O2, see [SCS].

The function N
(k)
D (z, ζ̃, ζ̃0) defined by

N
(k)
D (z, ζ̃, ζ̃0) =

1

2
[ND(z, ζ, ζ0) +ND(z, k(ζ), k (ζ0))] ,

for all z ∈ D\{ζ̃ , ζ̃0}, is called a symmetric Neumann function for the region D.

4.2. The symmetric harmonic kernel function. Let D be a symmetric region
in the complex plane, bounded by a finite number of σ-rectifiable Jordan curves. In
this section, we introduce closed systems (ϕi)i of harmonic functions in D, which are
orthonormal with respect to the Dirichlet integral

D{ϕi, ϕj} =

∫ ∫
D

(
∂ϕi
∂x

∂ϕj
∂y

+
∂ϕi
∂y

∂ϕj
∂x

)
dxdy.

We recall some notions and results about orthogonal harmonic functions. For more
details, see [BER].

Let Λ2(D) be the set of harmonic functions ϕ in D with a finite Dirichlet integral

D{ϕ} = D{ϕ, ϕ} <∞
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such that

D{ND(z, ζ), ϕ(ζ)} = 2πϕ(ζ),

where ND(z, ζ) is the Neumann function of D with its singularity at the fixed point
ζ, ζ ∈ D.

Remark 6. The second condition is imposed to normalize D{ϕ, ϕ} to be zero if and
only if ϕ vanishes identically.

Proposition 18. There exists a closed system (ϕi)i for the class Λ2(D), which is
orthonormal with respect to the Dirichlet integral, that is,

D{ϕi, ϕj} = δij, δii = 1, δij = 0, i 6= j.

Let ζ be a point inside D. The harmonic kernel function KD(z, ζ) of the closed
orthonormal system (ϕi)i for the region D, with respect to the point ζ, is the function
defined by

KD(z, ζ) =
∞∑
i=1

ϕi(z)ϕi(ζ), z ∈ D.

The harmonic kernel function is uniquely characterized by the following properties:

KD(z, ζ) = KD(ζ, z)

and

D{KD(z, ζ), ϕ(ζ)} = ϕ(ζ), ϕ ∈ Λ2(D).

An extensive study of the harmonic kernel function is due to [BER].
The representation of the harmonic kernel function in terms of a closed orthonormal

system gives the opportunity to solve numerically the Dirichlet problem for arbitrarily
multiply connected regions. This is an important tool in physics, in particular in fluid
mechanics, elasticity and electricity.

It is known that the harmonic kernel function KD(z, ζ), the Green function GD(z, ζ)
and the Neumann function ND(z, ζ) satisfy the relation

(14) KD(z, ζ) =
1

2π
[ND(z, ζ)−GD(z, ζ)] , z ∈ D.

We first derive a formula that solves the Dirichlet problem (3). We prove that if
u is harmonic inside a region D and continuous on ∂D, then we can determine the
values of u inside of D by integrating on ∂D the product of u times the inward normal
derivative of the harmonic kernel function for the region D, which is a fixed function
that depends only on D.

Theorem 19. Let D be a symmetric region bounded by a finite number of σ-rectifiable
Jordan curves. If u is harmonic in D and continuous on D, then, up to an additive
constant,

(15) u(ζ) = −
∫
∂D

u(z)
∂KD(z, ζ)

∂nσ
dσ, ζ ∈ D.

Proof. From (6), the solution of the Dirichlet problem (3) is

(16) u(ζ) =
1

2π

∫
∂D

u(z)
∂GD(z, ζ)

∂nσ
dσ, ζ ∈ D.
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Using (14), we obtain

∂KD(z, ζ)

∂nσ
=

1

2π

∂ND(z, ζ)

∂nσ
− 1

2π

∂gD(z, ζ)

∂nσ

=
1

l
− 1

2π

∂GD(z, ζ)

∂nσ
,

for any z ∈ ∂D, where l is the length of ∂D (see [NEV1]). Combining this relation
with (16), we find

u(ζ) = −
∫
∂D

u(z)
∂KD(z, ζ)

∂nσ
dσ +

1

l

∫
∂D

u(z)dσ.

Thus, u is determined up to the additive constant
1

l

∫
∂D

u(z)dσ. �

Next, we derive a formula that solves the Neumann problem (12).

Theorem 20. Let D be a symmetric region bounded by a finite number of σ-rectifiable
Jordan curves. If u is harmonic in D and continuously differentiable on ∂D then, up
to an additive constant,

(17) u(ζ) = −
∫
∂D

∂u(z)

∂nσ
KD(z, ζ)dσ, ζ ∈ D.

Proof. By Theorem 16, using Green formula, it follows that, up to an additive con-
stant, a solution of the Neumann problem is given by

(18) u(ζ) = − 1

2π

∫
∂D

∂u(z)

∂nσ
ND(z, ζ)dσ, ζ ∈ D.

The constant is chosen such that u(z) is in Λ2(D).
By (14), for ζ ∈ ∂D, we have

KD(z, ζ) =
1

2π
ND(z, ζ).

Substituting this in (18), we obtain (17). �

Let K
(k)
D (z, ζ̃) be the function defined by

K
(k)
D (z, ζ̃) =

1

2
[KD(z, ζ) +KD(z, k(ζ))] , z ∈ D,

where KD(z, k(ζ)) is the harmonic kernel function of the closed orthonormal system

(ϕi)i, for the region D, with respect to the point k(ζ). The function K
(k)
D (z, ζ̃) is in

Λ2(D) (see [BER], [ROS4]).

Proposition 21. If D is a symmetric region, then the function K
(k)
D (z, ζ̃) is symmet-

ric with respect to z on D, that is, for every z ∈ D,

K
(k)
D (z, ζ̃) = K

(k)
D (k(z), ζ̃).

Proof. We use (14) and the symmetric properties of the symmetric Green function
and symmetric Neumann function. �
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Let ζ0 be a point of D. Let Λ2
0(D) be the class of harmonic functions ϕ that satisfy

the conditions:

D{ϕ, ϕ} <∞
and

ϕ(ζ0) = 0.

The harmonic kernel functionKD(z, ζ, ζ0) of the class Λ2
0(D) is related to the harmonic

kernel function KD(z, ζ) of the class Λ2
0(D) by the following identity:

KD(z, ζ, ζ0) = KD(z, ζ)−KD(ζ, ζ0).

The harmonic kernel function KD(z, ζ) for the region D, with respect to the point ζ
is not a conformal invariant but the harmonic kernel function KD(z, ζ, ζ0) is invariant
under conformal mapping (see [BER]), therefore KD(z, ζ, ζ0) is well-defined on the
Riemann surface O2.

The function K
(k)
D (z, ζ̃, ζ̃0) defined by

K
(k)
D (z, ζ̃, ζ̃0) =

1

2
[KD(z, ζ, ζ0) +KD(z, k(ζ), k (ζ0))] ,

for all z ∈ D\{ζ̃ , ζ̃0}, is called the symmetric harmonic kernel function for the region
D.

4.3. Integral representations on the double cover. We first express the solution
of the Neumann problem (12) for harmonic functions in terms of dσ as a line integral
involving the boundary function and a symmetric Neumann function.

Theorem 22. Let D be a symmetric region bounded by a finite number of σ-rectifiable
Jordan curves and let g be a symmetric, continuous function on ∂D. If u is harmonic
in D and g is its inward normal derivative on ∂D, then up to an additive constant

(19) u(ζ) = − 1

2π

∫
∂D

g(z)N
(k)
D (z, ζ̃)dσ, ζ ∈ D.

Proof. By Theorem 16, up to the additive constant
1

l

∫
∂D

u(z)dσ, we have for all ζ ∈ D,

u(ζ) = − 1

2π

∫
∂D

g(z)ND(z, ζ)dσ .

Replacing ζ with k(ζ) we get

u(k(ζ)) = − 1

2π

∫
∂D

g(z)ND(z, k(ζ))dσ.

Adding the last two equations and dividing by 2, we obtain, up to the additive

constant
1

l

∫
∂D

u(z)dσ,

u(ζ) + u(k(ζ))

2
= − 1

2π

∫
∂D

g(z)
ND(z, ζ) +ND(z, k(ζ))

2
dσ.
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By Proposition 15, u is a symmetric function on D, then the left-hand side of the last
equality is u(ζ). Therefore

u(ζ) = − 1

4π

∫
∂D

g(z) [ND(z, ζ) +ND(z, k(ζ))] dσ,

up to the additive constant
1

l

∫
∂D

u(z)dσ. �

Similarly, we obtain a formula for the symmetric solution of the Neumann problem
(12) on a symmetric region D, in terms of the symmetric harmonic kernel function.

Theorem 23. Let D be a symmetric region bounded by a finite number of σ-rectifiable
Jordan curves. Let g be a symmetric, continuous function on ∂D. If u is harmonic
in D and g is its inward normal derivative on ∂D, then up to an additive constant,

(20) u(ζ) = −
∫
∂D

g(z)K
(k)
D (z, ζ̃)dσ, ζ ∈ D.

Proof. It is similar with the proof of the Theorem 22. Here we use Theorem 20. �

The next theorem yields a formula for the symmetric solution of the Dirichlet
problem (3) on a symmetric region D, in terms of the symmetric harmonic kernel
function.

Theorem 24. Let D be a symmetric region bounded by a finite number of σ-rectifiable
Jordan curves. Let f be a symmetric, continuous function on ∂D. There is a unique
symmetric function u on D, which is harmonic on D, continuous on D, such that
u = f on ∂D. For all ζ in D,

(21) u(ζ) = −
∫
∂D

f(z)
∂K

(k)
D (z, ζ̃)

∂nσ
dσ.

Proof. By Theorem 19, for all ζ ∈ D,

u(ζ) = −
∫
∂D

u(z)
∂KD(z, ζ)

∂nσ
dσ.

Replacing ζ with k(ζ) we get, for all ζ ∈ D,

u(k(ζ)) = −
∫
∂D

u(z)
∂KD(z, k(ζ))

∂nσ
dσ.

Adding the last two equations and dividing by 2, it follows that

u(ζ) + u(k(ζ))

2
= −1

2

∫
∂D

u(z)

[
∂KD(z, ζ)

∂nσ
+
∂KD(z, k(ζ))

∂nσ

]
dσ,

for all ζ ∈ D.
By Proposition 2, u is a symmetric function on D, then the left-hand side of the

last equality is u(ζ) and we conclude that for all ζ in D,

u(ζ) = −1

2

∫
∂D

u(z)

[
∂KD(z, ζ)

∂nσ
+
∂KD(z, k(ζ))

∂nσ

]
dσ.
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The uniqueness of the solution of the Dirichlet problem for harmonic functions implies
(21). �

4.4. Integral representations on the Klein surface. Let ζ̃ be a point inside Ω.

A Neumann function NΩ(z̃, ζ̃) for the region Ω, with singularity at ζ̃ is defined by

(22) NΩ(z̃, ζ̃) = N
(k)
D (z, ζ̃) = N

(k)
D (k(z), ζ̃),

where z̃ = π(z).

Remark 7. By Proposition 17, it follows that NΩ(z̃, ζ̃) is well-defined on Ω.

Therefore NΩ(z̃, ζ̃) is a harmonic function on Ω\
{
ζ̃
}

, which has a constant normal

derivative
∂NΩ

∂nΣ

on the boundary ∂Ω and has a logarithmic pole at the point ζ̃ = π(ζ).

Next, we derive the solution of the Neumann problem (11) on the region Ω.

Theorem 25. Let G be a continuous real-valued function on ∂Ω. Then, up to an
additive constant, the solution of problem (11) is the function U defined by the relation
u = U ◦ π, where π is the canonical projection of O2 on X and u is the solution (19)
of the problem (12) on the symmetric region D, with the inward normal derivative g
given by g = G ◦ π on ∂D.

Proof. The symmetry of the function u on D, yields

∆U(ζ̃) = ∆u(ζ) = ∆u(k(ζ)) = 0 for all ζ̃ ∈ Ω,

where ζ̃ = π(ζ).
Using the symmetry of the function g on ∂D, we obtain

∂U

∂nΣ

(ζ̃) =
∂U

∂nσ
(ζ) = g(ζ) = g(k(ζ)) = G(ζ̃),

for all ζ̃ ∈ ∂Ω. Then, up to an additive constant, the function U defined on Ω by

U(ζ̃) = u(ζ) = u(k(ζ)),

for all ζ̃ in Ω, is the solution of problem (11). �

Let ζ̃ be a point inside Ω. The harmonic kernel function KΩ(z̃, ζ̃) of the closed

orthonormal system (ϕi)i, for the region Ω, with respect to the point ζ̃ = {ζ, k(ζ)} is
defined by

KΩ(z̃, ζ̃) = K
(k)
D (z, ζ̃) = K

(k)
D (k(z), ζ̃), z̃ = π(z) ∈ Ω.

Remark 8. By Proposition 21, it follows that KΩ(z̃, ζ̃), is well-defined on Ω.

The symmetric solutions on O2 determine the solutions of the similar problems on
the Klein surface X. Thus, we obtain the solution of the Dirichlet problem (2) on
the region Ω, with respect to the harmonic kernel function, for the region Ω.

Theorem 26. Let F be a continuous real-valued function on the border ∂Ω. The
solution of the problem (2) with the boundary function F is the function U defined on
Ω, by the relation u = U ◦ π, where π is the canonical projection of O2 on X and u
is the solution (21) of the problem (3) on the symmetric region D, with the boundary
function f given by f = F ◦ π.
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Proof. By definition,

∆U(ζ̃) = ∆u(ζ) = 0 for all ζ̃ ∈ Ω,

where ζ̃ = π(ζ), thus U is a harmonic function. The symmetry of the function f on
∂D, implies

U(ζ̃) = u(ζ) = f(ζ) = f(k(ζ)) = F (ζ̃) for all ζ̃ ∈ ∂Ω.

Due to the uniqueness of the solution, the function U defined on Ω by

U(ζ̃) = u(ζ) = u(k(ζ)),

for all ζ̃ in Ω, where ζ̃ = π(ζ), is the solution of problem (2) on Ω. �

The next theorem gives the solution of the Neumann problem (11) on the region
Ω, with respect to the harmonic kernel function, for the region Ω.

Theorem 27. Let G be a continuous real-valued function on the border ∂Ω. Then, up
to an additive constant, the solution of the problem (11) with the normal derivative
G on ∂Ω is the function U defined on Ω, by the relation u = U ◦ π, where π is the
canonical projection of O2 on X and u is the solution (20) of the problem (12) on
the symmetric region D, with the normal derivative function g given by g = G ◦ π on
∂D.

Proof. By definition,

∆U(ζ̃) = ∆u(ζ) = 0 for all ζ̃ ∈ Ω,

where ζ̃ = π(ζ), thus U is a harmonic function. The symmetry of the function g on
∂D, implies

∂U(ζ̃)

∂nΣ

=
∂u(ζ)

∂nσ
= g(ζ) = g(k(ζ)) = G(ζ̃),

for all ζ̃ ∈ ∂Ω. Thus, up to an additive constant, the function U defined on Ω by

U(ζ̃) = u(ζ) = u(k(ζ)),

is the solution of the problem (11) on Ω. �

Concluding remarks. The methods developed in this paper remain valid in the
case of all differential operators associated to conformal invariant metrics. Such an
example corresponds to the invariant Laplacian (or sometimes the Laplace-Beltrami
operator for the Poincaré-Bergman metric), see Krantz [KRA1, Section 6.5]. We also
refer to the pseudo-hyperbolic metric, which is conformally invariant, but it does not
arise from integrating an infinitesimal metric (that is, lengths of tangent vectors at
a point). A comprehensive analysis of the pseudo-hyperbolic metric on the disc may
be found in Krantz [KRA3].

To the best of our knowledge, there are not further results involving either linear
or nonlinear elliptic equations on Klein surfaces. This study can include qualitative
and quantitative properties of solutions but also related singular or degenerate phe-
nomena. We consider that the mathematical analysis of these classes of PDEs on
Klein surfaces is a very rich and attractive research field at the interplay between
complex analysis and nonlinear analysis.
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Analysis, Birkhäuser, Boston, 2006.

[KRA5] S.G. Krantz, A Guide to Complex Variables, The Dolciani Mathematical Expositions,
vol. 32, Mathematical Association of America, Washington, DC, 2008.

[LEH] O. Lehto, Univalent Functions and Teichmüller spaces, Graduate Texts in Math., vol.
109, Springer-Verlag, New York, 1987.

[MUN] T. Munzner, https://www.youtube.com/watch?v=-gLNlC hQ3M

[NEV1] R. Nevanlinna, Uniformisierung, Grundlehren Math. Wiss., Bd. 64., Springer-Verlag,
Berlin-Göttingen-Heidelberg, 1953.

[NEV2] R. Nevanlinna, Analytic Functions, Springer-Verlag, Berlin, 1970.



BOUNDARY VALUE PROBLEMS ON KLEIN SURFACES 27

[PIR] Y. Pinchover and J. Rubinstein, An Introduction to Partial Differential Equations, Cam-
bridge University Press, Cambridge, 2005.
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[ROS2] M. Roşiu, Harmonic measures and Poisson kernels on Klein surfaces, Electronic Journal
of Differential Equations, Vol. 2017 (2017), No. 269, 1-7.
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